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Abstract

Exploring the properties of hydrogen, helium, nitrogen, and oxygen, and

their mixtures, is a subject of considerable interest. While these elements

are well understood under typical pressure and temperature conditions on

Earth, their behaviour under the extreme pressure and temperature conditions

relevant to giant planets remains unknown. This work addresses key aspects

of this challenge.

The miscibility gap of hydrogen and helium is investigated through Monte-

Carlo simulations using classical two-body interaction potentials. Predictions

of the miscibility gap of hydrogen and water are made with classical Monte-

Carlo methods and ab initio simulations. This comprehensive investigation

sheds light on the interplay between hydrogen and water under extreme

pressure and temperature conditions, offering insight in their miscibility gap.

Additionally, this research contributes to our understanding of nitrogen’s

equation of state using ab initio methods. The focus is on unravelling the de-

tails of the first-order liquid-liquid phase transition, coupled with a nonmetal-

to-metal transition in nitrogen. The results of this analysis are discussed

in depth, providing insights into the behaviour of nitrogen under extreme

pressure and temperature conditions.
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Kurzzusammenfassung

Die Erforschung der Eigenschaften von Wasserstoff, Helium, Stickstoff

und Sauerstoff sowie ihrer Mischungen sind ein Thema von großem Interesse.

Während diese Elemente unter typischen Druck- und Temperaturbedingungen

auf der Erde gut verstanden sind, bleibt ihr Verhalten unter den extremen

Druck- und Temperaturbedingungen, die für Riesenplaneten relevant sind,

in großen Teilen unbekannt. Diese Arbeit befasst sich mit Schlüsselaspekten

dieser Herausforderung.

Die Mischungslücke von Wasserstoff und Helium wird durch Monte-Carlo-

Simulationen unter Verwendung klassischer Wechselwirkungspotentiale un-

tersucht. Die Vorhersage der Mischungslücke von Wasserstoff und Wasser

wurde mit zwei verschiedenen Ansätzen durchgeführt: klassischen Monte-

Carlo-Methoden und ab-initio-Simulationen. Diese umfassende Untersuchung

beleuchtet das komplexe Zusammenspiel von Wasserstoff und Wasser unter

extremen Druck- und Temperaturbedingungen und liefert einen Fortschritt

zum Verständnis ihrer Mischbarkeitslücke.

Darüber hinaus trägt diese Forschungsarbeit zu dem Verständnis der Zus-

tandsgleichung von Stickstoff mithilfe von Ab-initio-Methoden bei. Der Schw-

erpunkt liegt auf der Analyse des Phasenübergangs erster Ordnung, welcher

von einem Nichtmetall-zu-Metall-Übergang begleitet wird. Die Ergebnisse

dieser Analyse werden ausführlich diskutiert und liefern wertvolle Einblicke

in das einzigartige Verhalten von Stickstoff unter extremen Druck- und Tem-

peraturbedingungen.
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Chapter 1.

Introduction
In recent years, significant advancements in the exploration of our solar system exploration,

facilitated by enhanced observational capabilities and innovative modelling techniques, have
greatly enriched our understanding of celestial bodies. However, this progress has also
underscored the profound complexities and lingering mysteries that continue to fascinate the
scientific community, see e.g. [1, 2, 3, 4]. Exploring planetary interiors has been interesting
for scientists and space enthusiasts alike. Consider, for instance, the interior of Earth, where
we uncovered vast reserves of minerals, intricate tectonic plate movements, and a molten
outer core generating a protective magnetic field [5]. In the unforgiving desolation of
space, our Moon carries the scars of ancient asteroid impacts, while Mars, with its desolate
landscapes, raises questions about the possibility of past or present life [6]. Jupiter, the
largest of them all, boasts a tumultuous atmosphere with raging storms that have persisted
for centuries [7]. Saturn’s majestic rings and enigmatic hexagonal cloud pattern at its north
pole have confounded scientists [8]. Meanwhile, the ice giants Neptune and Uranus have
their own secrets. Neptune, the windswept ice giant, harbours supersonic wind speeds and
the Great Dark Spot, a storm system larger than Earth [9]. Uranus, known for its peculiar
sideways rotation, challenges our understanding of planetary evolution [10].

Unfortunately, space missions are very costly and challenging and require decade-long
preparations. Consequently, our understanding of the interior structures of planetary objects
mostly depends on improving models by using the available observational constraints. Crucial
physical quantities for characterizing the internal structure and evolution of planets include
equations of state (EOS) and fundamental transport properties, such as conductivity, viscosity,
and diffusivity. These properties govern the internal structure, thermal evolution, and magnetic
fields and are essential for understanding the behaviour of planetary materials, see, e.g. [1,
11, 12, 13, 14, 15]. Hydrogen and helium, as the most abundant ones in the universe, play a
crucial role in the composition of gas giant planets such as Jupiter and Saturn but also in ice
giant planets such as Uranus and Neptune. However, heavier atoms, such as oxygen, nitrogen,
carbon, and their mixtures, are also of great interest in this context.

1.1. Warm dense matter (WDM)

Warm dense matter (WDM) represents states comprising partially ionised atoms or partially
dissociated molecules, typically manifesting as dense plasmas [21, 22]. However, WDM
can also adopt solid-like [23] or superionic structures [24]. These states occur within a
temperature range of 103 to 106 K and at densities spanning from 10−2 to 103 g/cm3 [18, 25].
To precisely delineate the WDM region in the density-temperature plane, we employ two
essential parameters: the degeneracy parameter Θ (measuring the relevance of quantum
mechanical degeneracy) and the coupling parameter Γ (measuring the relevance of correlation
effects). The coupling parameter for a particle type a is determined as the ratio of Coulomb

1
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Θe ≷ 1







classical plasmas

degenerate plasmas
(1.4)

The theoretical description of WDM is done using methods from many-body physics. Among
the most popular choices is density functional theory molecular dynamics (DFT-MD) simula-
tions using the Kohn-Sham formulation of DFT, as discussed in Sec. 3. Other post-Hartree-Fock
methods such as Coupled Cluster theory [26], the configuration interaction method [27],
or path integral Monte Carlo simulations [28, 29, 30] offer high accuracy. However, their
computational cost often limits their application to the study of small systems [31].

As depicted in Fig. 1.1, many astrophysical objects, both within our solar system and beyond,
are in the proximity of the WDM region [18, 25]. Additionally, practical applications extend to
the creation of innovative materials [32, 33] and the execution of inertial confinement fusion,
exemplified by facilities like the National Ignition Facility (NIF) where a breakthrough towards
ignition has been achieved recently [17, 34, 35].

1.2. Ice- and gas giant planets

Ambitious space missions have been launched to investigate our solar system. Pioneering
missions such as Voyager [2, 3] and Pioneer 11 [36], which ventured into the interstellar
medium [37, 38], first reached the gas giant planets Saturn and Jupiter. Many more missions
were launched to explore Jupiter and Saturn [39, 40, 41, 42], while Voyager 2 [3, 9] remains
the only spacecraft which visited Neptune and Uranus. A new space mission to the ice giants
might be launched in 2023 [43].

1.2.1. Planetary interiors

Saturn and Jupiter, the gas giants, are different in size, temperature, and density, but they
are mainly made up of hydrogen and helium. Nevertheless, comprehending their interior
remains a major scientific puzzle [4]. A uniform helium distribution inside these planets can
not explain their thermal evolution and is in disagreement with the helium abundance in
the outer atmosphere in these planets [12, 44]. More recent models consider an outer layer
with a lowered helium value compared to the solar helium fraction and an inner layer rich
in helium [12, 45, 46, 47]. Demixing of hydrogen and helium and subsequent helium rain
could lead to such a compositional gradient [48, 49, 50, 51]. The core of these planets might
carry a large amount of heavy elements mixing with the lighter elements of the middle layer,
leading to the so-called core erosion [52, 53, 54].

The ice giant planets Uranus and Neptune are composed predominantly of hydrogen and
heavier elements such as water, ammonia, methane, and rocky compounds [55]. However,
their precise interior structure remains unknown [1, 14, 15]. A common class of planetary
models propose three distinct layers: a rocky core, an inner layer rich in water, ammonia, and
methane, and an outer layer rich in hydrogen and helium [1, 11, 56, 57, 58, 59]. Alternative
models with a higher rock ratio are possible as well [1, 60]. In general, adiabatic interior
models cannot explain the thermal evolution and very different brightnesses of Uranus and
Neptun [10, 61], which hints towards more complex interior structures in ice giants [62].
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1.2.2. The role of binary mixtures and demixing in giant planets

Understanding the interior dynamics of giant planets hinges on comprehending the role of
binary mixtures, particularly those involving hydrogen and heavier elements such as helium
and water.

In gas giants like Saturn and Jupiter, the demixing of hydrogen and helium plays a pivotal
role. The effect of hydrogen and helium demixing has a profound impact on the interior
structure models. These findings were strongly supported by studying the abundance of
helium in their atmospheres, which revealed a eluviation in Saturn compared to the amount
expected from the Sun’s formation [63, 64, 65, 66]. As a result, Saturn has an outer layer
primarily composed of hydrogen. The separation between hydrogen and helium leads to a
phenomenon known as helium rain, where the gravitational energy released as helium droplets
sink significantly boosts the planets’ internal heat budgets [48]. Consequently, this process
substantially retards the cooling of the planet, potentially explaining Saturn’s unusually high
luminosity [44, 45, 46, 67]. Moreover, the helium rain might lead to a diffuse, stably stratified
core-envelope transition region extending to approximately 60% of the planet’s radius [68].

Several theoretical and experimental studies have investigated the miscibility gap of
hydrogen and helium [48, 49, 50, 51, 69, 70]. A schematic illustration of hydrogen and
helium demixing inside gas giant planets is given in Fig. 1.2.

On the other hand, adiabatic models struggle to explain the thermal evolution and bright-
ness of Uranus and Neptune. Partial immiscibility of hydrogen and water could lead to distinct
layers forming in ice giants, inhibiting heat transport by convection between the hydrogen-rich
outer layer and the water-rich inner layer [1, 56, 71, 72]. This process leads to a significantly
hotter deep interior than assumed in the adiabatic case [58, 73, 74, 75]. However, current
experimental studies [76, 77] and theoretical studies based on ab initio methods disagree on

Fig. 1.2.: Schematic illustration of hydrogen and helium demixing in gas giant planets such as Saturn
or Jupiter. The outer helium poor envelope is indicated in blue while the helium rich inner
layer including the helium rain is indicated in red.
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whether hydrogen and water are miscible under high pressure and temperature conditions as
relevant for planetary interiors of ice giant planets.

1.3. Phase transitions

A phase is characterized as a region of uniform composition with distinct macroscopic
properties and well-defined boundaries [78, 79, 80]. Classical examples include solid, liq-
uid, and gaseous phases, depicted in phase diagrams based on variables such as p, T , and
V [78]. Phase transitions manifest in diverse systems, spanning solid-liquid-gaseous transfor-
mations [81], structural changes in solids like fcc-hcp, bcc-fcc [82], and magnetic transitions
such as para-diamagnetic shifts in iron [83]. Further examples encompass phase separation
in liquids, such as the demixing of hydrogen and helium [49], nonmetal-to-metal transitions
like the metalization of hydrogen [19], superfluidity in low-temperature liquid helium [84],
and Bose-Einstein condensation in liquid helium [85]. Various theoretical models, such as the
Ising model [86], Landau theory [87], Potts model [88], Ginzburg-Landau theory [89], XY
model [90], and the Renormalization Group theory [91], have been developed to describe
different types of phase transitions.

Exploring phase transitions under extreme conditions of high pressure and high temper-
ature provides insight into the behavior of WDM, see, e.g. [17, 35, 92, 93]. This research
is crucial for enhancing our understanding of objects such as the Earth’s interior, gas giant
interiors, and ice giant interiors [19, 49, 51, 69, 94]. Moreover, the study of phase transitions
under extreme pressure and temperature conditions holds practical significance for various
industrial processes and the development of cutting-edge materials [32, 95].

This work focuses is devoted to the intricacies of first-order liquid-liquid phase transitions
and demixing in binary mixtures under high-pressure and high-temperature conditions.

The differential of the internal energy U(S, V, N) is given as

dU = TdS − pdV . (1.5)

Here, T denotes the temperature, p is the pressure, S the entropy, and V the volume. The most
convenient thermodynamic potential for studying phase transitions is the free enthalpy [80,
96, 97] (also called Gibbs free energy) obtained through a Legendre transformation

G(T, p, N) = U − TS + pV . (1.6)

Its differential is given by

dG = −SdT + V dp + µdN , (1.7)

where µ is the chemical potential, and N is the number of moles. Entropy, volume, and
chemical potential can be calculated using derivatives of the free enthalpy

S = −


∂G

∂T



p,N

, V =



∂G

∂p



T,N

, µ =



∂G

∂N



T,N

. (1.8)
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For our purpuse it is convienent to use the free enthalpy per molecule given by

G

N
= g = u + pv − Ts, (1.9)

where u, v, and s are the internal energy, volume, and entropy per molecule, respectively, and
p is the pressure.

1.3.1. First-order phase transitions

Phase transitions are often defined using the Ehrenfest classification [98]. A first-order
phase transition is distinguished by the continuity of the free enthalpy at the transformation
point, while the first derivative exhibits discontinuities and jumps [98]. In contrast, Fisher’s
definition characterizes higher-order phase transitions (also known as continuous phase
transitions) by the continuity of the first derivatives of the free enthalpy, while the second
derivatives at the transformation point are either discontinuous or divergent [99].

First-order phase transitions are characterized by latent heat, representing the energy
absorbed or released by a substance or a thermodynamic system during a change of state while
maintaining a constant temperature. At a first-order phase transition, two different phases
can coexist, and the characteristics of these coexisting states can be calculated by performing
Maxwell’s equal area construction [80]. This graphical method involves plotting the pressure
as a function of temperature for the two phases and constructing lines (tangents) with equal
areas on each side of the coexistence curve. The intersection of these tangents indicates
the coexistence conditions. At the critical point, the Gibbs free energy of the two coexisting
phases is equal, resulting in identical chemical potentials, temperatures, and pressures for
both phases [78].

A prominent example of a first-order phase transition is the transition of water from a
liquid to a gas, see e.g. [78, 80]. If water reaches its boiling point, it undergoes a phase
transition to water vapour. During this transition, water absorbs a significant amount of heat
energy without a temperature change, as latent heat is absorbed. This process is reversible
when the vapour condenses back into a liquid, releasing the same amount of heat.

Under high-pressure and high-temperature conditions, one of the most prominent examples
of a first-order phase transition occurs in hydrogen [19, 30, 92, 100, 101, 102, 103, 104,
105]. This transition is characterized by a remarkable occurrence: the abrupt dissociation
of hydrogen molecules alongside a transition from a nonmetallic state to a metallic one.
A similar transition has also been observed in nitrogen, analysed in this work [20, 106,
107, 108, 109, 110, 111]. The phase diagram for nitrogen is illustrated in Fig. 1.3, with
various models colour-coded to represent different predictions for the coexistence line. The
transition pressures vary significantly between the models, underscoring the need for further
investigations. Interestingly, the molecular system of oxygen does not show a first-order phase
transition [112].
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1.4. Outline of this thesis

The primary aim of this work is to investigate phase transitions in the WDM regime. The
primary focus will be on binary mixtures of hydrogen with heavier elements such as helium
and water, their miscibility gaps and impact on giant planets. To investigate these topics, we
use theoretical methods such as ab initio methods or classical Monte Carlo simulations. Addi-
tionally, the first-order liquid-liquid phase transition of warm dense nitrogen is investigated,
including the structural changes and its electrical conductivity.

In Chapter 2, the Monte-Carlo simulation method is outlined. First, the metropolis al-
gorithm is explained in Sec. 2.1. Secondly, the Gibbs-ensemble Monte-Carlo method 2.2 is
outlined, which is later used to calculate the miscibility gap of hydrogen mixed with either
helium or water using analytical two-body interaction potentials. In Chapter 3 the theo-
retical concept of density functional theory molecular dynamics (DFT-MD) simulations is
introduced. First, the many-body Schrödinger equation is discussed (Sec. 3.1) in light of the
Born-Oppenheim approximation (Sec. 3.2). Subsequently, the details of DFT simulations are
discussed in Sec. 3.3. We explain the Kohn-Sham formalism for finite temperatures (Sec. 3.3.1),
the approximations for the exchange-correlation functional (Sec. 3.3.3), the basics of molecu-
lar dynamic simulations (Sec. 3.4) and the used simulation code VASP (Sec. 3.5) including
technical details of the code such as plane-waves and pseudopotentials (Sec. 3.3.2).

