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Abstract

The Earth’s magnetic field is subject to constant evolution, the trend and changes of the mag-

netic field, the impact on climate, different time-varying and small-scale phenomena, space

weather and hazard prediction, the magnetosphere-ionosphere coupling, or the continuation of

monitoring are current research subjects.

With its complex nature and coupling with external phenomena, analysis heavily relies on

measurement data from which the empirical models are created. Space-based measurements

are vital for understanding Earth’s magnetic field, providing comprehensive global coverage and

spanning various local times and altitudes. Despite these advantages, the accessibility of high-

precision data remains limited, with one high-precision mission currently in orbit, the Swarm

satellites. Non-dedicated satellites, designed for purposes other than measuring the magnetic

field, frequently carry platform magnetometers for navigational tasks. Increasing the data avail-

ability through the calibration of platform magnetometers from non-dedicated satellites is in-

vestigated in this work. However, the inherent rough calibration of these magnetometers makes

a more refined calibration and characterization approach necessary for scientific exploration.

This dissertation focuses on applying Machine Learning for the post-launch calibration of

platform magnetometers, introducing a novel methodology to enhance the quality and reliability

of the datasets that are produced. The publication-based chapters provide a detailed illustra-

tion of how the calibration was achieved. First, an analytical calibration for the GOCE satellite

mission is demonstrated, which achieves good results by thorough analysis of the input data and

shows applications of the dataset for magnetospheric phenomenon analysis. Subsequently, the

ML-based calibration is introduced, which is applied to the GOCE and GRACE-FO satellite

missions and achieves residuals of well below 10 nanoTesla, the unit of magnetic flux density,

enabling scientific application. Next, the proposed calibration methodology is extended by in-

corporating the first-principle physical law of Biot-Savart into the neural network, incorporating

physics-based information into the calibration to improve the physical validity. The evaluation

highlights the achievements in the calibration of platform magnetometers, showcasing the efficacy

of the Machine Learning-based approach in improving the accuracy and usability of geomagnetic

data while confirming the plausibility through the detection of geophysical phenomena.

By leveraging Machine Learning techniques, this research aims to automate and improve

the calibration process, addressing the inherent challenges given by the rough calibration of

platform magnetometers. The quality of the research is verified with two use cases, the GOCE

and GRACE-FO satellite missions.

In conclusion, this thesis contributes to increasing the data availability for geomagnetic field

analysis and lays a foundation for future application to other missions. By introducing a novel

calibration methodology using Machine Learning, this research drives the field toward a more

sophisticated and nuanced understanding of Earth’s magnetic field dynamics by monitoring the

Earth with a true swarm of satellites.



Zusammenfassung

Das Erdmagnetfeld unterliegt einer ständigen Entwicklung, der Trend und die Veränderun-

gen des Magnetfelds, die Auswirkungen auf das Klima, verschiedene zeitlich veränderliche und

kleinräumige Phänomene, die Vorhersage des Weltraumwetters und -gefahren, die Kopplung von

Magnetosphäre und Ionosphäre oder die Fortsetzung der Überwachung sind aktuelle Forschungs-

themen.

Die Analyse des komplexen Magnetfelds und seiner Wechselwirkungen mit externen Phänome-

nen basiert stark auf Messdaten, die zur Erstellung empirischer Modelle dienen. Weltraum-

basierte Messungen sind entscheidend, da sie globale Abdeckung bieten, aber der Zugang zu

hochpräzisen Daten bleibt begrenzt. Diese Arbeit untersucht die Kalibrierung von Plattform-

magnetometern auf nicht spezialisierten Satelliten, um die Datenverfügbarkeit zu verbessern,

was jedoch einen verfeinerten Ansatz erfordert, um wissenschaftliche Forschung zu ermöglichen.

Diese Dissertation befasst sich mit der Anwendung von maschinellem Lernen für die Kalib-

rierung von Plattformmagnetometern nach dem Start und stellt eine neuartige Methodik zur

Verbesserung der Qualität und Zuverlässigkeit der erzeugten Datensätze vor. In den auf Pub-

likationen basierenden Kapiteln wird detailliert dargestellt, wie die Kalibrierung erreicht wurde.

Zunächst wird eine analytische Kalibrierung für die GOCE-Satellitenmission demonstriert, die

durch eine gründliche Analyse der Eingabedaten gute Ergebnisse erzielte und Anwendungen des

Datensatzes für die Analyse magnetosphärischer Phänomene aufzeigt. Anschließend wird die

ML-basierte Kalibrierung vorgestellt, die auf die GOCE- und GRACE-FO-Satellitenmissionen

angewendet wird und Residuen von deutlich unter 10 nanoTesla, der Einheit der magnetis-

chen Flussdichte, erzielt, was wissenschaftliche Anwendungen ermöglicht. Als nächstes wird die

vorgeschlagene Kalibrierungsmethode erweitert, indem das grundlegende physikalische Gesetz

von Biot-Savart in das neuronale Netz integriert wird, wodurch die physikalische Gültigkeit der

Kalibrierung verbessert wird. Die Bewertung hebt die Erfolge bei der Kalibrierung von Plat-

tformmagnetometern hervor und zeigt die Wirksamkeit des auf maschinellem Lernen basieren-

den Ansatzes bei der Verbesserung der Genauigkeit und Nutzbarkeit geomagnetischer Daten,

während die Plausibilität durch die Erkennung geophysikalischer Phänomene bestätigt wird.

Durch den Einsatz von Techniken des maschinellen Lernens zielt diese Forschung darauf

ab, den Kalibrierungsprozess zu automatisieren und zu verbessern, um die mit der groben

Kalibrierung von Plattformmagnetometern verbundenen Herausforderungen zu bewältigen. Die

Qualität der Forschung wird anhand von zwei Anwendungsfällen, den Satellitenmissionen GOCE

und GRACE-FO, verifiziert.

Zusammenfassend lässt sich sagen, dass diese Arbeit dazu beiträgt, die Datenverfügbarkeit

für die Analyse des geomagnetischen Feldes zu erhöhen und eine Grundlage für die künftige

Anwendung bei anderen Missionen schafft. Durch die Einführung einer neuartigen Kalib-

rierungsmethode unter Verwendung von maschinellem Lernen treibt diese Forschung das Feld

in Richtung eines differenzierteren und nuancierteren Verständnisses der Dynamik des Erdmag-

netfeldes voran, indem die Erde mit einem echten Satellitenschwarm überwacht werden soll.
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1 Motivation

The Earth’s magnetic field is constantly changing and remains a current research topic.

The geomagnetic field has been studied for a long time and has been used in applications

like navigation for hundreds of years. Protection from solar wind and radiation provided

by the geomagnetic field is essential for life on our planet. Furthermore, understanding

the dynamic nature of the Earth’s magnetic field is vital not only for scientific exploration

but also for practical applications such as space weather forecasting. In our continuous

pursuit of increased insight, empirical models provide the backbone for analysis.

For empirical models, the data is the main source of information. Magnetic flux

density data are needed for empirical modeling of the Earth’s magnetic field. These

stem from ground observatory data, combined with aerial campaigns and high-precision

satellite data. The available data has led to a well-established understanding of the Earth’s

magnetic field and resulted in the creation of magnetic field models.

Space-based measurements play a significant role in modeling the Earth’s magnetic

field and geomagnetic phenomena as they, contrary to ground stations, provide a global

coverage that is equally distributed. This global perspective enables a comprehensive un-

derstanding of the complex dynamics of the Earth’s magnetic field, contributing valuable

insights into geophysical processes. High-precision magnetic satellite data have thus a

huge importance in generating sophisticated models of the Earth’s magnetic field.

However, these high-precision satellite missions are limited in their coverage in terms

of space, time, and different magnetic local times. In recent years, there have been efforts

to increase the available data by utilizing other non-dedicated missions in space [56, 4, 54].

These non-dedicated satellites have a different mission goal than measuring the Earth’s

magnetic field. Nevertheless, many satellites in low Earth orbit (LEO) carry platform

magnetometers onboard as part of their attitude and orbit control system (AOCS), used

for navigation and satellite operations. A high noise in the measurement data is ac-

ceptable for their navigational tasks, thus they are placed within or at the body of the

satellite system. The main idea is to reduce the noise of these data by calibration and

characterization and thus increase their quality, which results in magnetic datasets accom-

panying the measurements of high-precision missions. To achieve this, their measurement

data must be corrected for artificial disturbances introduced through their placement and

mounting. These calibrated datasets also contain the opportunity to improve the data

availability in the past, where no magnetic mission was available. This helps bridge the

gap of high-precision measurements that occurred between 2010 and 2013.

In the past, this has been achieved using an analytical calibration where the platform

magnetometer features are identified and adjusted for scaling, offset, and misalignment

in their mutual angles within the calibration. Then, hand-selected features known to
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introduce the largest artificial disturbances are used in additional terms related to the

characterization of their disturbance factor. Within their methodology, a preselection of

features is conducted. Similar approaches have been applied to GRACE [44], CryoSat-2

[47], DMSP [1], GRACE-FO [55], Swarm-Echo [9], AMPERE [4], and GOCE [38]. For

this, a sophisticated magnetic field model is required as it serves as the reference model

needed within the calibration methodology because platform magnetometers deliver a

relative vector measurement that needs to be calibrated with the absolute values of the

reference model. Hereby, the aforementioned magnetic field models like the IGRF model

[2], the CHAOS-7 model [17], the Mag.num model [51], or the Kalmag model [26] are

needed. The empiric CHAOS-7 model is currently the most-used model in LEO and

is constantly developed further [17]. This approach requires manual analytical work to

determine the relevant features and their relationship to the magnetometer measurements

before applying the calibration.

In this work, a new methodology is presented that utilizes neural networks that are

trained on the available data of the satellite with a geomagnetic field model as the refer-

ence model to adjust the measurements such that the initial residual is reduced compared

to the geomagnetic field model. Here, Machine Learning (ML) is used for fast, precise,

and readily accessible automated calibration of magnetic datasets from non-dedicated

missions. The proposed non-linear regression not only automatically identifies relevant

features and their crosstalk but also adjusts the values of raw measurements, such as

scaling, offsetting, or rotating, while characterizing corrections for external influences on

sensor measurements, like temperature dependence. Particularly, handling multi-satellite

magnetic data contributes to a substantial increase in geomagnetic datasets, offering valu-

able insights into Earth’s magnetic field.

Challenges Since many satellites are build-wise different from each other, individual

analysis and planning for every satellite are not possible in a timely manner. Satellites are

among the best-monitored systems available, which means that there are many features

available from which only a fraction is relevant to the magnetic properties of the satellite.

Still, it is not known in advance which features may be relevant for the calibration, so

finding them is an exponentially complex task. In addition, a lot of cross-talk between

relevant features is present, meaning that feature combinations play a major role, which

becomes exponentially hard to detect for analytic methods. Handling sensor data intro-

duces additional challenges as they originate from a variety of instruments, measuring

in different physical units and at different time intervals. The data include misreadings,

missing data, misaligned and non-plausible timestamps, rendering data preprocessing a

major task within this work. Also, the evaluation of existing models is strongly depen-

dent on the determination of the satellite’s position in terms of longitude, latitude, and

2



altitude, as well as the exact timestamp for the position. One of the challenges includes,

e.g., the lack of ground truth in high-latitude regions where existing magnetic field models

do not include the so-called field-aligned currents (FAC), which occur highly fluctuating.

Research Objectives The goal of this work is to automatically learn the magnetic

behavior of the satellite system post-launch to create an ML-based calibration model.

The model is able to calibrate the instrument and correct for the artificial disturbances

originating from the satellite itself and thus extract a calibrated dataset of the magne-

tometer signal to measure Earth’s magnetic field in the background. This objective can

be subdivided into 3 research objectives:

• RO-1: Show feasibility of ML-based calibration of platform magnetometers to im-

prove the sensor readings.

• RO-2: Incorporate physics-based information into ML calibration of sensors to im-

prove physical validity.

• RO-3: Extract information about the most important parts of the calibration and

gain explainable insights.

Key contributions To answer these research objectives, the key contributions of this

thesis are:

• The data have been investigated and analyzed, leading to the development of dif-

ferent preparation steps to streamline the given data from the satellite and other

supplementary sources. A sophisticated data preprocessing pipeline that is gener-

ally applicable to platform magnetometer datasets is developed and implemented

to prepare, convert, clean, and filter the data for subsequent calibration.

• I show that ML methods are able to achieve an automated post-launch calibration

of satellite platform magnetometers. A successful calibration for two satellite mis-

sions, GRACE-FO and GOCE, is presented, overcoming different challenges like

a partial lack of ground truth or cross-talk between the features that need to be

considered. In addition, an extensive evaluation verifies the plausibility and quality

of the calibration.

• An extension utilizing physics-informed neural networks has been introduced that in-

corporates the Biot-Savart formula for dipoles into the ML-based calibration model.

Utilizing known laws from physics increased the physical plausibility of the cali-

bration and enabled new insights into the interplay of the electronic components

onboard the satellite.
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• A feedback loop of current insights has been established. Thus, results and new

information from the calibration have had an impact on the further development of

the proposed approach. This includes information about the most influential prop-

erties onboard the satellite influencing the calibration or the position and strength

of the dipoles.

Outline In the following, different parts of the described approach will be discussed in

more detail. The Earth’s magnetic field will be introduced in Section 2. Section 3 presents

the three satellite missions used in this work and describes platform magnetometers in

more detail. Section 4 gives an overview of ML in general and its application for the cal-

ibration of platform magnetometers. Section 4.2 summarizes the work conducted during

this dissertation, while Sections 5 to 7 contain the publication-based chapters and detailed

studies. Finally, Section 8 summarizes this work and points to future work directions.
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2 The Earth’s Magnetic Field

This chapter will provide a brief overview of Earth’s magnetic field. First, the source,

structure, and phenomena of the geomagnetic field will be described. Afterward, the

underlying modeling data that led to the insights and understanding of the geomagnetic

field will be described.

Figure 1: Schematic of dipole magnetic field lines in a vacuum. Source: [29]

The Earth’s magnetic field evolves from Earth’s molten, electrically conducting core,

composed mainly of Iron and Nickel [29]. The heat in the core drives electric currents

through thermal convection. In this process, the rotation of the Earth plays a crucial

role, leading to the generation of electric currents through the geodynamo mechanism.

The geodynamo involves the self-sustaining process wherein the convective motion of

molten iron generates electric currents, and the resulting magnetic field further influences

the motion of the conductive fluid. This self-sustaining process ultimately establishes

the Earth’s dipole-dominated magnetic field. These electric currents, combined with the

Earth’s rotation, contribute to establishing a dipole magnetic field. While these convection

processes are very dynamic, the dominant lower-order terms lead to a dipole dominated

magnetic field at the surface level of the Earth. Figure 1 contains a schematic visualization

of the dipolar geomagnetic field, taken from Kelley [29], which shows an idealized view of

a dipole magnetic field without considering further details.

While this is true for the driving processes of Earth’s magnetic field without its sur-

rounding environment, the actual magnetic field looks different. In our solar system, the

Earth is embedded within the interplanetary magnetic field (IMF) originating from the

Sun [49]. Driven by the solar wind, the IMF evolves from the Sun and forms the helio-

sphere up to the heliopause. The solar wind consists of a continuous stream of charged

particles emitted by the Sun. The IMF interacts with the Earth’s magnetic field at dif-

ferent levels, which leads to significant changes in the simplified dipole structure shown

in Figure 1, while on the surface of the Earth the largest proportion of deviations from
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a simple dipole still originate from the core. The external magnetic field components

change the structure further.

Figure 2: Structure of the magnetosphere. Source: [31]

Figure 2 shows the structure of the magnetosphere with phenomena evolving from

the interaction of the geomagnetic field with the IMF and the solar wind, as provided

by Kivelson and Russell [31]. Many geomagnetic phenomena at a smaller scale evolve

from the interactions of Earth’s magnetic field with its environment and the interaction

with the IMF and the solar wind. On a large scale, the magnetic field is tailed in the

direction of the side facing away from the Sun, with the charged particles from the Sun

influencing different phenomena of the geomagnetic field. Among these phenomena are

the ring current and electrojet at the equator, as well as FACs found in polar regions.

These phenomena are still subject to research where additional data and the increased

coverage can help in their analysis and understanding of the coupling between these.

Data from many sources is available for modeling the geomagnetic field, e.g., ground

observatories, air and marine campaigns, and space-based measurements [46]. The po-

sitioning and distribution of geostationary observatories are constrained by their fixed

locations on the surface of the Earth, leading to an uneven distribution across the globe

that is weighed toward the Northern Hemisphere and dominated by locations on the

mainland. These observatories provide consistent, long-term observations of the Earth’s

magnetic field and, with their static position, are especially well-suited to measure varia-

tions over time. In general, stationary sensors can detect varying fields well, while moving

sensors, such as satellites, are better positioned in terms of altitude and are well-suited

for detecting static fields and variations over time.
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On the other side, space-based measurements onboard LEO satellites provide very

good coverage and distribution of their measurements. This enables modeling efforts for

the geomagnetic field as satellite data covers remote areas and oceans well. The utilization

of high-precision data from past missions such as Ørsted and CHAMP, along with the

ongoing high-precision mission Swarm, has led to an improvement of the geomagnetic

field models. The mysteries of the Earth’s magnetic field can be explained with an ever-

growing resolution [23]. This resulted in highly sophisticated empirical models like the

IGRF [2], Mag.num [51], Kalmag [26], or CHAOS-7 model [17], amongst others. The

CHAOS-7 model is the currently most-used model in LEO and consists of three main

components, namely the core, crustal, and large-scale magnetospheric fields [22]. Among

others, the trend and changes of the magnetic field, the impact on climate, different

time-varying and small-scale phenomena, space weather and hazard prediction, or the

magnetosphere-ionosphere coupling are subjects to ongoing research. This work aims to

provide additional space-based measurements by leveraging the possibility of calibrating

platform magnetometers from non-dedicated missions to accompany the data of high-

precision satellites.
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3 Satellite Missions to Sense the Earth’s Magnetic Field

Figure 3: The Swarm satel-
lite mission consists of three
satellites. Source: 1

Figure 4: The GOCE satel-
lite mission consists of a sin-
gle satellite. Source: 2

Figure 5: The GRACE-FO
satellite mission consists of
two satellites following each
other. Source: 3

This chapter will give an overview of the three main satellite missions used in this

dissertation. Figures 3 to 5 contain an illustration of the three satellite missions in orbit.

First, the current high-precision magnetic satellite mission Swarm will be presented. Then,

the two non-dedicated satellite missions, GOCE and GRACE-FO, will be introduced, from

which the platform magnetometer measurements have been calibrated.

3.1 Swarm

By now, there is a history of high-precision satellite missions dedicated to measuring the

geomagnetic field. Between 1999 and 2004, magnetic field data from the Ørsted mission

[42] are accessible. The CHAMP satellite mission [50] orbited from 2000 to 2010, followed

by a gap from 2010 to 2013, during which no high-precision mission measured the magnetic

field. Since 2013, the Swarm constellation [19, 45] has been delivering high-precision

measurements, illustrated in Figure 3. The Swarm mission is the current high-precision

magnetic satellite mission, in orbit since the 22nd of November 2013 [45]. A high-precision

measurement is defined by a co-measurement of the absolute and vector magnetic flux

density with very low noise. All these missions had specially designed architectures and

star trackers for attitude estimation to acquire highly accurate magnetic measurements.

Several properties of the Swarm mission make it a successful mission that has provided

many insights into the geomagnetic field.

The Swarm mission consists of three satellites flying in a specific constellation. Swarm

A(lpha) and C(harlie) fly side-by-side with a separation of about 1.4◦ longitude at the

1 https://www.esa.int/ESA_Multimedia/Images/2012/03/Swarm
2 https://www.esa.int/ESA_Multimedia/Images/2008/03/GOCE2
3 https://www.eoportal.org/api/cms/documents/163813/6584772/GRACE-FO.jpg/

ad2ce666-d3e7-8c9f-3069-f48f0599bab4?t=1666999711989
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equator with an altitude of approximately 462km in a near-polar orbit with about 87◦

inclination. Swarm B(ravo) is flying at a higher altitude of approximately 511km with an

inclination of about 88◦. This constellation yields several advantages, like the ability to

measure along-track differences as two satellites fly side-by-side, with additional coverage

of altitude, space, and time by the Swarm-B satellite flying in a different orbit. The

configuration of the constellation was temporarily altered through maneuvers undertaken

to acquire insights from specific constellations, e.g., Swarm A and B following each other

with a separation of only 2 seconds on the same track. The mission was initially designed

for four years of operation and had its tenth anniversary in space on the 22nd of November

2023, and it is expected to continue.

The design and architecture of the satellites are targeted to acquire clean and high-

precision magnetic measurements. Apart from other instruments onboard the Swarm

mission, like the electric field instrument, Langmuir probes, and others, the main interest

lies in the magnetic instruments of this mission. The body of the satellite has been built so

that sources of magnetic disturbance are placed far away from the measuring instruments,

and general care is taken for magnetic cleanliness, e.g., avoiding conducting loops in the

wiring of the satellite. The magnetometer instruments are placed on a boom that is

about 4m long, far away from the satellite body. On the tip of the boom, the absolute

scalar magnetometer (ASM) instrument is placed, which is an optically pumped Helium

proton magnetometer providing an accuracy of < 0.3 nT [24]. The ASM is essential for

the precision of the Swarm satellites as it gives an absolute measurement of the magnetic

field needed to calibrate the vector field magnetometer (VFM) measurement, a fluxgate

magnetometer. While the ASM produces a magnitude measurement of the magnetic

flux density, the VFM measures the magnetic field with three directional orthogonal

components as a vector. The magnitude of the vector readings is then adjusted with the

values from the ASM readings. The X, Y, and Z measurements of the VFM magnetometer

measure along the direction of flight, laterally to the direction of flight, and vertically to

the direction of flight, respectively. This gives the possibility to gain insights into the

shape of the magnetic field and the spatial distribution of various geomagnetic phenomena.

The VFM is placed on a so-called optical bench located at the center of the boom and

measures with an accuracy of < 0.5 nT 1σ-accuracy [20]. The optical bench is a platform

that hosts the mounting points of the VFM and the star tracker cameras used for attitude

determination. This unique architecture enables the highest precision utilizing the VFM

measurements with good attitude determination for the vector components of the VFM

located on the same stiff platform.

The satellites themselves went through on-ground calibration and characterization of

the different instruments and their interaction with the behavior of the satellite system.

For this, the assembled satellites were placed in a large Helmholtz coil where the external
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field, i.e., the geomagnetic field, had been removed. Then, an extensive study of the mag-

netic behavior of the satellite during different activations was conducted. This includes

determining scale factors, offsets, and Euler angles of the magnetometer itself but also

activations of the magnetorquers, solar array currents, battery currents, and many more

activations. This calibration was later adjusted after launch with slight corrections. With

such preparation before launch, the magnetic understanding of the Swarm satellites is well

established, which allows for the highest accuracy. Such a calibration is only possible on-

ground and with a significant time slot dedicated to it. This is different for non-dedicated

missions where the magnetic measurements did not have a high priority and where such

a calibration is impossible to conduct after launch. Nevertheless, the ASM of Swarm C

stopped working shortly after the launch. In addition, during the operation of the mis-

sion, an influential factor of the sun in combination with the zenith angle towards the sun

was found, and a correction was introduced to counteract this. Nonetheless, the Swarm

mission is considered a huge success among the community and has provided numerous

insights into the geomagnetic field.

3.2 GOCE

The Gravity field and steady-state Ocean Circulation Explorer (GOCE) [18, 14] satellite

mission was launched on the 17th of March 2009 and ended on the 11th of November

2013. Figure 4 contains a visualization of the mission in space. The geodetic mission flew

at an altitude of about 268 km, which is relatively low for LEO satellites. The satellite

flies in a near-polar, sun-synchronous orbit with an inclination of 96.7◦ and a repeat cycle

of 61 days, ensuring uniform coverage of the entire Earth within this period. The primary

mission goal was to measure the Earth’s static gravity field with high accuracy, leading

to the design decision of the relatively low altitude.

The orbit altitude has huge implications for the mission. Because of the higher air

density and the resulting drag, the satellite was equipped with fins to keep the satellite

stable. In addition, the fuel usage of the thrusters is increased compared to satellites

at a higher altitude to keep the satellite in its orbit. Increased air drag and need for

propulsion are also reflected in a relatively short mission length of about four years.

The main instrument of the mission is a large accelerometer located at the center of the

satellite. A very steady flight of the satellite and a precise position and attitude estimation

were needed to achieve the mission goal.

The satellite’s significance within the geomagnetic community stems from several ad-

vantages of the satellite mission’s design. The satellite carries three platform magne-

tometers manufactured by Billingsley Aerospace & Defense of type TFM100S onboard,

which have been used to gather measurements of the Earth’s magnetic field. The good
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position determination and the very stable flight ensure accurate location and orientation

assignments of the measurements. In addition, the low altitude is interesting for studies

of Earth’s crustal magnetic field as other high-precision satellite missions like Swarm, or

previously CHAMP and Ørsted, fly at higher altitudes. The GOCE mission operated

between 2009 and 2013, an important time range for space-based measurement of the

Earth’s magnetic field. The CHAMP mission ended on the 19th of September 2010, while

the Swarm mission launched on the 22nd of November 2013. No high-precision space-

based measurements of the Earth’s magnetic field exist for this period [1, 32]. Especially

for this period, the magnetic measurement data of the GOCE mission can play a crucial

role in bridging this gap.

3.3 GRACE-FO

The Gravity Recovery and Climate Experiment-Follow-On (GRACE-FO) [33] satellite

mission was launched on the 22nd of May 2018 and is expected to be ongoing for several

years from today [34]. The geodetic mission consists of two satellites in a string-of-pearl

constellation, where the satellites follow each other at a distance of about 220 km, as can

be seen in Figure 5. Hereby, the first satellite is turned by 180◦ to face the following

second satellite for the main instrument of the mission to be targeted at each other. The

satellites fly in a near-polar orbit with 89◦ and a repeat cycle of 30 days at an altitude of

about 482 km.

The GRACE-FO mission carries a Laser Ranging Interferometer (LRI) with which

laser beams are sent from one satellite to the other. By analysis of the traveling time

of the laser, conclusions about the gravity field and mass changes of the Earth can be

made. In addition, accelerometers and GPS antennas support the LRI in positioning and

detection.

Although the primary goal of the mission is geodetic, each GRACE-FO satellite carries

two fluxgate magnetometers onboard for attitude control, of which only one is turned on,

as the other is on standby as a redundancy if the first instrument experiences a failure.

Utilizing the same foundation as the Swarm and CHAMP satellites, a certain level of

magnetic cleanliness in the architecture is preserved, which is beneficial for the quality of

the results. In addition, the special constellation is also interesting for space science, as

the second satellite revisits the same position as the first satellite with a delay of about

29 seconds. As an ongoing mission, it benefits from continuous data availability, a high

data rate of 1 Hz, and resolution, collectively contributing to its scientific significance.

With the Swarm satellite operating since 2013, the whole mission period of the GRACE-

FO mission overlaps with the Swarm satellite. This fact makes it possible to analyze

conjunctions where the orbits of the two satellites are close together.
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3.4 Platform Magnetometers

Figure 6: The Billingsley TFM100S fluxgate magnetometer is used as a platform magne-
tometer onboard the GOCE and GRACE-FO satellite missions. Source: 4

As emphasized, at the core of this work are the magnetometric sensors of the pre-

sented non-dedicated satellite missions GOCE and GRACE-FO. These magnetometers

are mounted on the satellite platform and are, therefore, also referred to as platform

magnetometers. Both satellite missions use magnetometer sensors provided by Billings-

ley Aerospace & Defense of type TFM100S, depicted in Figure 6. The specifications can

be found in the data sheet5, of which the key elements are the measurement range with

±100 µT and the root mean square noise level of the instrument with 100 pT. This means

that both sensors provide a theoretical accuracy of well below 1 nT. They are part of the

AOCS and play a crucial role in determining the orientation of the satellite by comparing

the measurement of the sensors with the known structure of Earth’s magnetic field, e.g.,

the location of the North Pole. In the GRACE-FO satellites, the platform magnetometers

are placed at the front of the satellite close to the LRI, as far away as possible from the

magnetorquer bars placed in the back of the satellite. In the GOCE satellite, there are

three platform magnetometers placed side-by-side in the center of the body. With their

usage as platform magnetometers, several challenges arise when attempting to calibrate

these magnetometers for scientific purposes.