In Chapter 4 further numerical methods are explained, such as nuclear quantum corrections
(Sec. 4.1), the coupling constant integration method (Sec. 4.2), and the Kubo-Greenwood
formalism to calculate the electrical conductivity (Sec. 4.3).

Subsequently, Chapter 5 discusses the obtained results of this work: A prediction of the mis-
cibility diagram of hydrogen and helium (Sec. 5.1), two predictions of the miscibility diagram
of hydrogen and water (Sec. 5.2.1 and Sec. 5.2.2), its relevance for giant planets (Sec. 5.2.4),
and a comparison to earlier results (Sec. 5.2.3). The first-order liquid-liquid phase transition
in nitrogen (Sec. 5.3) is discussed. The publications are given in chapter 6. In addition,
supporting information, such as convergence tests, is given in App. A.



Chapter 2.

Monte-Carlo (MC) simulations
Monte Carlo (MC) simulations, named after the Monte Carlo Casino in Monaco due to their

reliance on random numbers [117], are invaluable tools across various fields for exploring
complex systems, reducing uncertainty, and aiding in decision-making. For example, MC
simulations provide a versatile and robust methodology for tackling the uncertainties inherent
in financial markets [118]. One fundamental application of MC simulations is the estimation
of mathematical constants such as π. This simulation involves generating random points
within a known region and determining the fraction of points falling within a desired area.
For instance, to approximate π, random points are generated within a square, and the ratio
of points within a quarter-circle inscribed within that square to the total points generated
provides an estimate of π/4. The accuracy of this method improves with the number of random
points generated.

This work employs simulations in the canonical ensemble and Gibbs-ensemble Monte-Carlo
(GEMC) simulations. The MC simulation method has been extensively documented in the
literature. Consequently, this chapter aims to provide a concise overview of the techniques
employed in this work. Comprehensive resources are available in review papers [118, 119]
and various books [120, 121] for readers seeking a deeper understanding of this method.

2.1. MC simulations using the Metropolis algorithm

In 1953, Metropolis et al. [122] introduced the Metropolis MC algorithm, a foundational
technique for generating trajectories in phase space to sample from a specified statistical
ensemble. Understanding this algorithm is crucial for grasping the workings of MC simulations.

At its core, the Metropolis algorithm generates a Markov chain, enabling the sampling of
system states according to a distribution proportional to the Boltzmann distribution. This
Markov chain evolves sequentially, and each new state (denoted as xi+1) is conditionally
generated based on the previous state (xi) and an acceptance-rejection criterion. Initially
designed for two-dimensional systems and later extended to three dimensions, the algorithm
considers a system with a finite number of N particles. The energy can be calculated using
analytical two-body interaction potentials, such as the Lennard-Jones potential, mandy-body
force fields, or ab initio methods.

The simulation begins by placing N particles on a simple cubic lattice. Subsequently, each
particle is displaced incrementally, one by one, according to a set of rules. These rules dictate
the new positions of the particles along the x, y, and z axes as follows:

• X → X + αζ1,

• Y → Y + αζ2,

• Z → Z + αζ3.

10
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Here, X, Y , and Z denote the particle positions, α represents the maximum allowed displace-
ment, and ζi are random numbers sampled from the interval [−1, 1]. It is important to note
that the particles are displaced with an equal probability within a cube with a side length of
2α around their original positions.

The critical step in the Metropolis algorithm is deciding whether to accept or reject the
proposed displacement. The move is always accepted if the displacement results in a lower
energy state (∆E < 0). However, if the energy increases (∆E > 0), the move is accepted with
a probability PPD defined by

PPD = min[1, exp(−β∆E)], (2.1)

where ∆E represents the change in energy and β = 1/(kBT ). A random number ζ4 is generated
from the interval [0, 1]. If ζ4 is less than exp(−β∆E), the particle’s new position is accepted;
otherwise, it remains unchanged. The Metropolis algorithm can be extended for rotational
moves to deal with nonspherical molecules by employing spherical coordinates Θ and ϕ.

The number of particles in MC simulations is limited. Therefore, this work uses periodic
boundary conditions and the minimum image convention [120, 121]. The pressure of such a
system can be calculated using the virial theorem [123].

This simulation procedure is employed primarily in the canonical ensemble to calculate the
EOS. In this work, the MC method plays a crucial role in determining the nonideal entropy
using the coupling constant integration (CCI) method discussed in Sec. 4.2.

2.2. Gibbs-ensemble Monte-Carlo (GEMC) simulations

The GEMC simulation method is a simple extension of the Monte Carlo simulation technique
described in Sec. 2.1. Developed in 1987 by Panagiotopoulos et al. [124, 125, 126], and
comprehensively reviewed by Zhang et al. [127], this method involves two simulation boxes,
denoted as Box I and Box II, sharing the same external pressure p and temperature T but
differing in volumes VI and VII . Box I contains NA

I and NB
I particles of types A and B, while

Box II contains NA
II and NB

II particles. The total number of particles is conserved, resulting in
NA = NA

I + NA
II and NB = NB

I + NB
II .

A schematic overview of a simulation cycle is provided in Fig. 2.1. First, particle displace-
ments are attempted independently in both boxes. For polar fluids, particle displacements or
rotations are chosen with equal probabilities of 50%. The order of displacement and rotation
steps is randomly selected. The acceptance probability for such a step is given in Eq. 2.1.

Secondly, both boxes experience volume changes to maintain the average pressure constant.
The acceptance probability is given by

PVC = min


1, exp


−


β∆E − N ln
V + ∆V

V
+ βp∆V



, (2.2)

where ∆V represents the change in volume.

Thirdly, particle transfers and swaps are attempted. In the case of particle transfers, a
particle is randomly selected and moved from Box I to Box II or vice versa by randomly
choosing a new position and orientation. A particle swap involves the transfer of two particles
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Fig. 2.1.: Schematic workflow of a Gibbs-ensemble Monte Carlo simulation [128].

of different species between the two boxes, with no change in particle positions. The species
and the boxes are chosen with equal probabilities of 50%, while the specific particles to be
swapped are selected randomly. The acceptance probability for a particle transfer is given by

PPT = min


1, exp


−β


∆EI + ∆EII +
1

β
ln

VII(NA
I + 1)

VINA
II



, (2.3)

where ∆EI = EI,new − EI,old, and ∆EII = EII,new − EII,old. The acceptance probability for a
swap is given by

PPS = min


1, exp


−β


∆EI + ∆EII +
1

β
ln

VII(NA
I + 1)

VINA
II

+
1

β
ln

VI(NB
II + 1)

VIINB
I



. (2.4)

This simulation technique ensures that the difference in the chemical potentials is ∆µ =
µI − µII = 0. Note that the absolute value of the chemical potential remains undeter-
mined [121]; thus, the GEMC method circumvents its calculation.

The GEMC method is versatile and applicable not only to investigate phase transitions in
single-component systems, like the liquid-vapor transition in sodium [129] but also to explore
miscibility gaps in binary mixtures. For instance, in 1991, Schouten et al. [130] utilized this
approach to study the miscibility gap between hydrogen and helium.

Throughout this study, we conducted a comprehensive series of convergence tests to ensure
particle number convergence. Additional details are available in App. A.1.



Chapter 3.

Density functional theory molecular

dynamics (DFT-MD)
In case of degeneracy in the plasma, a full quantum mechanical description becomes

imperative and predictions of pertubation theory becomes increasingly questionable. This
work employs density functional theory molecular dynamics (DFT-MD) simulations using the
Kohn-Sham formulation of DFT.

3.1. The many body Schrödinger equation

The time-dependent Schrödinger equation is a fundamental equation in quantum me-
chanics that describes the time evolution and properties of a nonrelativistic many-particle
system [131]. The corresponding Hamiltonian Ĥ reads as

Ĥ = T̂e + V̂ee + V̂ne + T̂i + V̂ii, (3.1)

where T̂e is the kinetic energy operator of the electrons, V̂ee is the electron-electron repulsion
energy operator, V̂ne is the electron-nucleus attraction energy operator, T̂i is the kinetic energy
operator of the nuclei, and V̂ii is the nucleus-nucleus repulsion operator. However, analytically
solving this equation for systems with a large number of particles is infeasible, limiting
its practical application to only a few particles [132]. The Hartree-Fock method [133], a
foundational approach in quantum chemistry, has historically been instrumental in studying
electronic structure for many-body systems, preceding more advanced methods such as path
integral Monte Carlo (PIMD) simulations. PIMD simulations are powerful computational
methods that can solve the many-body Schrödinger equation, providing accurate results [28,
29, 134]. However, their applicability is constrained due to the computational challenges
when dealing with larger systems [31]. DFT has emerged as a very successful alternative
computational approach in many fields such as physics, chemistry, and material science [135].
DFT methods focus on the electron density rather than the wave function, enabling the study
of complex many-body systems with improved computational efficiency and practicality. Other
post Hartree-Fock methods, such as the Coupled Cluster theory or the configuration interaction
method [26], offer high accuracy in capturing electron correlation effects; however, their
computational cost makes them infeasible for studying the dynamics of larger systems. In
this work, computational efficiency is a crucial factor. Therefore, DFT is the preferred choice,
allowing us to explore larger and more complex systems of hundreds of atoms in the WDM
regime while still achieving meaningful results.

3.2. Born-Oppenheimer approximation

In this work, the Born-Oppenheimer approximation [136] is employed. This approximation,
grounded on the assumption that electrons are significantly lighter than nuclei, effectively

13
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decouples the electronic system from the nuclei, treating the nuclear motion as stationary.
As a consequence, the electronic wave function depends only on the fixed nuclear positions,
enabling the determination of the electronic energy and wave function for a given nuclear
configuration. The reduced stationary Schrödinger equation for a system consisting of N -nuclei
with coordinates ¶RI♢ and Ne electrons with coordinates ¶ri♢ can be written as

Ĥeϕm(¶ri♢, ¶RI♢) = Em(¶RI♢)ϕm(¶ri♢, ¶RI♢), (3.2)

where Em is the eigenvalue of state m depending only parametrically on ¶RI♢ and ϕk(¶ri♢, ¶RI♢)
is the electronic wave function. The electronic Hamiltonian Ĥe is given by

Ĥe = T̂e + V̂ne + V̂ee. (3.3)

It is worth noting that Ĥe differs from that in the Schrödinger equation (equation. 3.1) as
it does not include the kinetic energy operator of the nuclei or the nuclei-nuclei repulsion
operator. This separation allows for the independent treatment of the nuclei and electronic
contributions within the system. By disregarding all quantum effects in the motion of the
nuclei, classical equations of motion for the nucleus are derived [120] follows to

mI
d2

dt2
RI = F I,nn + F I,ne, (3.4)

where F I,nn is the Coulomb force between the nuclei and F I,ne are the forces between the
electrons and the nuclei calculated using the Hellmann-Feynmann theorem [137, 138]. This
decoupling allows to treat the electronic and ionic subsystem seperately.

Coupling density functional theory with molecular dynamics (DFT-MD), proposed by
Car-Parrinello [139], provides a powerful computational framework for studying complex
many-body systems. This work uses the DFT-MD method to treat many-particle systems
effectively in the WDM regime. First, density functional theory is used to calculate the
electronic energies by solving Eqn. (3.2). Secondly, a molecular dynamics (MD) simulation for
the nucleus is used, but with forces that are directly obtained from the quantum mechanical
calculation of the electron system at each time step. Concluding, it combines the efficiency
of DFT in capturing electronic structure with classical molecular dynamics to simulate the
dynamics of the nuclei. The DFT-MD method approach enables the investigation of a wide
range of systems, from light atoms such as hydrogen to complex molecules. In the subsequent
sections, the main ideas of DFT and MD are outlined briefly. Readers interested in delving
deeper into the DFT method might be referred to a plethora of books [135, 140, 141, 142, 143]
and review articles [132, 144, 145, 146, 147, 148, 149]. Likewise, various books give details
on the numerical concepts of MD [120, 121, 150, 151], being a long-established standard
method for the numerical description of many-body systems.

3.3. Density functional theory (DFT)

In the following, we explore the unique theory of density functional theory (DFT), which
simplifies the description of quantum systems by replacing the cumbersome N -electron wave
function Ψ(¶qk, σk♢; t), where σk represents spin and qk are the three-dimensional spatial
coordinates of each particle k at all points in time t. The electron density ρ(r), observed in X-
ray diffraction experiments and readily visualised, serves as a three-dimensional single-particle
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distribution function and can describe the quantum behaviour of ground states. The electron
density is given by

ρ(r) = Ne

∫

...
∫

d3r2...d
3rNe♣ϕm(¶ri♢)♣2, (3.5)

where ϕm(ri) represents the electronic wave function and is normalized to the number of
electrons Ne

∫

d3rρ(r) = Ne. (3.6)

The concept of electron density has received considerable attention over the years [152]. In
1927, Thomas and Fermi proposed an approximate model by assuming an average electron
density distribution around the nuclei.

uniform electron distribution within an atom. However, this primitive method fails to
describe molecular binding accurately and lacks precision for atoms. The situation changed
significantly with the milestone publication by Hohenberg and Kohn [153]. They provided
two fundamental theorems:

1. The external potential V̂ne (except for a constant) is a unique functional of the electron
density ρ(r). Consequently, since V̂ne determines the electronic Hamiltonian, Ĥe =
T̂e + V̂ne + V̂ee, the many-particle ground state is a unique functional of ρ(r).

2. The Hohenberg-Kohn functional, JHK [ρ̃(r)] = Te[ρ̃(r)]+Eee[ρ̃(r)], yields the ground state
energy, if and only if the electron density ρ̃(r) is the true electron density ρ(r).

The first theorem legitimizes the use of electron density as the fundamental variable, while the
second Hohenberg-Kohn theorem provides the variational principle. The simplicity of proving
these theorems is well-documented in related textbooks. In conclusion, ρ(r) determines the
number of electrons N and the external potential Vne, thereby capturing all properties of the
ground state. The energy as a functional of the density can be expressed as

E[ρ] = Te[ρ] + Vne[ρ] + Vee[ρ] = Vne[ρ] + JHK [ρ], (3.7)

where JHK [ρ] is the so-called Hohenberg-Kohn functional. Unfortunately, the explicit form
of the energy functional is unknown, which makes direct minimization infeasible. However,
Kohn and Sham [154] ingeniously reformulated the electronic problem in 1965, presenting
an efficient scheme suitable for computer simulations.