Fluxgate Magnetometer These sensors are fluxgate magnetometers that deliver a

vector measurement with three orthogonal magnetic field components while having no

absolute measurement of the magnetic field amplitude. Figure 7 contains a 3D visualiza-

tion of the general design of a fluxgate magnetometer by Auster et al. [5]. The principal

idea of a magnetometer is to convert the magnetic flux density signal into an electric cur-

rent to quantify the magnetic signal [48]. The core component of a fluxgate magnetometer

is a ferromagnetic core, typically made of a highly permeable material, here pictured by

4 https://magnetometer.com/products/fluxgate-magnetometers/tfm100s/
5 https://magnetometer.com/wp-content/uploads/TFM100S-Spec-Sheet-February-2008.pdf,

accessed: 06.01.2024
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Figure 7: Working principle of a fluxgate magnetometer. Source: [5]

the ring cores. The system consisting of pickup coil and ring core measures the magnetic

field. An opposing field is applied with the feedback coils so that the pickup coils mea-

sure a zero field. The current flowing through the feedback coils then correlates with the

measured magnetic field. This is also called coil compensated fluxgate magnetometer, as

the external field is compensated for the measurement technique to be applied.

Due to their working principle, fluxgate magnetometers need calibration as they pro-

vide a relative measurement of the magnetic field components in the form of an electric

current signal with arbitrary amplitude. Both non-dedicated satellite missions do not

carry an additional ASM that could provide an absolute measurement of the magnetic

field amplitude. Therefore, the calibration of the fluxgate magnetometers relies on an

external reference that is, in our case, provided by the utilized reference model. The

satellite engineers already applied an initial calibration that is used for navigational tasks

but is insufficient for the scientific usage of this data, rendering a more precise calibra-

tion necessary. The reference model, mainly consisting of the CHAOS-7 model, is heavily

carried by the Swarm mission, which can provide absolute measurements of the magnetic

field. The reference model is then evaluated for the positions of the non-dedicated satellite

missions to provide a magnitude estimation of the measured magnetic field components.

To sum up, while the platform magnetometer data can accompany high-precision data

with additional coverage, their calibration would not be possible without a high-precision

satellite mission in space that delivers the anchor points for the calibration.

The electric current signal of the fluxgate magnetometers is then converted through an

analog-to-digital converter, where they are transformed into data. On a sensor level, the

number of bits used to save the magnetometer readings is an important factor stemming

from the satellite’s operation. This can become a major limiting factor. For GOCE, the

magnetometer readings are saved with a bit precision of 3 nT, and for GRACE-FO, with

a bit precision of 1 nT. Another important factor is the rate of the measurements, which

is dependent on the sensor itself but also on other properties of the satellite. When an-
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alyzing magnetometer readings taken onboard satellites, the position and attitude of the

satellite are crucial for interpreting the readings. Therefore, the usability of the measure-

ments also strongly depends on other components like the star camera or accelerometers,

which are combined within the AOCS systems of the GOCE and GRACE-FO satellites to

provide positional data with high accuracy. This also means that when these sensors face

difficulties, resulting in missing or unusable position determination, the magnetometer

readings will become unusable as a consequence of this. In addition, the time resolution

of the position determination dictates the use of the magnetometer measurements as they

act as the anchor point when creating a dataset of magnetic measurements of the satellite.

Sensor Measurement In a larger picture, various external factors play a role in the

measurements of platform magnetometers. As they are mounted within the satellite body,

they are exposed to artificial disturbances and influences originating from the satellite.

Many influencing mechanisms can play a role, the most prominent of which are artificial

magnetic fields, temperature-dependent behavior, and current-induced magnetic fields.

These stem from the working principle of fluxgate magnetometers. The temperature in-

fluences the materials and the coils and thus has an impact on the measurements from

the magnetometers. A calibration should consider the temperature of the magnetometer

and adjust the measurements accordingly. The magnetometer itself does not provide a

temperature measurement, hence an approximation needs to be found, often relying on

a temperature measurement from a nearby subsystem. Another major factor is induced

magnetic fields from electric currents flowing onboard the satellite. Following Ampère’s

Law, stronger currents produce stronger magnetic fields and thus potentially influence

the magnetometer sensor readings more, which depends on the relative position and ori-

entation between the inducing source and the sensor. Still, this means that the strongest

currents have the highest potential to influence the magnetometer readings. On satellites,

these are the solar arrays together with the battery currents, as well as magnetorquers

inducing artificial magnetic fields or reaction wheels used to control the attitude of the

satellite.

In addition, there can be cross-talk or overlapping between neighboring fluxgate mag-

netometers, which originates in their working principle of alternating applied magnetic

fields. This can, e.g., happen in the GOCE satellite with its special positioning of the

three magnetometers placed side-by-side with each other and measuring simultaneously in

close proximity. Depending on the intensity and local position, there can be an influence

of these neighboring magnetometers on each other that needs to be accounted for when

calibrating magnetometer measurements.
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Acquired Measurements The platform magnetometers from the GOCE satellite mis-

sion measure at an interval of 16 s. Over the whole mission, about 6.4 million data points

with 984 features have been collected. For the GRACE-FO mission, the data is measured

at a rate of 1 Hz, and as an ongoing mission, about 2.6 million data points are collected

per month and satellite. Until the end of 2023, about 174.2 million data points with

97 features were accumulated. The data is provided by the Helmholtz Centre Potsdam

(GFZ) and the Jet Propulsion Laboratory (JPL).

Figure 8: Raw magnetometer data as mea-
sured by the GOCE satellite in September
2013.

Figure 9: Raw Measurement data of the
GOCE satellite with CHAOS-7 model val-
ues subtracted. Please note the different
y-scale.

In the context of satellite observations and geomagnetic measurements, distinct frames

play a crucial role in accurately representing and interpreting data. The satellite frame

serves as a reference tied to the orientation of the spacecraft, aiding in the analysis of

instrument readings and ensuring proper alignment. On the other hand, the North East

Center (NEC) frame is an Earth-centred and Earth-fixed frame used commonly by mag-

netic field models and global models [16]. Data can be transformed between different

frames by rotation, therefore the estimations of the geomagnetic field models are trans-

formed to the satellite frame because the influences on the instruments and the modeling

of the calibration of the platform magnetometer happen in the satellite frame so the cali-

bration should be performed in the same frame. In addition, when evaluating geomagnetic

phenomena, the quasi-dipole latitude is commonly used, defined as the latitude projection

between the magnetic North and South Pole, which differ from the geographic poles [15].

Many geomagnetic phenomena are rather visible in dependence on the quasi-dipole lati-

tudes defined by the geomagnetic field than in a geographic representation. These frames

contribute to a comprehensive framework for studying and interpreting satellite-based

geomagnetic measurements.

As an example of the measured data, Figure 8 shows the raw measurements of the

GOCE satellite mission for a period of ten days in September 2013 in dependence on

15



the quasi-dipole latitude. The three axes components of the measurement are shown

with Bx aligned with the flying direction, By sidewards of the flying direction, and Bz

as the horizontal direction. It can be seen that for similar quasi-dipole latitudes, similar

measurement values are measured by looking at the saturation of the drawn, transparent

lines. As the satellite flies in a polar orbit and the Bx values are aligned with the flight

direction, a separation of the blue lines is visible that stems from the ascending and

descending orbits of the satellite flying either parallel or anti-parallel with the magnetic

field lines of the Earth’s dipole dominated magnetic field, respectively. On the right side,

Figure 9 shows the residual between the raw measurements and the CHAOS-7 magnetic

field model without any further calibration, note the change of the y-axis scale compared

to the previous plot. It can be seen that the delta of the measurements is much smaller,

but an adjustment is still needed for the measurements to receive a smaller residual.

This gives the calibration task a visual representation. Furthermore, the high latitude

area, below -60◦ and above 60◦ quasi-dipole latitude, shows a disturbed behavior. This

originates from FACs not represented within the CHAOS-7 model but measured by the

satellite as they are part of the natural phenomena within Earth’s magnetic field.

Figure 10: AMPS model data as evalu-
ated for the GOCE satellite positions. The
AMPS model is only valid above 40◦ quasi-
dipole latitude.

Figure 11: Raw Measurement data of the
GOCE satellite with combined CHAOS-7
and AMPS model values subtracted. Please
note the different y-scale.

Considering the average magnetic field and polar current system (AMPS) model that

provides the average large-scale features of the FACs, the evaluation for the GOCE satel-

lite positions can be seen in Figure 10. The model is only valid for high latitudes above

40◦ quasi-dipole latitude. In general, it can be seen that the magnitudes of the FACs

are much smaller than the magnitudes of the geomagnetic field modeled by the CHAOS-

7 model. Nevertheless, the global structure follows the disturbances visible in Figure 9.

Combining the AMPS model estimates with the CHAOS-7 model estimates and subtract-

ing them from the measured data leads to a picture like Figure 11. It can be seen that
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the disturbances in the high-latitude regions are significantly reduced, but the small-scale

measured data remains noisy in this area. This is one of the challenges and describes the

given situation of the measured data.
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4 Application of Machine Learning in Satellite Magnetome-

ter Calibration

In this section, an overview of the basics of ML is given, highlighting its relevance in

the upcoming chapters, where the details of its application are explained. Following this,

there’s a summary of the work carried out in this thesis.

4.1 Relevant Fundamentals of Machine Learning

In recent years, the field of Machine Learning (ML) has gained significant attention [10].

With an ever-growing amount and rate of data collected in various fields, the need for ef-

ficient techniques to analyze this data and find patterns has grown alongside [60]. Hereby,

the input data to the ML algorithms is as important as the algorithms and mathematical

concepts used. This section provides a general overview of the most important concepts.

4.1.1 Classification and Regression
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Figure 12: Comparison of classification and regression. Source: [41]

In general, there are two main tasks for ML applied to data: Classification and regres-

sion [36]. As visualized in Figure 12, classification attempts to achieve a categorization

based on the information given, e.g., assigning a class to data points. Such categories

can be binary, e.g., true and false or normal and abnormal, but a larger number of cat-

egories is also possible. On the other hand, regressions predict or estimate a numerical

output variable, e.g., a regression line based on the available data points. This output

variable is referred to as the dependent variable that is calculated using the input of the

ML technique in the form of the independent variables [35]. In this work, I will focus on

the regression as the expected output is continuous.
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4.1.2 Supervised and Unsupervised Methods

Depending on the available data, one of the most important decisions is whether to use

supervised or unsupervised methods in ML, which divides the available ML techniques

into two categories. In supervised methods, the expected output or outcome is known for

a given input set. Therefore, these techniques focus on enabling an ML model to estimate

the expected outcome from the given inputs using a variety of algorithms, while afterward

applying that model to further input data. Examples are linear or logistic regression,

trees, forests, support vector machines, or neural networks of different kinds [11]. In

contrast, for unsupervised methods, only the input is given without a clear expectation

for the output. Here, the task is to find patterns within the data and present these as the

outcome of the ML training for further usage or analysis. Examples include clustering

techniques, Autoencoders learning to represent data structures at hand, or recommender

systems based on the choices of other users [3].

The boundaries between the two techniques are fluid, e.g., with semi-supervised learn-

ing, some workflows operate in between these two categories. Techniques include deriving

labels from some (partial) prior information, e.g., a small subset of labels or a group-

ing based on specific properties of the data, then applying supervised learning. In this

work, the focus lies on supervised methods as a geomagnetic field model can be used as a

reference model to generate the expected outputs, with a special focus on neural networks.

4.1.3 Training Process

The term of training a neural network evolves from the optimization process for the

internal parameters of different supervised ML algorithms. When training an ML model,

different data pairs with input x and expected output y are presented to the model. A

predicted output ŷ is made by a neural network that acts as a function f on the input x

as can be seen in Equation (1).

ŷ = f(x) (1)

The predicted output is compared to the expected output for every input pair, where

the discrepancy between the predicted output and the expected output is defined as the

error, with many possibilities to calculate this error. Among the most prominent is the

mean absolute error (MAE), defined in Equation (2), and the mean squared error (MSE),

defined in Equation (3).

MAE =
n∑︂

i=1

|ŷi − yi| (2)
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MSE =
n∑︂

i=1

(ŷi − yi)
2 (3)

These errors are used to adjust the internal parameters of the ML model by a gradient-

based optimization. The gradient is derived from the error of the presented samples and

sets the direction for the change in the model parameters so that it will predict the

presented values with a smaller error after adjustment. Depending on the ML algorithm,

a different paradigm is used to adjust the internal parameters to incorporate the knowledge

gained from the presented samples. This process is repeated with all available data points

multiple times until convergence is achieved, resulting in the ”training” of the ML model.

Multiple data pairs are predicted simultaneously in so-called batches to speed up the

process, yielding computational benefits. When predicting the output in batches, there

are as many errors calculated as there are data pairs in the batch. These errors are av-

eraged to form the gradient of the batch, after which the internal model parameters are

adjusted. Due to this averaging, the gradient summarizes multiple data points and is

therefore more stable, e.g., against outliers. Additionally, this enhances the trustworthi-

ness of the gradient, resulting in a higher possible learning rate. The learning rate is a

hyperparameter in the training of ML models, as it adjusts the amount of adjustment

towards the current gradient. As each gradient only represents a small subset of the data,

the gradient is not directly applied to adjust the internal model parameters but instead

multiplied by the learning rate before application, whereby the learning rate lies in the

interval of [0, 1].

4.1.4 Overfitting and Regularization

To check the performance of the model, the model can be evaluated on data pairs, pro-

ducing output estimates, and the error towards the expected output can be analyzed.

However, the model would be biased towards these data pairs if they were included in

the training process. Therefore, before the training starts, the common practice includes

splitting the dataset into a training dataset and a test dataset, with usual orders of

70%/30% up to 90%/10%, respectively [25]. With such a split, the model can be trained

on the training dataset and evaluated on the test dataset whose data samples have not

been seen by the model beforehand. This ensures a meaningful evaluation of the model’s

generalization capability on out-of-sample predictions.

With this split, a comparison between the train and test error can be conducted.

Ideally, the model performs as well on the test dataset as the training dataset. Thus,

the underlying distribution or pattern of the training dataset is well represented by the

model, and the model shows the capability to generalize these results on out-of-sample

data, which should follow the same distribution.
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Figure 13: Illustration of the bias-variance tradeoff. Source: [41]

If the training error is significantly lower than the testing error, a phenomenon called

overfitting can occur [21]. In that case, the model is capturing noise and detailed fluc-

tuations of the data rather than the underlying patterns. This can, e.g., happen if the

model was trained with too many iterations of the training data, thus specializing in the

fine-granular patterns of the training data instead of the general data distribution of the

training data. Another reason may be a model that is too large or too complex and

can adapt to many small structures in the data. This is also known as the bias-variance

tradeoff [7]: With increased model complexity, the model has a high variance, enabling it

to adapt to the dataset very well until the adaption is too close and overfitting occurs, as

can be seen in Figure 13 towards the right side where the total error increased. With a too

simplistic model complexity, the model has a high bias, which means that a larger error

is present because the model is too simple to explain the underlying distribution of the

data, as can be seen towards the left side. Finding the correct model complexity is thus

a task of reducing the bias-variance tradeoff, which consequently reduces the total error.

This means that the model complexity has to be chosen so that the model complexity is

neither too large nor too small for the task at hand.

Another way to handle overfitting is the use of regularization. Regularization is a

technique that shifts the task of reducing model complexity to the optimization process

of training the model. Here, a second goal of the optimization is introduced by extending

the error term with another error term related to the model complexity. Examples of

this are L1- or L2-regularization [43]. Here, the error term is extended by a secondary

term that takes the sum of the weights w or the sum of the squared weights into account,

respectively. This term is then weighted with a parameter λ that regulates the amount

of reduction of the weights in the network. Equation (4) shows how the MSE from

Equation (3) would be extended with a L2-regularization.
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MSEreg =
n∑︂

i=1

(ŷi − yi)
2 + λ ∗

m∑︂

j=1

w2
j (4)

With this term in the optimization process, the optimization not only reduces the

error of the model for the prediction task but also reduces the weights within the model,

thus reducing the complexity of the model by enforcing the elimination of unnecessary

weights.

4.1.5 Machine Learning Methods

The framework, as described previously, is mostly the same for various algorithms and

ML techniques. The model can consist of different architectures and statistical principles,

but the learning process on data samples is generally similar. For this work, the focus

will lie on feed-forward neural networks, which have primarily been used.

Neural Networks A feed-forward neural network (NN) consists of multiple neurons

where each neuron’s output y is defined in Equation (5),

y = a(w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x3 + . . .+ wm ∗ xm + b) (5)

where x1 to xm are different features of a data point, which get multiplied by their

respective weight w1 to wm, with a bias b added finally. The sum of these products is

then fed into an activation function a, explained in the next paragraph. NNs consist of

many such neurons, which will be assigned different weights. Multiple neurons in parallel,

which means that they work on the same input x1 to xn, are called a layer of neurons.

These layers of neurons can also be stacked, meaning another layer takes the outputs y1

to yp of the first layer as the inputs for the neurons in the next layer. Each neuron of a

layer can also be seen as a feature, as it is a new combination of the inputs that acts like

a machine-crafted feature.

The initial formula is very similar to a linear regression formula, and by stacking these

neurons, there would be no non-linearity added to the system, limiting its expressiveness

in the processes it could explain. Therefore, the sum of the products is fed into the

non-linear activation function. There are many activation functions available that act

in different ways. One of these is the Rectified Linear Unit (RELU) [39], defined in

Equation (6).

r(x) = max(0, x) (6)

Negative values become 0, while positive neuron calculations will get forwarded into

the next layer. This enhances the expressiveness of the NN and gives the ability to model
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non-linearity. The Exponential Linear Unit (ELU) [12] used in this work has a similar

function shape to the RELU but overcomes some shortcomings. Usually, all intermediate

layers, also called hidden layers, before the final output layer use activation functions in

their output. This is often not done for the final output layer, as a linear combination of

the previous layer is desired.

The construct of a number of neurons, a number of layers, and the last layer of

neurons, which constitutes the output, is called the NN or the model. In the beginning,

all the weights within this system are initialized randomly. For the model to represent the

desired function, e.g., mapping the satellite data input to the calibrated measurement,

the weights need to be adjusted in a meaningful way, and this is called the training of

the NN. Contrary to algorithms like the Least Squares approach, NNs are trained with

the Backpropagation algorithm [52]. Therefore, each available data point in the training

dataset is forwarded through the NN, and the current result of this calculation is compared

to the expected result for this data point, also called the ground truth or the reference

model. This error is then used as the gradient to adjust the weights and backpropagated

through the NN to adjust the weights in the different layers so that the prediction would

come closer to the expected result if the calculation were repeated. To speed this process

up and not rely on single data points, this error is calculated on groups of data points, also

called a batch, for which one common gradient is calculated, and then an adjustment to

the network is made. The adjustment towards the calculated gradient can be controlled

with the learning rate, which usually lies in the interval of [0,1] and is multiplied with

the calculated gradients before they are applied to the weights. One iteration through all

batches of available data points and adjustments to the NN is called an epoch. The NN

will be trained for multiple epochs, and optimizers like the Adam optimizer [30] speed up

the process by modifying the gradients with historical information. After this training

process, the weights of the NN do not change anymore, and it is assumed that the NN

represents the statistics of the data. Afterward, it can predict similar data to the one it

was trained with.

4.1.6 Data Science

The underlying data used for the training of the model is equally as important as the

model architecture. As the models are statistics-driven, they will learn what is present in

the data. Thus, the data are equally as important as the used algorithms [40]. The com-

bination of data processing and model training is commonly referred to as Data Science

[13]. This holistic approach has recently gained more traction as including the data into

the process with its form, content, and data preprocessing has a huge influence on the

performance and architecture of the model. There are many subfields of Data Science,
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some of which will be explained here.

First of all, the data needs to be cleaned. Frequently, the initial dataset needs to

undergo so-called cleaning. Unexpected data records are common when measuring data,

e.g., from sensors. This can include many different aspects, such as outliers, missing

data, data gaps, or wrongly measured data. In the preprocessing of the data, there are

a variety of techniques to handle such data and thus improve the model’s performance

subsequently.

Outliers in the data can occur in several different forms. When looking at sensor

data, these can be unrealistic readings with, e.g., extremely high or unexpected numbers.

Such data points interfere with the training process as the model computes a prediction

based on these values. A large error is the result, as the reading was faulty and did

not originate from the data distribution. This large error is then translated into a large

gradient that backpropagates to the model’s parameters and thus interferes with the

model’s performance by adjusting the internal parameters based on faulty data. To deal

with outliers, outliers can be corrected or filtered out of the data so they are excluded

from the training process and marked during the prediction process, e.g., with the usage

of flags.

Missing data can occur in two forms: When looking at a time series of data, there could

be a complete gap in any recording. Such data is not recoverable, and only probabilistic

remodeling techniques exist, if at all. In the use case of satellite measurements, this is

considered unrecoverable data. The other case involves data where only parts of the data

are missing. In a system of sensors, this could be a subsystem not delivering measurements

for a certain period of the data records. Such data can be filled or reconstructed by

filling techniques. One approach includes filling such missing data with the mean value

of the corresponding feature, which acts as an estimate for the missing value and thus

renders these data points useful again because they can be included in the training data.

Other methods include reconstruction techniques based on other available features that

allow drawing conclusions and reapplying patterns, thus reconstructing missing features

based on available features. For magnetometer calibration, this is especially applicable if

auxiliary features contain gaps. Missing magnetometer measurements or positional data

mean that these data points cannot be restored.

For the magnetometer calibration, data from a variety of subsystems onboard the

satellites needs to be merged. Additional external sources like indices and space weather

parameters are also included in this. This poses a challenge as the systems have different

measurement intervals, different time stamps, and so on. For the calibration of platform

magnetometers, the attitude and position determination are crucial, therefore the times-

tamps defined by these are used as the common ground to interpolate other data onto.

Thus, different sources of data can be merged and used as a common dataset for the
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calibration.

Another important step in Data Science is the preprocessing of data. This includes,

e.g., scaling the data to a common interval. Raw data, as measured by sensors, has

a variety of measuring intervals, which has an implication on the model training. The

intervals can be vastly different, ranging from values behind the decimal point up to orders

of magnitude larger. In the calculation of the error and the subsequent gradient, larger

value ranges will receive a higher weighting within the adjustments of neural networks.

Therefore, all available features will be scaled to a common interval so the training of the

neural network can be conducted with an equal weighting of the features.

Another essential step in the data preprocessing is preparing the data for the model

training. The model learns the statistical distribution of the data that is presented during

the model training. Therefore, addressing selection bias, where the training dataset is not

a representative sample of the overall population, is crucial for the learning ability of

the model. Selection bias occurs when certain characteristics in the data distribution

are overrepresented or underrepresented in the dataset, potentially leading to inaccurate

or biased model predictions. If the training dataset does not accurately represent the

underlying problem, the model may not perform well on new, unseen data. As an example,

in the calibration of platform magnetometers, filtering for magnetic quiet conditions is

applied as the model is supposed to be trained on the underlying mechanisms within

the satellite apart from external geomagnetical signals during magnetic active conditions.

This stems from the fact that the CHAOS-7 reference model does not contain short-

lived and fluctuating signals during active times, which are measured by the satellite’s

magnetometer. Thus, the data needs to represent the task to learn the adjustments needed

for the satellite as a system.

For the generalization ability of neural networks, it is crucial that the training dataset

contains the same data distribution as the whole application set of the model. In clas-

sical analytical calibrations, a linear regression algorithm is applied that will naturally

generalize well by linearly expanding the predictions for out-of-sample distributions like

in high-latitude regions. Therefore, the data is limited to a low- and mid-latitude range

as these ranges do not contain FACs that are not fully modeled in the reference model

to ensure a stable training of the model. Contrary to this, for the calibration of platform

magnetometers using neural networks, all quasi-dipole latitudes need to be included, as

the high-latitude regions contain out-of-scope values when compared to the low- and mid-

latitude regions. Therefore, data from all quasi-dipole latitudes needs to be included in

the training, which results in the challenge of calibrating the platform magnetometer data

with natural signals left in the measurements.

Finally, the subsequent goal of this work is to publish the calibrated dataset for use by

the community. Several steps must be considered for publication. For the publication, the
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FAIR (Findability, Accessibility, Interoperability, and Reuse of digital assets) principles

are followed. In our case, this means that our published data uses digital object identifiers

(DOI) and the common data format (CDF) file standard provided by the National Aero-

nautics and Space Administration (NASA) while being publicly accessible. In addition,

to render the dataset as useful as possible, datasets that are as complete as possible are

published. This means that any filtering or selection of data is only applied during the

model training, while for the generation of the final dataset, all data is used. In order to

do this, flagging is used to give meta information about which data was included in the

training and which data points have been filtered for a particular reason during the train-

ing of the calibration model. Therefore, the final result contains a dataset that, apart

from some data gaps contained in the satellite’s measurements, contains a temporally

coherent series of measurements of the satellite’s calibrated magnetic values that can be

used for further analyzing the geomagnetic field.

4.1.7 Physics-informed Neural Networks

Recently, there has been an increasing focus on a specific subset of ML known as Physics-

informed neural networks (PINN) [61]. As the application of neural networks and ML

has expanded in various domains, data scientists have encountered challenges where the

results of the trained models may violate physical laws in different domains. There are

many problems at hand where solely data-based models have limitations. In response

to this, PINNs have emerged to incorporate essential physics-based rules into the model

results, setting new standards for accuracy while ensuring agreement with the underlying

physical principles.

PINNs represent a powerful hybrid approach of ML and physical principles, designed

in such a way as to integrate domain knowledge into the learning process of ML models.

There are various ways to achieve this, e.g., adjusting the training process, changing

the model architecture, or further processing the output. By bridging the gap between

traditional physics-based models and modern ML techniques, PINNs have been shown to

enhance the accuracy and interpretability of the results [27].

In the field of geosciences, ML and PINN have seen a rise in usage as well. Smirnov

et al. [53] have introduced the NET model to predict the electron density of the topside

ionosphere. Here, the results of the ML methodology are used in a physically governed

equation system to form the result of the approach. Zhelavskaya et al. [62] used a Kalman

filter to combine the outputs of a physics-based model with the outputs of an NN-based

model to retrieve a good estimation for predicting global plasma density. This dissertation

adds a contribution to the automatic calibration of platform magnetometers in the field

of geomagnetism by utlizing PINNs to calibrate the platform magnetometers onboard
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non-dedicated satellites.

4.2 Methodological Application to Platform Magnetome-

ters

This chapter shall give a short summary of the dissertation. First, the general aim of the

work will be given, followed by a chronological summary of the works conducted alongside

the dissertation that have been published.

I calibrate and characterize platform magnetometer data of different satellite missions

utilizing ML techniques. Therefore, satellite systems carrying platform magnetometers

flying in LEO are looked at, mainly the GOCE and GRACE-FO satellite missions. The

platform magnetometers measure the Earth’s magnetic field and are mounted only roughly

calibrated for navigation purposes on many satellites. For scientific usage of this magnetic

data, the artificial disturbances introduced by the satellite’s payload systems need to be

removed from the recorded data. For this, supporting data from a variety of sensors

mounted on the satellite can be used, e.g., information about the activation of other

subsystems. This includes the activation of magnetorquers, battery currents, solar array

currents, or thruster activation.

By applying ML techniques, the measured magnetometer signal is adapted for artifi-

cial disturbances from other satellite payload systems. The proposed non-linear regression

can automatically identify relevant features as well as their crosstalk, allowing for a wider

range of available inputs. This approach reduces analytical work for the calibration of

platform magnetometers, thus leading to faster, more precise, and easily accessible mag-

netic datasets from non-dedicated missions. In fact, when mentioning calibration, the

calibration and characterization is meant within this work. The calibration itself is ad-

justing the values of the raw measurement, e.g., by scaling, offsetting, or rotating, while

the characterization describes the correction for external influences on the measurements

of the sensor, e.g., correction in dependence of temperature. Since a neural network

constitutes a non-linear regression, calibration and characterization are performed in the

same model.

Combining all of the data into a common mapping procedure is challenging: it com-

prises different sampling rates, signal amplitudes, noise levels, and latency. Combining

data of different sampling rates, signal amplitude, noise levels, and latency in one map-

ping procedure requires special care for data handling and inter-calibration to achieve an

unbiased result uniformly valid over the globe. Hereby, the challenges described in the

introduction are addressed and overcome.

After the initial results for GRACE-FO, a post-launch calibration of the platform

magnetometers was conducted utilizing ML methods which come with some inherent
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beneficial properties for solving the present challenges [57]. Here, I proposed a feed-

forward neural network architecture for a non-linear regression that is able to identify

relevant features automatically, thus taking over the task of Feature Selection. By using

as much information as possible about the satellite’s payload systems, the ML model

can generate higher-order features and identify crosstalk between the magnetometers.

I showed that ML models are able to model the magnetic behavior of non-dedicated

satellites post-launch. The GRACE-FO data contains an inherent time shift in certain

parts of the dataset. For a given timestamp, not all available features correspond precisely

to that timestamp. To address that some features must be adjusted along the time-axis

to align with the specific timestamp, I suggest the use of a data-generating interpolation

neuron, capable of co-estimating and applying this time shift during the training of the

neural network. The evaluation has shown promising results, outperforming analytical

calibrations.

Next, the GOCE satellite mission has been investigated, which is presented in Sec-

tion 5 [38]. The GOCE mission, together with the acquired data, is presented in this

publication. The difference to the previously calibrated GRACE-FO missions lies in a

different architecture of the satellite, together with a lower precision and lower measure-

ment rate of the magnetometer readings. On the other hand, for the GOCE satellite

mission, many more features are provided that can be analyzed for the calibration. In

this study, the used features have been selected by domain experts and the calibration

has been conducted using a linear regression on hand-crafted features. The evaluation

showed that this calibration is stable over time and produces satisfying results that are

able to be used in a scientific setting, as was shown for two magnetospheric phenomena.

Next, I further developed and applied the ML-based non-linear regression method on

the GOCE satellite, which is presented in Section 6 [58]. The proposed approach effec-

tively addresses challenges in the dataset, like the lack of ground truth, Feature Selection,

and Feature Combination. An extensive preprocessing pipeline was developed to han-

dle the huge variety in the measured data of the GOCE mission which includes outlier

handling, missing data, data gaps, or flagging of incorrect data. The application to a

different satellite highlights the advantages of the automatic approach in its applicability.

The results show how the ML approach surpasses existing methods and demonstrates a

reduction in the residuals compared to the reference model CHAOS-7. In addition, its

practical application possibilities are showcased, which include the detection of geomag-

netic storms or a derivation of a lithospheric field model solely from calibrated GOCE

calibrated platform magnetometer data.

Finally, in Section 7, an extension to the previous ML approach is presented that is

applied to both satellite missions, GOCE and GRACE-FO [59]. In this work, I com-

bine the advantages of the analytical bottom-up approach with the ML-based top-down
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approach by incorporating the first-principle physical law of Biot-Savart into the neural

network, creating a PINN. This constraints the previously purely statistics-driven model

with physical laws, thus ensuring a more stable calibration. In addition, the CHAOS-7

reference model is combined with the AMPS model, improving the reference model of

the calibration, especially for the polar regions. This improved on the challenge of a lack

of ground truth for the polar regions. After the application of this approach, two new

calibrated magnetic datasets for the two satellite missions are published that show how

they could overcome the shortcomings of the previous approach for certain constellations.

In the evaluation, the remaining residual has been analyzed, as well as the application in

the analysis of geomagnetic phenomena utilizing calibrated platform magnetometer data.

For example, it could be shown that the majority of residual values of the calibrated

GRACE-FO dataset are in the same range as the high-precision satellite mission Swarm.

Finally, using a PINN enables the analysis of the learned magnetic behavior of the satel-

lite within the model by investigating the learned, internal parameters of the Biot-Savart

neuron incorporated into the PINN.
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Introduction
In the last two decades, low Earth orbiting (LEO) satel-
lites have been available for accurate measurement of the 
geomagnetic field using dedicated instruments, e.g. mis-
sions like CHAMP (CHAMP 2019) and Swarm (Olsen 
et al. 2013). However, there is a temporal gap of about 3 
years between these dedicated missions.

In addition, single missions can only provide limited 
coverage in local time at a given time. Enhancement 
of simultaneous local time coverage is given by multi-
mission constellations. To this aim, magnetometer data 
from missions like CryoSat-2 (Olsen et al. 2020), GRACE 
(Olsen 2021), and GRACE-FO (Stolle et  al. 2021) has 
been characterised and calibrated and made publicly 

available. Some of those missions can fill the gap between 
the high-level missions CHAMP and Swarm from 2010 
to 2013, e.g. CryoSat-2 and GRACE, others can fill the 
gap in magnetic local time (MLT) distribution, such as 
GRACE-FO. An overview of scientific and platform mag-
netometer (PlatMag) missions is shown in Fig.  1. Stolle 
et al. (2021) have shown that large-scale field-aligned cur-
rents can be derived from GRACE-FO, as well as equato-
rial ring currents. The standard deviation of the residuals 
of those datasets compared to high-level geomagnetic 
models like CHAOS-7 (Finlay et  al. 2020) have been 
reduced to values well below 10 nT for geomagnetic quiet 
times, depending on the mission. This report introduces 
a calibrated magnetometer data set from the Gravity field 

Graphic Abstract

Fig. 1  Overview of the two satellite missions dedicated to geomagnetic measurements CHAMP (blue line) and Swarm (red and green lines) and a 
selection of missions carrying platform magnetometers at their respective altitudes. Also shown is the F10.7 solar irradiation index as an indication 
of solar activity (grey with mean as black solid line, right axis)

32



Page 3 of 16Michaelis et al. Earth, Planets and Space          (2022) 74:135 	

Fig. 2  Schematic view of the GOCE satellite. (Credits: ESA)

Fig. 3  Location of instruments at the satellite body. (Credits: ESA)
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and steady-state Ocean Circulation Explorer (GOCE) 
mission, following a similar calibration and characterisa-
tion procedure of GRACE-FO (Stolle et al. 2021).

The GOCE mission has been operated by ESA. The pri-
mary objective of GOCE (Floberghagen et al. 2008, 2011; 
GOCE Flight Control Team 2014) was to obtain precise 
global and high-resolution models for both the static and 
the time-variable components of the Earth’s gravity field 
and geoid. GOCE was successfully launched on 17 March 
2009 and completed its mission on 11 November 2013. 
It was flying on a near-circular polar dawn–dusk orbit 
with an inclination of 96.7 °C and at a mean altitude of 
about 262 km, (https://​www.​esa.​int/​Appli​catio​ns/​Obser​
ving_​the_​Earth/​Futur​eEO/​GOCE/​Facts_​and_​figur​es). A 
sketch of the satellite is shown in Fig. 2 and a summary 
on the satellite’s orbits and body is available at (https://​
www.​esa.​int/​Enabl​ing_​Suppo​rt/​Opera​tions/​GOCE). The 
GOCE satellite carried three magnetometers as part of 
its attitude and orbit control system mounted side-by-
side displaced by 80 mm. The attitude was mainly con-
trolled by ion thrusters to achieve a drag-free flight, and 
in addition magnetorquers are used. For magnetorquer 
activation, the magnetic background field at each time 
and location of the satellite needs to be measured by 
magnetometers.

This article describes the original data, methods, 
and procedures of data processing, characterisation of 
disturbances, and calibration of instrument-intrinsic 
parameters that are necessary to obtain scientifically use-
ful magnetic field data from the GOCE platform mag-
netometers. We show the performance of the calibration 
and characterisation procedure by comparison to the 
CHAOS-7 field model, the illustration of Field Aligned 
Currents (FAC), and a comparison of the time series 
characterising a geomagnetic storm to the commonly 
used Dst index that is obtained from ground data. The 
processed magnetometer data described in this article 
are available at (Michaelis and Korte 2022), for Novem-
ber 01, 2009 to September 30, 2013. The data published 
with this article is version 0205.

Data sets and data pre‑processing
Instruments
As part of the Drag-free Attitude and Orbit Control Sys-
tem (DFACS), the GOCE satellite carries three active 
3-axis fluxgate magnetometers, called MGM. The cali-
bration and characterisation effort is part of Swarm DISC 
(Swarm DISC 2022). The PlatMag consortium within 
Swarm DISC decided to call magnetometer instrument 
reference frames MAG. Hence MGM will be further 
called MAG. Figure   3 shows the locations of the mag-
netometers onboard the satellite. The magnetometers are 

manufactured by Billingsley Aerospace &Defence and are 
of type TFM100S (Billingsley 2020). The measurement 
range is ±100 µT, the root mean square noise level of the 
instrument is 100  pT and the resolution of the digitisa-
tion is 3.05185 nT/bit, (Kolkmeier et al. 2008). Hence, the 
instrument noise is below the digitisation level. The data 
are sampled at 1/16  Hz. The MAG data have been pre-
calibrated achieving biases of less than 500 nT.

Magnetometer calibration further relies on attitude 
data derived from the Electrostatic Gravity Gradiometer 
(EGG), which is GOCE’s main instrument, and three 
star cameras (STR) that are mounted on the shaded side 
of the satellite, shown in Fig.  2. The strongest magnetic 
disturbance is expected from the magnetorquers (MTQ), 
although they are located as far away as possible from the 
magnetometers; see the overview of instrument location 
in Fig. 3. Since measurements of the magnetorquer cur-
rents are available, an almost full correction for them can 
be expected.

GOCE’s whole telemetry of the satellite, including, e.g. 
magnetometer, magnetorquer currents, attitude, solar 
array currents, battery currents, and magnetometer 
temperatures, is publicly available at https://​earth.​esa.​
int/​eogat​eway/​missi​ons/​goce, European Space Agency 
(2009). The telemetry datasets used for this article are 
listed in Table 1. GOCE L1b and L2 data are provided in 
zip files that contain ESA’s Earth Explorer Format (EEF) 
files for each L1b product. An overview of used products 
with given names, source, unit, and time resolution is 
listed in Table 1. Data stored as telemetry are given in zip 
files that contain ESA’s Earth Explorer header and data 
in ASCII. Time values are always handled as defined in 
the EEF. The dataset with the highest cadence and qual-
ity is the attitude information since it relies on the main 
instrument of the mission. An interpolation of attitude 
data may add numerical noise. Therefore, it makes sense 
to use timestamps from the attitude dataset as refer-
ence for creating a series of timestamps. The timestamps 
are selected from the attitude dataset that are closest to 
MAG dataset timestamps. This subset of input data was 
used to linearly interpolate all other data, that is position, 
magnetometer, magnetorquer, currents and other house-
keeping (HK) data listed in Table  1. If the interpolation 
distance is larger than 16 seconds a flag has been set that 
indicates a data gap. For each timestep, the predictions of 
the high-level geomagnetic field model CHAOS-7 includ-
ing core, crustal and external contributions have been 
calculated, following Finlay et al. (2020). For the selection 
of the low-latitude range ( |QDLAT | < 50◦ ), we also cal-
culate the quasi-dipole latitude (QDLAT) and magnetic 
local time (MLT) (Richmond 1995; Emmert et  al. 2010) 
for each record. For selection of the geomagnetic quiet 
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days, we use the geomagnetic Kp index ( Kp ≤ 3 ) (Matzka 
et  al. 2021) and the geomagnetic equatorial Dst index 
( |Dst| ≤ 30 nT ) (Nose et al. 2015).

Coordinate frames
The Satellite Physical Coordinate Frame (SC_O_p), called 
SC in the following, is defined in Kolkmeier et al. (2008). 
The three MAGs are aligned with the principal axis of the 
satellite. The rotation of a vector in SC to MAG reference 
frame is given in Eq. (1):

with

That means negative MAGi,x is aligned with the flight-
direction, MAGi,z points to the Earth and MAGi,y com-
pletes the orthogonal coordinate system.

The Gradiometer Reference Frame (GRF) is the coor-
dinate system in which the measurements of GOCE’s 
main instrument, the Electrostatic Gravity Gradiometer 
(EGG), are given. These are the gravity tensor and the 
combined EGG and STR attitude of the satellite with 
respect to the International Celestial Reference Frame 
(ICRF). GOCE provides a high quality attitude product, 
EGG_IAQ_1i (Frommknecht et  al. 2011), which is the 
combination of the Electrostatic Gravity Gradiometer 
(EGG) and the star cameras. Fixed reference frames for 
all instruments are expected to be stable with respect to 
each other. Missing static rotations between reference 
frames will be corrected by Euler angle estimation during 
calibration.

Scientific evaluation of the data will be done in the 
Earth-fixed North–East–Centre (NEC) reference frame, 
which is also the frame for predictions of the CHAOS-7 
reference model. The calibration and characterisation 
procedure has to be done in the same reference frame for 
measurements and model data. Calibration parameters 
are instrument intrinsic and depend on the instrument 
reference frame. Characterisations of local disturbances 
are systematic in a local satellite reference frame. That 
leads to the decision to apply calibration and characteri-
sation in the MAG reference frame.

For rotation of CHAOS-7 predictions, Bmodel,NEC , 
from NEC to MAG reference frame a chain of rotations 
is needed. The first is the rotation from NEC to Interna-
tional Terrestrial Reference Frame (ITRF) depending on 
the latitude and longitude of the satellite location. We use 
Seeber (2003,  page 23) to define a North–East–Zenith 
reference frame. By changing the sign of the z-direction 

(1)MAGi = RSC2MAGSC,

(2)RSC2MAG =



−1 0 0
0 1 0
0 0 −1


 .

(3rd row) we get a North–East–Centre reference frame, 
Eq. (3):

The second is a time-dependent rotation from ITRF to 
ICRF, taking into account Earth’s nutation and preces-
sion. RITRF2ICRF is calculated by application of the SOFA 
library function iauC2t06a (IAU SOFA Board 2019) and 
using Earth rotation parameters that are derived from the 
International Earth Rotation and Reference Systems ser-
vice (IERS 2020).

The rotation from ICRF to GRF frame is given by qua-
ternions available in the EGG_GGT_li product. GRF and 
SC reference frames are nominally parallel (Kolkmeier 
et  al. 2008), we can set the quaternions given in EGG_
GGT_li product to derive the rotation from ICRF to SC, 
qICRF2SC.

Rotations can be combined very stably using qua-
ternion algebra. Hence, we need to convert the direc-
tion cosine representation of RNEC2ITRF , RITRF2ICRF and 
RSC2MAG to a quaternion representation qNEC2ITRF , 
qITRF2ICRF and qSC2MAG following (Wertz 1978, page 415). 
In summary, the complete rotation from the NEC to the 
MAG frame is given as:

CHAOS-7 predictions are finally rotated from NEC to 
the MAG frame applying the rotation quaternion in Eq. 
(4) following (Wertz 1978, page 759):

For rotation of calibrated and characterised MAG data, 
Eq. (6) has to be applied in inverse order on BMAG.

Pre‑processing
The three equal fluxgate magnetometers on the GOCE 
satellite are mounted perfectly aligned side-by-side with 
a distance of 80 mm. For that reason one would expect 
them to give the same results at the same times. How-
ever, when looking at the residuals to CHAOS-7 of the 
individual components from different magnetometers, 
respectively, some large steps are visible. We found no 
correlation with activity of GOCE instruments or major 

(3)

RITRF2NEC =







−sin(�) · cos(�) − sin(�) · sin(�) cos(�)

−sin(�) cos(�) 0

−cos(�) · cos(�) − cos(�) · sin(�) − sin(�)







with latitude� and longitude�.

(4)

qNEC2MAG = qNEC2ITRF · qITRF2ICRF · qICRF2SC · qSC2MAG,

(5)
BNEC

qNEC2ITRF
−−−−−−→ BITRF

qITRF2ICRF
−−−−−−→

BICRF
qICRF2SC
−−−−−→ BSC

qSC2MAG
−−−−−→ BMAG.

(6)
Bmodel,MAG = q−1

NEC2MAG · Bmodel,NEC · qNEC2MAG.
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events. We had to correct those events by hand before 
applying the calibration, and call this step block correc-
tion in the following. For each component of MAG2 and 
MAG3 we subtracted the corresponding component of 
MAG1. We identified timestamps of the beginning of 
each block correction by using a higher resolution figure 
of Fig. 4. The first block has been set as reference for all 
components of MAG2 and MAG3. For all further blocks 
the offset of MAG2 and MAG3 has been corrected 
to reach the same mean value as the first block. At the 
end the mean value of all blocks has been removed from 
MAG2 and MAG3. A table containing the timestamps 
of each event and the corresponding correction values 
is given as supplementary material in Additional file  1.   
After the block correction has been applied the residuals 
between the magnetometers look similar, as can be seen 
in Fig. 4. Since there will be no relevant scientific output 
from three calibrated magnetometers very close to each 
other we decided to combine the three magnetometers 

into one single instrument by using the mean value, Eq. 
(7):

By combination of the three instruments, we reduce the 
noise level of the input data and fill small gaps in single 
magnetometer records.

Calibration and characterisation
Since the magnetometers of GOCE are used for the 
Drag-free Attitude and Orbit Control System (DFACS) 
they have been calibrated on-ground to fulfil the speci-
fication for DFACS which has biases of less than 500 
nT. The pre-calibrated dataset is provided in the AUX_
NOM_1B product. Previous studies, like Stolle et  al. 
(2021) for GRACE-FO and Olsen et al. (2020) for Cryo-
Sat-2 showed that adding more internal features like 

(7)BMAG =

∑3
i=1 BMAGi

3
.

Fig. 4  Overview of block correction for the whole mission. Shown are the differences between magnetometers 2 and 1, and 3 and 1 for the x, y, 
and z components from top to bottom. Without block correction (left) and after applied block correction (right)
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Table 1  Input data used for calibration and characterisation, including product name, variable name, unit, and temporal resolution

Description Product Variable Unit Cadence

E Magnetic field AUX_NOM nT 16 s

MGM1_X_out_1i

MGM1_Y_out_1i

MGM1_Z_out_1i

MGM2_X_out_1i

MGM2_Y_out_1i

MGM2_Z_out_1i

MGM3_X_out_1i

MGM3_Y_out_1i

MGM3_Z_out_1i

AMTQ Magnetorquer currents Telemetry A 1 s

mtr1_current CAT20044

mtr2_current CAT20045

mtr2_current CAT20046

POS Satellite position in ITRF km 1 s

PSO_PKI and PSO_PRD PSO_2G X,Y,Z

q EGG_IAQ EGG_NOM_1B 1 s

ICRF to GRF EGG_IAQ_1i q1,q2,q3,q4

TMAG Magnetometer temperature degC 32 s

MGM_HTR_T1 THT00004

MGM_HTR_T2 THT00012

MGM_HTR_T3 THT00068

ABAT Battery currents A 16 s

BAT_CHARGE_PWR PHD95002

BAT_PROVIDED_PWR PHD95021

BAT_CHARGE_CUR_N PHT10040

BAT_DISCH_CUR_N PHT10060

ASA Solar array current A 32 s

THT10000 SA W+Z T N

THT10001 SA W-Z T N

HK Housekeeping data Telemetry

CDE_A_Status MHT00000 16 s

PCUx_INPUT_CUR​ PHD94003 A 16 s

PCU1_INPUT_CUR​ PHD94001 A 16 s

PCU2_INPUT_CUR​ PHD94002 A 16 s

PCU3_INPUT_CUR​ PHD94003 A 16 s

PCU4_INPUT_CUR​ PHD94004 A 16 s

PCU5_INPUT_CUR​ PHD94005 A 16 s

PCU6_INPUT_CUR​ PHD94006 A 16 s

PCU1_REG1_CUR​ PHT11960 A 16 s

PCU1_REG2_CUR​ PHT11980 A 16 s

PCU2_REG1_CUR​ PHT12100 A 16 s

PCU2_REG2_CUR​ PHT12120 A 16 s

PCU2_REG3_CUR​ PHT12140 A 16 s

PCU3_REG3_CUR​ PHT12320 A 16 s

PCU4_REG1_CUR​ PHT12420 A 16 s

PCU4_REG2_CUR​ PHT12440 A 16 s

PCU4_REG3_CUR​ PHT12460 A 16 s

PCU3_REG1_CUR​ PHT12280 A 16 s
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currents, and temperatures to the data processing, that 
may cause perturbations, can lead to much better cali-
brated datasets. We follow the same approach as Stolle 
et al. (2021) but adapt it to conditions and limitations of 
the GOCE satellite, e.g. availability of currents and tem-
perature measurements. Calibration and characterisation 
will be applied on a subset only, to avoid that natural vari-
ations are interpreted as disturbances, but remain part 
of the data after the calibration procedure. Therefore, we 
use only geomagnetic quiet times when natural varia-
tions should not be measured by the satellite, thus allow-
ing for a post-launch calibration of the satellite system 
itself. Concretely, we use only data with |QDLAT| < 50◦ , 
Kp ≤ 3 , |Dst| ≤ 30 nT and B_Flag = 0 . B_Flag is a quality 
flag that gives non-zero values if the data gap for interpo-
lation of input data is larger than 16 s. Since the resolu-
tion of the magnetometer data is only 16 s, we decided 
to use monthly data for the estimation of calibration and 
characterisation parameters. That avoids rapid fluctua-
tion in estimated parameters, but still gives a long-term 
trend of parameter evolution with time to cope with sys-
tem changes and deterioration.

Parameters for vector calibration
The previously combined magnetometer data BMAG 
act as the raw magnetic field vector for calibration, in 
MAG frame further named E = (E1,E2,E3)

T in nT. 
The calibration estimates the nine instrument-intrin-
sic parameters scale factors s = (s1, s2, s3)

T , offsets 
b = (b1, b2, b3)

T and misalignment angles of the coil 
windings u = (u1,u2,u3)

T . Additionally, misalignment 
between static reference frames may occur, e.g. due to 
slight rotation during mounting of instruments. This mis-
alignment is estimated in a vector of Euler (1-2-3) angles 
e = (e1, e2, e3)

T , following Wertz (1978, page 764), or in a 
direction cosine rotation matrix, RA , which includes the 
three external parameters. Euler (1-2-3) represents three 
rotations about the first, second and third axis, in this 
order. The parameters are used to describe

where RA is the direction cosine matrix representation of 
the Euler (1-2-3) angles e , P−1 is the misalignment angle 
lower triangular matrix

and S−1 is the diagonal matrix including the inverse of 
the scale factor

Equation (8) is valid for fluxgate magnetometers treated 
as linear instruments. Brauer et  al. (1997) showed that 
Eq. (8) needs to be extended for non-linear effects of 2nd 
( ξ  ) and 3rd ( ν ) order by 2nd ( Eξ ) and 3rd ( Eν ) order data:

with non-linearity parameters of 2nd order:

non-linearity parameters of 3rd order:

and modulated data vectors of 2nd and 3rd order:

(8)
Bcal = RAP

−1S−1(E− b) = A(E− b) = AE− bA,

(9)

P−1 =







1 0 0
sin(u1)
cos(u1)

1
cos(u1)

0

−
sin(u1)sin(u3)+cos(u1)sin(u2)

wcos(u1)
−

sin(u3)
wcos(u1)

1/w







with: w =
�

1− sin2(u2)− sin2(u3),

(10)S−1 =





1/s1 0 0
0 1/s2 0
0 0 1/s3



 .

(11)Bcal = AE− bA + ξEξ + νEν ,

(12)ξ =









ξ1
11

ξ1
22

ξ1
33

ξ1
12

ξ1
13

ξ1
23

ξ2
11

ξ2
22

ξ2
33

ξ2
12

ξ2
13

ξ2
23

ξ3
11

ξ3
22

ξ3
33

ξ3
12

ξ3
13

ξ3
23









,

(13)

ν =









ν1
111

ν1
222

ν1
333

ν1
112

ν1
113

ν1
223

ν1
122

ν1
133

ν1
233

ν1
123

ν2
111

ν2
222

ν2
333

ν2
112

ν2
113

ν2
223

ν2
122

ν2
133

ν2
233

ν2
123

ν3
111

ν3
222

ν3
333

ν3
112

ν3
113

ν3
223

ν3
122

ν3
133

ν3
233

ν3
123









,

Table 1  (continued)

Description Product Variable Unit Cadence

PCU3_REG2_CUR​ PHT12300 A 16 s

PCU5_REG1_CUR​ PHT12560 A 16 s

PCU5_REG2_CUR​ PHT12580 A 16 s

PCU5_REG3_CUR​ PHT12600 A 16 s

SA O+Z-X TEMP THT10002 degC 32 s

SA C+Z-X TEMP THT10003 degC 32 s

SA O-Z+X TEMP THT10004 degC 32 s

SA C-Z+X TEMP THT10005 degC 32 s
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(14)Eξ = (E2
1 , E

2
2 , E

2
3 , E1E2, E1E3, E2E3)

T ,

Eν = (E3
1 , E

3
2 , E

3
3 , E

2
1E2, E

2
1E3, E

2
2E3, E1E

2
2 , E1E

2
3 , E2E

2
3 , E1E2E3)

T .

Parameters for characterisation
Characterisation consists of the identification and, if 
possible, correction of artificial magnetic perturbations 
contained in the raw magnetic data. By simple correla-
tion analysis combined with knowledge from former 
satellite missions like CHAMP, Swarm and GRACE-FO, 
we identified the magnetorquer currents, AMTQ , the 
magnetometer heater temperatures, TMAG , the battery 
currents, ABAT , the solar array panel currents, ASA , and 
a set of housekeeping currents, and temperatures AHK , 
to affect the GOCE magnetometer data. We also con-
sider an effect from the correlation between the mag-
netometer temperature and magnetic field residuals, 
Est = E · (TMAG − T0) , where T0 is the monthly median 
of TMAG.

The characterisation equation is a combination of all 
identified disturbances:

Table 2  Estimated calibration and characterisation parameters 
including units and dimensionality

Parameter Description Unit Dimension

s Scale factors nT
nT

3

b Offsets nT 3

u Misalignment angles rad 3

e Euler (123) angles rad 3

ξ 2nd order non-linearity 1
nT

3 × 6

ν 3rd order non-linearity 1

nT2
3 × 10

bt Temperature dependency of offsets b nT
◦C

3 × 3

st Temperature dependency of scale 
factors s

nT

nT
◦
C

3 × 3

bat Battery current scale factor nT
mA

3 × 4

sa Solar array current scale factor nT
mA

3 × 2

M Magnetorquer current scale factor nT
mA

3 × 3

hk Housekeeping data scale factor 3 × 25

Fig. 5  Time series of instrument-intrinsic calibration parameters offset (top-left), scale factors (top right), non-orthogonalities (bottom-left) and 
Euler angles (bottom-right) with respect to their median value. Red lines indicate average mean absolute deviation
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with magnetorquer current scale factor ( M ), battery cur-
rent scale factor ( bat ), solar array current scale factor 
( sa ), housekeeping data scale factor ( hk  ), temperature 
dependency of offsets b ( bt ) and temperature depend-
ency of scale factors s ( st ). Input data used in Eq.  (11) 
and   (15) are listed in Tables  1 and  2, respectively. All 
input parameters and calibrated magnetic observation 
products are provided in CDF format, in the same format 
as for GRACE-FO (Michaelis et al. 2021).

Parameter estimation
An ordinary least squares linear regression has been 
applied to estimate the parameters mcal and mchar to 
minimise for S:

with the calibrated magnetic field vector Bcal 
using instrument-intrinsic calibration parameters, 
mcal = (b, s,u, e, ξ , ν) that have been applied on the 
raw magnetic field vector E , as given in Eq.  (11). For 
estimation of the characterised magnetic field vec-
tor Bchar parameters describing the impact on the 
housekeeping data mchar = (M, bat, sa, bt, st, hk) 
have been applied to the housekeeping data 
dchar = (AMTQ ,ABAT,ASA,AHK ,TMAG,Est) , as given 
in Eq.  (15). Bmodel,MAG is the CHAOS-7 magnetic field 
estimations for the core, crustal and large-scale magne-
tospheric field rotated into the instrument MAG frame as 
described by Eq. (6).