3.3.1. Kohn-Sham formalism for finite temperatures

DFT provides a practical computational scheme known as the Kohn-Sham equations [154],
akin to the Hartree-Fock equations, but with the inclusion of both exchange and correlation
effects. Conceived initially as a ground-state theory, DFT was extended to finite temperatures
by Mermin [155] shortly after Hohenberg and Kohn [153] introduced their foundational ideas.
This extension introduces the free energy as the quantity to be minimized, represented by

F [ρ] = E[ρ] − TS[ρ]. (3.8)
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Hohenberg and Sham introduced a corresponding noninteracting reference system with the
Hamiltonian [144]

Ĥs = T̂s + V̂s, (3.9)

where the subscript s denotes the reference system. In this reference system, T̂s repre-
sents the kinetic energy operator, and V̂s represents the potential energy operator, with no
electron-electron repulsion terms in the Hamiltonian. The associated electron density for this
noninteracting reference system is defined as

ρ(r) =
∞

∑

i=1

f(ϵi)♣ϕi(r)♣2, (3.10)

where electrons occupy single-particle eigenstates based on Fermi-Dirac statistics [144]. Here,
ϕi(r) represents the Kohn-Sham orbitals, elements of the Slater determinant, each associated
with an eigenenergy ϵi. In this context, Kohn-Sham orbitals describe a wave function that
precisely represents N noninteracting electrons. The Fermi-function, f(ϵi), is given by

f(ϵi) =
1

e(ϵi−µe)/kBT + 1
, (3.11)

where µe is the chemical potential. The kinetic energy of this noninteracting reference system,
defined using Kohn-Sham orbitals, is

Ts = − ℏ
2

2me

∞
∑

i=1

f(ϵi)
∫

d3rϕi(r)∇2
i ϕi(r), (3.12)

while the entropy is given by

Ss = −kB

∞
∑

i=1

[f(ϵi) ln (f(ϵi)) + (1 − f(ϵi)) ln (1 − f(ϵi))]. (3.13)

Although Ts and Ss are uniquely defined for any density, they do not represent the exact
kinetic-energy functional Te[ρ] and entropy functional S[ρ]. The free energy functional can
then be expressed as

F [ρ] = Ts[ρ] + J [ρ] + Een[ρ] − TSs[ρ] + Exc[ρ], (3.14)

where J [ρ] represents the well-known Hartree energy term, and the so-called exchange-
correlation energy Exc[ρ] encompasses the differences between Te[ρ] and Ts, S[ρ] and Ss, and
the nonclassical part of Vee[ρ]. Thus, the exchange-correlation free energy is defined as

Fxc[ρ] = (Te[ρ] − Ts[ρ]) − (TSe[ρ] + TSs[ρ]) + Eee[ρ] − J [ρ]. (3.15)

The Hartree energy term, J [ρ], is given by

J [ρ] = J [ρ(r)] =
1

2

e2

4πϵ0

∫ ∫

d3rd3r′
ρ(r)ρ(r′)

♣r − r′♣ , (3.16)
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while the external energy is defined as

Een[ρ] = Een[ρ(r)] = −
Nn
∑

I=1

Zae2

4πϵ0

∫

d3r
ρ(r)

♣r − RI ♣ , (3.17)

where e is the elementary charge, m is the electron mass, ϵ0 is the vacuum permittivity, and Za

the charge number of the nuclei. The Kohn-Sham equations are derived from the variational
principle, which seeks to find the electronic wave functions that minimize the total energy
functional by considering the normalisation. Hence, a system of noninteracting electrons
moving in a local potential veff (r) is given by

veff (r) =
e2

4πϵ0

∫

d3r′
ρ(r′)

♣r − r′♣ −
Nn
∑

I=1

Zae2

4πϵ0

1

♣r − RI ♣ +
δFxc[ρ(r)]

δρ(r′)
. (3.18)

Accordingly, the interacting and the noninteracting system agree in an effective potential.
The eigenfunctions and eigenvalues are obtained from the finite-temperature Kohn-Sham
equations, given by



− ℏ
2

2me

∇2 + veff (r)


ϕi(r) = ϵiϕi(r), (3.19)

which result in the electron density as given by Eq. 3.10. The choice of orbitals to solve the
Kohn-Sham equations is determined self-consistently based on the minimization of the free
energy. Note, that the eigenergies ϵi represent the Lagrange parameters.

It’s important to note that Kohn-Sham theory, while exact in principle, distinguishes itself
from the approximate Hartree-Fock theory by its ability to fully incorporate the exchange-
correlation effects of electrons.

3.3.2. Plane waves and pseudo potentials

Two different major methodologies exist to expand of the basis set in modern DFT codes.
One can use local orbital basis sets like those implemented in SIESTA [156] and FHI-amis [157]
or employ a plane-wave basis set. The latter is used by VASP [158], and other codes such as
Quantum Expresso [159], Abinit [160], or CASTEP [161]. The Bloch theorem [162] connects
the properties of the electrons in a system with periodic boundary conditions to those of
the electrons in the unit cell [143]. Expressing the Kohn-sham orbitals by Bloch functions it
follows

Φi(r, k) = ui(r, k)eik · r, (3.20)

where k is a vector in the first Brillouin zone and the index i runs over all states. By expanding
the periodic wave functions ui(r, k) in the plane wave basis the Kohn-Sham orbitals can be
expressed as

Φi(r) =
1√
V

ui(r, k)eikr =
1√
V

∞
∑

G=0

Ci(G, k)ei(k+G)r (3.21)

where G is the reciprocal latice vector, and Ci(G, k) are the complex Fourier expansion
coefficients [143, 150, 163]. In practice, the infinite sum over G is truncated once the
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pre-defined energy cutoff is exceeded

Ecut >
ℏ

2

2me

♣k + G♣2. (3.22)

To calculate properties such as electron density and energy, integration over the wave vectors
k in the first Brillouin zone is required [150]. It is, however, possible to choose special
integration points such that the integration over k space reduces to a weighted sum over a
few discrete k points [150, 163]. This work employs the Balderschi mean value point [164]
and the scheme of Monkhorst-Pack [165].

Describing the wave function only with plane waves is a hopeless task due to the heavily
oscillating nature of the wave function near the core, which necessitates an infinite number
of plane waves [143, 150]. Pseudopotentials are used to overcome this problem. The basic
idea is that the core electrons of an atom are tightly bound and not directly involved in
chemical bonding or many electronic properties of interest. Therefore, they can be replaced
by an effective potential that replaces the wave function in a radius rc around the nucleus
with a smooth wave function. Therefore, the pre-defined energy cutoff Ecut can be reduced
significantly. This work utilises PAW (Projected Augmented-Wave) pseudopotentials, which
combine elements of all-electron methods and traditional pseudopotentials. The PAW approach
connects the wave function to the pseudo wave function through projection operators [166,
167].

3.3.3. Approximations for the exchange-correlation functional

As explained in the previous sections, DFT offers a practical computational scheme known
as the Kohn-Sham equations. While these equations precisely incorporate the kinetic energy
term Ts[ρ], they leave the exchange-correlation functional Fxc undetermined. Over the past
four decades, many of approximations have been developed and categorized into different
classes of functionals [135, 143, 168]. The functional choice depends on the specific physical
problem, with simpler or more complex functionals selected accordingly. However, it is
essential to note that increased complexity often translates to longer computational times.

In thermal DFT, a common practice is to approximate the free energy exchange and
correlation functional as Fxc ≈ Exc from ground state DFT, effectively neglecting part of the
temperature effects [55, 62, 169]. This approach persisted because explicitly temperature-
dependent functionals were not available for an extended period and had only recently
received more attention [170, 171, 172, 173, 174]. Nevertheless, popular ground state
functionals like PBE, SCAN, or HSE have proven to describe the thermodynamic properties of
warm dense matter accurately in many comparisons with experiments [175, 176, 177, 178].

The simplest approximation is the local-density approximation (LDA) for exchange and
correlation energy

ELDA
xc [ρ] =

∫

ρ(r)ϵxcdr, (3.23)

where ϵxc represents the exchange and correlation energy per particle of a uniform electron gas
of density ρ(r) [144]. We expand the density in terms of gradients and higher-order derivatives
to address inhomogeneities in electron density. The generalized gradient approximation
(GGA), including the density ρ and its gradient ∇ρ, accounts for the non-homogeneity of
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the true electron density. In this work, the Perdew, Burke, and Ernzerhof (PBE) functional
is employed [179]. Although the meta-GGA functionals like the SCAN-functional [180]
incorporate additional semi-local information via the Laplacian of the density ∇2ρ, they are
significantly more computationally expensive and are not used in this work.

LDA, PBE, and SCAN functionals are locally defined, meaning information about the density
ρ(r) and its derivatives ∇ρ(r) is independent of properties of ρ(r′) at points r ̸= r′ [135].
These functionals tend to underestimate band gaps significantly [181]. Hybrid functionals
were developed to overcome this limitation, combining a portion of exact exchange from
Hartree-Fock theory for short distances with the density functional exchange-correlation [135].
In this work, the Heyd, Scuseria, and Ernzerhof (HSE) functional is used [178, 181, 182, 183],
which incorporates a fraction of the exact exchange with the PBE-functional as follows

EωPBEh
XC = aEHF,SR

x (ω) + (1 − a)EPBE,SR
x (ω) + EPBE,LR

x (ω) + EPBE
c , (3.24)

where the half-empirical parameters a = 0.25 is a mixing parameter and ω = 0.2 controls the
short-rangeness of the interaction. Note that the short-range exchange energy is determined
by 25% by the short-range Hartree-Fock exact exchange functional (EHF,SR

x (ω)) and to 75% by
the PBE-exchange energy EPBE,SR

x (ω) part. This work uses the hybrid functional to calculate
the conductivity in liquid nitrogen. For the study on the conductivity in liquid nitrogen, HSE
proves to be the optimal choice [177].

3.4. Molecular dynamics (MD)

Molecular dynamics (MD) simulation [184, 185] is a widely used computational technique
that provides valuable insights into the dynamic behaviour of atoms and molecules over time.
In this section, we focus on MD simulations where movements of nucleis are governed by
the Hellmann-Feynman forces, calculated using density functional theory (DFT). Accordingly,
as explained in 3.2, the electronic system is treated within the DFT framework while MD
simulations propagate the nuclei in time, considering them as classical particles.

The fundamental equation of motion, Newton’s equation of motion, is central to molecular
dynamics simulations:

mI
d2

dt2
RI = −∇IEnn(¶RI♢) − ∇IEm(¶RI♢) − MaṘI

ṡ

s
, (3.25)

where −∇IEnn(¶RI♢) = F I,nn is the Coulomb force between the nuclei and −∇IEm(¶RI♢) =
F I,ne are the forces between the electrons and the nuclei calculated using the Hellmann-
Feynman theorem [137, 138], which states that the derivative of the total energy with respect
to the nuclei coordinates provides the forces acting on the nuclei. The Coulomb forces between
the nuclei are directly obtained from their positions. The additional force MaṘI ṡ/s arises
from an external heat bath to conduct MD simulations at constant temperature conditions.
This thermostat called the Nose-Hoover thermostat [186, 187], effectively adds or extracts
energy from the system, thereby maintaining the time-averaged kinetic energy of the nuclei.
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3.5. DFT-MD simulations with VASP

The methodology outlined in the preceding sections is implemented within the Vienna Ab-initio
Simulation Package (VASP) software suite [158, 189, 190, 191]. A schematic representation
of the workflow for these DFT-MD simulations is illustrated in Fig. 3.1.

Initiating with an initial configuration of N atomic nuclei in a simulation box of volume
V , VASP employs an iterative process. It starts by estimating the electron energy density and
computing the electronic free energy utilising the Kohn-Sham formalism based on the effective
one-particle Schrödinger equation proposed by Kohn and Sham. Notably, the Kohn-Sham
orbitals are expressed through Bloch functions, which are evaluated in reciprocal space, as
elucidated in Section 3.3.2. The Hartree energy J and the Coulomb energy Eee are calculated
using Ewald summation [192].

This iterative cycle continues until the electronic free energy reaches its minimum, fa-
cilitating the derivation of the Hellmann-Feynman forces. These forces are subsequently
incorporated into the set of Nn Newtonian equations of motion [193], which govern the
dynamics of the atomic nuclei. The Verlet algorithm [120, 121] is employed to integrate the
Newtonian equations of motion, leading to the updating of the positions of the atomic nuclei.
Consequently, a new electron density is obtained, initiating the repetition of the DFT-MD cycle
for a designated number of MD steps, thereby allowing the system to evolve dynamically over
time. The Nose-Hoover thermostat [186, 187] maintains simulations under constant tempera-
ture conditions. Periodic boundary conditions are used to minimise surface effects [120]. The
electronic pressure is computed using the quantum mechanical virial theorem [143, 150].

Throughout this study, a comprehensive series of convergence tests encompassing factors
such as the number of particles, k-points, energy cutoff (Ecut), and time step have been
meticulously executed to ensure the convergence of the simulations. This rigorous validation
process underscores the reliability conducted simulations’ reliability and accuracy, reinforcing
the result’s robustness. For details, see App. A.2.
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Fig. 3.1.: Schematic workflow of DFT-MD simulations using the Vienna Ab initio Simulation Package
(VASP). The figure is adopted from W. Lorenzen [188].



Chapter 4.

Additional theoretical methods
After outlining the main methods, such as MC and DFT-MD simulations, the following

chapter outlines additional methods used in this work.

4.1. Nuclear quantum corrections (NQC)

In DFT-MD simulations, the ions are typically treated as classical particles, neglecting the
quantum effects of nuclear motion. However, in the molecular regime, nuclear quantum
effects (NQEs) become crucial and must be considered to obtain accurate results [55, 62].
Path Integral Molecular Dynamics (PIMD) simulations [150, 194, 195] need to be performed
to calculate the NQEs directly during the MD simulations. PIMD simulations, however, are
10−100 times more computationally expensive than DFT-MD simulations [150] and, therefore,
are often impractical for a large number of simulations.

In this work, the NQEs of the ionic motion are reintroduced using a post-processing method
designed by Berens et al. [196]. The correction to the internal energy UQC , the free energy
F QC , and the entropy SQC is calculated by evaluating the difference between the quantum
harmonic and the classical oscillator for each frequency interval in the power spectrum of
nuclear motion. Since this work only deals with the NQE for the free energy, only F QC is
explicitly stated; UQC and SQC can be found in the literature [196]. The correction formula
for F QC is given by:

F QC =
3NkBT

2π

∫

∞

0
dωS(ω, V, T, x)

[

W Q
F (ω) − W C

F (ω)
]

, (4.1)

where kB is the Boltzmann constant, V is the volume, N is the total number of nuclei, ω is
the frequency, and S(ω, V, T, x) is the power spectrum of nuclear motion [49, 50, 55]. The
functions W Q,C

F (ω) are weighting functions for the classical and quantum harmonic oscillator,
respectively. They can be derived using the partition function for a quantum mechanical
harmonic oscillator and the partition function for a classical harmonic oscillator, and are given
by:

W Q
F = ln (1 − exp (−βℏω)) +

βℏω

2
, (4.2)

and

W C
F = ln (βℏω), (4.3)

where ℏ is the Planck constant, and β = 1/kBT . The power spectrum of nuclear motion is
calculated using the velocity-autocorrelation function ⟨va(t) · va(0)⟩V,T evaluated at a given
volume V and temperature T [55, 196]:

S(ω, V, T, x) =
∑

a

4Nama

3NkBT

∫

∞

0
dt cos (ωt) ⟨va(t) · va(0)⟩ . (4.4)

21



Additional theoretical methods 22

The correction term F QC is added to the free energy F DF T calculated from the DFT-MD
simulations, yielding F = F DF T + F QC .

Note that the volume-dependent spectrum S(ω, V, T, x) introduces a volume dependence
in F QC . To overcome this issue, the pressure needs to be corrected as well using the following
relation:

pQC(V, T, x) = −


∂F QC

∂V



T,x

. (4.5)

Therefore, the free energy needs to be fitted to a suitable, differentiable model function.
Finally, the corrected pressure is given by p = pQC + pDF T .

4.2. Calculating the nonideal entropy

Thermodynamic quantities such as energy, pressure, or structural properties are direct
outcomes of DFT-MD simulations. However, when dealing with phase equilibria, knowledge
of entropy becomes crucial 1.3. Within the DFT framework, the electronic entropy can be
calculated, although the XC influence is often neglected due to the lack of sophisticated
finite-temperature XC-functionals. The primary contribution to entropy is the ionic entropy,
but unfortunately, it cannot be directly evaluated within the DFT-MD framework. Various
methods exist for calculating or approximating the ionic entropy, and in this work, we employ
the coupling constant integration (CCI) method developed by J.G. Kirkwood in 1935 [197].
It’s important to note that this method is, in principle, exact if the integration with respect to
λ is performed using sufficient integration points.

However, other methods for calculating the ionic entropy exist, such as the thermody-
namic integration (TI) technique [198] or methods based on the power spectrum of ionic
motion [199, 200]. Unfortunately, these methods either require a wide range of EOSs or yield
inaccurate and thermodynamically inconsistent results [50]. Another option is to calculate
entropy via TI using a reference point [49, 50].