From previous satellite missions like GRACE-FO it is 
known that additional time shifts between instrument 
measurements may occur. We repeated the calibration 
and characterisation procedure for a range of time shifts 

(15)
Bchar =M · AMTQ + bat · ABAT

+ sa · ASA + hk · AHK

+ bt · (TMAG − T0)+ st · Est ,

(16)
S = |(Bcal(mcal,E)+ Bchar(mchar ,dchar))− Bmodel,MAG|

2,

within an interval of ±2  s in steps of 0.1  s on the most 
quiet data set, which was in December 2009. Best calibra-
tion results (minimum of the absolute values of residual 
to CHAOS-7) have been determined with a shift of 0.4 s 
for MAG data.

Results and discussion
In this section, we discuss the final GOCE data set and 
some potential applications. We assess the residuals to 
CHAOS-7 predictions of all vector components and 
compare the lithospheric field measured from the GOCE 
data to the lithospheric field contribution included in 
CHAOS-7. Moreover, we calculate auroral field-aligned 
currents (FAC) and compare magnetospheric ring cur-
rents measured by GOCE with ground-based estima-
tions like the Geomagnetic Equatorial Disturbance Storm 
Time Index (Dst).

Assessment of the final data set
To assess the temporal robustness of the calibration, 
time series of calibration parameters are shown in Fig. 5 
for offsets, scale factors, non-orthogonalities and Euler 
angles. Red lines show the average mean absolute devia-
tion of the parameters. The parameters show no long-
term trends over the mission duration. Comparisons 
with previously published studies gave similar order 
results for the mean absolute deviation of the parameter 
time series for CryoSat-2 (Olsen et  al. 2020). However, 
in detail GOCE shows much higher variations in each of 
the parameters. That might be caused by higher air pres-
sure at GOCE’s low altitude which is compensated for by 
near-continuous operation of the drag-free attitude and 
orbit control system.

Residuals for the calibrated magnetic field vector have 
been calculated with respect to CHAOS-7 predictions 
for geomagnetic quiet conditions and low latitudes, i.e. 
|QDLAT| < 50o , Kp <= 3 , and |Dst| <= 30 nT . Table  3 
shows the mean and standard deviation of these residuals 

Table 3  Mean and standard deviation of residuals to CHAOS-7 for GOCE for geomagnetic quiet times and for a single quiet day, 2009-
12-01

BMAG and BNEC represent residuals for calibrated data and BRAW for data before calibration

Parameter Whole period Single day

Mean [nT] Std [nT] Mean [nT] Std [nT]

x y z x y z x y z x y z

�BMAG 0.0 − 0.1 − 0.0 116.7 276.3 115.9 1.1 − 1.6 0.4 8.3 6.1 5.6

�BNEC − 2.8 − 0.1 − 0.3 135.5 271.5 106.3 0.1 1.0 0.4 8.3 6.4 5.6

�BRAW1 − 592.4 − 1618.6 − 2318.3 763.1 554.2 623.1 − 549.1 − 1587.2 − 2269.3 752.9 495.4 594.3

�BRAW2 − 597.3 − 1613.6 − 2311.7 796.1 743.2 695.9 − 543.2 − 1580.9 − 2273.3 792.8 700.4 664.5

�BRAW3 − 589.3 − 1620.6 − 2314.0 721.1 565.4 560.2 − 531.7 − 1595.6 − 2285.6 712.0 502.3 517.1
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Table 4  Standard deviation of residuals to CHAOS-7 for GOCE for all months in the mission period

BMAG and BNEC represent residuals for calibrated data and BRAW1 for MAG1 data before calibration. The amount of data used for calibration and the averages of the two 
geomagnetic activity indices Kp and Dst are also given

Month �BMAG �BNEC �BRAW1 Used

x y z x y z x y z Data Kp Dst

[nT] [nT] [nT] [nT] [nT] [nT] [nT] [nT] [nT] [%] [nT]

2009-11-01 8.8 6.4 5.5 8.7 6.4 5.5 737.1 468.5 603.0 54.0 0.62 − 2.0

2009-12-01 8.9 6.4 5.9 8.9 6.4 5.9 736.4 473.9 607.1 51.7 0.46 4.0

2010-01-01 9.2 6.9 6.4 9.2 6.9 6.4 739.0 470.7 600.7 51.6 0.63 − 2.0

2010-02-01 8.9 7.6 5.6 8.9 7.6 5.6 737.1 472.3 601.1 18.1 1.11 − 8.0

2010-03-01 80.7 276.7 59.1 34.5 284.0 68.7 754.9 551.5 611.0 50.6 1.06 − 5.0

2010-04-01 13.7 9.4 40.8 13.5 9.8 40.8 735.8 489.0 615.2 42.1 1.08 − 12.0

2010-05-01 13.1 11.5 15.5 13.1 11.5 15.5 732.2 485.2 613.8 40.5 1.12 − 7.0

2010-06-01 18.9 169.8 31.2 37.8 160.6 54.2 730.6 512.6 614.0 47.6 1.41 − 9.0

2010-07-01 30.7 44.0 28.1 30.6 44.1 28.1 721.9 474.0 617.0 8.5 1.49 − 12.0

2010-08-01 NaN NaN NaN NaN NaN NaN NaN NaN NaN 0.0 NaN NaN

2010-09-01 14.9 17.3 15.9 13.6 18.3 15.9 750.8 473.8 595.0 5.9 1.13 − 12.0

2010-10-01 14.9 9.2 40.3 14.8 9.4 40.3 746.5 470.8 593.7 48.2 1.05 − 9.0

2010-11-01 9.1 7.1 5.9 9.1 7.1 5.9 745.6 470.4 607.9 52.4 1.03 − 8.0

2010-12-01 9.8 7.7 6.1 9.8 7.8 6.1 743.2 476.3 611.3 50.8 0.8 − 7.0

2011-01-01 15.3 10.0 28.5 15.8 9.2 28.5 758.8 467.7 592.8 20.8 0.92 − 2.0

2011-02-01 9.6 7.4 12.0 9.5 7.4 12.0 739.0 476.4 614.9 46.6 1.02 − 9.0

2011-03-01 9.4 7.5 6.1 9.3 7.6 6.1 734.9 479.4 606.3 44.4 1.07 − 5.0

2011-04-01 10.5 9.1 8.8 10.5 9.2 8.7 755.5 481.7 603.0 41.9 1.13 − 5.0

2011-05-01 11.9 10.0 12.0 11.9 10.0 12.0 737.5 477.9 604.9 46.4 1.29 − 7.0

2011-06-01 13.7 12.4 16.8 13.8 12.4 16.8 741.9 486.0 606.1 45.5 1.52 − 9.0

2011-07-01 13.4 11.7 15.6 13.5 11.7 15.6 737.5 485.5 606.2 47.3 1.59 − 9.0

2011-08-01 3.5 2.0 5.4 3.6 1.9 5.4 780.0 394.5 525.7 0.1 1.71 − 15.0

2011-09-01 9.2 8.9 6.4 9.0 9.0 6.4 750.1 478.4 591.5 20.3 1.09 − 14.0

2011-10-01 9.8 8.6 6.6 9.7 8.7 6.5 753.9 476.8 603.6 44.7 1.09 − 11.0

2011-11-01 31.4 202.6 53.2 45.3 200.5 50.9 763.4 516.9 612.1 49.0 0.9 − 9.0

2011-12-01 10.5 9.2 8.9 10.4 9.3 8.9 762.6 467.5 597.6 54.8 0.92 − 3.0

2012-01-01 13.2 9.8 30.8 13.1 10.1 30.7 773.6 473.3 621.9 43.6 1.25 − 3.0

2012-02-01 9.8 8.2 6.3 9.8 8.3 6.3 736.1 478.8 603.1 45.7 1.46 − 9.0

2012-03-01 10.4 10.9 7.7 10.4 10.9 7.7 748.9 476.1 594.1 24.6 1.42 − 14.0

2012-04-01 10.7 8.6 7.1 10.6 8.7 7.1 745.7 476.3 600.2 42.7 1.35 − 12.0

2012-05-01 12.6 12.8 14.2 12.6 12.8 14.2 747.8 482.0 603.1 48.9 1.27 − 5.0

2012-06-01 34.7 156.2 42.2 25.2 160.8 29.5 759.5 513.1 607.7 33.6 1.3 − 5.0

2012-07-01 16.4 12.9 26.1 16.3 12.9 26.2 736.9 486.5 601.5 38.1 1.72 − 9.0

2012-08-01 11.6 9.6 8.9 11.5 9.7 8.9 739.2 475.7 605.9 49.3 1.4 − 4.0

2012-09-01 12.0 10.6 8.6 12.1 10.6 8.6 766.6 483.3 605.6 45.4 1.22 − 2.0

2012-10-01 10.0 9.0 6.8 9.9 9.1 6.8 757.5 486.0 611.7 38.9 0.93 − 7.0

2012-11-01 10.8 9.0 7.3 10.8 9.0 7.3 767.9 484.0 620.4 45.4 0.98 − 6.0

2012-12-01 10.1 8.5 6.9 10.1 8.5 6.9 749.7 477.0 619.9 55.6 0.78 8.0

2013-01-01 33.9 180.6 49.4 37.3 183.7 32.7 754.9 512.4 617.2 50.2 1.01 0.0

2013-02-01 757.7 1736.0 757.6 888.5 1697.6 689.6 1117.1 1815.9 971.8 44.0 1.3 − 6.0

2013-03-01 10.0 8.6 6.6 9.9 8.7 6.6 758.8 477.1 604.0 39.8 1.18 − 6.0

2013-04-01 10.6 9.1 8.0 10.6 9.1 8.0 755.2 485.3 598.0 53.4 1.06 − 4.0

2013-05-01 208.8 646.2 129.0 192.9 652.6 120.1 813.0 806.5 616.8 26.4 1.25 − 5.0

2013-06-01 14.1 12.7 16.8 14.1 12.7 16.8 756.1 493.5 604.6 39.1 1.34 − 11.0

2013-07-01 15.9 13.2 32.4 15.9 13.2 32.4 759.2 492.1 603.9 41.8 1.27 − 9.0

2013-08-01 107.8 130.6 121.6 108.4 131.1 120.6 808.4 504.6 595.9 45.1 1.34 − 9.0

2013-09-01 10.8 9.6 7.5 10.6 9.7 7.5 772.9 477.4 586.6 51.7 1.16 − 3.0
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for the whole mission period, and for the most quiet 
day in the most quiet month. The mean values are close 
to zero which means that the calibration removed the 
offsets correctly. For very quiet conditions, Kp < 1, the 
standard deviation can be reduced to values below 8 nT. 
The calibration has been applied on monthly data. Results 
for the standard deviation of residuals with respect to the 
CHAOS-7 model are given for each month in Table 4 for 
calibrated magnetometer data in MAG and NEC as well 
as for raw data of magnetometer MAG1 as representative 
example. The last three columns give the percentage of 
data used for the specific month, the mean Kp value and 
mean Dst value from within data selection for the cali-
bration. Standard deviations vary strongly from month 
to month. For the majority of months the standard devia-
tion is reduced to the level of very quiet conditions. How-
ever, some months deviate strongly from the quiet days. 
For some of those extreme months, a correlation with 
missing data or higher geomagnetic conditions seems to 
exist. However, we cannot state a general correlation of 
high residuals with high activity. In general, the values 
for mean and standard deviation have been significantly 
reduced by the calibration to values between 7 and 13 
nT, and are similar to residuals for GRACE-FO given 
by Stolle et  al. (2021) and for CryoSat-2 by Olsen et  al. 
(2020), which varied between 3 nT and 10 nT (GRACE-
FO) and 4 nT and 15 nT (CryoSat-2).

The estimation of impact for non-intrinsic instrument 
parameters is shown in Table 5. The impact has been esti-
mated by residual calculation between using all estimated 
parameters and using all but one parameter and setting 
this one parameter to a neutral value. As an example, to 
estimate the impact of �BSA , first all estimated param-
eters are applied to Equation 15 to compute Bchar . Then, 
the same approach is repeated with sa being set to zero 

and calculating Bchar,zerosa . The difference between Bchar 
and Bchar,zerosa is the impact of parameter sa , called 
�BSA . The results indicate that hk  and sa have the larg-
est impact. On other missions, e.g. GRACE-FO (Stolle 
et al. 2021), an even larger standard deviation of impact 
from solar panels than for the other parameters was 
found. The influence might be smaller on GOCE due to 
design and orbit characteristics of the GOCE satellite. 
The solar arrays are mounted such that they are always 
on the bright side with the GOCE dusk–dawn orbit, so 
that currents induced by the solar arrays are more or less 
constant and do not vary much.

Figure  6a provides global maps of the residuals 
between the processed data and CHAOS-7 predictions 
for December 2009 with the mean of the residuals sum-
marised in bins of size of 5◦ geocentric latitude and 5◦ 
geocentric longitude. The three columns represent the 
BN , BE and BC components of the NEC frame, respec-
tively. The first row displays residuals to the core, the 
crustal and the large-scale magnetospheric field predic-
tions of CHAOS-7. The second row shows residuals to 
only the core and the large-scale magnetospheric field 
predictions, i.e. in particular the lithospheric field is now 
included in the data. The third row shows the crustal field 
prediction from CHAOS-7. The grey lines indicate 0◦ and 
±70◦ magnetic latitude (QDLAT). Figure 6b gives distri-
bution of geomagnetic and solar indices and magnetic 
local time of the data set of this month, which was geo-
magnetically quiet. Auroral electrojet and field-aligned 
currents at high latitudes produce the largest deviations 
as they are measured by the satellite but not included 
in the CHAOS-7 model. Since the data are collected at 
a dawn–dusk orbit, no significant low and mid latitude 
ionospheric disturbances are expected, nor significant 
effects from magnetospheric currents during the quiet 

Table 5  Magnetic impact of calibration and characterisation, respectively, for each parameter given in Eq.  (15) and the non-linear 
parameters in Eq. (11)

Results are given in the MAG reference frame

Parameter Std [nT] Min [nT] Max [nT]

x y z x y z x y z

�Bξ 67.8 141.2 67.5 − 13448.9 − 27276.5 − 12631.9 12828.2 35776.8 21688.7

�Bν 48.0 82.4 42.8 − 11447.7 − 20148.4 − 10435.0 3830.4 10720.9 9133.3

�BMTQ 56.6 33.6 29.3 − 298.2 − 705.7 − 390.5 451.4 704.7 234.8

�BBAT 33.4 93.3 48.4 − 634.0 − 725.3 − 744.5 430.9 1225.6 1022.1

�BSA 123.6 156.1 185.4 − 885.4 − 573.2 − 784.2 814.0 1630.7 974.0

�BHK 212.1 271.1 484.0 − 1049.1 − 1939.5 − 2453.0 2985.5 1502.7 2469.2

�BBT 12.4 4.4 43.9 − 93.4 − 128.3 − 329.4 213.3 57.6 289.0

�BST 7.3 7.2 7.4 − 387.7 − 550.9 − 347.5 307.4 340.0 400.9

�Bcal,NEC 135.5 271.5 106.3 − 28906.3 − 25670.8 − 10717.4 10169.4 21387.6 32442.4
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times. Still, there are systematic deviations that follow 
the geomagnetic equator in all components, and these 
are already known from GRACE-FO carrying the same 
type of magnetometers. However, besides the prominent 
disturbance at the geomagnetic equator there are large 
areas with absolute residuals below 4 nT as indicated by 
greyish colours. The comparison of second and third row 
of Fig. 6a also shows that the calibrated GOCE data can 
reproduce the large-scale crustal anomalies quite well. 
For example, the Bangui and Kursk anomaly in central 
Africa and Russia, respectively, are clearly seen. Still, a 
systematic artificial field with low amplitude along the 
geomagnetic equator is visible.

Large‑scale field‑aligned currents
Field-aligned currents (FAC) are not part of the CHAOS7 
model and should remain in the measured data after 

calibration and characterisation. Since platform mag-
netometers have a higher noise level than science 
magnetometers, we expect only large-scale auroral field-
aligned currents to be visible. Figure 7 shows results for 
FACs derived from GOCE MAG for the whole period of 
the mission on the Northern (top) and Southern (bot-
tom) hemisphere, selected for the northward (left) and 
southward (right) z-component of interplanetary mag-
netic field (IMF). FACs have been put in bins of 2◦ using 
the median as the aggregation function. Region 1 and 2 
currents are prominently visible, similar to results from 
the PlatMag feasibility study for Swarm and GOCE 
https://​www.​esa.​int/​Enabl​ing_​Suppo​rt/​Prepa​ring_​for_​
the_​Future/​Disco​very_​and_​Prepa​ration/​ESA_s_​unexp​
ected_​fleet_​of_​space_​weath​er_​monit​ors and in Lühr 
et al. (2016).

Fig. 6  Top panel of a shows magnetic residuals to CHAOS-7 (core, crustal and large-scale magnetospheric field). Middle panel of a: magnetic 
residuals to CHAOS-7 (core and large-scale magnetospheric field). Bottom panel of a: crustal field from CHAOS-7 model. The columns show the 
three NEC components North, East and Centre. b Shows the distribution of geomagnetic and solar activity indices and magnetic local time for data 
selection used in a 
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The magnetic effect of the magnetospheric ring current 
during the March 17, 2013 storm
A geomagnetic storm with values of Dst  <  -130  nT 
occurred on March 17, 2013 (Fig.  8). The circles repre-
sent medians of residuals of the horizontal component of 
the magnetic field ( 

√

B2
N + B2

E  ) within ± 10◦ geomag-
netic latitude and projected to 0◦ geomagnetic latitude 
for each low-latitude orbital segment for ascending (blue) 

and descending (orange) orbits. The residuals are calcu-
lated with respect to the CHAOS-7 core and crustal field 
predictions. The large-scale magnetospheric field was not 
subtracted, and signatures from magnetospheric currents 
(including their induced counterparts in the Earth) 
remain included in the data. The ascending and descend-
ing orbit data generally agree well with each other and 
with the Dst index, despite the different retrieval 

Fig. 7  Quasi-dipole latitude (QDLAT) versus magnetic local time (MLT) large-scale field-aligned currents for the whole mission duration. The left 
panel shows the northern hemisphere and the right panel the southern hemisphere

Fig. 8  Time series of residuals of calibrated GOCE magnetic data to the core and crustal field of CHAOS-7 around the magnetic storm in March 
2013. Ascending (ASC) nodes are plotted in blue, descending (DESC) nodes in orange. The Dst index is also plotted in black
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technique for magnetospheric signatures in ground and 
satellite data. It is known from earlier studies that 
ground-based derived ring current signatures show sys-
tematic differences to those derived in space and that in 
particular the Dst index does not have the correct mag-
netospheric baseline (Maus and Lühr 2005; Olsen et  al. 
2005; Lühr et al. 2017; Pick et al. 2019). The ring current 
signal obtained from LEO satellites is generally lower 
than from ground, which is also reflected in an offset 
between the Dst index and the satellite derived residuals. 
In detail the ring current at ascending (MLT 6) nodes 
shows systematic weaker residual than for descending 
(MLT 18) nodes. That agrees well with dawn–dusk asym-
metries found in studies from Newell and Gjerloev (2012) 
for Super MAG Ring current and Love and Gannon 
(2009) for Dst.

Conclusions
The GOCE mission carries three vector magnetometers 
for attitude and orbit control. We applied a calibration 
and characterisation procedure that significantly reduces 
perturbations produced artificially by the satellite itself. 
The calibrated data from non-dedicated magnetom-
eters in LEO can be used to fill gaps between dedicated 
magnetic field missions and in the MLT distribution. 
However, since non-dedicated missions do not carry 
an absolute magnetometer as a reference, a high-level 
geomagnetic model based on dedicated missions is still 
needed for the calibration. Although calibrated platform 
magnetometer data cannot reach residuals below 1  nT 
when compared to high-level geomagnetic models as 
dedicated mission data from, e.g. CHAMP and Swarm 
do, we have shown that they contain information about 
lithospheric and magnetospheric field signatures and 
field-aligned currents. With standard deviations of resid-
uals between 7 nT and 13 nT for quiet times, our GOCE 
results are of similar order to those of CryoSat-2 and 
GRACE-FO calibrated magnetometer data (Olsen et  al. 
2020; Stolle et  al. 2021). For a mission not dedicated to 
magnetic field research and not carrying scientific mag-
netometers, residuals in this order of magnitude are 
acceptable. The calibrated GOCE data are freely availa-
ble and may be used for studying different magnetic field 
sources and the near-Earth space environment.
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Abstract 

Additional datasets from space-based observations of the Earth’s magnetic field are of high value to space phys‑
ics and geomagnetism. The use of platform magnetometers from non-dedicated satellites has recently successfully 
provided additional spatial and temporal coverage of the magnetic field. The Gravity and steady-state Ocean Circula‑
tion Explorer (GOCE) mission was launched in March 2009 and ended in November 2013 with the purpose of measur‑
ing the Earth’s gravity field. It also carried three platform magnetometers onboard. Careful calibration of the platform 
magnetometers can remove artificial disturbances caused by other satellite payload systems, improving the quality 
of the measurements. In this work, a machine learning-based approach is presented that uses neural networks to 
achieve a calibration that can incorporate a variety of collected information about the satellite system. The evaluation 
has shown that the approach is able to significantly reduce the calibration residual with a mean absolute residual 
of about 6.47nT for low- and mid-latitudes. In addition, the calibrated platform magnetometer data can be used for 
reconstructing the lithospheric field, due to the low altitude of the mission, and also observing other magnetic phe‑
nomena such as geomagnetic storms. Furthermore, the inclusion of the calibrated platform magnetometer data also 
allows improvement of geomagnetic field models. The calibrated dataset is published alongside this work.
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Introduction
Space-based observations of the Earth’s magnetic field 
from low Earth orbit are of high value for space physics 
and geomagnetism due to their potential global cover-
age. High-precision magnetic satellite missions carrying 
a magnetometer package to provide absolute vector data 
of the geomagnetic field have revolutionized our knowl-
edge of its distribution and variations (see, e.g., Olsen 
and Stolle (2012)). The most prominent missions with 
decade-long continuous time series are the CHAlleng-
ing Minisatellite Payload (CHAMP) (Reigber et al. 2002) 
and Swarm missions (Olsen et  al. 2013). The measure-
ments of these missions have led to high-quality mod-
els, describing different components of the geomagnetic 
field, e.g., the core, the lithospheric, and the large-scale 
magnetospheric field, e.g., (Finlay et al. 2020; Baerenzung 
et al. 2020).

In addition to high-precision magnetic mission data, 
the spatiotemporal coverage of magnetic measurements 
can be enhanced by applying observations of so-called 
platform magnetometers which are mounted on many 
satellites primarily for attitude control. Usually, they do 
not provide absolute data, have coarse sampling rates of 
one to several seconds, and are mounted with low atten-
tion to magnetic cleanliness. However, based on high-
quality magnetic field models and information on the 

satellite attitude and on-board operations and control 
describing possible artificial magnetic signals, measure-
ments of platform magnetometers can be carefully cali-
brated. Previously, platform magnetometer data from 
the GRACE, GRACE-FO, Cryosat-2, and DMSP mis-
sions have been calibrated and made publicly available 
(Olsen 2021; Stolle et al. 2021a; Olsen et al. 2020; Alken 
et al. 2020). A summary of these calibrations and exam-
ples of scientific applications in both geomagnetism and 
space science is given by Stolle et al. (2021b). Especially 
between the end of the CHAMP mission in September 
2010 and the launch of the Swarm mission in November 
2013, these data have had the potential to enhance mag-
netic field models.

In this work, we present a machine learning (ML) algo-
rithm to calibrate platform magnetometer data of the 
Gravity and steady-state Ocean Circulation Explorer 
(GOCE) (Floberghagen et  al. 2011; Drinkwater et  al. 
2003). The satellite was launched in March 2009 and 
ended in November 2013, i.e., being another satellite with 
the potential of bridging the previously mentioned gap 
of high-precision measurements. With its low altitude of 
about 255 km, the magnetic part of the GOCE mission 
may be especially interesting in detecting the lithospheric 
field. The GOCE satellite flies in a polar orbit of 98◦ 
inclination and the mission follows a sun-synchronous 
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dawn–dusk orbit at local times of about 6 and 18 LT for 
the descending and ascending orbits, respectively. The 
spacecraft carries three 3-axis magnetometers of the type 
Billingsley TFM100-S measuring the Earth’s magnetic 
field at a rate of 16 s (Billingsley 2020). More details on 
the mission and especially its magnetometer package is 
given by Michaelis et al. (2022).

All above-mentioned data from platform magnetom-
eters including the dataset of GOCE by Michaelis et  al. 
(2022) have applied analytical approaches solving a least-
square problem. The purpose of this work is to develop 
and present a ML technique to calibrate magnetometer 
data with the aim to provide a method that does not need 
preselection of parameters that describe potential artifi-
cial magnetic disturbances. As an example, parameters 
like magnetorquer activations, battery currents, or sen-
sor temperatures are known to contribute to such distur-
bances. Rather, all available parameters are fed into the 
process and the ML algorithm itself identifies relevant 
properties for the calibration. In addition, timing issues 
of the satellite clock or non-linear relationships between 
parameters are automatically identified. By that, we aim 
at providing a calibration tool for platform magnetom-
eters that is easily applicable to other missions as well. 
A similar calibration has been presented earlier for the 
GRACE-FO satellite mission (Styp-Rekowski et al. 2021).

In the following, the Chapter ”Datasets and preproc-
essing” describes the datasets used and the application 
of different preprocessing steps. Afterward, the Chapter 
”Machine learning-based calibration” describes the ML 
approach and its application to the data. The assessment 
of the results as well as examples of geophysical applica-
tions are presented in the Chapter ”Results and discus-
sion”. Finally, our findings are concluded in the Chapter 
”Conclusion”.

Datasets and preprocessing
The GOCE satellite produces data in an interval of 16 s. 
In a normal month containing 30 days, this means a total 
of 162000 data points. With an inclination of 98◦ degrees, 
the GOCE mission has a 61-day orbit periodicity, mean-
ing that after this timespan it has covered the whole earth 
in a uniform pattern.

Dataset
The data used in this work consist of the same input 
dataset as described in Michaelis et al. (2022). The mag-
netometer measurements, the supporting housekeeping 
data, the available telemetry data, and the CHAOS7 data 
were interpolated onto the same timestamps because of 
different subsystems of the satellite measuring at differ-
ent timestamps and time intervals. Contrary to Michaelis 

et al. (2022), all available data were used instead of select-
ing a subset. The measurements are recorded in the 
satellite frame and are provided by the European Space 
Agency (ESA). Therefore, calibration is performed in the 
same frame in which the instruments are mounted on the 
satellite since the available information affects the mag-
netometer measurements in this way. The CHAOS7 ref-
erence model was therefore also rotated into the satellite 
frame.

The available information was collected, interpolated, 
and finally merged into our final dataset. With available 
position and attitude information provided by the com-
bined product of the Electrostatic Gravity Gradiometer 
and Star Trackers of the GOCE mission, the rotations 
were calculated such that the final calibration dataset of 
this study will be available in the satellite frame as well as 
the Earth-fixed North–East–Center (NEC) frame.

In this work, the measured properties or attributes by 
the satellite are referred to as features, which is a com-
mon term in ML. Features of the dataset used include the 
magnetometer readings, the magnetorquer activations, 
the solar array as well as battery and other available cur-
rents, temperatures, thruster activations, and also the 
available telemetry data of the satellite which includes a 
multitude of properties like status variables, flags, and 
others. They also carry a variety of physical units that are 
not considered further. Overall, there are 975 of the avail-
able 2233 features taken into account for the calibration 
after the application of the following preprocessing steps. 
The final list of used features can be found in the ’feature_
list.csv’ file published together with the dataset. The ML 
approach does not differentiate these features and will 
inherently select the most relevant features for the cali-
bration. The magnetometer readings before the proposed 
calibration originate from the L1b product and have been 
pre-calibrated to a bias below 500nT.