4.2.1. Coupling constant integration (CCI)

H(λ) = (1 − λ)H0 + λH1 =
N

∑

i=1

p2
i

2mi

+ V0 + λ(V1 − V0), (4.6)

where H0 denotes the Hamiltonian of system 0, and H1 denotes the Hamiltonian of system 1.
The change in free energy ∆F between system 0 and system 1 can be calculated using the
canonical partition function. It follows

∆F = F1 − F0 =
∫ 1

0
⟨V1 − V0⟩λ dλ, (4.7)

where F1 and F0 are the free energies of systems 1 and 0, respectively. Many simulations
with different λ values must be conducted to evaluate the integral. A reference system must
be chosen so that F0 is analytically known to calculate the total value of the free energy.
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Fortunately, the free energy of an ideal gas is analytically known and given by:

Fid = −
∑

α

NαkBT



ln



V

Nαλ3
α



+ 1

]

, (4.8)

where λα = h/
√

2πmαkBT is the thermal wavelength, and Nα is the number of particles of
species α. Therefore, the CCI is conducted between the noninteracting ideal gas system and
the fully interacting DFT-MD system to calculate the nonideal entropy.

4.2.2. Numerical details

As the interaction energy and, consequently, the forces on the ions approach zero under
conditions close to the ideal gas, the ions may come very close to each other. Such configura-
tions could disrupt the DFT cycle. Therefore, the CCI was executed in two steps as proposed
by Sugino and Car [201]. First, a CCI between the ideal gas and a system interacting with a
reflected Yukawa potential [202] was carried out using classical Monte Carlo (MC) simulations.
Secondly, the free energy was calculated between the reflected Yukawa potential and the fully
interacting DFT-MD system. Hence, the complete free energy can be expressed as follows

F (V, T, x) = Fid + ∆Fid→RY + ∆FRY→DFT-MD, (4.9)

where ∆Fid→RY represents the change in free energy between the ideal gas system and the
reflected Yukawa potential, and ∆FRY→DFT-MD is the change in free energy between the reflected
Yukawa potential and the fully interacting DFT-MD system. Unfortunately, calculating an
infinite number of λ points is infeasible. While the MC simulation scheme is computationally
efficient, DFT-MD computations are highly demanding. Throughout this study, extensive
convergence tests with respect to the number of λ points were conducted (see Sec. 6.3).

The reflected Yukawa potential is entirely repulsive, leading to the dissociation of hydrogen
and water molecules. These molecules fully dissociate once the DFT-MD forces reach zero at
λ = 0. This potential is described by

V ij
RY (rij) =











a


e−br

rij
+ e−b(L−rij )

L−rij
− 4 e−bL/2

L



rij < L/2,

0 rij ≥ L/2,
(4.10)

where a, b, and L are coefficients. These parameters must be chosen with caution to ensure a
continuous dissociation process. If the reflected Yukawa potential is too repulsive, molecules
will dissociate rapidly at λ ≫ 0.9, making it impossible to conduct the integration. Conversely,
if the reflected Yukawa potential is not repulsive enough, atoms may approach each other too
closely, causing the DFT-MD cycle to fail to converge.

4.3. Electric conductivity from Kubo-Greenwood formalism

To calculate transport properties such as electrical conductivity, linear response theory [203]
is used. It states that a small external perturbation of the system in thermodynamic equilibrium
causes an effect directly proportional to the perturbation. The Kubo-Greenwood formalism
is used to calculate the real part of the dynamic conductivity (dc) [204, 205, 206, 207]. The
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real part of the frequency-dependent dynamic conductivity is given by

σ(ω) =
2πe2

3ωV

∑

k

W (k)
∑

j=1

∑

i=1

3
∑

α=1

[F (ϵi,k) − F (ϵj,k)]

×♣⟨Ψj,k♣v♣Ψi,k⟩♣2δ(ϵj,k − ϵi,k − ℏω), (4.11)

where e is the elementary charge, ω is the frequency, and V is the volume of the simulation box,
ϵi,k and F (ϵi,k) are the eigenvalue and Fermi occupation number, respectively, of the Bloch state
♣Ψi,k⟩ calculated from DFT. The matrix elements with the velocity operator ⟨Ψj,k♣v♣Ψi,k⟩ are
calculated with the optical routines internally by VASP [158, 189, 190, 191, 208, 209, 210].
The integration of the Brillouin zone is performed by a weighted summation

∑

k W (k) over a
discrete k-point mesh [207, 211, 212, 213]. The limit σe(ω → 0) = ωdc provides the dc. Since
all bands have discrete eigenvalues, the δ-function must be artificially broadened to a finite
width. The broadening parameter, however, has to be chosen small enough so that the dc limit
ω → 0 is independent of it. A number of convergence tests are provided in the App. A.2.2.



Chapter 5.

Results
The results section begins by exploring the miscibility gap in binary mixtures of hydrogen

and helium, as well as hydrogen and water. It also delves into the non-metal-to-metal transition
observed in dense liquid nitrogen. We use the computational tools detailed in the preceding
chapters to accomplish this. Note that the results presented in this chapter have already been
published in peer review journals [177, 214, 215, 216].

Paper I (2021) [214] presents comprehensive findings on the miscibility gap in hydrogen
and helium mixtures, employing the GEMC method. In Paper II (2021) [215], we extend this
exploration to the miscibility gap in hydrogen and water mixtures, using the GEMC method.
Paper III (2023) [216] introduces a fresh perspective by employing ab initio simulations and
the CCI method. Additionally, the intricate analysis of the non-metal-to-metal transition in
dense liquid nitrogen is detailed in Paper IV (2023) [177]. Collectively, these four papers
contribute to a profound understanding of the intriguing behaviours exhibited by these
molecular mixtures under extreme conditions.

5.1. Hydrogen and helium

Previous studies [49, 50, 51] based on ab initio methods have predicted a considerable
miscibility gap in hydrogen and helium mixtures under the pressure and temperature con-
ditions relevant to gas giant planets like Saturn and Jupiter [44]. Recent experiments [69]
found demixing at even higher temperatures as proposed by ab initio studies [49, 50, 51].
However, performing ab initio calculations is computationally expensive, particularly in the
lower pressure and temperature regime, making it infeasible to calculate the demixing gap for
pressures below 500 kbar. To address these limitations, we employed the GEMC simulation
method to determine the region where hydrogen and helium are immiscible. We utilised
the exponential-six potential to describe the molecular interactions with the parameters pro-
vided in [130]. We conducted GEMC simulations with 32768 particles over 40000 steps, a
significant improvement compared to the 512 particles and 2000 − 4000 simulation steps used
by Schouten et al. [130]. This increase in particle number and simulation steps resulted in
significantly better converged results, as shown in the App. A.1. It is important to note that
analytical interaction potentials cannot capture effects such as dissociation, ionization, or
intramolecular vibrations. Therefore, our results, similar to those of Schouten et al. [130], are
limited to the molecular regime of hydrogen. We calculated five demixing curves at pressures
between 100 and 500 kbar, as depicted in Fig. 5.1.

The helium melting temperatures calculated by Preising and Redmer [94] are shown by
coloured diamonds at xHe = 1, whereas the hydrogen melting temperatures are depicted
by coloured triangles at xHe = 0, calculated in Ref. [202]. The black solid line represents
the solar helium abundance of Y = 0.28 [217]. Notably, the system is predicted to be fully
demixed below the melting temperatures of hydrogen and helium. Previous predictions by
Schöttler et al. [49, 50] suggested an asymmetric demixing curve, while the results of this work
indicate symmetric demixing curves. The asymmetric behaviour observed in ab initio results
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curves exhibit near-symmetry but are subtly skewed towards higher hydrogen fractions. This
phenomenon underscores the tendency of hydrogen to readily dissolve in water compared
to the reverse process. Such behaviour aligns with expectations due to the stronger and
anisotropic dipolar intermolecular interactions between water molecules, favouring molecular
configurations that minimize electrostatic energy. These intricate structures find it challenging
to form in an environment of nonpolar and less strongly interacting hydrogen molecules,
resulting in demixing at low water fractions.

In contrast to simulations based on ab initio methods, the GEMC simulation procedure
neglects certain effects, such as dissociation, ionization, perturbations in intramolecular
vibrations, changes in the electronic structure of the molecules, and changes in intramolecular
polarization charges. Consequently, it was not feasible to calculate the miscibility gap of
hydrogen and water at temperatures above 2000 K or pressures exceeding 150 kbar, where
dissociation becomes increasingly important [224, 225]. Combining ab initio methods with
the GEMC method (aiGEMC) represents the best option for overcoming these limitations.
Unfortunately, the particle number required to converge aiGEMC simulations is too large to
facilitate such a combined simulation approach.

5.2.2. Miscibility gap calculated with ab initio methods

We conducted DFT-MD simulations to investigate the miscibility gap of hydrogen and water
further. We used the CCI technique to calculate the non-ideal entropy and the non-ideal
entropy and evaluate differences in the free enthalpy of mixing to evaluate the miscibility gap
of hydrogen and water. The CCI was performed as discussed in Sec. 4.2.

We calculated 12 different concentrations of hydrogen and water for 3 different tempera-
tures of 1000, 1500, and 2000 K and five different pressures of 40, 80, 120, 200, and 300 kbar,
leading to nine distinct p − T conditions. We conducted extensive convergence tests and used
the following ratios of NH2:NH2O molecules in our simulation boxes: 128:0, 128:3, 128:10,
128:18, 128:30, 108:36, 48:80, 64:64, 40:64, 21:64, 10:64, 0:64. Detailed convergence tests
are given in App. A.2.1. The results of the CCI integration are shown in Fig. 5.4. To conduct the
integration between the ideal non-interacting reference and the Yukawa system, 40 λ points
were chosen. Additionally, we used 6-11 λ points to calculate the difference in free energy
between the system interacting with RY potentials and the fully interaction DFT-MD system.
The DFT-MD simulation framework neglects the quantum effects of the nuclear motion. We
use a post-processing method developed by Berens et al. [196] to reintroduce part of the
NQEs, see Sec. 4.1. The potential parameters of the RY potential and further numerical details
are provided in Paper III.

The findings for ∆g are presented in Fig. 5.5. We used a fifth-order Redlich-Kister
ansatz [226] to fit ∆g and applied a double tangent construction in cases where the curves
exhibited concavity. Notably, the pronounced concave behaviour observed in ∆g at tempera-
tures of 1000 K and pressures of 80 kbar and 120 kbar, as well as at 1500 K with pressures of
120 kbar and 200 kbar, strongly indicates demixing.

However, the concave regions are less definitive for the other pessure and temperature
conditions. Regrettably, due to the extensive number of simulation steps required for precise
results, we could not calculate the miscibility gap for temperatures below 1000 K or pressures
below 40 kbar. Furthermore, we refrained from calculating ∆g at even higher pressures, as
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5.2.4. Impact on ice giant planets

Examining Fig. 5.6, it is evident that the planetary isentropes of Neptune and Uranus [10,
58] align within the demixing region predicted by both GEMC and DFT-MD simulations. This
alignment suggests that the miscibility gap of hydrogen and water may significantly influence
the internal structure and evolution of Uranus and Neptune, as discussed below.

The GEMC method predicts the immiscibility of hydrogen and water in the outermost
envelope of Uranus and Neptune, reaching radii of approximately rU ≈ 1.0RU and rN ≈ 1.0RN ,
where RN = 24622 km represent Neptune’s radius, and RU = 25362 km represents Uranus’
radius. However, as discussed in Sec. 5.2.1, calculating the miscibility gap for pressures above
80 kbar remains impractical due to methodical limitations. Consequently, determining the
exact termination radii for the immiscibility of hydrogen and water remains a challenging task.
An inspection of Fig. 5.3 suggests that demixing starts at a water fraction of approximately 8%
for temperatures between 1000 K and 2000 K.

DFT-MD simulations extend the miscibility diagram by one order of magnitude in pressure.
These results predict immiscibility between hydrogen and water within radii ranging from
0.86RN to 0.93RN for Neptune. Nettelmann et al. [58] suggest a density jump at rNρ =
0.86RN—well within our demixing region. Concerning on Uranus’ planetary model [58],
immiscibility of hydrogen and water is expected between radii 0.83RU and 0.87RU . The
predicted density jump occurs at rUρ = 0.77RU , near our predicted demixing region. Notably,
the DFT-MD results suggest a higher minimum concentration of water to induce demixing,
approximately 15%. Additionally, between 40 kbar and 80 kbar, the highest temperature where
demixing occurs is slightly lower than in our GEMC results.

In conclusion, the miscibility gap in mixtures of hydrogen and water supports the hypothesis
of density discontinuities within ice giant planets. This immiscibility underscores the need for
more sophisticated planetary models beyond the adiabatic interior assumption. Such models
might include stratified layers with a density jump, which inhibits heat transport by convection
and cause trapping of primordial heat within the planet while the relatively thin outer layer
cools rapidly [1, 10, 58, 73].

5.3. Nitrogen

Nitrogen, has long intrigued scientists due to its remarkable behaviour under extreme
conditions of high pressure and temperature [20, 238]. In this study, we explore the liquid-
liquid first-order transition (LL-PT), which is characterized by the abrupt transition from a
molecular to a polymeric liquid. Additionally, a nonmetal-to-metal transition occurs [106, 107,
108, 110, 111, 238, 239, 240, 241].

DFT-MD simulations were conducted to calculate the EOS across temperatures ranging from
2000 to 10000 K and densities from 1.1 to 4.2 g/cm3. Extensive convergence tests demonstrated
that 256 nitrogen atoms are necessary for simulation convergence, as shown in App. A.2.2.
We employed a plane-wave cutoff of 1000 eV and used the BMVP to sample the Brillouin
zone, known for better convergence compared to the Γ-point [225, 242]. These simulation
parameters resulted in systematic deviations from earlier works, which used fewer particles,
the Γ point, and lower plane-wave cutoffs [106, 107, 108, 111, 240, 243]. The p−T conditions
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nitrogen. Both classical simulation methods (GEMC) and ab initio methods (DFT-MD) are
employed, and the results are compared with experimental data and planetary models.

Previous studies using ab initio methods predicted a miscibility gap in hydrogen and
helium mixtures in gas giant planets. In this work, GEMC simulations are used to study the
immiscibility of hydrogen and helium between 100 kbar and 500 kbar, extending the ab initio

calculations of Schöttler and Redmer [49] to lower pressures. Our results reveal symmetric
demixing curves, contrasting with the asymmetric predictions from ab initio methods. The
demixing diagram for solar helium concentration (Y=0.28) aligns well with experimental
results from Loubeyre et al. [70] and Brygoo et al. [69]. Furthermore, we find good agreement
with earlier ab initio results [49, 50, 51]. However, for higher temperatures, where the GEMC
method fails, experimental and theoretical results present contradictions. Our results highlight
the need for further experimental campaigns to enhance our understanding of hydrogen and
helium mixtures.

GEMC simulations are extended to mixtures of hydrogen and water, revealing demixing
curves at pressures below 80 kbar and temperatures below 2000 K. Acknowledging limitations
in predicting demixing at higher temperatures and pressures due to the constraints of two-body
interaction potentials, we conduct extensive ab initio calculations with the DFT-MD method to
extend the miscibility diagram by one order of magnitude. Using DFT-MD simulations, we
calculate the miscibility of hydrogen and water for temperatures between 1000 and 2000 K
and pressures between 40 and 300 kbar. Comparing the highest temperature where demixing
occurs of GEMC and DFT-MD simulations reveals reasonable agreement. Additionally, the
predictions obtained by DFT-MD calculations agree with earlier experimental studies within
6%. The results have implications for understanding the interior structure of ice giant planets
such as Neptune and Uranus, supporting the formation of stable stratified layers inside these
planets that inhibit heat transport by convection. Our findings will facilitate new experimental
campaigns and influence upcoming ice giant missions where the water concentration in the
outer atmosphere plays a crucial role.

Moreover, DFT-MD simulations are employed to study the phase transition in dense fluid
nitrogen. The results exhibit a first-order transition, consistent with earlier predictions [20,
106, 107, 108, 109, 110, 111]. However, the transition pressure and the critical point deviate
from those earlier studies, emphasizing the importance of sufficient particles to converge the
simulations. The Kubo-Greenwood formalism is used to calculate electrical conductivity in
nitrogen. The conductivity is calculated using the HSE functional, yielding more realistic band
gaps than PBE and leading to a difference in conductivity of two orders of magnitude. Our
results will spur new experimental campaigns using facilities such as the Linear Coherent Light
Source at SLAC Stanford or the European XFEL.

In conclusion, this study enhances our understanding of phase transitions under extreme
pressure and temperature conditions, contributing to planetary science and thermodynamics.
Given these successes, some questions remain unanswered. The methods used in this work
are suitable for studying the behaviour of hydrogen mixed with other heavier species, such as
neon or methane, as required to develop an even deeper understanding of planetary objects.
More complex hydrogen, carbon, nitrogen, and oxygen mixtures and their mixing properties
must be investigated theoretically and experimentally.
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Gibbs-ensemble Monte Carlo simulation of H2-He mixtures
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We explore the performance of the Gibbs-ensemble Monte Carlo simulation technique by calculating the
miscibility gap of H2-He mixtures with analytical exponential-six potentials. We calculate several demixing
curves for pressures up to 500 kbar and for temperatures up to 1800 K and predict a H2-He miscibility diagram
for the solar He abundance for temperatures up to 1500 K and determine the demixing region. Our results are
in good agreement with ab initio simulations in the nondissociated region of the phase diagram. However, the
particle number necessary to converge the Gibbs-ensemble Monte Carlo method is yet too large to offer a feasible
combination with ab initio electronic structure calculation techniques, which would be necessary at conditions
where dissociation or ionization occurs.
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I. INTRODUCTION

Hydrogen and helium are not only the first and simplest
elements in the Periodic Table, but also the most abundant
materials in gas giant planets like Jupiter and Saturn [1,2].
Recent ab initio calculations predict that H2-He mixtures
phase separate at 1–2 Mbar, i.e., at conditions in the upper
envelope of Jupiter and Saturn [3–6]. This demixing process
leads to the formation of He-rich droplets sinking toward the
planetary core. The ab initio predictions explain not only the
reduced He fraction xHe in the atmosphere of Jupiter and Sat-
urn compared to the protosolar value of Y = 0.28 [1], but also
Saturn’s excess luminosity [7–9]. The sinking droplets convert
gravitational energy into heat, which contributes to the lumi-
nosity and delays the cooling of the planet. If this demixing
process is neglected, most evolution models of Saturn yield a
planetary age substantially lower than that of the solar system
[3]. The consideration of demixing processes under extreme
pressure and temperature conditions is therefore crucial for
the development of improved models of gas giant planets
[10,11].

Loubeyre et al. [12] measured demixing in the H2-He
system at pressures of p < 60 kbar at room temperature by
using diamond anvil cells. So far, no experiments indicating
demixing at conditions relevant for jovian planets have been
published. Schouten et al. [13] performed Gibbs-ensemble
Monte Carlo simulations to calculate the miscibility gap of
H2-He mixtures. They predicted two demixing curves at
T = 1000 and 1500 K and found separation at pressures of
p = 230 and 385 kbar at the lower and higher temperatures,
respectively. Additionally, they predicted a demixing line for
H2-He at temperatures of T � 2500 K and at pressures of
p � 750 kbar.

Recently, research has been carried out by using ab initio

methods to calculate demixing by evaluating differences in
the Gibbs free energy �G [3–6,14,15]. Lorenzen et al. [4]
calculated the H2-He phase diagram for arbitrary He frac-
tions considering the ideal entropy of mixing. This simple

approximation has already led to good results at p � 1 Mbar
but is questionable at pressures of p � 1 Mbar. Morales et al.

[5,6] conducted similar simulations, but also considered the
nonideal entropy to determine the demixing phase diagram for
solar He abundance, and obtained a demixing line lower than
that of Lorenzen et al. [4]. Both of these studies employed
ab initio simulation methods based on density-functional the-
ory (DFT). The central approximation in DFT is the choice of
the exchange-correlation (XC) functional, which determines
how accurately the quantum mechanical electronic interac-
tions are captured. While both Lorenzen et al. [4] and Morales
et al. [5,6] used the semilocal Perdew-Burke-Ernzerhof [16]
functional, a more recent paper by Schöttler and Redmer [3]
used a nonlocal van der Waals XC functional [17] and also
considering the nonideal entropy found an even lower demix-
ing line in the pressure-temperature plane than Morales et al.

[5,6]. These most recent calculations predict H2-He phase
separation to occur in Saturn but not in Jupiter. The intricate
correlation between the H2-He phase diagram, in particular
the location of the demixing region, and the evolution of
Jupiter and Saturn has been studied in detail recently (see
[11]).

Nevertheless, performing ab initio calculations is compu-
tationally expensive, in particular at the lower pressure and
temperature regime. Therefore, we use the Gibbs-ensemble
Monte Carlo simulation method of Panagiotopoulos et al.

[18–20] in this study in order to determine the region where
H2-He mixtures phase separate. Unlike studies based on DFT,
our results are limited to mixtures of H2 molecules and He
atoms. First, we calculate two demixing curves at temper-
atures of T = 1000 and 1500 K in order to compare our
results with those of Schouten et al. [13]. Second, we extend
the demixing diagram of Schöttler and Redmer [3] to the
lower-temperature and -pressure regime. We calculate demix-
ing curves at pressures of 100 kbar � p � 500 kbar and at
temperatures of T � 1800 K. Third, we predict a demixing
phase diagram for solar He abundance. In Secs. II and III
we briefly explain the simulation technique used in this work.
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TABLE I. Parameters for the exponential-six potential (5) regarding the H2-H2, H2-He, and He-He interactions.

Interaction ǫ (kJ/mol) rM (Å) α Ref.

H2-H2 0.302646 3.43 11.1 [25]
H2-He 0.143840 3.28 12.49 [26]
He-He 0.089763 2.9673 13.1 [27]

In Sec. IV we present our results and compare with previous
calculations and experiments. Section V gives a summary.

II. SIMULATION METHOD

In this section we briefly explain the Gibbs-ensemble
Monte Carlo (GEMC) method. A more detailed description is
given in Refs. [13,18–20]. This technique is based on two sep-
arate simulation boxes which contain NA

I,II particles of species
A and NB

I,II particles of species B. The indices I and II denote
boxes I and II, respectively. The total number of particles
NA

= NA
I + NA

II and NB
= NB

I + NB
II is conserved. The boxes

have different volumes VI and VII but the same temperature T

and the same external pressure p.
The GEMC process evolves the spatial configurations of

particles in both simulation boxes in different ways and at-
tempts to simulate a thermal equilibrium state at constant
pressure and constant temperature. First, an attempt is made
to displace particles within each of both boxes. Second, an
attempt is made to resize the volume in order to keep the av-
erage pressure constant. Third, particle transfers and particle
swaps between the boxes are attempted.

Particle displacement. Every particle is randomly dis-
placed within a maximum allowed distance. The well-known
acceptance probability [18] is given by

PPD = min[1, exp(−β�E )], (1)

where �E = Enew − Eold defines the change in energy and
β = 1/kBT .

Volume change. In order to keep the average pres-
sure constant, we attempt to resize the volumes of both
boxes independently within 0 < �V < �Vmax. The accep-
tance probability was derived in [21,22] and is given by

PVC = min

{

1, exp

[

−

(

β�E − N ln
V + �V

V
+ βp�V

)]}

,

(2)

where �V denotes the change in volume.
Particle transfer. A random particle of species A or B

contained in either of the boxes I or II is transferred to a
random position in the other box. The respective acceptance
probability is similar to that for particle insertions in the grand
canonical ensemble and given by [18–20]

PPT = min

{

1, exp

[

−β

(

�EI + �EII +
1

β
ln

VII(NA
I +1)

VIN
A
II

)]}

,

(3)

where �EI = EI,new − EI,old and �EII = EII,new − EII,old. The
acceptance probability of transfer steps is quite low at
high densities; thus, many transfers will be rejected. The

excluded-volume map sampling method [23] was used to
avoid the computational expensive calculation of the change
in energy �E .

Particle swap. Essentially, the so-called particle swap is
a transfer of two particles of different species between the
two boxes [13,24]. First, a random particle of species A or B
contained in either of the boxes I or II is chosen. Second, one
randomly selects a particle of the other species in the other
box. The selected particles may swap their species, whereas
their positions remain the same. The acceptance probability
of such a swap is given by

PPS = min

{

1, exp

[

− β

(

�EI + �EII +
1

β
ln

VII
(

NA
I + 1

)

VIN
A
II

+
1

β
ln

VI
(

NB
II + 1

)

VIIN
B
I

)]}

. (4)

III. SIMULATION DETAILS

We used exponential-six potentials

�i j (r) =
ǫi j

αi j − 6

{

6 exp

[

αi j

(

1 −
r

rM
i j

)]

− αi j

(

rM
i j

r

)6}

(5)

to model the interactions in the H2-He system. The parameters
αi j , rM

i j , and ǫi j are given in Table I. The H2-H2 potential
is calibrated to shock compression data for pressures up to
750 kbar and temperatures up to 7000 K [25]. The He-He
potential is likewise calibrated to shock compression data
for pressures up to 120 kbar and temperatures up to 300 K.
To extend its applicability to even higher pressures, Young
et al. [26] performed linear muffin-tin orbital electron-band-
theory calculations. Due to the absence of internal degrees of
freedom in the He atom, we regard the potential to be valid
also at temperatures of several 1000 K. The H2-He potential
is calibrated to diamond anvil cell data for pressures up to
75 kbar and pressures up to 360 K by van den Bergh and
Schouten [27].

Initially, we placed 8192 He atoms and 8192 H2 molecules
on simple cubic lattices in each of the boxes. The simulations
consisted of 10 000 steps for internal equilibration inside each
box, during which we attempted to displace all particles and
tried to resize the volumes of both boxes to reach the desired
pressure. This internal equilibration process was followed by
40 000 global steps. During a global step, we attempted to dis-
place all particles and resize the volumes. Additionally, 20 000
particle transfers and 2000 particle swaps were tried. After the
global equilibrium was reached (usually after 10 000 steps for
equilibration), the molar fractions of the species in each box
were calculated by averaging until the simulation end. The
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FIG. 1. The GEMC simulation for a H2-He mixture at T =

1400 K and p = 400 kbar. The different colors depict four different
initial conditions regarding the concentrations of xHe and xH2 . The
concentration averaging starts after 10 000 Monte Carlo steps (black
dashed line).

large number of 40 000 steps was chosen to diminish errors
due to large fluctuations or an insufficiently demixed system.
We started the first simulation at high-pressure conditions far
away from the lowest pressure at which demixing occurs.
After each run, we started a new simulation run at lower
pressure conditions until we found H2-He to be completely
miscible.

In extensive convergence tests, we found that particle num-
bers �16 384 are necessary in order to obtain converged
results with deviations of less than 1.5%. Because the com-
putational power in 1991 was much more limited than ours
today, Schouten et al. [13] had to perform their simulations
with only 256 He atoms and 256 H2 molecules and were
unable to perform extensive convergence tests with more par-
ticles. With such small particle numbers, we observed that the
boxes swap “identities” during the simulations several times,
i.e., from box I rich in xHe and poor in xH2 to box I rich in xH2

and poor in xHe, and vice versa for box II. This takes place
especially close to the lowest pressure at which demixing
occurs.

For each pressure-temperature condition, we ran four sim-
ulations with different initial concentrations in box I and box
II of xHe and xH2 . The situation is depicted in Fig. 1 with four
different colors. This method made it easy to detect metastable
states or huge fluctuations.

In Fig. 1 a simulation run at a temperature of T = 1400 K
and a pressure of p = 400 kbar is shown. The system is
demixed after 10 000 Monte Carlo steps (black dashed line).
The average molar fractions are xHe ≈ 0.78 (box I) and xHe ≈

0.14 (box II).

IV. RESULTS AND DISCUSSION

First, we simulated two demixing curves at T = 1000 and
1500 K, depicted in Figs. 2 and 3, respectively. The demixing
pressures are given as a function of the He fraction xHe. Com-
pared to Schouten et al. [13], we used a much larger number
of particles, which resulted in a much smaller statistical uncer-
tainty. A comparison of the lowest pressure at which demixing

FIG. 2. Demixing curve for H2-He at T = 1000 K as derived
from GEMC simulations. The red circles are the results of this work,
while the blue squares are those of Schouten et al. [13]. The red line
is a smoothing spline acting as a guide to the eye. Demixing occurs
under conditions within the red shaded area.

occurs is shown in Table II. Our calculations indicate highly
symmetric demixing curves, likely due to the purely radial
form of all interaction potentials used. The asymmetry in the
curves predicted by Schouten et al. is probably an artifact gen-
erated by insufficiently converged simulation data. Moreover,
our calculations predict a higher lowest pressure at which
demixing occurs than Schouten et al. [13]. By performing test
calculations with 150 000 Monte Carlo steps and the same low
particle number (N = 512) as Schouten et al. [13], we found
huge fluctuations regarding the concentrations of xHe and xH2 .
Within these fluctuations we could reproduce the results of
Schouten et al. [13].

Second, we simulated five demixing curves at pressures of
100 kbar � p � 500 kbar. The results are depicted in Fig. 4.
Because it was not feasible, Schöttler and Redmer [3] did
not perform any ab initio simulations at pressures below 500
kbar. The colored diamonds at xHe = 1 are the He melting

FIG. 3. Demixing curve for H2-He at T = 1500 K as derived
from GEMC simulations. The red circles are the results of this work,
while the blue squares are those of Schouten et al. [13]. The red line
is a smoothing spline acting as a guide to the eye. Demixing occurs
under conditions within the red shaded area.

013307-3
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FIG. 4. Miscibility diagram of H2-He mixtures as derived from
GEMC simulations (colored circles). The lines are smoothing splines
acting as guides to the eye. Demixing occurs under conditions within
the shaded areas. The dashed line is the result of Schöttler and Red-
mer [3] using DFT-MD simulations. The vertical black line indicates
the solar He concentration as relevant for Fig. 6. Colored triangles
and diamonds show the melting temperature of pure H2 [29] and He
[28], respectively.

temperatures as calculated by Preising and Redmer [28]. The
colored triangles at xHe = 0 are the H2 melting temperatures
[29]. Our demixing curves are highly symmetric, while the
result at p = 500 kbar of Schöttler and Redmer [3] shows an
asymmetric behavior with a kink towards higher He fractions.
The ab initio data show an abrupt increase of the demix-
ing temperature at low hydrogen fractions at n

1/3
H aB ≈ 0.25,

which represents the concentration required to transform hy-
drogen to a metal according to the Mott criterion [4]. In ab

initio simulations, metallization of hydrogen is the driving
force of the demixing process at high pressures, which leads
to asymmetric demixing curves. At moderate pressures, where
hydrogen is yet mostly molecular, the asymmetry in the ab

initio demixing data can be explained with (i) the molecu-
lar structure of hydrogen vs the atomic structure of helium
and (ii) the difference in interaction strength between these
species, i.e., helium is mostly repulsive while interactions with
H2 are a little more attractive (see Table II). Inserting a low
concentration of hydrogen into helium thus has little effect on
�G, but the presence of low He concentration in H2 disturbs
the interactions between H2 molecules more strongly, depend-
ing on the pressure [30]. Part of the reason is perturbations
of the intramolecular vibrations, which are detectable in the
contribution of nuclear quantum effects to �G, as explained
in Chap. 3.2. of Ref. [30]. The purely radial interaction poten-
tials used in this work cannot capture such effects, so the ab

FIG. 5. Miscibility diagram of H2-He mixtures for very high and
very low He concentrations. The colored circles connected by solid
lines are the results of the GEMC simulations. The dashed lines
connect the GEMC results with the H2 and He melting temperatures
[28] shown by colored triangles and colored diamonds, respectively.

initio demixing curve at 500 kbar is likely the more reliable
one.

Figure 5 compares the H2 melting temperatures by Morales
et al. [29] and the He melting temperatures by Preising and
Redmer [28] to our demixing curves. The demixing tem-
perature is given as a function of the He fraction. It is not
meaningful to use the GEMC method at temperatures below
the melting point. Particle insertions and removals of single
particles fail for crystalline phases because they involve the
creation of interstitial or vacancy defects [31]. Thus, we were
not able to simulate a fully demixed system of pure solid
He and pure H2. The compression behavior at dense H2-He
mixtures in the solid phase was studied recently by x-ray
diffraction [32]. Nevertheless, the dashed lines that connect
our results to the H2 [29] and He [28] melting points can
likewise be regarded as reasonable extrapolation of our re-
sults to xHe = 0 and 1. Hence our GEMC simulations are in
alignment with a fully demixed system for temperatures below
the melting temperature of H2 and He, which Schöttler and
Redmer [3] also predicted in their ab initio simulations.