Feature preprocessing
As previously mentioned, a multitude of features is col-
lected to automatically identify relevant features for 
the calibration of the platform magnetometers. The 
more information can be collected and included about 
the satellite as a system, the better the calibration can 
potentially become. Before the ML approach is applied, 
the available data need to be preprocessed. While each 
new line in the data represents a new data record with 
an assigned unique timestamp, each of the columns or 
recorded measurements associated with this timestamp 
are referred to as features of the measurement for the 
rest of the work. In the first step of the analysis, these fea-
tures will be converted, added, or filtered with a variety 
of goals.
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One‑hot encoding
As all available data of the GOCE mission are used, a 
lot of telemetry data are included as well which is partly 
delivered as textual information, e.g., certain states of 
systems being encoded with the literals ’AVAILABLE’ or 
’NOT_AVAILABLE’. As some features have more than 
2 possible literals, a sophisticated method is needed to 
convert this textual information into numerical informa-
tion which is usable by statistical models for the calibra-
tion. For each of the possible literals of a feature available, 
another new feature is generated which encodes a 1 if 
the feature equals this literal and 0 otherwise, this is also 
called one-hot encoding or dummy coding. Thus, if a cer-
tain literal that was recorded in a feature has an influence 
on the calibration, the calibration can utilize the associ-
ated feature. In addition, with this technique every result-
ing new feature has the same euclidean distance contrary 
to assigning number to every different literal available 
within the feature value range.

Removed features
Several features are explicitly not used for the calibration 
to perform well. These include timestamps, magnetic 
local time (MLT), and positional data like the latitude, 
longitude, or radius as these have the potential to encode 
positional information which needs to be avoided to not 
misguide the model calibration. When training against 
the reference model, the objective is not to learn an effi-
cient mapping of position data to reference model val-
ues, but to model the magnetic conditions of the satellite 
system itself under different system activations. For the 
same reason, features like recorded measurements of the 
star trackers are removed as they inherit a potential to 
encode positional information about the satellite.

Additional features
The solar activity, given by the F10.7 index, an 81-day 
moving average of it as well as the day of the year were 
added as additional features (Tapping 2013). These were 
added to correct for potential influences from the angle 
of the satellite towards the sun or dependencies on the 
solar activity. Likewise, the 3-1-3-Euler angles were cal-
culated using the quaternions and added as additional 
features to give the calibration model the possibility to 
adjust for inaccuracies in their estimation.

Missing data
Data gaps occur several times throughout the duration 
of the mission. These gaps are not part of the calibration 
because the data are unavailable. In addition, some posi-
tional data are either missing or measured incorrectly. 
For a minority of the data, there is no information about 
the position of the satellite, these data points have been 

removed. This was especially the case near data gaps 
like in July 2010. Gaps are caused either by missing data 
from the magnetometers or by lack of essential informa-
tion such as position or attitude Also, data where the 
interpolation distance during the data gathering process 
described in Michaelis et al. (2022) was larger than 16 s 
are removed from the calibration process and flagged in 
the error flag ”B_FLAG” as this data is considered simi-
lar to missing data because the data has to be considered 
uncertain.

NaN‑filling
If only small shares of the additional housekeeping data 
are missing, a filling strategy is used to make these data 
usable again. For each feature, the share of missing data 
is calculated. If the share of missing data within a feature 
is smaller than 20% of the available data, the information 
situation is considered to be well enough to take these 
features into account as the features deliver potentially 
beneficial information in at least 80% of the cases which 
constitutes the majority. For these features, the missing 
share is filled up with the mean of the present values. The 
data points are flagged with an introduced ”NaN-Flag” 
which indicates that data have been substituted with 
non-original measurements, 1 indicating that at least one 
feature value has been filled, 0 indicating no manipula-
tion of the data.

Magnetic quiet time filtering
As the satellite is calibrated post-launch, the data need 
to be filtered for calibration to ensure that only the mag-
netic system of the satellite itself is modeled. Therefore, 
natural disturbances need to be removed before cali-
bration, as they shall remain in the calibrated measure-
ments of the satellite. The Kp and Dst indices are good 
indicators for magnetic activity. The data are filtered for 
values of Kp≤ 2 (Matzka et  al. 2021) and Dst≤ 30 (Nose 
et al. 2015) which is considered to contain magnetic quiet 
times without omitting too much data for the training. 
Thus, the calibration shall model the underlying pro-
cess of the satellite. Data filtered out like that is flagged 
with the ”KP_Dst_Flag”, 1 indicating a too high magnetic 
activity, 0 indicating low magnetic activity.

Outlier removal
Despite careful selection of the data and filtering for 
missing positional information as well as magnetic active 
times, some data points deviate strongly from their 
expected value. It is suspected that this behavior origi-
nates in a bad attitude estimation of the satellite but the 
underlying reasons can be manifold. To identify such 
data, the raw measurements of the magnetometers are 
compared to the reference model without any further 
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calibration. The raw data follow the rough pre-calibration 
of the platform magnetometers as used during the mis-
sion. From the remaining residuals, the mean xj is calcu-
lated as well as its standard deviation (STD). Then, it is 
checked whether each data point falls within the range of 
three standard deviations around the mean:

for all data points i and all magnetometer measure-
ments j. This means at least 99.7% of data lies within the 
defined range if the data are Gaussian distributed which 
holds true for the GOCE dataset. If at least one of the 
magnetometer measurements deviates stronger from 
the mean, the whole orbit is considered to be an out-
lier and removed from the training data of the calibra-
tion, because analysis has shown that the whole orbit of 
the satellite behaves unusual when outliers are detected 
within the orbit. In addition, this data is flagged within 
the error flag ”B_Flag” and is part of the published 
dataset.

CHAOS‑7 model
As the reference model for the calibration, the CHAOS-
7.8 model has been used (Finlay et al. 2020). Utilizing a 
variety of magnetic measurements, including ground sta-
tion observations as well as satellite data from current 
and previous high-precision magnetic satellite missions, 
the CHAOS-7 model is able to precisely model the core, 
the lithospheric, and the external field. This reference 
model is especially needed as the platform magnetom-
eters onboard the GOCE satellite mission do not have an 
absolute component, but rather measure the Earth’s mag-
netic field relatively. Thereby, similar to Michaelis et  al. 
(2022) the reference model has been evaluated at each 
position of the satellite and was then rotated into the sat-
ellite frame for calibration purposes.

Machine learning‑based calibration
The proposed method utilizes neural networks (NNs) to 
train a ML-based model for the calibration and charac-
terization of the platform magnetometer measurements. 
In the proposed approach, the calibration and charac-
terization are accomplished in one method and thus 
referred to as calibration in the remainder of this work. 
Contrary to previous work done on the calibration of 
platform magnetometers like for the GRACE, GRACE-
FO, or Cryosat-2 satellites, there are several differences 

(1)with xj =
1

N

N
∑

i=1

xi,j

(2)|xi,j| ≤ |xj| + 3 ∗

√√√√ 1

N − 1

N∑

i=1

(xi,j − xj)2

in the approach used within this work. In the proposed 
approach, the features are not selected manually based 
on experience about their relevance on improving the 
calibration result, rather as much information as possible 
about the satellite as a magnetic system is collected and 
presented to the calibration model which is able to choose 
the relevant features. Also, no interactions between the 
features need to be hand-crafted, e.g., polynomial com-
binations of the magnetometer axes, since the calibration 
method used has inherent non-linear modeling capabili-
ties. Another difference lies in the usage of data from all 
available latitudes, this also includes the high-latitude 
area containing field-aligned currents (FACs).

Utilizing a large number of collected features as 
described in the data preprocessing step, renders linear 
models like linear regression unsuitable as the underly-
ing statistical problem is over-parameterized and thus 
the calibrated model overfits the data. Overfitting means 
that the model performs very well on the seen data, but 
generalizes poorly to unseen data. NNs can overcome 
this problem as the number of neurons is limited and 
thus, the number of used features gets limited. In addi-
tion, the batch-wise learning of the stochastic gradient 
descent algorithm prevents the use of single uncorre-
lated features. However, NNs need a large number of 
data points for the gradient-based approach to converge 
to an optimum, representing a good calibration of the 
magnetometer measurements. This is also referred to as 
training the NN as the weights representing the model 
are adjusted within this process. This is contradictory to 
the slowly deteriorating instruments onboard the satel-
lite system for which many temporally separated mod-
els would be better capable of representing the changing 
behavior of the instruments. Therefore, the approach 
shown in Fig. 1 was developed. After collecting, filtering, 

Fig. 1  Overview of the calibration process
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and preprocessing the data as described in the previous 
section, first a Hyperparameter Optimization (HPO) on 
a randomly selected subset of the dataset is performed to 
determine the NN architecture and training parameters 
(see section below), then a NN model on all available data 
from the life span of the mission from November 2009 
until September 2013 is trained using the found archi-
tecture, representing a global model of the calibration 
of the magnetometers. Afterward, a more fine-granu-
larly trained model is trained for each month individu-
ally based on the global model, this is done with a much 
smaller learning rate when adjusting the weights of the 
NN. By using this approach, there is enough to train a 
global model which was presented with all variations 
of the data’s statistics while still maintaining multiple 
models representing the differences between individual 
months, thus reflecting the change in the instruments 
throughout the duration of the mission. The fact that the 
GOCE mission flies in a sun-fixed orbit with stable MLTs 
supports the training of a global model as no changes in 
the behavior of the parameters are to be expected.

Before starting the training process, the STD of every 
feature as well as the auto-correlation among the fea-
tures have been calculated. Features having an STD of 
0 (depending on the computer precision) have been 
removed, meaning that these contain only constant val-
ues with no additional information for the calibration 
process. In addition, features having a correlation of 1 
(depending on the computer precision) with any other 
feature have been removed as these represent the exact 
same information twice and are thus treated as dupli-
cates of the same feature and removed. The STD-filtering 
removed 442 features, while the following correlation-
filtering removed 780 additional features, as the telem-
etry dataset contains a lot of duplicated information. The 
reduced dataset dimension also helps to reduce the train-
ing time needed for the ML approach. In addition, the 
features are normalized with a min–max normalization 
to an interval of [− 1, 1], which is a technique by which 
the gradients converge to an optimal solution more 
smoothly when training NNs. This also ensures that each 
feature and the variations of the values within the feature 
are weighted equally during the training of the model. 
As mentioned earlier, there are 975 of the 2233 features 
taken into account during the calibration which includes 
the magnetometer measurements, the housekeeping 
data, and the telemetry data. Also, the applied filtering 
methods led to a reduction from about 6.4 million data 
points to about 4.8 million data points.

As mentioned earlier, NNs are not very well able to gen-
eralize to unseen values of features. Therefore, the training 
of the NN cannot be limited to the low- and mid-latitude 
region where the reference model is known to constitute the 

ground truth correctly as there are no magnetic phenomena 
in this region that are not modeled by the CHAOS-7 model. 
On the other hand, in the high-latitude regions the val-
ues measured by the magnetometers lie beyond the inter-
val of previously seen values in the low- and mid-latitude 
regions, thus the NN would not be able to generalize well 
on these. Therefore, the high-latitude region has been taken 
into account for the training of the NN as well. Similar to 
previous work done with the ML-based calibration of the 
GRACE-FO satellite, a weighting was applied for the sam-
ples depending on the quasi-dipole latitude (QDLAT) they 
are originating from and based on the trustability of the ref-
erence model for these QDLATs. The low- and mid-latitude 
region samples have been weighted the highest, while the 
regions from 50◦ to 60◦ QDLAT have been weighted slightly 
lower and the high latitude regions beyond 60◦ QDLAT 
have been weighted the lowest as described in the following. 
The FACs appearing in the high-latitude regions were the 
main motivation for applying this weighting. The weights 
are calculated using the number of samples Si of the three 
zones indexed by i in a relationship maintaining manner so 
that they must satisfy the following equation:

Because this system of equations is undersatisfied 
with three weights, an additional ratio is given, set at 
1 : 1

4
: 1
160

 , based on a rough estimate on the influence of 
FACs in the areas, so that samples from the second zone 
are weighted 1

4
 compared to the first zone, and samples 

from the third zone are weighted 1
160

 compared to the first 
zone. The reference model is mostly accurate for these 
regions as well, still, the samples containing FACs shall 
not be included with full weight as that would imply the 
model to calibrate these alongside the magnetometer cal-
ibration to meet the constraints imposed by the reference 
model, effectively setting the nulling of FACs as the goal 
of the modeling process. Thus, the final weights for the 
whole training dataset were set to about 1.68, 0.42, and 
0.01 for the weights w1 , w2 , and w3 , respectively. When 
calculated for each month separately, they vary slightly 
from these values. The applied gradient generally is the 
result of the loss function that sums the equally weighted 
losses of batches, so only reducing the weights would 
lead to smaller gradients. A proportionally equally large 
gradient is achieved through rescaling of the weights.

Machine learning approach
Feed-forward NNs are general function approximators 
that are trained using the stochastic gradient descent 
algorithm (Hornik et al. 1989). This means that NNs can 
approximate any given function given enough complexity 

(3)w1 ∗ S1 + w2 ∗ S2 + w3 ∗ S3 = S1 + S2 + S3.
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of the NN. The calibration of platform magnetometers 
can also be formulated as a function

where x corresponds to our input including the 9 meas-
urements of the 3 magnetometers as well as the pre-
viously processed housekeeping and telemetry data, f 
corresponds to the NN as the calibration function on our 
inputs, and ŷ corresponds to the calibrated measurement 
by the platform magnetometers for the given input x. The 
function, or NN, is then trained using the mean squared 
error (MSE) which is the squared error between the pre-
dicted output ŷ and the expected output derived from the 
CHAOS-7 reference model y:

Utilizing this error ǫ , the gradients to adjust the weights 
of the NN are calculated and backpropagated through 
the different layers of the NN, thus optimizing for a low 
residual between the prediction of the calibration func-
tion and the expected output, reassembling a good cali-
bration function. As there exists only one definitive 
position of the satellite for each measurement, there 
exists only one evaluation of the reference model for a 
given measurement. Therefore, the calibration function 
treats all three magnetometers as the input and outputs 
only one calibrated measurement. A detailed introduc-
tion to how NNs work can be found in Appendix A.

In addition, a lot of configurations for the training of 
the NN can be altered. For calculating the gradients dur-
ing the training, a batch of data points is considered and 
a gradient for the whole batch is calculated for proceed-
ing, the size of this batch is referred to as the batch size. 
The rate at which the calculated gradient is taken into 
account to adjust the weights of the NN is called the 
learning rate. While training the NN a step-decaying 
learning rate function has been chosen which reduces the 
learning rate after certain training progress. Also, there 
are a variety of activation functions to choose from as 
well as an arbitrary number of possible NN architectures, 
resulting from the number of neurons and layers used. 
Therefore, the architecture, as well as the configuration 
of the training parameters, needs to be explored which is 
done in the HPO.

Hyperparameter optimization
For the HPO, a variety of training and architecture con-
figurations have been stochastically tested using the 
Bayesian Optimization algorithm (Snoek et  al. 2012). 
The Bayesian Optimization algorithm is a Gaussian pro-
cess that evaluates the trained NN with a certain param-
eterization and thus models the parametrization space 

(4)f (x) = ŷ,

(5)ǫ = (y− ŷ)2.

connected with the target function as a Gaussian pro-
cess. The search for an optimal set of parameters is then 
guided towards parameterizations of the NN which lead 
to an optimum of the target function, the smallest cali-
bration residual, respectively. For the HPO, a variety of 
parameters and parameter ranges have been investigated, 
including the number and sizes of neuron layers within 
the NN architecture, the kind of activation functions 
used, the batch size, the number of training epochs, the 
learning rate, and the parametrization of the step-decay-
ing learning rate function.

Since the model must be evaluated for each para-
metrization tried, a randomly chosen subset of the mis-
sion data, representing about 16% of the whole data 
or roughly 750000 data points, has been chosen for the 
HPO. This was mainly done because of performance rea-
son as it reduces the training time of each evaluation, but 
still represents enough data for the NN to converge to an 
optimum and the data to reflect well the distribution of 
the entire data set. In addition, this HPO data are divided 
into two parts, 80% or about 600000 data points of the 
HPO data being used for the training while 20% of the 
HPO data are being used to test the trained NN. This is 
a common technique in ML since 80% of the HPO data 
is a good representation of the distribution of the data 
and enough data points for training the ML model while 
the remaining 20% of the HPO data are still a significant 
part of the data to test whether the model also performs 
well on unseen data. The error values of the trained NN 
will be compared between the training and test dataset to 
detect possible overfitting as well as the performance of 
the model. The score of the evaluation is then set to the 
MSE of the test part of the dataset.

The HPO resulted in the following parametrization of 
the NN: The learning rate was set to 0.01, the batch size 
to 1500, the number of epochs to 1200, the activation 
function as the Exponential Linear Unit (ELU) (Clevert 
et al. 2015), and the decaying function halving the learn-
ing rate every 90 epochs.

For the architecture of the NN, similar results have 
been suggested with a triangular-shaped architecture, 
consisting of a large first layer, a medium-sized sec-
ond layer, and the output layer consisting of 3 neurons. 
Analysis has shown that with increasing layer sizes, the 
residual becomes smaller, but the further improvement 
was caused by reduced FAC amplitudes. Hence, a trade-
off between a large architecture for a small residual and 
a small architecture that retains the FACs had to be 
found. Therefore, as a compromise, the architecture was 
set to consist of the first layer with 384 neurons, the sec-
ond layer with 128, followed by the output layer with 3 
neurons.
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Fine‑tuning and timeshift analysis
After using the found parametrization for the architec-
ture and training of the NN, the global model was trained 
on all available data of the mission. Again, a split of 80% 
of the about 4.8 million data points for the training and 
20% of the data points for testing has been used. Similar 
to before, this is a common step in ML to evaluate the 
model’s quality by evaluating the model on unseen test 
data. In a second step, this global model was fine-tuned 
with the monthly data of the different months using fol-
lowing NN parameters: 200 epochs and a small learning 
rate of 0.00001, allowing only for small specific adjust-
ments. Thus, a different calibration is found for each 
month which is derived from the same initial global 
calibration.

In addition to the fine-tuning of the model parameters, 
a possible time shift in parts of the data has been searched 
for, similar to the time shift found in the analytical cali-
bration of the platform magnetometer of the GRACE-
FO or GOCE mission (Stolle et al. 2021a; Michaelis et al. 
2022). Therefore, in parallel to the fine-tuning of the 
global model, for every month the interpolation neuron 
presented by Styp-Rekowski et al. (2021) has been used to 
search for a possible time shift. This interpolation neuron 
automatically finds a time shift which reduces the over-
all residual of the calibration. The results were averaged 
over all months and are presented in Table 1. The overall 
mean absolute error (MAE) which is defined as the aver-
age absolute residual over all samples as well as the MSE 
defined as the squared residual over all samples are very 
close when comparing the training and test scores which 
is a good sign of the model fitting the data distribution 
well. For the magnetometers, a mean shift of −0.51s, and 
for the magnetorquers, a mean shift of −3.61s have been 
found. But, the STD for both shifts found is very high, 
with 1.79s and 2.45s, respectively, rendering these time 
shifts very inconsistent across all months. As the time 
shifts cannot consistently be found during the fine-tun-
ing of independent monthly data, they are considered to 
represent local minima, and thus they are not incorpo-
rated into the final solution, leaving the data as is. Also, 
the time shift of 0.4 s as found by Michaelis et al. (2022) 
has been evaluated with no observable improvements.

Final architecture
To sum up, the final approach uses the parametrization 
found in the HPO and applies no time shift. The carefully 
preprocessed data are thus input into the NN with 3 lay-
ers of 384 neurons, 128, and 3 neurons as shown in Fig. 2. 
As depicted in Fig. 1, the data are first collected, filtered, 
and preprocessed to then train the global model for 1200 
epochs as described in the HPO chapter. Finally, the 
model is fine-tuned month-wise without applying a time 
shift with a lower learning rate of 0.0001 for 200 epochs. 
These trained monthly models are then used to generate 
the calibrated dataset of the platform magnetometers of 
the GOCE satellite.

Results and discussion
After producing the calibrated dataset, the resulting 
measurements of the Earth’s magnetic field have been 
analyzed. First, the remaining residual of the calibrated 
data compared to a global magnetic field model is evalu-
ated, followed by different magnetic phenomena like the 
FACs and magnetic storm behavior. Finally, the calibrated 
data have been used to support the modeling of the mag-
netic field of the Earth.

Residual to reference model
Table  2 shows the residuals of the calibrated dataset 
against the reference model CHAOS-7. Unless otherwise 

Table 1  Summarized residual and offset data over all available months for low- and mid-latitudes. Errors and standard deviation given 
in nT, while the offsets for the magnetometers (MAG) and magnetorquers (MTQ) are given in seconds

MAE MSE StdDev MAG MTQ

Train Test Train Test Train Test

Mean 13.42 13.55 854.95 882.26 28.32 28.57 − 0.51 − 3.61

Standard Dev. 3.57 3.71 464.58 552.58 7.34 8.20 1.79 2.45

Fig. 2  Neural network architecture, with the inputs on the left side, 
two hidden layers (HL) and the 3-dimensional output standing for the 
3-axis calibrated measurement
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Table 2  Error values in nT after fine-tuning training of the neural network for every month, on the left for the whole latitude region, on 
the right for low- and mid-latitudes

Month 90-QDLAT 50-QDLAT

MAE STD MAE STD

Train | Test Train | Test

200911 8.98 | 8.89 20.08 | 19.40 4.63 5.81

200912 8.88 | 8.85 19.31 | 19.07 4.61 5.78

201001 9.96 | 9.94 22.29 | 22.27 4.68 5.94

201002 10.48 | 10.38 23.50 | 23.72 4.67 6.08

201003 11.12 | 11.11 24.29 | 24.47 5.37 10.10

201004 12.05 | 12.21 26.51 | 26.75 5.37 6.88

201005 16.38 | 16.60 33.34 | 34.56 8.38 10.36

201006 17.14 | 16.93 35.20 | 34.08 8.54 10.50

201007 20.01 | 20.67 39.74 | 41.52 9.62 13.17

201009 9.94 | 10.53 20.53 | 22.34 5.56 9.60

201010 10.45 | 10.44 23.38 | 23.02 5.00 6.37

201011 10.52 | 10.45 23.24 | 22.84 4.86 6.15

201012 10.36 | 10.45 22.86 | 23.16 4.87 6.14

201101 11.02 | 10.97 24.16 | 23.76 5.38 9.95

201102 10.91 | 10.99 24.38 | 25.60 4.95 6.24

201103 10.96 | 10.99 25.20 | 25.24 4.85 6.14

201104 12.76 | 12.80 29.19 | 29.39 5.54 7.12

201105 15.58 | 15.37 34.06 | 33.09 7.04 8.90

201106 19.29 | 19.22 40.96 | 40.99 9.12 11.12

201107 18.70 | 19.09 40.11 | 41.03 8.74 10.71

201109 11.05 | 10.92 23.64 | 22.72 5.20 6.73

201110 10.82 | 11.02 23.34 | 23.78 5.15 6.63

201111 13.15 | 12.86 29.03 | 28.23 6.41 9.16

201112 11.35 | 11.41 24.51 | 24.87 5.75 7.49

201201 13.66 | 13.67 30.82 | 31.41 5.73 7.38

201202 11.66 | 11.54 25.82 | 25.59 5.09 6.46

201203 14.09 | 14.03 32.18 | 31.75 5.30 6.78

201204 14.35 | 14.45 33.20 | 33.20 5.48 7.07

201205 17.27 | 17.44 37.74 | 38.03 7.69 9.68

201206 18.38 | 18.21 39.55 | 38.63 9.24 11.57

201207 21.84 | 22.38 49.22 | 49.70 10.85 15.88

201208 15.88 | 16.09 36.26 | 36.56 6.22 8.00

201209 12.52 | 12.57 28.39 | 28.27 5.68 7.95

201210 11.29 | 11.13 24.42 | 23.38 5.48 7.09

201211 11.98 | 11.98 26.56 | 26.80 5.51 7.49

201212 11.50 | 11.57 26.13 | 26.00 5.42 6.91

201301 10.72 | 10.92 22.81 | 23.40 5.49 7.14

201302 24.03 | 23.90 53.19 | 52.30 14.99 43.09

201303 10.87 | 10.85 23.34 | 23.26 5.29 6.84

201304 12.47 | 12.43 27.60 | 27.10 5.68 7.29

201305 18.18 | 18.67 39.63 | 40.27 8.09 11.03

201306 18.69 | 18.82 39.99 | 39.49 9.20 11.33

201307 18.74 | 18.90 40.56 | 40.99 8.73 10.88

201308 15.16 | 15.67 35.63 | 37.21 6.01 8.71

201309 11.97 | 11.78 26.19 | 25.13 5.70 7.51
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noted the residuals to the CHAOS-7 predictions of core, 
lithosphere and large-scale magnetospheric field are 
considered in the following sections. Each row shows 
the average residual for every month with the same 
data selection as described in the previous chapter. The 
left side shows the training results for the whole lati-
tude range of the Earth, while the right side shows the 
low- and mid-latitudes between the 50◦ QDLAT. The 
residual is given in mean absolute error (MAE), mean 
squared error (MSE), and STD. As mentioned earlier, 
for the training the data have been randomly split into 
80% of the data representing the training data, and the 
remaining 20% representing the test data. For the train-
ing results on the left side, the residual is always given for 
the training and test data.

It can be seen that the generalization error, mean-
ing the gap between the training and test dataset is very 
small, indicating that the model performs similarly on 
unseen data. This means that the model was able to adapt 
to the statistics of the data in a way that holds true for 
unseen data. Naturally, it can be observed that the resid-
ual for the low- and mid-latitudes is smaller than for the 
whole latitude range as the highly fluctuating FACs are 
measured by the satellite in this range while not being 
included in the reference model, thus resulting in a 
higher error. For the low- and mid-latitude, a consistent 
residual of below 10 nT can be observed which enables 
scientific studies. A trend is visible, that around June sol-
stice, in the months of May, June, and July the residuals 
with a range of 8-10 nT seem to be higher than for the 
majority of the other months with 4-6 nT, which seems 
to be related to a higher STD and will be discussed later. 
The February of 2013 appears to be an outlier.

Residual maps
In Fig.  3, the residuals of the calibrated platform mag-
netometer measurements against the CHAOS-7 ref-
erence model are plotted as a function of latitude and 
longitude for the North, East and Center B-field compo-
nents on global maps. The data shown are annual aver-
ages for 2012, which have been determined by averaging 
all data from 2012 in bins of 4 ◦ latitude by 4 ◦ longitude. 
The averages have been assigned a color according to the 
scale in the bottom right, plotted as a contour plot.

It can be seen that the calibration performs well, espe-
cially in low- and mid-latitudes where grey is the domi-
nating color, meaning that the mean remaining residual is 
close to 0. In high latitudes, the shapes of the high residu-
als clearly resemble the known patterns of FACs, which 
are not included in the reference model, thus indicating 
that this signal remains in the calibrated satellite meas-
urements as desired. In the Center component, there 
is an anomaly visible along the magnetic equator. This 

remaining residual is rather small in amplitude and is 
suspected to be of artificial origin, as it was also observed 
in the calibration of the platform magnetometers of 
GRACE-FO and Cryosat-2, which use the same type 
of instrument. For the GOCE satellite, Michaelis et  al. 
(2022) found the same anomaly which remained visible 
although a multitude of features have been used with the 
proposed approach.

Comparison of orbit residual
In Figures 4, 5 and 6 the residual of the calibration against 
the reference model CHAOS-7 is plotted as a function 
of the QDLAT. Each figure shows exemplary either the 
ascending or descending orbits of one axis of the plat-
form magnetometer measurements for the whole year of 
2012, separated by months starting on top with January 
to December on the bottom. Each drawn line represents 
the calibrated values of one corresponding half-orbit 
within that month, while the mean measured value for 
every QDLAT is depicted in black. It can be seen that 
the calibration performs especially well in the low- and 
mid-latitude region while in the high-latitude regions the 
remaining higher residuals mainly are due to the FACs 
that are not modeled in the CHAOS-7 model but meas-
ured by the satellite. For the southern hemisphere, it can 
be observed that the FACs are being correlated with fea-
tures by the NN model as they are lower in amplitude and 
in their mean value than expected. Currently, it is subject 
of further research to detect the features which were used 
by the NN model to correct for the FACs as this occurs 
only in the southern hemisphere.

The higher STD in the northern hemisphere summer 
months is evident in a larger spread of individual orbit 
residuals (colored areas in the plots) for the June sol-
stice in the months of May, June, and July, present in 
all three components and both orbital directions, sup-
porting the assumption that the measurements contain 
higher noise as there is no systematic pattern detect-
able. The origin of the higher deviation is unknown. 
Although the complete set of housekeeping and telem-
etry data was used in the calibration process, that gives 
a multitude of information about the satellite system, 
there was no feature able to correct this remaining 
error. Thus this is subject to further investigation. 
Overall, the calibration works well as the residual is 
generally low as well as the STD, visible as the colored 
areas in the figures.