Because the exponential-six potential shows an unphysical
behavior at small intermolecular distances it was not possi-
ble to simulate even higher pressures and temperatures. This
limitation was already discussed in more detail by Schouten
et al. [13]. Nevertheless, our work agrees with earlier ab initio

results [3–6,14,15] reasonably well at conditions where no
dissociation or ionization occurs. Finally, we calculated the
demixing diagram for the solar He abundance of Y = 0.28 at
temperatures of T � 1500 K. The results are shown in Fig. 6.

TABLE II. Lowest pressure at which demixing occurs at temperatures of T = 1000 and 1500 K. The results of this work are compared
with the results of Schouten et al. [13].

Temperature T (K) Schouten et al. This work

1000 p = 230 kbar at xH2 = 0.4 p = 250 kbar at xH2 = 0.5
1500 p = 385 kbar at xH2 = 0.45 p = 400 kbar at xH2 = 0.5
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FIG. 6. Miscibility diagram at the solar He abundance of Y =

0.28. Red diamonds depict results of this work obtained with the
GEMC method and the red line is a linear fit towards higher temper-
atures. Colored areas show results of ab initio simulations performed
by Schöttler and Redmer (lower blue area) [3] and Morales et al.

(upper violet area) [6]. The magenta square depicts the experimental
result of Loubeyre et al. [12] and the orange circle the result of
Schouten et al. [13]. At low temperatures the melting lines for H2

[29] and He [28] are shown for the sake of orientation. The inset
shows the results at the p-T domain considered here.

The red diamonds are the results of this work, which are in
very good agreement with the experimental data of Loubeyre
et al. [12] and ab initio results of Refs. [3,6]. Interestingly,
the deviation between the results of Schouten et al. [13] and

ours is relatively small in the pressure-temperature diagram,
despite the poor convergence of their simulations.

V. CONCLUSION

In summary, we have used GEMC simulations to examine
the H2-He phase diagram at pressures of 100 kbar � p �

500 kbar and temperatures of T � 1800 K. In doing so, we
extended the hydrogen-helium miscibility diagram of Schöt-
tler et al. [3] to lower pressures. Our GEMC simulations
indicate a fully demixed system below the He melting tem-
perature and reproduce earlier results obtained from ab initio

methods [3–6] with a significantly different approach. Al-
though the pressures and temperatures considered in this work
do not overlap with Jupiter’s or Saturn’s interior conditions,
our findings facilitate efforts to understand physical processes
that lead to demixing of hydrogen and helium in astrophysical
objects. Our results are in agreement with experiments of
Loubeyre et al. [12] and should stimulate further demixing
experiments toward higher pressures and temperatures. Tech-
nically, we found the GEMC method not yet suitable to be
combined with ab initio electronic structure calculations in
order to determine miscibility diagrams because of the very
high particle number needed to achieve convergence.
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We calculate the miscibility gap in mixtures of hydrogen and water under high-temperature and
high-pressure conditions as relevant for planetary interiors with density functional theory combined
with classical molecular dynamics. In contrast to earlier calculations, we find a miscibility gap at
temperatures below 1500-2000 K at pressures of up to 300 kbar, which extends the experimentally
known immiscibility region by one order of magnitude in pressure. In contrast to extrapolated
experimental demixing lines reaching to high temperatures, our results indicate a termination of the
demixing region close to 2000 K. This finding profoundly impacts the understanding the interiors of
ice-giant planets like Neptune and Uranus by supporting a partially demixed interior, including a
density discontinuity near 2000 K, which corresponds to planetary radii of 0.85 - 0.95 in Uranus and
Neptune. Additionally, our findings are relevant for thermal evolution models of Earth that aim to
explain the formation of super-reducing mineral associations.

Introduction: Neptune and Uranus are usually as-
sumed to be ice-giant planets, consisting mostly of mix-
tures of the ice-forming compounds water, ammonia, and
methane [1–3]. Since space probe missions to these ice-
giants are utterly challenging and expensive [4, 5], knowl-
edge gain on the interior structures of Uranus and Nep-
tune mainly relies on the development and improvement
of models [3, 6–8]. For instance, an adiabatic tempera-
ture profile with three distinct layers, a rocky core, an
inner layer rich in water, ammonia, and methane, and an
outer layer rich in H2 and He is proposed [1, 6, 9–14].
These relatively simple models have density discontinu-
ities at the boundaries between the three layers, which
were assumed to keep the number of degrees of freedom
as low as possible. Nevertheless, alternative classes of
models of Uranus and Neptune with a continuous den-
sity profile were also developed [15, 16]. In general, adi-
abatic interior models cannot explain the thermal evolu-
tion and very different brightnesses of Uranus and Nep-
tune [17, 18], which hints towards much more complex
interior structures being present in ice-giants [19]. Any
credible planetary model needs to be based on a reli-
able thermophysical material database for the equation
of state and phase diagram of the constituent mixture of
compounds. For instance, an immiscibility region of H2

and H2O in the interior of Uranus and Neptune could
indeed lead to layer formation accompanied by density
discontinuities in the planets’ interiors [1, 6, 10, 11, 20].
The demixing process would also inhibit heat transport
by convection, invalidating the assumption of an adi-
abatic interior and necessitating non-adiabatic models.
Several non-adiabatic models have already been proposed
by, e.g., Nettelmann et al. [14] and Scheibe et al. [18],
to explain thermal evolution and brightness, assuming
that primordial heat is trapped inside the planet. Re-
cently, Bailey and Stevenson [21] discussed the impact
of an H2-H2O miscibility gap in Uranus and Neptune.
They found that the partial immiscibility of hydrogen
and water could offer a solution to questions regarding

the structure, magnetic field, and thermal evolution of
ice-giant planets.

In a different context, Bali et al. [22] pointed out that
demixing in hydrogen and water could also decrease oxy-
gen fugacity in Earth’s mantle, making the formation of
super-reducing mineral associations plausible. Addition-
ally, it has been suggested that a miscibility gap between
water and hydrogen had caused rapid upper mantle oxi-
dation [22–24].

Therefore, the determination of the miscibility gap in
mixtures of hydrogen and water under high-pressure and
high-temperature conditions is of paramount importance
for better understanding the interior and evolution of ice-
giant planets [14, 16–18, 21] but also plays a vital role in
the evolution of Earth and Earth-like extrasolar plan-
ets [22].

So far, three experimental studies have investigated
the immiscibility region in water and hydrogen: In 1981,
Seward and Franck [25] performed experiments in pres-
sure vessels and determined immiscibility up to pres-
sures of 2.3 kbar and temperatures of 650 K. In 2013,
Bali et al. [22] used Raman spectroscopy to determine
whether hydrogen and water entrapments in silicates can
demix. They explored the respective miscibility gap at
temperatures between 1000 K and 1500 K and pressures
between 17 kbar and 25 kbar. In 2023, Vlasov et al. [24]
used a similar experimental technique and confirmed the
experimental findings of Bali et al. [22].

Interestingly, the experiments by Bali et al. [22] and
Vlasov et al. [24] resulted in a demixing line with an up-
ward curvature, which would lead to a very large demix-
ing region extending to temperatures of several 1000 K
when extrapolated. However, fundamental thermody-
namics of mixtures requires termination of any demixing
region at some temperature as the entropy rises [26, 27],
which occurs probably at pressure conditions that can-
not be reached within current experimental setups. Such
limitations of achievable pressures and temperatures in
experiments necessitate a theoretical investigation of
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this demixing process using state-of-the-art techniques
of computational many-particle physics [28–30].

Up to now, two contradicting theoretical predictions
regarding the immiscibility of H2 and H2O are available.
In 2015, Soubiran and Militzer [31] predicted H2 and
H2O mixtures to be completely miscible by calculating
the free enthalpy of mixing. They combined density func-
tional theory (DFT) with molecular dynamics (MD). The
coupling-constant integration technique [32] (CCI) was
used to determine the non-ideal entropy of the H2-H2O
mixtures.

Recently, Bergermann et al. [36] conducted Gibbs en-
semble Monte-Carlo (GEMC) simulations using analyt-
ical two-body interaction potentials to describe the in-
teraction between the molecular species H2 and H2O. A
demixing diagram was predicted at pressures below 150
kbar and temperatures of 1000K < T < 2000 K. Notably,
the isentropes of Neptune and Uranus and the archean
geotherms are within the demixing region predicted by
Bergermann et al. [36].

In this work, we reinvestigate the miscibility diagram
of hydrogen and water using ab initio simulations based
on density functional theory combined with molecular
dynamics (DFT-MD). We calculate the free enthalpy of
mixing at temperatures between 1000 and 2000 K and
pressures between 40 and 300 kbar. The CCI method [32]
was used to determine the non-ideal entropy, similarly to
Soubiran and Militzer [31]. We consider nuclear quan-
tum corrections (NQC) of the ionic motion using a post-
processing method designed by Berens et al. [38, 39].
This procedure influences the results significantly, as the
immiscibilty region is widened, which is shown below. A
detailed explanation of the numerical techniques used is
given in the Supplemental Material. In contrast to Soubi-
ran and Militzer [31], our simulations provide strong ev-
idence for a miscibility gap in mixtures of hydrogen and
water under high-pressure and high-temperature condi-
tions, in agreement with the experimental findings and
the GEMC simulations.

Methods: We calculate the miscibility of hydrogen and
water by evaluating differences in the free enthalpy in
dependence on the water concentration. By doing so, we
can determine whether the two substances are likely to
form a homogeneous mixture or separate into two distinct
phases. The free enthalpy per molecule g of the mixture
is given by:

G

NH2
+NH2O

= g = u+ pv − Ts, (1)

where u is the internal energy per molecule, p is the pres-
sure, v is the volume per molecule, T is the temperature,
and s is the entropy per molecule, G is the total free en-
thalpy, and NH2

and NH2O are the numbers of hydrogen
and water molecules, respectively. The free enthalpy of

mixing is defined as

∆g(p, T, x) = g(p, T, x)− xg(p, T, 1)− (1− x)g(p, T, 0),
(2)

where g(p, T, x) is the free enthalpy of the mixture,
g(p, T, 1) the free enthalpy of pure water, and g(p, T, 0)
that of pure hydrogen. Herein, x defines the molecular
water fraction as follows

x =
NH2O

NH2
+NH2O

. (3)

A concave region suggests that the mixture is unsta-
ble and demixes into two phases with different concen-
trations [31, 33–35, 40]. By fitting ∆g(T, p, x) using a
Redlich-Kister ansatz [41] and applying a double-tangent
construction to ∆g(T, p, x), the concentrations of the
water-poor and water-rich regions of the demixed fluid
can be determined [27, 34, 35, 40].
The thermodynamic variables p, T , u, and v are a di-

rect output of our DFT-MD simulations. In contrast,
the entropy is not directly available from the DFT-MD
simulations. Unfortunately, the simplest approximation,
the ideal molecular entropy of mixing, is insufficient for
this purpose [34]. Therefore, we use the CCI method to
calculate the nonideal entropy of the system of interact-
ing molecules. Furthermore, we augment our simulation
data for classical particles with the correction procedure
of Berens et al. [39] to take into account NQC to the ionic
motion. A more detailed description of the methods is
given in the Supplemental Material.
Fig. 1 illustrates the influences of the nonideal entropy

and of NQC, two aspects that counteract with each other
on results for the free enthalpy of mixing ∆g, at 120 kbar
and 1000 K. Using the ideal molecular mixing entropy
and no NQC (grey dashed line), we found a small mis-
cibility region for water concentrations of 0.1 < x < 0.6.
The dotted lines represent the constructed double tan-
gents. Using the nonideal entropy instead generally de-
creases the free enthalpy of mixing and reduces the con-
cave section, which enhances the tendency of hydrogen
and water to mix. Therefore, only slight indications for
demixing are visible when nucleis are treated as classical
particles (red dashed line). By including the NQC (solid
red line), however, the concave region is widened, and we
find a sizeable immiscibility region for water concentra-
tions of 0.1 < x < 0.85.

The trends explained above are similar to what was
found in ealier work on hydrogen-helium mixtures,
where Schöttler et al. [34, 35] observed that NQC con-
tributed significantly to ∆g and enhanced the immisci-
bilty in the molecular regime. For certain conditions,
Schöttler et al. [34, 35], did not find any indication for
demixing without the NQC either. These results under-
line the importance of the NQC when calculating the
miscibility gap in molecular mixtures. Microscopically,
NQC originate mainly from changes in the vibrational
properties of the molecules with x in our method.
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TABLE I. Coefficients for the fit formula, Eq. 5.

a [eV] b [eV/kbar] c [eV/K] d e [eV/(K×kbar)]

-3.1119382 0.2364756 3.0937059 0.0007158 -0.235185

hydrogen mixtures shown in Fig. 4 indicates that the
thermal profiles through the ice giants Uranus and Nep-
tune intersect the demixing area calculated in this work.
Therefore, we expect hydrogen and water to be immisci-
ble in the ice-giants in our Solar System.

According to the planetary model N1 for Neptune by
Nettelmann et al. [12], immiscibility of hydrogen and
water can occur at radii between rN = 0.86RN and
rN = 0.93RN , where RN = 24622 km denotes the radius
of Neptune. They predict a jump in density at rNρ =
0.86RN which is within our demixing region. For the
planetary model of Uranus [12] immiscibility of hydro-
gen and water can occur at radii between rU = 0.83RU

and rU = 0.87RU , where RU = 25362 km denotes the
radius of Uranus. The jump in density is predicted at
rUρ = 0.77RU and therefore very close to our demix-
ing region. Note, however, that a certain minimum con-
centration of water is required to cause demixing of hy-
drogen and water, which depends nonlinearly on p and
T . Fig. 2 indicates that demixing occurs when the water
fraction reaches approximately ≈ 15% at temperatures of
1000 K and 1500 K. Furthermore, demixing of hydrogen
and water may likewise occur in Neptune-like exoplanets
[53, 54], especially in older and, therefore, cooler ice gi-
ants or in those with similarly large orbits as Uranus and
Neptune.

The miscibility gap of hydrogen and water supports
the assumption of density discontinuities inside ice-giant
planets. Therefore, more complex planetary models than
the adiabatic interior assumption are required to explain
heat transport from the warm-to-hot center towards the
cool surface [15]. For example, Nettelmann et al. [12] pro-
posed a model with a boundary at about p = 100 kbar
and T = 2000 K. At these T -p conditions, hydrogen and
water might be immiscible, resulting in a stably strati-
fied layer with a density jump. Therefore, heat transport
by convection would be inhibited, leading to primordial
heat trapped inside the planet, while the relatively thin
outer layer is cooling rapidly, see Scheibe et al. [18] for a
detailed studya. This could explain why Uranus has al-
ready reached the equilibrium temperature with the Sun.

Furthermore, our demixing curve intersects with
Earth’s archean geotherms as well. Therefore, our re-
sults support the assumption of the formation of super-
reducing mineral associations and rapid upper mantle ox-
idation [22–24] and subsequently influence the evolution
of Earth and Earth-like exoplanets.

In conclusion, our work provides novel predictions for
the miscibility gap of hydrogen and water mixtures at

pressures and temperatures, and especially quantifies the
p-T region in which the demixing terminates in the inte-
rior. These finding will help to better understand giant
ice planets like Neptune and Uranus but also Neptune-
like exoplanets, which is a very common class of exoplan-
ets. Our findings provide valuable insights that will aid in
developing new planetary models capable of addressing
long-standing scientific questions regarding the structure
and evolution of Uranus and Neptune and influence fu-
ture space missions [4]. Additionally, the hydrogen and
water miscibility gap significantly influences our under-
standing of Earth and Earth-like extrasolar planets’ evo-
lution.
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SIMULATION METHODS

Our computational method is a combination of den-
sity functional theory (DFT) with molecular dynamics
(MD) simulations, commonly referred to as DFT-MD. It
is based on the Born-Oppenheimer approximation and
allows us to calculate the electronic structure of the sys-
tem with DFT, while the classical motion of the ions is
calculated through MD simulations with forces derived
self-consistently from the DFT.