The remaining, artificial residual around the mag-
netic equator in the Center component mentioned 
above is found here too in both the ascending and 
descending orbits, and with a sinusoidal shape around 
the zero crossing of this magnetic component. For the 
East component, there is an increasing trend visible 
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around the equatorial region where the variation of 
the residual increases, especially for the descending 
orbits. This increased variation has been observed to 
increase throughout the duration of the mission from 
2009 until 2013. It is suspected to be correlated to the 
solar cycle which had its minimum in December 2008 
and then increased up to its maximum in April 2014.

Comparison of analytical and ML method
The calibrated dataset presented in this study is com-
pared to the analytically calibrated dataset from Michae-
lis et  al. (2022), in the following referred to as the Ana 
approach. Therefore, the Common Data Format (CDF) 
product files have been utilized to compare the residuals 
as well as differences between the calibrations. In addi-
tion, the proposed dataset was used to similarly compare 
against a magnetic storm event.

Residual distribution
First, the residual distribution of the ML approach with 
the CHAOS-7 reference model is compared to the resid-
ual distribution of the Ana approach with the CHAOS-7 
reference model in Fig. 7, this was done on the Decem-
ber 2009 data that represent the most magnetically 
quiet month. The three panels show the North, East and 

Center component residuals of the Ana distribution in 
blue and the residuals of the ML distribution in orange. 
It can be seen that all distributions approximately follow 
a Gaussian distribution curve where the ML approach 
has a smaller standard deviation, manifesting in a steeper 
Gaussian distribution. This is especially the case for the 
North and East component where the lower overall resid-
ual of the ML approach appears to originate. The Center 
component looks very similar in both approaches. In 
addition, all distributions are centered near zero. For the 
East component there appears to be a small shift to the 
left which is suspected to be originated in the different 
treatment of the FACs in the southern hemisphere when 
comparing both approaches.

Figure 8 shows the difference between the ML and Ana 
calibration as a function of the calibrated measurements 
of the Ana approach, separated for the three North, 
East, and Center components, again for the most mag-
netically quiet December 2009, please note the differ-
ent scales. The two calibrations mainly differ in the FAC 
regions that lie in the high-latitude regions, this means 
up to a value of 10000nT for the North component, the 
whole value range for the East component, and below 
about -40000nT and above about 40000nT for the Center 
component. We note that the difference is larger in the 

Fig. 3  Binned and averaged residual map between the calibrated platform magnetometers and the CHAOS-7 reference model for the year 2012 in 
the NEC Frame, North component in top left, East in top right, Center in bottom left. The color scale for all panels is given in the bottom right, and 
saturation of color is achieved beyond -10 or 10 nT, respectively. Residuals are low while FAC structures remain visible
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southern hemisphere (negative Center component), 
which is related to underestimation of FAC amplitudes in 
the ML method in this hemisphere described above that 
is currently under investigation. In addition, the regres-
sion curves show that there is no systematic difference in 
dependence of the value ranges between the two calibra-
tions as the slope of the function is approximately zero. 
The shift indicates a difference between the two calibra-
tions that lies mostly in the bit resolution of the measure-
ment, which is about 3.05nT, being defined by the the last 
bit of the magnetometer measurement.

Comparison to Dst index
Figure 9 shows a magnetic storm in March 2013 as char-
acterized by the Dst index that is obtained from the data 
of four low latitude ground magnetic observatories (Nose 

et  al. 2015). The deviation of the horizontal component 
dBH of the calibrated measurements from the CHAOS-7 
core and lithospheric field model is plotted in orange and 
blue for the ascending and descending orbits, respec-
tively. As the GOCE satellite flies in dusk–dawn orbits, 
the ascending measurements correspond to an MLT of 
about 18 while the descending measurements correspond 
to an MLT of about 6. It can be seen that the measured 
power follows very well the Dst index, thus showing the 
capability of the GOCE satellite to measure magnetic 
storm events. In addition, the ascending measurements 
are deviating stronger from the origin and the Dst index 
which is an expected phenomenon for the dusk side 
measurements, also known as the dawn–dusk asymme-
try described by Anderson et al. (Anderson et al. 2005). 
The dusk side of the magnetic field is showing stronger 

Fig. 4  Residual between the calibrated platform magnetometers and the CHAOS-7 reference model as a function of the quasi-dipole latitude 
(QDLAT) for every month of the year 2012 of the North component of the calibrated measurement in nT. The orbits are split into the ascending 
dusk-orbits on the left, and the descending dawn-orbits on the right, with the mean residual depicted in black
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deviations during a magnetic storm. Similar behavior 
was observed for other storms during the lifetime of the 
GOCE mission. Similar results were obtained by Michae-
lis et al. (2022), confirming the quality of the calibration 
obtained, with even clearer separation by dusk and dawn.

Lithospheric field analysis
With an altitude of about 255km, the GOCE satellite has 
a rather low altitude compared to other magnetic satel-
lite missions. Therefore, an analysis of the measured lith-
ospheric field has been conducted.

As the data have a timely resolution of 16 s, the 
whole mission period has been taken into account for 
extracting the lithospheric field. The lithospheric field 
is known to not change within a time frame of about 
4 years. Thébault et  al  (2021) recently proposed a 

high-resolution lithospheric field model which is 
depicted in the middle panel of Fig.  10. The top panel 
shows the lithospheric field as given by the ML-cal-
ibrated measurements of the GOCE satellite, after 
subtraction of the CHAOS-7 core and large-scale mag-
netospheric field. In general, a good agreement can be 
seen between the measured data of the GOCE satel-
lite and the lithospheric field model. Anomalies like 
the Bangui in Africa, or the Kursk anomaly in Rus-
sia are detectable, as well as the striped ocean bot-
tom structures in the Atlantic. The third panel shows 
the difference between the high-resolution model and 
the reconstructed lithospheric field from the GOCE 
measurements which, despite the small scale, shows 
nearly no saturation and has pale colors. This suggests 
that by incorporating GOCE data into lithospheric 

Fig. 5  Residual between the calibrated platform magnetometers and the CHAOS-7 reference model as a function of the quasi-dipole latitude 
(QDLAT) for every month of the year 2012 of the East component of the calibrated measurement in nT. The orbits are split into the ascending 
dusk-orbits on the left, and the descending dawn-orbits on the right, with the mean residual depicted in black

59



Page 14 of 23Styp‑Rekowski et al. Earth, Planets and Space          (2022) 74:138 

field models, there is a potential improvement due to 
the additional amount of data points, filling the gap 
between CHAMP and Swarm.

Comparison to CHAMP
As the CHAMP mission ended in September 2010, there 
is a period of time during which both satellite missions 
flew simultaneously. Therefore, conjunctions have been 
calculated where the two missions have been close to 
each other to compare the retrieved measurements.

Figure  11 shows the found conjunctions between the 
23rd of January 2010 and the 5th of February 2010. Dur-
ing this interval, the two satellite missions have been 
co-rotating and the magnetic environment was quiet as 
indicated by the first panel. The distance between the two 

missions was below 1000km and the relevant QDLATs 
are shown in the 3rd panel, the dawn and dusk orbit 
measurements are depicted in red and blue, respectively. 
The three bottom panels show the residual between the 
measurement of the GOCE and the CHAMP satellite for 
the three components of the magnetic field in the NEC 
frame. Most data points have an absolute difference of 
less than 20nT, while there is no systematic difference 
apparent.

Table 3 puts the results of the conjunctions in perspec-
tive. For the three components, the total count of meas-
urements during the conjunction is shown, separately for 
the dawn and dusk orbit. The number of data points that 
lie above or below the 10nT mark is given in the fourth 
and fifth column. It can be seen that overall 80% of the 

Fig. 6  Residual between the calibrated platform magnetometers and the CHAOS-7 reference model as a function of the quasi-dipole latitude 
(QDLAT) for every month of the year 2012 of the Center component of the calibrated measurement in nT. The orbits are split into the ascending 
dusk-orbits on the left, and the descending dawn-orbits on the right, with the mean residual depicted in black
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Fig. 7  Residual distribution comparison of the analytical (blue) and ML (orange) based calibrations compared to the CHAOS7 reference model for 
the December 2009 within a histogram plot with bin sizes of 1nT for the magnetic North (top), East (middle) and Center (bottom) component

Fig. 8  Difference between ML and Ana calibrations as a function of the calibrated measured magnetic flux density by the analytical approach for 
the December of 2009 for the North (top), East (middle) and Center (bottom) component. The regression curves are given in red. Please note the 
different scales of the y-axis

61



Page 16 of 23Styp‑Rekowski et al. Earth, Planets and Space          (2022) 74:138 

measurements during the conjunction have a low resid-
ual compared with the CHAMP mission, although this 
varies depending on the component. This is an encour-
aging result as this result was achieved using a platform 
magnetometer.

Impact analysis
An interpretation analysis of the NN and the impact of 
the features has been conducted. Therefore, SHapley 
Additive exPlanations (SHAP) (Lundberg and Lee 2017) 
have been used. This method is able to compute the 

Fig. 9  Magnetic storm in March 2013 indicated by Dst index. The variations of the residual values of the calibrated GOCE platform magnetometer 
to the CHAOS-7 core and lithospheric field for the ascending, dBH,ASC (blue) and descending, dBH,DESC (orange) orbits follow the index line well, with 
some known offsets

Fig. 10  Lithospheric field residual of GOCE data after subtraction of CHAOS-7 core and large-scale magnetospheric field components (top) and 
high-resolution lithospheric field model calculated from Thébault et al  (2021) (middle). The bottom panel shows the difference between GOCE 
lithospheric field data and the high-resolution lithospheric model
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contributions of each feature to the prediction of the NN. 
To achieve this, December 2009 is chosen as the exam-
ple because it is the most magnetically quiet month. 600 
data points are used to compute a mean prediction which 
is used as the background by the SHAP method. These 
data points are determined as 600 centroids of K-Means 
clustering, so a good representation of the monthly data 
is achieved. This step defines the mean predictions of 

the NN, which is needed so that the SHAP method can 
calculate the contributions of the different features to 
deviations from this mean expected result. In a second 
step, 600 randomly chosen data points and their predic-
tion have been compared multiple times with the aver-
age result. For each data point, this step is repeated many 
times with masking some features absent, thus an esti-
mate about the contribution of each feature can be given. 
As the calibration was done in satellite frame, this analy-
sis has also been conducted in satellite frame.

Figure  12 shows the top 40 features used by the ML 
algorithm, sorted depending on their impact or contri-
bution on the final prediction for the calibrated value. 
The list of features was split in two parts, depending 
on the scale of their contribution, please note the dif-
ferent scales. The most important feature can be found 
on the top left, while the 40th most important feature 
can be found in the bottom right. The order is based 
on the average impact on the model output, which 
consists of the added contributions to the X, Y, and Z 
components, depicted in different colors. The ESA pro-
vides an online sheet containing the feature abbrevia-
tions and their descriptions (ESA 2019). On the left, the 
magnetometer measurements can be found, e.g., the 
first three features are the Z-component of the three 

Fig. 11  Conjunctions for co-rotating GOCE and CHAMP satellites for the period of 2010-01-22 to 2010-02-05 are shown. The first panel shows the 
geomagnetic environment, indicators Kp and Dst show the geomagnetic quiet time. The second panel shows the MLT with descending dawn 
orbits in red and ascending dusk orbits in blue given by quasi-dipole latitude (QDLAT) in the 4th panel. The 3rd panel shows the distance between 
the GOCE and CHAMP satellites. The three bottom panels show residuals for GOCE with respect to the CHAOS7 reference model subtracted by 
residuals for CHAMP with respect to the CHAOS7 model for the North, East and Center components from top to bottom in nT

Table 3  Statistics of conjunction between the GOCE and 
CHAMP satellites corresponding to Fig.  11. The columns show 
different statistics for the dawn and dusk orbits for each NEC 
component for the residual between the satellites for distances 
within 1000 km, QDLAT <60◦ and split for below and above a 
residual of 10 nT

Component Orbit Total 
count

Count 
>=

10nT

Count 
< 10nT

Percentage 
< 10nT

North Dawn 155 52 103 66.45

North Dusk 148 41 107 72.30

East Dawn 155 25 130 83.87

East Dusk 148 20 128 86.49

Center Dawn 155 24 131 84.52

Center Dusk 148 23 125 84.46

63



Page 18 of 23Styp‑Rekowski et al. Earth, Planets and Space          (2022) 74:138 

different magnetometers, which are accompanied by the 
same features found in the Telemetry data, AMT00104 
to AMT00304. This confirms the assumption that the 
magnetometers have the largest influence on the mag-
netometer calibration. On the right, the most important 
housekeeping or telemetry features can be seen which 
are: temperatures (THT), Xenon Tank Heaters (XST), 
one Euler angle, some currents (PHD), and the magne-
torquers (ATT). These are interesting findings as these 
generally correspond to the expectations for the cali-
bration of platform magnetometers as used in the ana-
lytical method, but were found automatically by the ML 
approach. There are some differences in which features 
exactly are relevant when comparing both approaches, 
e.g., the Xenon Tank Heaters or different temperatures 
which were not used in the analytical approach. These 
have not been searched for manually in the previ-
ous analytical approach and show the ability of the ML 
approach to discover relevant features.

Integration and improvement in Kalmag model
To evaluate the dataset in the context of geomagnetic 
field modeling, it was assimilated by the Kalman filter 
algorithm used to build the Kalmag model (Baerenzung 
et al. 2020). This model is composed of 7 sources, a core 
field, a lithospheric field, an induced/residual ionospheric 
field, a remote, a close, and a fluctuating magnetospheric 
field, and a source associated with FACs. Each source is 
expanded in spherical harmonics and their dynamical 
evolution is controlled by scale-dependent autoregressive 
processes. For more detail about the Kalman filter algo-
rithm and the spatiotemporal characterization of the dif-
ferent sources see Baerenzung et al. (2020).

The Kalmag model spanning the last 22 years was con-
structed through the assimilation of CHAMP, Swarm, 
and secular variation data derived from ground-based 
observatory measurements. It therefore is subject to 
the lack of observations taken by low orbiting satel-
lites between 2010.7 and 2013.9. This new GOCE data-
set could therefore have a great potential to fill this data 
gap. In order to evaluate this potential, three models 
were built, two including GOCE data and one without. 
The first model, referred as model C, is the one par-
tially serving the construction of Kalmag. It spans the 
[2000.5; 2014.0] time period and is derived from CHAMP 
and observatory secular variation data. Its solution in 

2009.8 was considered as a prior information for the 
second model (model G), which was built through the 
assimilation of GOCE and secular variation observations. 
The last model, namely model GL, is similar to model G 
except that the mean lithospheric field was a priori set to 
zero and its prior covariance initialized. Its purpose is to 
evaluate how the lithospheric field can be recovered from 
GOCE data alone. All comparisons between the different 
models are performed for 2014.0.

The results of this evaluation for the internal field, i.e., 
the sum of the core and the lithospheric field, and for the 
secular variation, are presented in terms of energy spec-
tra at the Earth’s surface in 2014.0 in Fig. 13. Spectra of 
the mean (solid lines), the standard deviation (dashed 
lines) and the difference with the Kalmag mean model 
(circles) are displayed for model G with thick lines and 
for model C with thin lines. For the main field (left panel), 
the spectra associated with mean solutions cannot be dis-
tinguished between the two models. This is not the case 
for the spectra of the difference with Kalmag. The mean 
solution of model G is globally closer to the Kalmag solu-
tion than the mean solution of model C. Since Kalmag is 
more accurate than both model G and C, due to the fact 
that it also derives from Swarm data taken before and 
after 2014.0, this result demonstrates that the assimila-
tion of GOCE data helps to better resolve the main field. 
However, predicted uncertainties of model G, given by 
the spectra of the standard deviation, are slightly under-
estimated when compared to effective errors, as approxi-
mated by the spectra of the difference with Kalmag. This 
is an indication that some source contributing to the 
observations is not perfectly modeled. Ionospheric cur-
rents, which are still generating some magnetic signal at 
dawn and dusk (the orbit of the satellite), might be this 
source since the Kalman filter algorithm was not cali-
brated to account for them.

The impact of GOCE data to recover the secular varia-
tion is clearly positive as it can be observed on the right 
panel of Fig. 13. Not only the spatial resolution of model 
G is higher, but its level of error is globally lower than for 
model C. Furthermore, predicted and effective errors are 
consistent with one another. Contrary to the main field, 
no signal is apparently contaminating the secular varia-
tion. Note that performing the same analysis at previous 
epochs leads to similar results.

Fig. 12  The figure shows the top 40 features used by the ML algorithm, sorted by their average impact on the final prediction for the calibrated 
value, as was calculated by the SHAP method. This was evaluated for the X, Y, and Z components of the measurements in the satellite frame where 
each feature’s contribution consists of the contribution to each component, distinguished by color. Note the different scale of the features on the 
left and right

(See figure on next page.)
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Fig. 12  (See legend on previous page.)
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The signal associated with the lithospheric field can 
also be well extracted from the dataset as illustrated in 
Fig. 14. Comparisons between the downward component 
of the field at the Earth’s surface for model GL (top) and 
for model C (bottom) highlight their proximity. Most 
structures which can be recovered with CHAMP data are 
present within the GL solution. However, as for the core 
field, predicted uncertainties are also slightly underesti-
mated (not shown).

Through this evaluation one can conclude that such 
a dataset is useful for the geomagnetic modeling com-
munity to cope with the lack of observations between 
the CHAMP and Swarm eras. Nevertheless, efforts in 
modeling the dayside ionospheric field are likely to be 
required in order to take full advantage of these new 
measurements.

Conclusion
To sum up, we could show that the ML-based calibration 
of the platform magnetometers onboard the GOCE mis-
sion yields promising results. With careful data collection 
and selection, as well as sophisticated data preprocessing 
it is possible to significantly reduce the remaining residual 
of the platform magnetometer measurements compared 
to the reference model CHAOS-7. Our evaluation has 
shown that on average a residual of 6.47nT for low- and 
mid-latitudes could be achieved which leads to a dataset 
that can help in studying the Earth’s magnetic field. Some 
potential applications were shown like measurements of 
the lithospheric field, as well as additional information 
during geomagnetic storms. During a conjunction with 
the CHAMP satellite, it could be shown that the achieved 
calibration is in good agreement with other magnetic 

measurements. Finally, the enhancement of an existing 
magnetic field model could be shown for the time span of 
the gap of high-precision magnetic missions between 2010 
and 2013. With the ML approach we are able to provide a 
calibration which is easily applicable to other satellite mis-
sions with some knowledge about the underlying Data Sci-
ence techniques, whereas the previous analytical approach 
needs deep Domain knowledge to be applied. In the future, 
we hope that the provided dataset can support geoscien-
tists by offering additional data to better cover the mag-
netic field in time, altitude, position, and MLT. The data of 
this study are published on the ISDC-Server of the GFZ at 
(Styp-Rekowski et  al. 2022) ftp://​isdcf​tp.​gfz-​potsd​am.​de/​
platm​ag/​MAGNE​TIC_​FIELD/​GOCE/​ML/​v0204/ under 
the version 0204. In the future, the used features of the cali-
bration as well as the correlation between features and the 
southpolar electrojet will be analyzed to investigate how to 
improve the calibration further.

Appendix A: Neural network introduction
A feed-forward neural network (NN) consists of multiple 
neurons where each neuron’s output y is defined as follows:

where x1 to xn are different features of a data point which 
get multiplied by their respective weight w1 to wn , with a 
bias b being added finally. The sum of these products is 
then fed into an activation function a which is explained 
in the next paragraph. NNs consist of many such neurons 
which will be assigned different weights. Multiple neu-
rons in parallel, which means that they work on the same 
input x1 to xn , are called a layer of neurons. These layers 

y = a(w1 ∗ x1 + w2 ∗ x2 + w3 ∗ x3 + · · · + wn ∗ xn + b)
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Fig. 13  Main field (left) and secular variation (right) energy spectra at the Earth’s surface in 2014.0. Spectra of the mean (solid lines), standard 
deviation (dashed lines) and difference with the Kalmag model (circles) for model G (thick lines and symbols) and model C (thin lines and symbols)
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of neurons can also be stacked, meaning another layer 
takes the outputs y1 to ym of the first layer as the inputs 
for the neurons in the next layer. Each neuron of a layer 
can also be seen as a feature, as it is a new combination of 
the inputs that acts like a machine-crafted feature.

The initial formula is very similar to a linear regres-
sion formula and by stacking these neurons there would 
be no non-linearity added to the system, which would 
limit its expressiveness in the kind of processes it could 
explain. Therefore, the sum of the products is fed into 
the non-linear activation function. There are many acti-
vation functions available, that act in different ways, one 
of these is the Rectified Linear Unit (RELU) (Nair and 
Hinton 2010), defined as follows:

f (x) = max(0, x)

Negative values become 0, while positive neuron calcula-
tions will get forwarded into the next layer. This enhances 
the expressiveness of the NN and gives the ability to 
model non-linearity. The Exponential Linear Unit (ELU) 
(Clevert et al. 2015) used in this work has a similar func-
tion shape like the RELU but overcomes some shortcom-
ings. Normally, all intermediate layers, also called hidden 
layers, before the final output layer use activation func-
tions in their output. For the final output layer, this is 
oftentimes not done as a linear combination of the previ-
ous layer is desired.

The construct of number of neurons and number of 
layers, as well as the last layer of neurons which con-
stitutes the output is then called the NN or the model. 
In the beginning, all the weights within this system are 
initialized randomly. For the model to represent the 

Fig. 14  Downward component of the lithospheric field at the Earth’s surface expanded up to spherical harmonics degree ℓ = 100 . Top: model GL 
derived from GOCE data alone. Bottom: model C derived from CHAMP data
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desired function, e.g., mapping the satellite data input 
to the calibrated measurement, the weights need to be 
adjusted in a meaningful way, this is called the train-
ing of the NN. Contrary to algorithms like the least 
squares approach, NNs are trained with the backprop-
agation algorithm (Rumelhart et  al. 1986). Therefore, 
each available data point in the training dataset is for-
warded through the NN and the current result of this 
calculation is compared to the expected result for this 
data point which is also called the ground truth or the 
reference model. This error is then used as the gradi-
ent to adjust the weights and backpropagated through 
the NN to adjust the weights in the different layers in 
such a way that the prediction would come closer to 
the expected result if the calculation was repeated. 
To speed this process up and not rely on single data 
points, this error is calculated on groups of data 
points, also called a batch, for which one common gra-
dient is calculated and then an adjustment to the net-
work is made. The amount of adjustment towards the 
calculated gradient can be controlled with the learning 
rate, which normally lies in the interval of [0,1] and is 
multiplied with the calculated gradients before they 
are applied to the weights. One iteration through all 
batches of available data points and adjustments to the 
NN is called an epoch. The NN will be trained for mul-
tiple epochs and there are optimizers like the Adam 
optimizer (Kingma and Ba 2014) speeding up the pro-
cess by modifying the gradients with historic informa-
tion. After this training process, the weights of the NN 
do not change anymore and it is assumed that the NN 
represents the statistics of the data. Afterward, it can 
be used to perform predictions on similar data as it 
was trained with.

Abbreviations
CHAMP: CHAllenging Minisatellite Payload; ELU: Exponential linear unit; FAC: 
Field-aligned currents; GOCE: Gravity and steady-state Ocean Circulation 
Explorer; GRACE: Gravity Recovery And Climate Experiment; GRACE-FO: Gravity 
Recovery And Climate Experiment Follow-On; HPO: Hyperparameter optimiza‑
tion; MAE: Mean absolute error; ML: Machine learning; MLT: Magnetic Local 
Time; MSE: Mean squared error; NEC: North–East–Center frame; NN: Neural 
network; QDLAT: Quasi-dipole latitude; STD: Standard deviation.

Acknowledgements
We thank Jan Rauberg for his help in interpreting and evaluating the results. 
We also thank the Geomagnetic World Data Centre Kyoto for the Dst index, 
and the Astrophysical Observatory and Natural Resources Canada for the 
F10.7 index.

Author Contributions
KS preprocessed and calibrated the data, and wrote the manuscript. KS, 
IM, and CS designed the study. JB integrated the data. KS, IM, CS, MK, and 
OK evaluated and reviewed the results of the study. All authors read and 
approved the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work 
is supported through HEIBRIDS - Helmholtz Einstein International Berlin 
Research School in Data Science under contract no. HIDSS-0001. This study 
has been partly supported by Swarm DISC activities funded by ESA under 
contract no. 4000109587/13/I-NB.

Availability of data and materials
The datasets generated and analyzed during the current study are available 
under (Styp-Rekowski et al. 2022) ftp://​isdcf​tp.​gfz-​potsd​am.​de/​platm​ag/​
MAGNE​TIC_​FIELD/​GOCE/​ML/​v0204/.

Declarations

Competing interests
The authors declare that they have no competing interests.

Author details
1 Distributed and Operating Systems, Technical University of Berlin, Ernst‑Reu‑
ter‑Platz 7, 10587 Berlin, Germany. 2 GFZ German Research Centre for Geo‑
sciences, Helmholtz Centre Potsdam, Telegrafenberg, 14473 Potsdam, Ger‑
many. 3 Leibniz Institute of Atmospheric Physics at the University of Rostock, 
Schloßstraße 6, 18225 Kühlungsborn, Germany. 