DFT-MD simulations

All DFT-MD simulations were performed using the
Vienna Ab-initio Simulation Package (VASP) [55–59].
The Perdew, Burke, and Ernzerhof (PBE) exchange-
correlation functional [60] was used for all simula-
tions. DFT-MD simulations allow the calculation of
the thermodynamic variables pDFT−MD, and uDFT−MD

straightforwardly when v, T , and x are defined as input
quantities.

The electron-ion interaction was described with projec-
tor augmented wave (PAW) potentials for the hydrogen
(PAW PBE H h 06Feb2004) and oxygen (PAW PBE O h
06Feb2004) atoms as implemented in VASP. We used a
plane wave cutoff of 1100 eV and the Baldereschi mean
value point to sample the Brillouin zone. We calculated
12 different H2-H2O concentrations using the following
ratios of NH2

:NH2O molecules in our simulation boxes:
128:0, 128:3, 128:10, 128:18, 128:30, 108:36, 48:80, 64:64,
40:64, 21:64, 10:64, 0:64.

We used the Nosé-Hoover thermostat [63, 64] to con-
trol and maintain the system’s temperature in the NV T

ensemble. Based on previous studies [34, 37, 65] and our
own testing, a timestep length of 0.3 − 0.4 fs was deter-
mined to be appropriate for this system. The thermo-
stat’s coupling time was set to a sufficiently high value of
approximately τcoupling ≈ 200 steps. We compared our
results using these settings to a constant temperature cal-
culation using velocity rescaling and found no significant
differences.

Pressures and energies stayed correlated for a long
time at the lowest p-T conditions. Therefore, very long
simulation times up to 300 ps were necessary to ob-
tain well-converged and sufficiently ergodic results. For
higher temperatures and pressures the correlation times
were signficantly smaller and typical simulation times
amounted to 10 < τ < 15 ps.

Coupling Constant Integration to calculate the

entropy

Since the entropy of the mixture is not directly acces-
sible with DFT-MD, we also use the coupling-constant-

integration (CCI) method [32], also known as thermody-
namic integration. In this method, two different systems
are coupled using an artificial coupling parameter λ. The
difference in free energy ∆F between system 0 and sys-
tem 1 can be calculated as follows:

∆F = F1 − F0 =

∫ 1

0

= ⟨V1 − V0⟩λdλ, (6)

where ∆F is the difference in free energy, F1 and F0 are
the free energies of system 0 and 1, respectively. V0 and
V1 are the potential energies of systems 0 and 1. To apply
the CCI method in practice, a reference system must be
chosen for which the F0 is exactly known (here the ideal
gas, indexed with 0).
For technical reasons, we use the CCI method to com-

pute the difference in free energy between the ideal gas
and the fully interacting DFT-MD system by performing
the simulation in two distinct steps [61]. First, the dif-
ference in free energy between the ideal gas system and a
system interacting with reflected Yukawa potentials [62]
is calculated using classical Monte-Carlo (MC) simula-
tions. Secondly, the difference in free energy between
the reflected Yukawa potentials and the fully interacting
DFT-MD system is calculated using DFT-MD simula-
tions. Thus, the total free energy is given by:

F (V, T, x) = Fid +∆Fid→RY +∆FRY→DFT-MD.
(7)

Several authors have used this procedure to calculate
immiscibility in mixtures of hydrogen and helium [33–
35, 40].

The forces of the reflected Yukawa potential become
more influential as the DFT forces with decreasing λ.
Because the reflected Yukawa potential is fully repulsive,
the water- and hydrogen molecules dissociate at certain λ

values. At λ = 0, the system is fully dissociated, and the
DFT forces do not contribute any more to the MD sim-
ulation. We always start with pure DFT-MD simulation
(λ = 1). Simulations with lower λ are performed consec-
utively using equilibrated configurations from a simula-
tions with higher λ. This procedure leads to continuous
dissociation of molecules within the DFT-MD simulation.

Depending on the p-T conditions, we choose 6 to 11 λ

points to do the CCI between the reflected Yukawa poten-
tials and the fully interacting DFT-MD system as given
by formula 6. Especially under the lowest temperature
and pressure conditions, we need 11 λ points to converge
our results sufficiently. To demonstrate the λ-point con-
vergence, we varied the number of integration points for
the different concentrations. The results are shown in
Fig. 5, taking a temperature of T = 1000 K and a pres-
sure of p = 40 kbar as example.

At higher temperature and pressure conditions, the
CCI can be done with 6 λ points without loss of accuracy.
The classical MC simulations for the second brance

of the integration are several orders of magnitude faster
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We calculate the electrical conductivity and the equation of state of dense fluid nitrogen for high pressures
up to several megabars by using ab initio molecular dynamics simulations. We determine the instability region
of a first-order liquid-liquid phase transition which results from an abrupt dissociation of nitrogen molecules.
This transition is accompanied by a nonmetal-to-metal transition (metallization) of the fluid and corresponding
structural changes from a molecular to a polymeric phase. We compare our new data with earlier theoretical
results and available experiments.

DOI: 10.1103/PhysRevB.108.085101

I. INTRODUCTION

The high-pressure phase diagram of solid nitrogen is ex-
tremely rich: 12 molecular phases, two nonmolecular phases,
and an amorphous one have been reported so far [1]. Nitrogen
molecules consist of two atoms strongly triple bonded so
that corresponding phases can be considered inert. If exposed
to high pressure, however, intramolecular bonding becomes
weaker, so that double and single bonds also appear. Ac-
cordingly, the structural and electronic properties change so
that nitrogen passes through several intermediate phases with
increasing pressure before covalency is completely lost [2].

Recent molecular dynamics (MD) simulations on dense
fluid nitrogen using density functional theory (DFT) [3–7]
[8,9] predict a first-order liquid-liquid phase transition
(LL-PT) at about a megabar. The crossover from a molecular
to a polymeric phase is driven by an electronic transition from
a molecular semiconducting fluid to a polymeric one with
metalliclike conductivity, which has been observed in multiple
shock-wave experiments [10].

Excitation, dissociation, and ionization processes are also
observed in other shock-compressed diatomic fluids, such as
O2 and CO (which is isoelectronic with N2); for a review,
see Refs. [2,11]. Most interesting is the metallization in hy-
drogen (or deuterium) at few megabars [12–15], which, e.g.,
governs the interior structure, thermal evolution, and dynamo
action (magnetic-field generation) of gas giant planets, such
as Jupiter and Saturn [16].

In the polymeric phase, each nitrogen atom has single
chemical bonds with three surrounding atoms so that this
phase could store several times more energy than any known
material [2]. This would make polymeric nitrogen an exciting
high-energy-density material for corresponding applications.

Numerous high-pressure experiments were performed us-
ing diamond anvil cells (DACs) to reveal the high-pressure
phase diagram of solid nitrogen and the properties of the
different phases; see, e.g., Refs. [2,17,18]. Higher tempera-
tures are generated in shock-wave compression experiments
so that dense fluid nitrogen can be probed; see, e.g., Refs. [10,
19–24]. The interesting effect of shock cooling due to the
dissociation of nitrogen molecules along shock compression

has been predicted by Radousky et al. [21] in 1985. The cor-
responding P-T conditions are relevant for the interior of ice
giant planets, such as Uranus and Neptune. The equation of
state (EOS) data in this range are, thus, important for mod-
eling the interior, evolution, and magnetic field of ice giant
planets; see, e.g., Refs. [25–32].

Given these important applications, we have reassessed
the behavior of dense fluid nitrogen and performed extensive
DFT-MD simulations to determine the EOS for tempera-
tures in the range of 2000 K � T � 10 000 K and densities
of 1.1 g/cm3 � ρ � 4.0 g/cm3. Analysis of our EOS data
shows a systematic shift to higher pressures for given temper-
atures and densities compared with some earlier studies [3,5].
This trend can be traced back to the use of a higher particle
number (256 nitrogen atoms with five electrons each in our
calculations versus 64 in Refs. [3,5]), enabled by the enor-
mous progress in computational power over the past decade.
The differences are pronounced in the dissociation region so
that a new prediction for the instability region of the first-order
LL-PT can be given.

We have determined the pair distribution function (PDF)
and the coordination number so that the structural changes
along the transition can be analyzed as function of density and
temperature.

Furthermore, the electrical conductivity was calculated for
the entire density-temperature range mentioned above in order
to locate the nonmetal-to-metal transition in the P-T -̺ space.
The electrical conductivity increases over about seven orders
of magnitude from an almost insulating behavior at the low-
est densities and temperatures to values typical for metals at
higher densities and temperatures. In these DFT calculations,
we have applied the Heyd-Scuseria-Ernzerhof (HSE) hybrid
functional [33–36] to determine realistic band gaps, which is
essential along the metallization transition. Our results give
new insight into the nature of this combined thermodynamic
(liquid-liquid, first order) and electronic (metallization) tran-
sition in dense fluid nitrogen.

The outline of our paper is as follows. First, we summarize
details of the DFT-MD simulations for dense fluid nitrogen in
Sec. II. Results for the EOS data are shown in Sec. III, and the
structural changes along compression are discussed in Sec. IV
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using the pair distribution function. An update of the high-
pressure phase diagram is shown in Sec. V. The calculation of
the electrical conductivity via the Kubo-Greenwood formula
[37,38] is outlined in Sec. VI where we also discuss the
nonmetal-to-metal transition in dense fluid nitrogen. Finally,
we summarize our results in Sec. VII.

II. DFT-MD SIMULATIONS

The DFT-MD simulations were performed using the
Vienna Ab initio simulation package (VASP) [39–43]. The
Born-Oppenheimer approximation is used to describe the
electron system with DFT at finite temperatures [44–48] and
to treat the ions classically via MD simulations. The projector-
augmented wave (PAW) potential as implemented in VASP,
PAW_PBE N_h 06Feb2004, (where PBE represents Perdew,
Burke, and Ernzerhof) was used. We used a plane-wave cutoff
of 1000 eV, which is considerably higher as in earlier studies.
All simulations are performed within the NVT ensemble by
using the Nosé-Hoover thermostat [49,50].

We made extensive convergence tests with respect to par-
ticle number and chose N = 256 for all DFT-MD simulations
for temperatures in the range of 2000 K � T � 5000 K
and densities of 2.4 g/cm3 � ρ � 4.0 g/cm3. The first-order
LL-PT occurs in this temperature-density range. We found
characteristic fluctuations close to the instability region so that
large enough particle numbers had to be used. For conditions
further away from the LL-PT, our simulations are already
converged with N = 64. The MD simulations were performed
with up to 100 000 time steps of 0.6 fs duration, i.e., the
chosen NVT ensemble ran up to 60 ps.

We used the exchange-correlation (XC) functional of PBE
[51] for all MD runs. Additionally, we employed the HSE
hybrid functional [33–36] to evaluate the Kubo-Greenwood
formula. The calculation of the electrical conductivity along
the nonmetal-to-metal transition required the use of a hybrid
functional, such as HSE, which reproduces band gaps and, in
particular, their closing with increasing pressure more realis-
tically than PBE; see, e.g., Refs. [52–54].

III. RESULTS FOR THE EOS

We present the thermal EOS, i.e., the pressure as a function
of the density for given temperatures as derived from our
DFT-MD simulations in Fig. 1. For clarity, isotherms between
2000 K � T � 4000 K are shown in the upper panel, and
those between 4000 K � T � 10 000 K in the lower panel,
respectively. In accordance with Boates and Bonev [3] and
Driver and Militzer [5], we observe an instability region in the
dense fluid for lower temperatures, which is highlighted in the
inset in the upper panel; see Sec. V.

Our pressures are systematically higher by 10–20% than
those of Boates and Bonev [3], which can be attributed to
the use of higher particle numbers in our simulations: 256
nitrogen atoms (with five electrons each) compared with
64–128 atoms in their calculations. The higher particle num-
ber was necessary to get converged results, particularly, near
the dissociation transition. Boates and Bonev [3] used the Ŵ

point, whereas, we used the Baldereschi mean value point
(BMVP) [55] to sample the Brillouin zone. Note that Boates

FIG. 1. The pressure of nitrogen is shown as a function of density
for temperatures between 2000 and 4000 K (upper panel) and 4000
and 10 000 K (lower panel). We compare our DFT-DM results (solid
colored lines with dots) with those of Boates and Bonev [3] (dotted
lines with crosses, same color code). Pressures derived from double-
shock experiments of Radousky et al. [21] are shown as light blue
boxes in the lower panel for which a temperature of T ≈ 7000 K
was reported.

and Bonev [3] predict the stability region above 4000–5000 K,
whereas, we derive a critical temperature of Tc = 3500 K, see
Sec. V.

In 1985, Radousky et al. [21] dynamically compressed
fluid nitrogen by using a gas gun. In single-shock experiments,
i.e., along the Hugoniot curve, they measured temperatures
between 4000 K < T < 14 000 K and pressures in the range
of 18 GPa < P < 90 GPa. By performing double-shock ex-
periments, they reported pressures between 60 GPa < P <

90 GPa at an almost constant temperature of about T ≈

7000 K. The results of these double-shock experiments shown
in the lower panel of Fig. 1 as light blue boxes are substantially
higher than our results for all temperatures between 4000 and
10 000 K in the density range between 2.4 and 3.2 g/cm3.
Radousky et al. [21] inferred the temperature by measuring
the spectral radiance of the light emitted from the shocked
sample. The vast differences between our ab initio results and
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FIG. 2. Pair distribution function in fluid nitrogen for densities
of ρ = 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, and 4.0 g/cm3. The lines are
shifted downwards by −0.5 with increasing density. Left panel
(black): T = 2000 K, right panel (red): T = 4000 K.

their P-T data in that density range should be resolved by new
shock-compression experiments.

At higher temperatures, the dissociation of nitrogen
molecules leads to a reversal of the order of the pressure
isotherms above 1.5 g/cm3, see lower panel of Fig. 1. The
isotherms return to the usual temperature order only above
3.5 g/cm3 in this higher temperature regime. It is interest-
ing to note that the crossing of the isotherms occurs in a
much narrower density region for the lower temperatures
(upper panel of Fig. 1), i.e., between 2.7 and 3.7 g/cm3. The
different isotherms clearly show the interplay of thermally
and pressure-driven dissociation in dense fluid nitrogen. For
higher temperatures, thermally driven dissociation dominates
but does not lead to an instability region. In comparison, disso-
ciation occurs more abruptly for lower temperatures, leading
to a first-order LL-PT, such as in hydrogen [14,15].

IV. RESULTS FOR THE PAIR DISTRIBUTION FUNCTIONS

The PDFs are shown in Figs. 2 and 3, whereas, the coor-
dination number is displayed in Fig. 4. These results can be
used to study the structural changes in the fluid as a function
of temperature T and density ρ.

Figure 2 shows the PDF for 2000 K (left panel) and 4000 K
(right panel) for various densities. For 2000 K, a pronounced
molecular peak appears at 1.1 Å at lower densities. For densi-
ties ρ > 3.4 g/cm3 a second peak at 1.3 Å appears, which can
be attributed to the transition from a molecular to a polymeric
phase, accompanied by a first-order LL-PT. Several authors
have already described this behavior [3–7]. At the higher
temperature of 4000 K, a shift of the first peak of the PDF
from 1.1 to 1.3 Å is observed, which proceeds continuously.
This shift indicates that the CP of the first-order LL-PT is
located below 4000 K, in accordance with the EOS data, see
Sec. V. In Fig. 3, the PDF is shown for higher temperatures of
6000 K (left panel) and 10 000 K (right panel). Interestingly,
the molecular peak at 1.3 Å is still visible even at these

FIG. 3. Pair distribution function in fluid nitrogen for densities
of ρ = 2.8, 3.0, 3.2, 3.4, 3.6, 3.8, and 4.0 g/cm3. The lines are
shifted downwards by −0.5 with increasing density. Left panel
(gray): T = 6000 K, right panel (orange): T = 10 000 K.

high temperatures, which indicates that nitrogen transforms
gradually to an atomic liquid with increasing density as dis-
cussed above.

By integrating the PDF in spherical coordinates up to the
first minimum, according to

n(r′) = 4πρ

∫ r′

0
g(r)r2dr, (1)

the coordination number is obtained. This quantity indicates
how many molecules are found in the range of each coordina-
tion sphere by integrating from 0 to the first minimum r′ in the
PDF. Therefore, the coordination number signals structural
changes in the dense fluid upon compression.

For 2000 K, the coordination number is just 1 for densi-
ties ρ < 3.2 g/cm3 describing a molecular fluid composed
of triple bonded N2 molecules. For higher densities, a rapid
increase in the coordination number up to 2 and above occurs,

FIG. 4. Coordination number according to Eq. (1) as function of
the density for several temperatures: T = 2000, 4000, 6000, 8000,
and 10 000 K.
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FIG. 5. Phase diagram of nitrogen according to Boates and
Bonev [3]. Melting line (diamonds: black [57], green [58], orange
[59], gray [60]), polymeric solid phases labeled amorphous and cubic
gauche (cgN). The dark-red line represents experimental data for the
melting line of Weck et al. [61]. Our prediction for the LL-PT (blue
line) is compared with that of Boates and Bonev [3] (red line), Yakub
and Yakub [56] (purple line), Driver and Militzer [5] (light blue line),
and Zhao et al. [9] (light green line). Magenta (violet) circles indicate
the onset of absorption (reflection) observed in laser-heated DAC
experiments [6]. The dotted line represents the phase boundary as
predicted by the chemical model of Ross and Rogers [62].

which indicates the transition to the polymeric regime. As
seen in the PDF, nitrogen stays molecular even for high tem-
peratures. The increase in the coordination number becomes
more gradual with increasing temperature in accordance with
the EOS results.

V. HIGH-PRESSURE PHASE DIAGRAM

The thermodynamic stability condition (∂P/∂̺)T � 0 is
violated below 3500 K so that a van der Waals loop oc-
curs, which has to be treated by a Maxwell construction.
Our numerical results indicate that the critical point for the
corresponding LL-PT is located at about Tc = 3500 K, ̺c =

3.4 g/cm3, and Pc = 90 GPa, i.e., the critical temperature
is lower than earlier predicted. The coexistence line of the
first-order LL-PT is shown as a blue line in Fig. 5, the high-
pressure phase diagram adapted from Boates and Bonev [3]
with experimental data for the melting line and polymeric
solid phases (amorphous and cubic gauche).

According to the EOS data shown in Fig. 1, the coexistence
line of the LL-PT is shifted by about 10 GPa towards higher
pressures compared with their curve (red line). Yakub and
Yakub [56] used the ab initio calculations of Boates and
Bonev [3] to calibrate an advanced polymerization model.
Their prediction for the coexistence line of the LL-PT is
shown for comparison (purple line). The prediction of Driver
and Militzer [5] for the coexistence line (light blue line) is also
based on DFT-MD simulations and located between our result
and that of Boates and Bonev [3]. Driver and Militzer [5] have
performed their DFT-MD simulations with 64 atoms as Boates
and Bonev [3]. The prediction of Zhao et al. [9] (green line) is
based on DFT-MD simulations using the strongly constrained

TABLE I. Input used in DFT-MD simulations for dense fluid
nitrogen. Compared are the XC functional, the number of atoms N ,
and the point set for the evaluation of the Brillouin zone (BZ).

Ref. XC functional N (atoms) BZ sampling

Boates and Bonev PBE 64–128 Ŵ

[3]
Driver and Militzer PBE 64 Ŵ

[5]
Zhao et al. SCAN 64 Ŵ

[9]
Fu et al. PBE 54 Ŵ

[7]
Mazevet et al. PW91 32 Ŵ

[63]
Present paper PBE and HSE 64–256 BMVP

and appropriately normed (SCAN) meta-generalized gradient
approximation functional with 64 atoms. Their LL-PT line
lies about 10% above our results in P-T space. All earlier stud-
ies employed the Gamma (Ŵ) point to evaluate the Brillouin
zone, whereas, we used the BMVP. We summarize the main
input into different DFT-MD simulations performed for dense
fluid nitrogen in Table I.

Drastic changes in the optical properties of dense fluid
nitrogen upon compression were observed in laser-heated
DAC experiments. Jiang et al. [6] find an onset of absorption
(magenta points in Fig. 5) that agrees qualitatively with the
continuous transition between the molecular and dissociated
fluid above the critical point. The onset of reflection (violet
points) indicates the transition to a metallic state at pressures
well above a megabar. This transition can be explained by
means of the electrical conductivity, which is discussed in the
next section.

We also show the prediction of the dissociation model of
Ross and Rogers [62] for the molecular-to-polymeric phase
transition in the dense fluid (dotted line). They used the ex-
perimental data of Refs. [19,21] and calculated the Grüneisen
parameter. The corresponding transition pressure is higher
than the results of some of the DFT-MD simulations [3,5]
including ours but agrees with the SCAN results [9]. The
LL-PT line has a different slope for higher temperatures. This
behavior is similar to that of the EOS data of Radousky et al.

[21] shown in the lower panel of Fig. 1. Note that predictions
of chemical models have to be treated with caution in the
warm dense matter region. The key quantity, the shift in the
dissociation energy with density and temperature, is usually
treated within simple models which neglect, e.g., effects of
disorder (ion structure) and the formation of electronic bands,
which are important in this dense fluid regime.

VI. ELECTRICAL CONDUCTIVITY

The dynamic conductivity σ (ω) is derived from the
Kubo-Greenwood formula, [37,38,64–66],

σ (ω) =
2πe2

3ω	

∑
k

W (k)
N∑

j=1

N∑
i=1

3∑
α=1

[F (ǫi,k ) − F (ǫ j,k )]

× |〈� j,k|�v|�i,k〉|
2δ(ǫ j,k − ǫi,k − h̄ω), (2)

085101-4

Publications 68



NONMETAL-TO-METAL TRANSITION IN DENSE FLUID … PHYSICAL REVIEW B 108, 085101 (2023)

where e is the electron charge, m is its mass, ω is the fre-
quency, and 	 is the volume of the simulation box. ǫi,k

and F (ǫi,k ) are the energy eigenvalue and Fermi occupation
number of the Bloch state |�i,k〉 calculated from DFT, and
〈� j,k|�v|�i,k〉 are matrix elements with the velocity operator
calculated with the optical routines of VASP [39–43]. The
discrete spectrum of eigenvalues is caused by the periodic
boundary conditions of the simulation box, so the δ func-
tion has to be broadened to a finite width for which we use
a Gaussian function. Summation over the Brillouin zone is
performed by using special k point sets with weighting factors
W (k); for details, see Refs. [66–69].

For temperatures T � 4000 K, we evaluated the
Kubo-Greenwood formula (2) for 100 snapshots of the
MD simulation selected at constant time intervals and
used the BMVP to evaluate the Brillouin zone. Performing
the simulations with 256 nitrogen atoms, we found the
BMVP sufficient to sample the Brillouin zone with the
required accuracy. A comparison with Monckhorst-Pack
(MP) 2 × 2 × 2 or 3 × 3 × 3 point sets revealed no
significant differences for our conductivity calculations.
This convergence enabled us to calculate the electrical
conductivity using the hybrid functional HSE [33–36], which
is computationally much more demanding than the PBE
XC functional. For higher temperatures T > 4000 K, we
used 64 atoms and calculated the conductivity by averaging
20 snapshots. To converge the electrical conductivity at
these conditions, we calculated the snapshots with MP 33

point sets. We used the PBE XC functional for those higher
temperatures since the electrical conductivity already has
metalliclike values in this range due to the nonmetal-to-metal
transition.

The results for the static electrical conductivity are shown
in Fig. 6 and compared with those of Boates and Bonev [4].
The calculated densities are the same as given in the EOS, see
Fig. 1. In the pressure region between 75 and 100 GPa, we find
a substantial increase in the conductivity over several orders
of magnitude from values typical for semiconductors up to
metal-like conductivities. Below the critical temperature of
Tc = 3500 K, the conductivity jumps as a function of pressure
from the value of the semiconducting fluid at the low-density
branch of the coexistence curve to metal-like values at the
high-density branch, which is typical for a first-order phase
transition.

Furthermore, we find a strong influence of the XC func-
tional on the conductivity values in the semiconducting fluid.
It is well known that the hybrid HSE functional yields more
realistic band gaps than PBE [52–54]. The corresponding
conductivities are lower by one to two orders of magnitude,
dependent on temperature. However, this difference becomes
negligible for higher temperatures T � 6000 K so that we
determined the conductivity solely with PBE in this range. In
general, we find a good agreement of our PBE conductivities
with those of Boates and Bonev [4].

In 2003, Mazevet et al. [63] performed DFT-MD simula-
tions for fluid nitrogen and calculated the conductivity along
the Hugoniot curve as well as for the 5000-K isotherm; the lat-
ter is shown as cyan diamonds in Fig. 6. They used 32 nitrogen
atoms in the simulation cell, the Vanderbilt ultrasoft pseu-
dopotential schema [70], and the Perdew-Wang 91 (PW91)

FIG. 6. Static electrical conductivity of dense fluid nitrogen as
function of pressure for various temperatures (color coded). PBE
functional (this paper): squares, HSE functional (this paper): tri-
angles up. Earlier results based on DFT-MD methods: Boates and
Bonev [4]: crosses, Fu et al. [7]: stars, and Mazevet et al. [63]: dia-
monds. Experimental data of Chau et al. [10] are shown by light-blue
triangles left.

parametrization of the generalized gradient approximation
[71]. Although we have used more nitrogen atoms in our
simulations (N = 256) and a different exchange-correlation
functional (PBE), we find reasonable agreement. In 2019,
Fu et al. [7] evaluated the Kubo-Greenwood formula using
DFT-MD simulations. They used the PBE functional, the
Ŵ point to sample the Brillouin zone, and 54 nitrogen atoms
in the simulation cell. Both studies yield higher conductivities
compared to our findings. These deviations can be attributed
to higher particle numbers in our simulations and different XC
functionals; see Table I.

We also show the conductivities reported by Chau et al.

[10] derived from double shock-wave experiments using a
gas gun in Fig. 6. These data show qualitatively a continu-
ous transition from a semiconducting fluid at lower pressures
to a conducting fluid at high pressures, as predicted by the
DFT-MD simulations for super critical temperatures T � Tc.
Compared to our results, the transition pressure of Chau et al.

[10] shifts towards higher pressures of P ≈ 100 GPa. Further-
more, they assign a temperature of 7000 K to their entire
curve, which does not fit at all in the temperature systematics
of the DFT-MD simulations. Note that strong doubts have
been raised that the treatment of dissociation in the evaluation
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of Chau et al. is adequate for the dense fluid regime so that
their estimate for the dissociation fraction and, consequently,
the temperature might be inaccurate [72].

VII. CONCLUSIONS

We have calculated the EOS data, the structural proper-
ties, and the electrical conductivity of dense fluid nitrogen
for a wide range of densities and temperatures by using
extensive DFT-MD simulations. The enormous increase in
computational power enabled us to use significantly higher
particle numbers and more advanced XC functionals. We
find a first-order LL-PT and locate the corresponding criti-
cal point at about Tc = 3500 K, ̺c = 3.4 g/cm3, and Pc =

90 GPa. The electrical conductivity was derived from the
Kubo-Greenwood formula using the hybrid HSE functional
for temperatures T � 4000 K and the PBE functional for
higher temperatures. We observe a nonmetal-to-metal transi-
tion in the dissociation region with jumps for the electrical
conductivity in the instability region as characteristic of a
first-order phase transition. The substantially increased com-
putational cost using the hybrid HSE functional pays off since
we could determine the electrical conductivity in the semi-
conducting molecular fluid at lower temperatures reliably for
the first time. The corresponding HSE values are one to two
orders of magnitude lower than the predictions of the PBE
functional.

Note that the nonmetal-to-metal transition, as observed
in dense fluid nitrogen, is very similar to the behavior of

dense fluid hydrogen; see, e.g., Refs. [73,74]. Abrupt disso-
ciation of molecules leads to a first-order LL-PT at lower
temperatures. In comparison, the nonmetal-to-metal transi-
tion is more gradual at higher temperatures due to additional
thermal excitations. The minimum metallic conductivity of
σmin ≈ 2 × 104 S/m as proposed by Mott [75] originally for
liquid mercury and later applied to other materials [76], is
exceeded just in the transition region, see Fig. 6.

Our results will promote new experimental campaigns us-
ing DACs and/or shock waves to benchmark our predictions
for the EOS data and the location of the first-order LL-PT in
dense fluid nitrogen. In particular, such experiments will also
be performed using DACs and ultrashort and intense x-ray
beams provided by free electron laser (FEL) facilities, such
as the Linear Coherent Light Source at SLAC Stanford or the
European XFEL; see, e.g., Refs. [77,78]. The results presented
in this paper underline the importance of new experiments
to understand better the behavior of warm dense matter, in
general, and of dense fluid nitrogen, in particular.
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Appendix A.

Convergence
The robustness and accuracy of numerical simulations are paramount studying of complex

physical systems. This chapter discusses the convergence tests done to guarantee the rigour

and credibility of our results. In Sec. A.1, we analyse the convergence of GEMC simulations

for hydrogen and helium mixtures with respect to the particle number. The convergence of

the DFT-MD simulations is analysed in Sec. A.2 with respect to the particle number, the plane

wave energy cutoff, and the k-point sampling.

A.1. Convergence of the GEMC simulations for hydrogen and

helium

If conducting GEMC simulations to simulate the miscibilty of hydrogen and helium the

convergence must be carefully checked. Using too low particle numbers results in swapping

identities from hydrogen-rich to helium-rich between the two boxes several times; besides,

vast fluctuations occur. This identity change occurs especially close to the lowest pressure at

which demixing occurs. The convergence for different particle numbers is depicted in Fig. A.1.

For only 512 particles, significant deviations occur. The results are well converged with only

2048 particles for pressures above 280 kbar. At the lowest pressure of 260 kbar, the 8192

particles used in our simulations are necessary to converge the results.
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with 64:64 H2:H2O molecules using 96:96 H2:H2O molecules as a reference. At 1000 K, we

compared the results obtained by using the BMVP with a MP 2 × 2 × 2 set to sample the

Brillouin zone and did not find significant differences. We decided to use the following ratios

of NH2:NH2O molecules in our simulation boxes: 128:0, 128:3, 128:10, 128:18, 128:30, 108:36,

48:80, 64:64, 40:64, 21:64, 10:64, 0:64. For the higher densities and temperatures our

simulations would be converged with significant less particles. For simplification, however, we

used the same particle number for every ρ-T condition.

We computed the pressure and internal energy employing plane wave cutoffs ranging

from 700 eV to 1300 eV, and our analysis revealed that a cutoff of 1100 eV is sufficient for

accurate results. The corresponding outcomes are illustrated in Fig. A.4 and Fig. A.5. It is

important to note that we specifically tested the plane wave cutoff for hydrogen and water

mixtures with a composition of xH2O = 0.5. This choice is based on the observation that

the convergence behaviour with respect to the plane wave cutoff remains consistent across

different concentrations.
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A.2.2. Nitrogen

This section shows convergence tests for dense fluid nitrogen. We check pressure and

energy convergence with respect to the plane wave cutoff. By investigating a phase transition,

the convergence of the transition pressure needs to be checked very carefully, not only at

one single density and temperature condition. Additionally, the convergence of the electrical

conductivity with respect to the k-point set and particle number is analysed.

Convergence of the DFT-MD simulations for nitrogen

We calculated the LL-PT at a temperature of 2000 K for particle numbers between 64 and

512 nitrogen atoms using the BMVP or an MP 2 × 2 × 2 set to sample the Brillouin zone. The

results are shown in Fig. A.6. The simulations with 128 particles and an MP 2 × 2 × 2 set are

converged. However, we used 256 particles and the BMVP to converge the transition pressure

fully. Conducting simulations with better k-point sampling, e.g. an MP 4 × 4 × 4 set, might

lead to converged results even with lower particle numbers. However, this simulation scheme

is computationally very inefficient.

Moreover, we checked the convergence of the plane-wave cutoff with respect to pressure

and energy, see Fig. A.7 and A.8, respectively. A plane wave cutoff of 1000 eV leads to very

good convergence of better than 1% and 2 meV, respectively.
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