Received: 6 May 2022   Accepted: 24 August 2022

References
Alken P, Olsen N, Finlay CC (2020) Co-estimation of geomagnetic field and 

in-orbit fluxgate magnetometer calibration parameters. Earth, Planets 
and Space 72:1–32. https://​doi.​org/​10.​1186/​s40623-​020-​01163-9

Anderson B, Ohtani S-I, Korth H, Ukhorskiy A (2005) Storm time dawn-dusk 
asymmetry of the large-scale Birkeland currents. J Geo Res, 110(A12), 
A12220. https://​doi.​org/​10.​1029/​2005J​A0112​46

Baerenzung J, Holschneider M, Wicht J, Lesur V, Sanchez S (2020) The 
Kalmag model as a candidate for IGRF-13. Earth Planets Space 72:1–13

Billingsley Billingsley TFM100S Magnetometer. Billingsley Aerospace 
Defense. https://​magne​tomet​er.​com/​wp-​conte​nt/​uploa​ds/​TFM10​0S-​
Spec-​Sheet-​Febru​ary-​2008.​pdf

Clevert D-A, Unterthiner T, Hochreiter S (2015) Fast and accurate deep 
network learning by exponential linear units (elus). arXiv preprint arXiv:​
1511.​07289

Drinkwater M, Floberghagen R, Haagmans R, Muzi D, Popescu A (2003) VII: 
closing session: GOCE: ESA’s first earth explorer core mission. Space Sci 
Rev 108:419–432

European Space Agency (2019) GOCE telemetry data collection. Version 1.0. 
GOCE telemetry packets description. https://​doi.​org/​10.​5270/​esa-​7nc8p​
jp

Finlay CC, Kloss C, Olsen N, Hammer MD, Tøffner-Clausen L, Grayver A, Kuvs‑
hinov A (2020) The CHAOS-7 geomagnetic field model and observed 
changes in the South Atlantic Anomaly. Earth Planets Space 72:156. 
https://​doi.​org/​10.​1186/​s40623-​020-​01252-9

Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, 
Piñeiro J, Da Costa A (2011) Mission design, operation and exploitation 
of the gravity field and steady-state ocean circulation explorer mission. J 
Geo 85:749–758. https://​doi.​org/​10.​1007/​s00190-​011-​0498-3

Hornik K, Stinchcombe M, White H (1989) Multilayer feedforward networks are 
universal approximators. Neu Net 2:359–366

Kingma DP, Ba J (2014) Adam: a method for stochastic optimization. arXiv 
preprint arXiv:​1412.​6980

Lundberg SM, Lee S-I (2017) A unified approach to interpreting model predic‑
tions. Adv in Neu Inf Pro Sys 30:4765-4774

Matzka J, Bronkalla O, Tornow K, Elger K, Stolle C (2021) Geomagnetic Kp index. 
GFZ GRCG. https://​doi.​org/​10.​5880/​Kp.​0001

68



Page 23 of 23Styp‑Rekowski et al. Earth, Planets and Space          (2022) 74:138 	

Michaelis I, Styp-Rekowski K, Rauberg J, Stolle C, Korte M (2022) Preprint) 
Geomagnetic data from the GOCE satellite mission. ESpace Science Open 
Archive. https://​doi.​org/​10.​1002/​essoar.​10511​006.1

Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann 
machines. In: Proceedings of the 27th international conference on 
international conference on machine learning. Omnipress, Haifa, Israel, 
pp 807-814

Nose M, Sugiura M, Kamei T, Iyemori T, Koyama Y (2015) Dst Index. WDC for 
Geomagnetism, Kyoto. https://​doi.​org/​10.​17593/​14515-​74000

Olsen N (2021) Magnetometer data from the GRACE satellite duo. Earth 
Planets Space 73:1–20

Olsen N, Albini G, Bouffard J, Parrinello T, Tøffner-Clausen L (2020) Magnetic 
observations from CryoSat-2: calibration and processing of satellite 
platform magnetometer data. Earth Planets Space 72:1–18

Olsen N, Friis-Christensen E, Floberghagen R, Alken P, Beggan CD, Chulliat A, 
Doornbos E, Da Encarnação JT, Hamilton B, Hulot G, Van Den Ijssel J, Kuvs‑
hinov A, Lesur V, Lühr H, Macmillan S, Maus S, Noja M, Olsen PEH, Park 
J, Plank G, Püthe C, Rauberg J, Ritter P, Rother M, Sabaka TJ, Schachtsch‑
neider R, Sirol O, Stolle C, Thébault E, Thomson AWP, Tøffner-Clausen L, 
Velímský J, Vigneron P, Visser PN (2013) The Swarm satellite constellation 
application and research facility (SCARF) and Swarm data products. Earth 
Planets Space 65:1189–1200. https://​doi.​org/​10.​5047/​eps.​2013.​07.​001

Olsen N, Stolle C (2012) Satellite geomagnetism. Ann Rev of Ear and Pla Sci 
40:441–465

Reigber C, Lühr H, Schwintzer P (2002) CHAMP mission status. Adv in Spa Res 
30:129–134

Rumelhart DE, Hinton GE, Williams RJ (1986) Learning representations by back-
propagating errors. Nature 323:533–536

Snoek J, Larochelle H, Adams RP (2012) Practical bayesian optimization of 
machine learning algorithms. Adv in Neu Inf Proc Sys 25:2951-2959

Stolle C, Michaelis I, Xiong C, Rother M, Usbeck T, Yamazaki Y, Rauberg J, Styp-
Rekowski K (2021) Observing Earth’s magnetic environment with the 
GRACE-FO mission. Earth Planets Space 73:84–104. https://​doi.​org/​10.​
1186/​s40623-​021-​01364-w

Stolle C, Olsen N, Anderson B, Doornbos E, Kuvshinov A (2021) Special issue 
“characterization of the geomagnetic field and its dynamic environment 
using data from space-based magnetometers’’. Earth Planets Space 
73:51–54. https://​doi.​org/​10.​1186/​s40623-​021-​01409-0

Styp-Rekowski K, Stolle C, Michaelis I, Kao O (2021) Calibration of the GRACE-
FO Satellite Platform Magnetometers and Co-Estimation of Intrinsic Time 
Shift in Data. In: 2021 IEEE International conference on Big Data (Big 
Data). IEEE, pp 5283-5290. https://​doi.​org/​10.​1109/​BigDa​ta525​89.​2021.​
96719​77

Styp-Rekowski K, Michaelis I, Stolle C, Baerenzung J, Korte M, Kao O (2022) 
GOCE ML-calibrated magnetic field data. V. 0204. GFZ Data Services. 
https://​doi.​org/​10.​5880/​GFZ.2.​3.​2022.​002

Tapping K (2013) The 10.7 cm solar radio flux (F10. 7). Space Weather 
11:394–406

Thébault E, Hulot G, Langlais B, Vigneron P (2021) A spherical harmonic model 
of Earth’s lithospheric magnetic field up to degree 1050. Geo Res Let 
48:e2021GL095147. https://​doi.​org/​10.​1029/​2021G​L0951​47

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

69



manuscript submitted to JGR: Machine Learning and Computation

Physics-informed Neural Networks for the
Improvement of Platform Magnetometer Measurements

Kevin Styp-Rekowski1,2,3, Ingo Michaelis2, Monika Korte2, Claudia Stolle4

1Technical University of Berlin, Berlin, Germany
2GFZ Germany Research Center for Geosciences, Potsdam, Germany

3University of Rostock, Rostock, Germany
4Leibniz Institute for Atmospheric Physics at the University of Rostock, Kühlungsborn, Germany
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Abstract
Space-based measurements of the Earth’s magnetic field with a good spatiotemporal cov-
erage are needed to understand the complex system of our surrounding geomagnetic field.
High-precision magnetic field satellite missions form the backbone for research, but they
are limited in their coverage. Many satellites carry so-called platform magnetometers that
are part of their attitude and orbit control systems. These can be re-calibrated by con-
sidering different behaviors of the satellite system, hence reducing their relatively high
initial noise originating from their rough calibration. These platform magnetometer data
obtained from non-dedicated satellite missions complement the high-precision data by
additional coverage in space, time, and magnetic local times. In this work, we present
an extension to our previous Machine Learning approach for the automatic in-situ cal-
ibration of platform magnetometers. We introduce a new physics-informed layer incor-
porating the Biot-Savart formula for dipoles that can efficiently correct artificial distur-
bances due to electric current-induced magnetic fields evoked by the satellite itself. We
demonstrate how magnetic dipoles can be co-estimated in a neural network for the cal-
ibration of platform magnetometers and thus enhance the Machine Learning-based ap-
proach to follow known physical principles. Here we describe the derivation and assess-
ment of re-calibrated datasets for two satellite missions, GOCE and GRACE-FO, which
are made publicly available. We achieved a mean residual of about 7 nT and 4 nT for
low- and mid-latitudes, respectively.

Plain Language Summary

This study revolves around enhancing our understanding of Earth’s magnetic field
by leveraging satellite data. While certain satellites provide highly detailed magnetic field
information, their coverage is limited in geographical and temporal scope. Many satel-
lites carry basic magnetic sensors as part of their control systems, but these sensors are
initially rather inaccurate. We developed a computational method that combines ma-
chine learning and physics to refine these sensor readings. Our approach specifically ad-
dresses and corrects errors stemming from the satellite’s own magnetic interference. We
applied and tested this method on data from two specific satellites, namely GOCE and
GRACE-FO. The improved magnetic field data resulting from our method is made pub-
licly accessible, offering a more accurate and reliable dataset for researchers studying Earth’s
magnetic field.

1 Introduction

Platform magnetometers, commonly installed on various satellites in low Earth or-
bit, offer a promising means to expand the spatial and temporal coverage of Earth’s mag-
netic field measurements from space. However, these instruments, initially not dedicated
for geoscience applications, require calibration to ensure the scientific accuracy and us-
ability of the collected data. To achieve this, gathering information about the satellite
is essential to correct for artificial disturbances caused by other payload systems and other
influencing properties associated with the satellite.

To quantify the Earth’s magnetic field, several high-precision satellite missions have
been operated. From 1999 to 2004, magnetic field data from the Ørsted mission (Neubert
et al., 2001) are available. From 2000 to 2010, the CHAMP (Reigber et al., 2002) satel-
lite mission was in orbit, followed by a gap from 2010 to 2013 where no high-precision
mission measured the magnetic field. Since 2013, the Swarm constellation (Friis-Christensen
et al., 2006; Olsen et al., 2013) provides again high-precision measurements. Recently,
there have been ongoing efforts to complement the high-precision missions with addi-
tional data from non-high-precision or platform magnetometers with an analytical ap-
proach to the calibration. In this way, data from the GRACE, CryoSat-2, DMSP, GRACE-
FO, Swarm-Echo, AMPERE, and GOCE missions have been calibrated and made pub-
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licly available (Olsen, 2021; Olsen et al., 2020; Alken et al., 2020; Broadfoot et al., 2022;
Anderson et al., 2000; Stolle, Michaelis, et al., 2021; Michaelis et al., 2022). Although
having slightly higher noise these data complement dedicated magnetic field mission data
well for understanding the Earth’s magnetic field variations. They enlarge the spatiotem-
poral distribution, e.g., providing enhanced coverage of the altitudes or local times of mea-
sured phenomena mainly of magnetospheric or ionospheric origin. Section 2 provides a
brief overview of the geomagnetic field. Subsequent work has shown the analytical po-
tential of these additional data (e.g., Stolle, Olsen, et al. (2021); Xiong et al. (2021); Park
et al. (2020)).

In earlier works, we demonstrated the effectiveness of Machine Learning-based meth-
ods for the calibration of platform magnetometers (Styp-Rekowski et al., 2021, 2022b;
Bader et al., 2022). Leveraging Machine Learning (ML) techniques, we can adapt the
magnetometer signal to compensate for artificial disturbances originating from the pay-
load of the satellite. Our proposed non-linear regression approach automates the iden-
tification of relevant features and their interactions, broadening the range of inputs that
can be utilized. This reduces the analytical work required for the calibration of platform
magnetometers, resulting in faster, more precise, and easily accessible magnetic datasets
derived from non-dedicated satellite missions. These calibrated datasets are made pub-
licly available, promoting broader scientific access and utilization (Styp-Rekowski et al.,
2022a, 2023).

In this work, we propose an extension for the known approach by incorporating the
physical Biot-Savart law into a neural network (NN), which results in a physics-informed
neural network (PINN). This improves the modeling and correction of the impact of elec-
tric current-induced artificial magnetic fields on the satellite’s magnetic measurements,
as the PINN is more constrained to follow first-principle physical laws. In addition, the
B-field estimates of the Average Magnetic field and Polar current System (AMPS) model
(Laundal et al., 2018) are combined with the B-field estimates of the CHAOS-7 model
(Finlay et al., 2020), improving the reference model of the calibration, especially for the
polar regions. This extended approach is applied to the GOCE (Floberghagen et al., 2011;
Drinkwater et al., 2003) and GRACE-FO (Kornfeld et al., 2019) satellite missions and
their respective measurements. In the future, the proposed approach can be applied to
a wider variety of satellites to improve the accuracy of their platform magnetometer mea-
surements. We hope to enable other satellite operators to calibrate their magnetic in-
struments, improve the quality of their data, and make additional data available to the
scientific community.

In classic, on-ground calibration, a Helmholtz cage is used to determine the response
of the magnetic field instrument to different applied magnetic fields considering differ-
ent satellite states and the response of the instrument under calibration (Friis-Christensen
et al., 2006). Recently, Springmann et al. (2010) described the satellite noise signals by
dipoles, in terms of location, orientation, and strength, by employing multiple magne-
tometers in a research facility on-ground and a least-squares minimization. In this work,
we present an approach to determine a similar estimation of dipoles in-flight for single
magnetometers on board a satellite through data assimilation. Due to the availability
of a large set of electric current strengths and measured magnetic fields, the dipoles are
estimated as part of a larger optimization problem. The satellites in this study carry their
magnetometers at a single position, which makes the localization more inaccurate. How-
ever, this configuration offers the advantage of a large amount of data, encompassing var-
ious activation strengths. Consequently, numerous data points linking electric currents
with their induced magnetic fields are available for analysis.

Physics-informed neural networks (PINN) represent a powerful combination of tra-
ditional physics-based modeling and ML-based techniques (Cuomo et al., 2022). These
networks are designed to incorporate physical principles into their architecture, allow-
ing them to leverage data-driven insights and fundamental laws of physics. This inno-
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vative method has been applied in numerous fields, from fluid dynamics and materials
science to geophysics and beyond, making it a promising tool for complex physical sys-
tems (Yuan et al., 2020).

We evaluate our approach on multiple levels: First, a residual analysis comparing
the calibration quality to our reference model is conducted, followed by a feasibility study
assessing the ability of the trained PINN models to calibrate out-of-sample data of sub-
sequent months. This shows how the calibration could be adapted for a near real-time
application. We also show how disturbance sources can be extracted and analyzed uti-
lizing the proposed physics-informed approach, followed by an analysis of magnetic phe-
nomena, namely field-aligned currents (FAC) and magnetic storms, using the calibrated
magnetometer data.

The remainder of the paper is structured as follows. First, Section 2 gives an in-
troduction to Earth’s magnetic field, followed by Section 3 with an overview of the data
used within the presented methodology. Section 4 introduces the proposed approach, pre-
senting the improvements to the ML-based calibration. The results of the proposed ap-
proach are described in Section 5, while section 6 summarizes our findings.

2 Background

This chapter provides a brief overview of Earth’s magnetic field including its sources,
structure, and phenomena.

The geomagnetic field originates from Earth’s molten, electrically conducting outer
core, primarily composed of iron and nickel (Lowrie, 2023). The heat in the core drives
electric currents through thermal convection, and influenced by the rotation of the Earth,
results in the geodynamo mechanism. At Earth’s surface, this self-sustaining process es-
tablishes a dipole-dominated magnetic field. The field surrounding Earth is further af-
fected by external sources in the ionosphere, magnetosphere, and solar wind (Prölss, 2012).

Interactions between Earth’s magnetic field and the interplanetary magnetic field
(IMF), which is carried along with the solar wind, lead to various geomagnetic phenom-
ena, such as the formation of the magnetosphere the magnetospheric ring current, and
field-aligned currents (FACs) in polar regions, while the charged particles of the upper
atmosphere in the presence of the magnetic field form ionospheric currents, such as the
electrojet at the equator and the solar quiet daily magnetic variation (Sq), (Olsen & Stolle,
2012). Geomagnetic indices like the Kp (Matzka et al., 2021), Dst (Sugiura, 1964), or
Hp30-indices (Yamazaki et al., 2022) are indicators of the magnetic activity of these in-
teractions manifested as short-lived disturbances (of minutes to days) of the geomagnetic
field.

Various data including ground-based observatories, air and marine magnetic cam-
paigns, and space-based measurements contribute to empirical modeling of Earth’s mag-
netic field and its variations. While ground observatories offer continuous long-term ob-
servations, satellites provide global coverage, including remote areas and oceans. High-
precision data from missions like Ørsted, CHAMP, and Swarm have largely improved
geomagnetic field models. An overview on current capabilities to describe the geomag-
netic field are given in Stolle et al. (2017, and references therein).

3 Data

The newly derived calibration method we propose is applied to two satellite mis-
sions, namely the GOCE mission (from 2009 to 2013) and the GRACE-FO mission (from
2018 and ongoing).
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3.1 Satellite Data

The data collection process is very similar to previous works by Styp-Rekowski et
al. (2022b) for the GOCE satellite and by Styp-Rekowski et al. (2021) for the GRACE-
FO satellite duo. To summarize, all available data for the satellites are used, which means
any publicly available measurements taken onboard the satellites. Therefore, an inter-
polation onto common timestamps is needed, which was set to be the timestamps of the
position and attitude determination of the satellites. There has already been extensive
preprocessing of features in the form of One-hot encoding for textual features, removal
of non-informative features, addition of external features, scaling of the features to an
interval of [−1, 1], automatic filling of missing values, removal of outliers, and magnetic
quiet time filtering. For more details, please refer to the previous publications.

The GOCE mission has been completed in 2013. Therefore, we have a completed
dataset with no new measurements. It sums up to about 6.4 million data points with
984 features used within our calibration model. For the GRACE-FO mission, data have
been collected since June 2018 at a rate of 1Hz for the magnetic measurements. Together
with this publication, the datasets until July 2023 will be published, which means about
162 million data points with about 71 features.

The previous data collection process has been partly changed and extended. For
both satellite missions, the magnetic quiet time filtering based on the Kp (Matzka et al.,
2021) and Dst (Sugiura, 1964) indices has been replaced by a new filtering based on the
Hp30 (Yamazaki et al., 2022) and Dst indices. The increased resolution of a 30-minute
resolution, as compared to the previous 3-hour resolution, provides enhanced control over
the selection of filtered data points. As the Hp30 has been set up to contain the same
magnitudes as the Kp index, filtering for data points with Hp30 ≤ 2 has been applied.
The Dst-based filtering was changed to utilize the rate of change with |d(Dst)/dt| < 4nT/hr
to filter the data points.

In addition, previous data have been flagged if the magnetorquer control currents
were applied at their maximum value, which was interpreted as the satellite being out
of attitude. This has been extended to mark the whole time span of such occurrences
in what is described as a center-of-mass calibration maneuver, steering the magnetor-
quers with the maximum and minimum control currents alternatingly (Cossavella et al.,
2022). Such identified data is ignored during the training but added in the final calibrated
dataset with a corresponding flag.

In preparation for the PINN, it is necessary to identify the features that represent
electric currents onboard the satellite. For the GOCE satellite, these features have been
determined using a publicly available feature description list, which specifies the phys-
ical units of the measurements, such as ’A’ and ’mA’. In the case of the GRACE-FO satel-
lite mission, features were identified based on their names, specifically by including the
keyword ”current” in their names. These features are subsequently standardized to a com-
mon unit of Ampère and undergo no additional scaling during the feature preprocess-
ing stage.

3.2 Reference Model

As a reference model for the calibration, the CHAOS-7.15 model has been used,
which is based on ground observatories as well as space-based measurements of the mag-
netic field, e.g., from nearly ten years worth of Swarm data (Finlay et al., 2020). The
model has been evaluated at each satellite position to be calibrated and then rotated into
the satellite frame. This reference model will be combined with the AMPS model by com-
bining their respective B-field estimates into the finally used combined reference model.
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Laundal et al. (2018) introduced the AMPS model that describes the large-scale
structure of the current system in the polar regions, also known as FACs. The model is
based on several space weather parameters that are needed as input and can be used to
calculate the present magnetic field at a certain position and time, whereby the mag-
netic field is based only on these external phenomena that are not part of the CHAOS-
7 model. Thus, this model is well-suited to be used in conjunction with the CHAOS-7
model to enhance the quality of the used reference model. Recently, Kloss et al. (2023)
have presented a similar idea to co-estimate the core field with the ionospheric field while
creating models of the geomagnetic field, effectively combining the AMPS with the CHAOS-
7 model during the creation of a new model. Here, we combine the AMPS and CHAOS-
7 model by combining the magnetic field estimates.

For the introduction of the AMPS model, additional space weather properties are
needed for its parametrization. Therefore, By, Bz of the interplanetary magnetic field
(IMF), solar wind speed Vsw, the solar flux index F10.7, and the dipole tilt angle of the
Earth tilt have been added to the set of features that are only used for calculating the
reference model values.

Here, 1-min data available for the space weather parameters, provided by the Na-
tional Aeronautics and Space Administration (NASA)(Papitashvili & King, 2020), have
been used where missing data are interpolated as the gaps are small and changes are ex-
pected continuously. As recommended by Laundal et al. (2018), the space weather pa-
rameters are smoothed with a rolling 20-minute window mean before input into the AMPS
model. In addition, as the model is parameterized for the polar regions, only values pole-
wards of 40◦ quasi-dipole latitude (QDLat) have been used, otherwise set to 0. Within
the published datasets, the magnetic fields of the AMPS model are provided separately
from the CHAOS-7 data so the calibrated data can be investigated with either of the ref-
erence models. For the combination of the CHAOS-7 and the AMPS model, the eval-
uated B field estimates are added and subsequently used as the reference model.

A larger error of the calibration results is expected at high latitudes than at mid
and low latitudes due to increased ionospheric disturbances. The discrepancy can be partly
mitigated since

the AMPS model contains the mean large-scale structures, whereas the satellite like-
wise measures large-scale and small-scale features of the FACs. Thus, the inclusion of
the AMPS model improves the calibration process as the values provided by the com-
bined model cover the mean variation at high latitudes.

4 Physics-informed Calibration

Traditionally, platform magnetometer data have received a careful calibration where
features were preselected and new features created based on the experience of the do-
main expert (Olsen et al., 2020; Michaelis et al., 2022). These calibrations are well com-
prehensible and are excellent in extrapolation or generalization tasks. Similar approaches
have been applied to a variety of satellites, either calibrating the instrument directly or
co-estimating the instrument calibration with a model calculation (Alken et al., 2020).
Recently, a calibration utilizing ML tools has been proposed with several advantages,
like the possibility to use all available measurements on the satellite as the ML approach
can select the relevant features for the calibration itself (Styp-Rekowski et al., 2021). In
addition, non-linear interactions between measurements and the reference model are au-
tomatically found, thus yielding the possibility for an advanced calibration achieving lower
remaining noise in the produced dataset.
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4.1 Methods and Concepts

As presented in Styp-Rekowski et al. (2022b), there have been shortcomings in the
ML approach. First, the calibration underestimates the FACs in the calibrated datasets,
rendering the datasets less valuable for studying geomagnetic phenomena in high-latitude
regions. Second, the previous ML model is only analyzable by techniques like Shapley
Additive Explanations (SHAP) (Lundberg & Lee, 2017), allowing a view into the inner
workings of a black box. In addition, the generalizability of the previous models, e.g.,
when studying month-to-month models, could be improved. Within this work, we pro-
pose an extended approach to tackle these shortcomings.

The modeling of FAC in high-latitude regions has been found to be associated with
the distinct characteristics of the specific satellite mission’s orbit, i.e., GOCE. The com-
bination of the sun-synchronous polar orbit and magnetic local times (MLT) of about
6 and 18 LT for the descending and ascending orbit, respectively, the tilt angle of the
Earth towards the sun, and the Earth’s rotation in combination lead to the phenomenon
of the satellite flying through a larger area of shade around the south pole for the pe-
riod around June solstice. The spatially limited shading of the satellite leads to a cer-
tain uniqueness of the housekeeping parameters in this area. On the other hand, the FACs
also appear in this area and are not part of the CHAOS-7 reference model. This fact leads
to the previously purely statistically driven NN to correlate the unique property of the
housekeeping data with the unique signal property of the FACs in this region, thus op-
timizing for this correlation, which means that the housekeeping data are ’misused’ to
correct for the FAC signals present in the measured data.

Therefore, two extensive further developments of the previous approach have been
developed to tackle this problem. First, as described in Section 3.2, the AMPS model
by Laundal et al. (2018) is incorporated into our reference model, allowing us to include
the average large-scale features of the FAC regions in our calibration for a better cali-
bration result. Secondly, we will incorporate known laws from physics into the NN op-
timization, ensuring that the calibration will be physically more correct instead of purely
statistics-driven.

4.2 Physics-informed Component

One main contributor to the artificial disturbances relevant to the calibration of
platform magnetometers is known to be electric currents flowing within the electronics
system of a satellite. The disturbance mainly originates in the induced magnetic fields
caused by a flowing electric current, which influences the measurements of the magne-
tometers.

For this well-known phenomenon, the Biot-Savart Law gives a 3-dimensional rep-
resentation of Ampère’s Law. As the magnetometer measurements originate from a 3d
fluxgate magnetometer, the Biot-Savart law is the best fit to describe these processes in
the satellite that couple the electric currents with induced disturbances in the form of
magnetic fields. In a closed and compact system like a satellite, every circuit should be
considered and modeled as closed. Therefore, the search focuses on approximations for
dipoles of planar magnetic field-inducing coils. The Biot-Savart law for magnetic dipoles
is given in its vector form in Equation (1),

−→
B (−→r ,−→m) =

µ0

4π

(

3r̂(r̂ ∗ −→m)−−→m
|−→r |3

)

(1)

with µ0 as the permeability of free space,

µ0 = 4π10−7 V s

Am
(2)
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−→r as the position at which the magnetic field is calculated, r̂ as the unit vector in the
direction of −→r as defined by

r̂ =
−→r
|−→r | (3)

and the magnetic dipole moment −→m, used in a similar way like by Springmann et al. (2010)
and defined by Jackson (1999). The magnetic dipole moment −→m, as defined in Equation (4),

−→m = IN−→a (4)

is the product of the electric current I, the area orthogonal vector −→a which is perpen-
dicular to the inner area of the coil and has the magnitude of the area itself, and the num-
ber of coil windings N . When substituting Equation (3) into Equation (1) and some re-
formatting, we arrive at our finally used formula in Equation (5).

−→
B (−→r ,−→m) =

µ0

4π

(

3−→r (−→m ∗ −→r )
|−→r |5 −

−→m
|−→r |3

)

(5)

This formula gives the induced magnetic field of a magnetic dipole generated by
a coil. There are some assumptions when using this formula to approximate the dipoles
of inducing electric currents within the satellite system. The main assumption is that
the complex induced magnetic fields onboard the satellite system are expected to be ap-
proximated by one dipole per sub-system. For this simple form of the equation, the cen-
ter of the coil is set to be at the origin while the position of the induced magnetic field
is calculated at the position −→r , which in our case corresponds to the position of the mag-
netometer relative to the center of the coil. As in the calibration scenario of the satel-
lites, the only given parameter in this equation is the electric current I, which is part
of the housekeeping datasets delivered together with the magnetometer data by the satel-
lite operators, the 3-dimensional position −→r and the area vector −→a as well as the coil
windings parameter N need to be estimated by the optimization function. This will be
done separately for every available electric current in the housekeeping data. We omit
the winding parameter N in our estimation and set it to 1, with the goal of fewer pa-
rameters to estimate. If a coil has more than one winding, the optimization would di-
rectly factor this property into the area vector since it acts as a factor for the dipole mo-
ment term. In addition, another assumption is to use the permeability of free space, which
is a good estimator within a satellite system.

Figure 1. BiSa (Biot-Savart) layer with the electric current I as the input, learnable parame-

ters −→r and −→a and the correction for the induced magnetic field.

For the satellite calibration within a PINN, this means that the input to the Biot-
Savart layer is the electric current of a particular subsystem of the satellite, as can be
seen in Figure 1 which shows the Biot-Savart layer schematically. This means that for
every electric current present in the data, a separate Biot-Savart layer is instantiated with
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random vectors −→r and −→a . After calculating the result of Equation (5), which corresponds
to the induced magnetic field, the field is inverted to correct for the artificial disturbance
introduced by the electric current being present. During the gradient-based optimiza-
tion of the PINN, the learnable parameters −→r and −→a will be changed to match the mea-
sured behavior of the satellite as a system. If an electric current present in our dataset
is not relevant for the measurements of the magnetometer at hand, the −→a will become
very small, and the position of the coil −→r will become very large relative to the mag-
netometer, thus neglecting the influence of this electric current.

This means that the calibration becomes physically more constrained as the pro-
ducing source for the induced magnetic fields is restricted to follow the Biot-Savart law.
In a feed-forward neural network, an arbitrary non-linear function with no constraints
would estimate the induced magnetic field of an electric current. With the PINN method-
ology, this function is limited to follow the Biot-Savart law, e.g., a non-present electric
current of 0A cannot induce any magnetic field.

1

2

837

836

… …

Input

…

Interp. HL(384) HL(128) Output

BiSa

BiSa147

1 -1

-1

Electric 
Currents

PIC Interm.
Output

……

Figure 2. Architecture of the PINN calibration model for the GOCE satellite: In yellow is the

time shift interpolation, in green is the FFNN, in blue is the PIC, and in red is the 3-dimensional

output. The final architecture was found through a hyperparameter optimization.

Figure 2 shows an illustration of the architecture of the calibration model for the
GOCE satellite. The architecture for the GRACE-FO is similar, with different dimen-
sions for the input. The number and size of the hidden layers were determined with a
hyperparameter optimization. The electric currents identified within the feature set are
excluded from the feed-forward neural network (FFNN), illustrated in green, and instead
form the new physics-informed component (PIC), shown in blue. Within the PIC, the
electric currents are translated into induced magnetic fields by the BiSa neurons and then
inverted to be corrected within the last concatenation step. Finally, the 3-dimensional
output layer, representing the X-, Y-, and Z-axes, illustrated in red, combines the inter-
mediate outputs from the FFNN and the PIC and thus generates the final PINN cal-
ibration model.

During the network training, the gradient of the model predictions is compared to
our reference model, from which the weights and biases of the network are adjusted ac-
cording to the gradient. For the PINN, this means that the location, encoded in −→r , and
the magnetic moment, encoded in −→a , are adjusted by translating the magnetic field-related
gradient into a position-related gradient, effectively adapting the relative position to fit
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the data. In addition, the learned parameters −→r and −→a are accessible in the trained model,
giving the possibility for further analysis, as will be shown in Section 5.

With the GOCE mission providing data at 16s intervals and the GRACE-FO mis-
sion providing data at 1s intervals, the model training needs to be structured. There-
fore, for the GOCE mission, a global model spanning the whole mission duration (2009
to 2013), and for the GRACE-FO mission, yearly models as defined by the calendar are
trained. This ensures good coverage of different behaviors within the satellite as a sys-
tem while, on the other hand, not exceeding computational limits in terms of memory
and computation time. Afterward, the global or yearly models, respectively, are trained
on a per-month basis with a much lower learning rate of 1∗10−5. Monthly data ensure
enough data points for this finetuning step while enabling the models to adjust for small
perturbations in the calibration over time. In addition, L1-regularization has been added
with a regularization parameter of 1∗10−3 (Ng, 2004). This penalizes high weights dur-
ing the training of the neural network and makes it more sparse to focus on the impor-
tant input features.

5 Evaluation

The proposed approach is evaluated on two satellite missions, namely the GOCE
and GRACE-FO satellite missions, consisting of one and two satellites, respectively. The
following subchapters show different aspects of our evaluation for either one or both mis-
sions. As different housekeeping data are available, the utilized model for the two satel-
lite missions looks slightly different. For the GOCE satellite, as seen in Figure 2, 837 of
the total 984 features are input features into the FFNN part of the PINN, while 147 fea-
tures represent electric currents onboard the satellite and are fed into the PIC of the PINN.
For the GRACE-FO satellite, there are nine features representing currents that are fed
into the PIC of the PINN, while the other features are used in the FFNN part of the PINN.
These are about 71 features, depending on the filtering applied on a yearly basis. As de-
scribed in Styp-Rekowski et al. (2021) and re-evaluated in this study, the magnetome-
ter readings are shifted in time by 0.67 s for the GRACE-FO1 and GRACE-FO2 satel-
lites, while the magnetorquers are shifted by -0.33 s.

5.1 Residual Evaluation

In the following analysis, we restrict the data to low- and mid-latitudes and apply
the filtering provided by the B FLAG of the dataset to restrict the evaluation to non-
erroneous data as well as a Hp30 ≤ 2 and |d(Dst)/dt| < 4nT/hr filtering for magnetic
quiet times.

Satellite Mean absolute error Standard deviation

GOCE 6.56 9.66
GRACE-FO1 3.57 5.13
GRACE-FO2 3.82 5.23

Table 1. Mean absolute error and standard deviation of the calibrated data for the different

satellites, spanning the whole calibration time range.

The residual is calculated on a per-point basis between the calibrated data and the
reference model estimates. Looking at the residual for the GOCE mission, calculated on
a per-month basis and averaged over all months, a mean absolute error (MAE) of about
6.56 nT with a standard deviation (SD) of 9.66 nT was achieved, as can be seen in Ta-
ble 1. For the GRACE-FO1 satellite, an MAE of about 3.57 nT with an SD of 5.13 nT,
and for the GRACE-FO2, an MAE of 3.82 nT with an SD of 5.23 nT was achieved. This
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Figure 3. Map of the binned and averaged residuals between the PINN calibration and the

combined reference model in the NEC-frame on a scale of 10 nT with GOCE data for the year

2013, panel a) shows the North component, panel b) the East component, and panel c) the Cen-

ter component. A grey color indicates a residual of close to 0. Note the color scale maximum and

minimum values contain saturated values.
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Figure 4. Map of the binned and averaged residuals between the PINN calibration and the

combined reference model in the NEC-frame on a scale of 10 nT with GRACE-FO1 data for the

year 2019, panel a) shows the North component, panel b) the East component, and panel c) the

Center component. A grey color indicates a residual of close to 0. Note the color scale maximum

and minimum values contain saturated values.
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Figure 5. First row: Residual over whole calibration period for GRACE-FO1 with 86400s

(daily) smoothing applied. Second row: MLT changes for the ascending and descending orbit of

the mission. Dawn-dusk orbits marked with grey dotted lines for times of low residual. Third

row: Same as the first row, with a separation for ascending descending orbits.

lies well within the margin to enable a scientific application of the proposed calibration
data. In the previously calibrated dataset of the GOCE satellite (Styp-Rekowski et al.,
2022b), an MAE of 6.47 nT, of the GRACE-FO1 satellite (Styp-Rekowski et al., 2021),
an MAE of about 2.96 nT and of the GRACE-FO2 satellite an MAE of 3.51 nT was achieved.
When comparing the same period as for the previous calibration of the GRACE-FO mis-
sion and GOCE mission, the new calibration has a MAE that is 0.4 nT larger than pre-
viously, which is due to the fact that the proposed calibration method is constraining
the model more in the usage of the additional features. A comparison with data from
the Swarm satellites is conducted in Section 5.6.

Exemplary, for the GOCE and GRACE-FO1 satellite, the residual data for the years
2013 and 2019, respectively, have been plotted on a map of the Earth where the resid-
ual has been averaged in bins of 4◦ latitude by 4◦ longitude for the contour plot in the
NEC-frame. Figure 3 and Figure 4 show the result of this evaluation. With the scale given
on the right and the three components North, East, and Center, it can be seen that the
residual has no apparent local distribution and is overall close to 0. The high-latitude
areas show that the satellites measure actual data of the polar current sheets, which in
average slightly differs from the given AMPS model used within the reference model.

By now, over five years of mission data have been acquired for the GRACE-FO satel-
lite mission. This allows us to examine the behavior of the residual over a long period,
spanning multiple seasons, multiple passages of the same MLTs for the satellite mission,
and different levels of the solar cycle. The mean absolute residual over the whole cali-
brated data of the GRACE-FO1 satellite has been plotted in Figure 5, with daily smooth-
ing applied. The data have been selected for the low- and mid-latitude range with a fil-
ter for the B FLAG of the calibrated dataset applied and selected for magnetic quiet
times using the previously defined filter. This gives an overview of how well the calibra-
tion performs compared to our reference model over time. In general, there is a reap-
pearing seasonality with a periodicity of about 11 months in the first panel, visible in
a low residual of about 2.5 nT every 5.5 months. The second row of the plot shows how
the GRACE-FO1 satellite drifts through different MLTs throughout the mission. There
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is a relationship between the residual and the MLT of the mission, as the satellite repeats
its MLT drift every 11 months, more precisely 320 days. The drops in the residual cor-
relate with the dawn-dusk orbits visited by the satellite mission, where orbits with an
MLT of 18 and 6 are marked with grey dotted lines.

Dawn, dusk and the local night time in between are the time when the least influ-
ence of magnetic dayside phenomena is present. Therefore, we see the lowest residuals
for dawn, dusk and night side orbits. This result is also due to the fact that the CHAOS-
7 combined with AMPS reference model, does include only averaged ionospheric currents
and does not capture fast, small scale variations. The third panel shows the ascending
and descending residuals separately, e.g., the residual peaks are high around times when
the orbit goes through a noon MLT while maintaining low residuals on the nightside.
Thus, a 2-3 nT residual can be maintained if only nighttime orbits are selected. Still,
daytime data should be included in our calibration and evaluation since dayside phenom-
ena are of interest to the geoscientific community. This could, e.g., include dayside Sq
variations caused by electric currents in the ionosphere which are not modelled by the
CHAOS-7 model (Finlay et al., 2020), effects of the equatorial electron jet (EEJ), or a
more complex behavior of the satellite system not modeled by the calibration.

5.2 Predictive Calibration

Figure 6. Histogram plot of monthly average residuals for predictive calibration models

evaluated on subsequent monthly data for the whole mission data of the GRACE-FO1 satellite.

Additionally, the direct calibration is included and compared against the reference model as well

as the predictive calibration. Finally, the results are compared to the previous calibration by

Styp-Rekowski et al. (2022b).

Additionally, a feasibility evaluation was conducted utilizing the different monthly
models of the GRACE-FO1 satellite mission. For every month of the satellite mission,
the calibration model that was trained on the data of the previous month has been used
to calibrate the data of the current month. This is done to show how the calibrated mod-
els perform on data of unseen months, which also carry a slight shift in MLT and yearly
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X Y Z

MTQ1 18.43 -2.39 -1.31
MTQ2 1.57 15.33 0.68
MTQ3 0.63 -0.99 18.54

Table 2. Maximum magnetic dipole moment (in Am2) as calculated by the maximum applied

electric currents of the three magnetorquers (MTQ) and derived by the learned parameters from

the PINN model.

seasonality. Furthermore, this is a building block towards near real-time usage of the pro-
posed calibration methods as this enables the use of precomputed models to quickly as-
sess newly measured satellite data without the need for immediate training. The model
coefficients of the reference models change on a larger time-scale of several months to
years, while the availability of their input parameters lies in the range of hours to days,
enabling a near real-time usage in the future.

In Figure 6 a histogram of average monthly residuals is shown for different config-
urations. First, the calibrated dataset is compared with the reference model, where most
values lie within a range of 3 to 5 nT, given in blue. This is comparable to the previous
method by Styp-Rekowski et al. (2022b), given in red. In addition, the predictive cal-
ibration is compared directly with the calibrated data in orange, as well as with the ref-
erence model, given in green. Comparing the predictive calibration with the reference
model, the residual values lie within a range of about 4 nT to 10 nT, also reflected by
a median value of about 6.7 nT. There are some outliers that mainly originate from the
unseen behavior of the supporting features within the calibration model. Generally, the
residual values are larger compared to the direct monthly calibration but remain reason-
able within one order of magnitude. Comparing the predictive with the direct calibra-
tion, a generally lower residual can be seen as the calibration follow the same restrictions
of the models.

For the potential continuous processing of GRACE-FO satellite data, two strate-
gies could be deployed. A rolling yearly model could be pre-trained and applied to newly
arriving monthly data, or the current yearly model could be extended by new monthly
data and then fine-tuned for the latest monthly data.

5.3 Predicted Dipole Locations

As stated previously, the usage of the Biot-Savart formula within the PIC of the
neural network model enables the extraction of the learned disturbance locations −→r and
their dipole moment −→m if the electric current is combined with the area orthogonal vec-
tor. Therefore, the maximum control currents for the magnetorquers have been identi-
fied over the whole time series, which are about 0.109 Ampère for every magnetorquer.
With these values, the induced magnetic field for the magnetometer position can be cal-
culated. As the Biot-Savart formula, viewed as an equations system, is underdetermined,
a variety of possible −→r and −→a solutions are possible to achieve the same induced mag-
netic field at only one point within the satellite. Indeed, infinitely many solutions ex-
ist. Therefore, the induced magnetic field and the known magnetorquer positions are taken
together with the maximum current and inserted into Equation (5), which results in the
dipole moment generated by the maximum magnetorquer control currents. With three
given variables, the equation becomes a solvable linear equations system. Thus, the dipole
moment can be extracted.

The results of this analysis can be seen in Figure 7. Here, a 3D model of the GRACE-
FO satellite has been rendered to visualize the results. The front of the panel, defined
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Figure 7. Model of the GRACE-FO satellite in decimeters(dm) with the magnetometer po-

sition in front(left) of the satellite given as a black sphere. The induced magnetic field in nT is

shown at the magnetometer position in the form of vectors. At the back of the satellite, the mag-

netic dipole moment at maximum control currents for the magnetorquers is given in Am2 for the

same magnetorquer colors, while the magnetorquers are depicted as bars with the same colors as

their respective magnetometer axis. The dipole moment vectors approximately align with the X,

Y, and Z axes of the satellite and are nearly orthogonally aligned to each other ±1◦.
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by the direction of the laser instrument, can be seen to the left. Also, the magnetome-
ter is located in front of the satellite, depicted by a black sphere. The induced magnetic
field for the three magnetorquers is shown at the magnetometer position. Then, for the
approximate magnetorquer positions, as derived from construction drawings, the mag-
netic moment is calculated for the maximum magnetorquer control currents. These can
be seen in the back of the satellite. The values for the magnetorquers are also given in
Table 2. The table is diagonally dominated, which shows that the magnetorquer momenta
are mainly aligned with the X, Y, and Z-axes, while the X and Y axes show some mi-
nor mixing. In addition, the angles between the different momenta measure 89.3◦, 90.4◦,
and 89.2◦ respectively, meaning that the momenta are approximately orthogonal.

These results closely align with the expectations for the satellite: The three mag-
netorquers are built in an orthogonal fashion to enable the control of the attitude of the
satellite. The positions and their momenta also match with the alignment axes of the
built-in magnetorquer bars. This means that the PINN can reliably find and assign the
position and strength of the sources of artificial satellite disturbances caused by dipoles.
In particular, introducing PINNs can open the black box that NNs represent, allowing
insight into the patterns learned from the data.

5.4 FAC Analysis

To show the viability for analyzing geomagnetic phenomena, auroral FACs are in-
vestigated. Therefore, Figure 8 and Figure 9 show the summarized FAC in dependence
of the MLT and QDLat of the GOCE and GRACE-FO1 satellites, respectively. The FACs
have been derived from the calibrated magnetometer data and summarized by an ag-
gregation function into bins of 2◦.

For the GOCE satellite, the FAC values have been aggregated by the median, while
for the GRACE-FO satellite, the mean could be used as it contains many more measure-
ments in the dataset. For both satellites, the bow-shaped Region 1 and 2 currents be-
come visible. This confirms that the calibration process expectedly preserves natural sig-
nals, and the shortcomings of the previous approach by Styp-Rekowski et al. (2022b) could
be overcome by including the AMPS model and introducing physical laws into the NN.
Figure 8 contains a comparison of the newly calibrated GOCE data with the previously
published dataset. The FACs in the Northern Hemisphere were less pronounced, and for
the Southern Hemisphere, no bow-like shapes were visible, as can be seen in the upper
half of the figure. With the new calibration method, this has changed drastically, and
the expected shape is present in the bottom half of the figure which is especially visi-
ble within the Southern Hemisphere. For the GRACE-FO satellites, the result has been
similar to previous studies.

A comparison between the GRACE-FO-derived FACs and Swarm A- and B-derived
FACs has been conducted. Therefore, a slice of the MLT was taken during June 2019,
ranging from MLTs of 5.5 to 6.5, representing the dawn. This choice has been made as
strong currents are present during Northern Hemisphere summer for this MLT range,
as seen in Figure 9.

The data have been low-pass filtered with a 20s cutoff similar to Xiong et al. (2021),
representing large-scale FACs (>150km) for the GRACE-FO mission. For every degree
of QDLat, the values have been summarized by a boxplot and visualized in Figure 10.
In addition, the altitude, MLT, and magnetic indices are given as mean values in depen-
dence on QDLat. Both GRACE-FO satellites are in good agreement with each other and
capture similar structures as the Swarm satellites. Remaining differences can be attributed
to the MLT of the satellites and the noise level of the calibrated GRACE-FO platform
magnetometer data. Thus, the usage of calibrated GRACE-FO magnetic data to sup-
port measurements by the Swarm satellite is encouraged for investigations of magnetic
phenomena on a global scale.
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Figure 8. Field-aligned currents as derived from calibrated data of the GOCE satellite mis-

sion. Summarized median by MLT and QDLat for the Northern and Southern Hemispheres. At

the top is the plot as derived from the previous approach (Styp-Rekowski et al., 2022b) and at

the bottom is the newly derived plot with enhanced FACs for the Southern Hemisphere.
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Figure 9. Field-aligned currents as derived from calibrated data of the GRACE-FO1 satellite.

Summarized mean by MLT and seasons for the Northern and Southern Hemispheres.
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Figure 10. Boxplot summary for FAC data derived from GRACE-FO1, GRACE-FO2,

Swarm-A, and Swarm-B missions. Data are selected from June 2019 for an MLT between 5.5 LT

and 6.5 LT and quasi-dipole latitude between 50◦ and 90◦, representing dawn. In addition, the

altitude and MLT are given as mean values in dependence on quasi-dipole latitude. The magnetic

indices are given in dependence of the time in the last panel.
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5.5 Multi-mission orbit constellations

As an example of the application of calibrated GRACE-FO data, a recent geomag-
netic storms has been investigated. The analyzed storm occurred on the 4th of Novem-
ber 2021, shown in Figure 11 for four days around the high geomagnetic activity. The
distribution of FAC values in dependence of QDLat and MLT for the Northern and South-
ern Hemisphere is shown. The Swarm-A and Swarm-B measurements are shown in squares,
while the GRACE-FO1 measurements are given in circles. The coloring contains an al-
pha value. Thus, if a circle is prominently visible on a square, the GRACE-FO measure-
ments disagree with the Swarm measurements, while for an agreement, the circle visu-
ally merges with the square. The figure is separated into three rows, where for every row
a different Hp30 selection has been applied to visualize differences in the geomagnetic
activity, ranging from low activity with Hp30 <= 2.0, medium activity with 2.0 < Hp30 <=
4.0, to high activity with 4.0 < Hp30.

The MLTs of the satellite mission strongly vary and show the strength of additional
data from non-dedicated missions. The global coverage of MLTs is strongly increased
by using GRACE-FO data that has MLTs with a difference of about 3.7 and 3.8 hours
on average compared to the Swarm A and B satellites for this time period, respectively.
The extension of the auroral oval during storm time becomes visible as the covered area
within the plot is larger because of the increased spatiotemporal coverage, enabling a global
picture during magnetic storms. The idea of improving the global coverage of geomag-
netic field measurements through non-dedicated satellite missions becomes evident here.

5.6 Evaluation against Swarm data

As the GRACE-FO mission has been operating since 2018 and the Swarm mission
has been in orbit since 2013, a comparison between the calibrated GRACE-FO data and
the data provided by the Swarm mission is possible, which is not the case for GOCE,
since GOCE did not operate simultaneously with Swarm.

Therefore, the residuals between the Swarm and GRACE-FO1 data against their
respective CHAOS-7 model prediction for low- and mid-latitudes during geomagnetic quiet
times have been compared. Figure 12 shows a histogram of the North, East, and Cen-
ter components of the vector magnetic field measurements for both missions. The data
have been filtered with their respective flags and the resulting histogram is normalized.
The Swarm data used in this study were downloaded in October 2023 from the VirES
platform (Smith et al., 2023).

With Swarm as the high-precision mission achieving a steeper Gaussian distribu-
tion, it can be seen how a significant intersection of calibrated platform magnetometer
data achieves similarly low residuals. The best result was achieved for the North com-
ponent. This highlights the potential of platform magnetometer data to accompany high-
precision missions with additional data of only modestly higher noise. Still, it needs to
be emphasized that the calibration of platform magnetometer data would not be pos-
sible without a high-precision mission in space to act as a reference point because non-
dedicated satellites mostly do not carry absolute magnetometers.

In addition, all conjunctions between the GRACE-FO1 satellite and the Swarm A
satellite between June 2018 and July 2023 have been analyzed. Again, filtering for ge-
omagnetic quiet times and flags has been applied. For both missions, for every data point
where the distance between the two satellites was below 400 km, their respective resid-
ual with the CHAOS-7 model has been computed and the difference between the cal-
culated residuals has been used for the conjunctions. The resulting conjunctions are binned
by QDLat and MLT and aggregated by the mean, as shown in Figure 13. Overall, the
conjunctions carry a low residual for low- and mid-latitude while having areas of larger
residual around the poles. No apparent correlation is visible between QDLat or MLT for
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Figure 11. The mean FAC values for the Swarm-A, Swarm-B, and GRACE-FO satellite

missions around the magnetic storm of the 4th of November, 2021, shown for four days, in de-

pendence of magnetic local time and quasi-dipole latitude. The plot is divided into three rows,

depending on the Hp30 index. Additionally, the Hp30 and Dst indices for this time frame are

given.
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Figure 12. Residual distribution comparison of the Swarm (blue) and GRACE-FO1 (orange)

calibrated data compared to the CHAOS7 reference model for the whole period from June 2018

to July 2023 within a histogram plot with bin sizes of 1 nT for the magnetic North (top), East

(middle) and Center (bottom) component. Note the different vertical scales.

Figure 13. Conjunctions between the Swarm A and GRACE-FO1 satellites from June 2018

to July 2023. Data are selected by flags and geomagnetic quietness. The heatmap compares the

residual to their respective CHAOS-7 model and shows the aggregated mean by quasi-dipole lati-

tude and magnetic local time binning.

92



manuscript submitted to JGR: Machine Learning and Computation

the conjunctions. Overall, this shows that the calibrated platform magnetometer data
are in good agreement with the current high-precision mission in orbit.

6 Conclusion

This work introduced a major extension to the previous ML approach (Styp-Rekowski
et al., 2022b) to calibrating platform magnetometers carried by non-dedicated satellites.
By introducing the physical Biot-Savart law into the NN, the new PINN is able to cor-
rectly handle and identify magnetic dipoles acting within the satellite system. Addition-
ally, the AMPS model was added to our reference model to anticipate large-scale auro-
ral current system disturbance, increasing the calibration quality, particularly in the po-
lar regions. When applied to the two satellite missions, GOCE and GRACE-FO1 together
with GRACE-FO2, mean absolute residual values of 6.56 nT, 3.57 nT, and 3.82 nT could
be obtained, respectively. Compared to the previous approach, the residuals of the pro-
posed methodology lie in a similar range while overcoming the identified shortcomings.
These results enable the application of the calibrated data to analyze geomagnetic phe-
nomena, as was shown exemplarily for FACs and geomagnetic storms. By its nature, this
approach is mostly automated, so that it is straightforward to apply it to the calibra-
tion of magnetometer data from other non-dedicated satellites in the future. The dataset
of the two missions calibrated alongside this work is available (Styp-Rekowski et al., 2022a,
2023).

Acronyms

AMPS Average Magnetic field and Polar current System

CHAMP CHAllenging Minisatellite Payload

ETL Extract, transform, and load process

FAC Field-aligned currents

FFNN Feed-forward neural network

GOCE Gravity and steady-state Ocean Circulation Explorer

GRACE Gravity Recovery And Climate Experiment

GRACE-FO Gravity Recovery And Climate Experiment Follow-On

IMF Interplanetary Magnetic Field

MAE Mean absolute error

ML Machine Learning

MLT Magnetic local time

MTQ Magnetorquer

NEC North-East-Center frame

NN Neural network

PIC Physics-informed component

PINN Physics-informed neural network

QDLat Quasi-dipole latitude

SD Standard deviation

Open Research Section

Data used in this study are publicly available from the European Space Agency (ESA)
for the GOCE satellite (https://earth.esa.int/eogateway/missions/goce/data) and
from the German Research Center for Geosciences (GFZ) for the GRACE-FO satellites
(Michaelis et al., 2021). The Swarm data were accessed through the viresclient (Smith
et al., 2023). The different indices and supplementary data were available from the NASA
for the By and Bz of the IMF, the solar wind speed Vsw, the Dst-index, the F10.7-index
(Papitashvili & King, 2020); the Hp30-index is provided by the GFZ (Yamazaki et al.,
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2022). The reference models used in this publication can be accessed through their re-
spective publications for the AMPS model (Laundal et al., 2018) and the CHAOS-7 model
(Finlay et al., 2020).

The generated data from this publication for the calibrated geomagnetic field mea-
surements, as well as their respective CHAOS-7 estimates and the derived FACs, can be
found under version 301 Styp-Rekowski et al. (2022a) for the GOCE satellite and ver-
sion 302 Styp-Rekowski et al. (2023) for the GRACE-FO satellites.
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8 Summary and Proposed Future Investigations

In summary, these studies collectively advance the field of magnetometer calibration for

satellite missions. Specifically, a sophisticated method for the automatic ML calibration

of satellite platform magnetometer data has been shown.

In Section 5, an analytical approach for the calibration and characterization of plat-

form magnetometers is presented with the GOCE mission as the use case. Here, the

relevant features have been hand-selected with expert knowledge. A linear regression has

been applied to correct the scaling, offset, and misalignment of the magnetometer mea-

surements. In addition, the largest known artificial disturbances have been characterized

and corrections applied. This led to a reduction of the noise present in the measured data,

and the utility of calibrated data from non-dedicated magnetometers for filling gaps in

dedicated magnetic field missions has been shown.

In Section 6, the methodology for an ML-based calibration for the GOCE mission

is introduced, achieving a substantial reduction in residual compared to the CHAOS-7

reference model, with potential applications in studying the Earth’s magnetic field and

enhancing magnetic field models. Here, the data preprocessing pipeline has been estab-

lished that is needed for the calibration. The GOCE satellite, with about 970 features

monitored, acts as a use case for a satellite system with a huge variety of monitored

information. The developed ML-based calibration methodology showed to be able to

handle large data volumes and model the underlying calibration and characterization of

the GOCE platform magnetometers. In addition, applications in the analysis of geophys-

ical phenomena were shown. The extensive evaluation analyzed the remaining residual of

the calibration and identified the most influential features.

A new approach introducing PINNs to the calibration of platform magnetometers is

introduced in Section 7, demonstrating its efficacy in handling magnetic dipoles within the

satellite system and achieving improved calibration quality, particularly in polar regions.

Therefore, the Biot-Savart formula for dipoles has been successfully merged with an ML

model, combining the advantages of physical and empirical models. In addition, the

AMPS model has been combined with the CHAOS-7 model to form a combined reference

model. This enhances the calibration performance in high latitudes. The application of

this method to GOCE and GRACE-FO missions yields satisfying residual values enabling

robust analysis of geomagnetic phenomena. In addition, this approach yields increased

interpretability of the trained model by analyzing the learned locations and strengths of

the dipoles present on the satellite, which makes it possible to draw conclusions about

the satellite.

Regarding the research objectives posed in Section 1, Section 5 lays the foundation,

and Sections 6 and 7 show the feasibility of the ML-based calibration (RO-1). The in-
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corporation of physics-based information into the ML calibration is shown in Section 7

(RO-2). Finally, Sections 5 to 7 contribute to the extraction of information and explain-

able insights of the satellites (RO-3).

This dissertation establishes the foundation for several follow-up studies, with the

findings and datasets from this thesis serving as a basis for future extensions.

First, the established method can be applied to other platform magnetometer-carrying

satellites. As the proposed method leverages the advantages of ML, the approach can be

applied to satellites previously calibrated using analytical methods like GRACE, CryoSat-

2, or others. In addition, other satellites carrying platform magnetometers have been

identified like TUBIN [6], Swarm-Echo, or EnMAP [28, 37], which are promising in their

orbital and mission constellation.

Another way to establish a new direction would be to investigate additional modeling

techniques. Therefore, a look at time-dependent features can be taken to model a better

understanding of influences through time. Other than that, more physical phenomena

can be modeled within the PINN, e.g., the influence of the temperature or thermoelectric

currents [8].

The presented methodology is not limited to non-dedicated LEO satellites but can,

in principle, be transferred onto other satellites, platforms, and orbits to calibrate the

respective platform magnetometers. This could be applied to satellites in other orbits, e.g.,

higher altitudes than LEO satellites or satellites in an elliptical orbit. The requirement

to use this approach is a period of time within the satellite’s mission life span where a

reference model is available so a calibration model can be created.

Finally, the usage of the datasets within geomagnetic field models is clearly one of the

next steps founded on this work. This has, to some extent, been shown for the GOCE

mission data and the modeling of the lithospheric field but could be done for a larger

amount of satellites and longer time periods, combining the advantages of additional

measurements and coverage provided by non-dedicated satellites.

To sum up, within this dissertation a novel ML-based approach to automatically cal-

ibrate platform magnetometers has been shown that overcomes the shortcomings and

challenges present in earlier approaches. The robustness and wide range of potential ap-

plications for geomagnetism are demonstrated by the calibrated datasets of additional

space-based magnetic measurements.
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107


	List of Figures
	Abbreviations
	Motivation
	The Earth's Magnetic Field
	Satellite Missions to Sense the Earth's Magnetic Field
	Swarm
	GOCE
	GRACE-FO
	Platform Magnetometers

	Application of Machine Learning in Satellite Magnetometer Calibration
	Relevant Fundamentals of Machine Learning
	Methodological Application to Platform Magnetometers

	Publication-based Chapters
	Geomagnetic data from the GOCE satellite mission
	Introduction
	Data sets and data pre-processing
	Results and discussion
	Conclusions

	Machine learning‑based calibration of the GOCE satellite platform magnetometers
	Introduction
	Datasets and preprocessing
	Machine learning-based calibration
	Results and discussion
	Conclusion

	Physics-informed Neural Networks for the Improvement of Platform Magnetometer Measurements
	Introduction
	Data
	Physics-informed Calibration
	Evaluation
	Conclusion

	Summary and Proposed Future Investigations
	Author Contributions
	References
	Eidesstattliche Versicherung



