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Vorwort

Die Hochfrequenztechnik befasst sich mit dem Nutzen elektromagnetischer Felder
hoher Frequenzen in technischen Systemen. Bei hohen Frequenzen gibt es Wech-
selwirkungen zwischen elektrischen und magnetischen Feldern, die eine Wellenaus-
breitung ermoglichen. Insbesondere lassen sich integrale Groflen wie Spannungen
und Strome im Allgemeinen nicht mehr sinnvoll definieren. Folglich ist der Syste-
mentwurf mit den auf konzentrierten Bauelementen basierenden Konzepten der
Elektronik nicht mehr moglich. Man muss vielmehr wieder direkt von den Max-
wellschen Gleichungen ausgehen. Eine Abstraktion ist aber auch hier moglich. Sie
basiert auf komplexen Wellenamplituden und hat sich in den letzten Jahrzehn-
ten als sehr ergiebig erwiesen. Diese wellenbasierte Sichtweise charakterisiert die
Hochfrequenztechnik als eigenstdndige Disziplin innerhalb der Elektrotechnik.

Die Hochfrequenztechnik ist eines der traditionellen Fachgebiete der Elektro-
technik. Thre Entwicklung lasst sich bis zur Verdffentlichung der Maxwellschen
Gleichungen zuriickverfolgen. Seitdem wurde ein umfangreiches Fachwissen zu-
sammengetragen. Zahlreiche Veroffentlichungen zeugen davon. Im Literaturver-
zeichnis findet man eine kleine Auswahl bewéhrter Lehrbiicher der Hochfrequenz-
technik [ : : : : |. Hier steht zumeist der Entwurf
hochfrequenztechnischer Komponenten im Vordergrund. Ein Blick auf das heuti-
ge Berufsbild offenbart jedoch, dass das Anwenden der Hochfrequenztechnik, das
heifit das Zusammenfiigen hochfrequenztechnischer Komponenten zu komplexen
Systemen und die zumeist digitale Verarbeitung von Signalen aus einer hochfre-
quenztechnischen Umgebung in einem eingebetteten System im Vordergrund der
beruflichen Praxis stehen. Beispiele derartiger Anwendungen sind

« die Hochfrequenzmesstechnik | : ],

o Funkkommunikationssysteme | : : 1,
« die Radartechnik | ; ] und
 Funknavigationssysteme | ; ].

Aufgrund der Komplexitit und der hohen geforderten Performanz derartiger Sys-
teme ist das Beherrschen theoretisch fundierter Modellierungstechniken und die
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Kenntnis des Verhaltens typischer hochfrequenztechnischer Komponenten uner-
lasslich. Ziel des vorliegenden Buchs ist es, dieses Wissen in kompakter Form dar-
zustellen, ohne aber auf mathematische Exaktheit zu verzichten. Dies wird durch
eine Konzentration auf zentrale, allgemein anwendbare Theorien und Modelle der
Hochfrequenztechnik und eine konsequente Abstraktion erreicht.

Die Maxwellschen Gleichungen bilden ein System linearer und verschiebungs-
invarianter Differentialgleichungen. Es ist daher nicht verwunderlich, dass es enge
Querbeziehungen zur typischerweise im Rahmen der Signal- und Systemtheorie
und der Nachrichtentechnik behandelten Theorie der linearen zeitinvarianten Sys-
teme gibt | ; |. An den entsprechenden Stellen im vorliegenden Buch
wurden diesbeziigliche Anmerkungen eingefiigt. Diese sollen dem mit der Signal-
und Systemtheorie vertrauten Leser eine vertiefte Durchdringung der Thematik
ermoglichen, sind aber keine Voraussetzung fiir das weitere Studium des Buchs.

Das Buch ist in zwei Teile gegliedert. Der erste Teil beschéftigt sich mit der
feldtheoretischen Modellierung [ : : : : : |. Die
feldtheoretische Modellierung ist auch heute noch unverzichtbar, da sie nicht nur
die Grundlage abstrakterer Modelle bildet, sondern insbesondere auch zur Analy-
se von Antennen unumgéanglich ist | : : : |. Antennen bilden
einen zentralen Bestandteil der meisten hochfrequenztechnischen Systeme. Gera-
de die Féhigkeit der von Antennen abgestrahlten elektromagnetischen Wellen sich
im freien Raum ausbreiten zu konnen, macht die Hochfrequenztechnik fiir techni-
sche Anwendungen interessant. Ein Vereinfachen der Darstellung und Fokussieren
auf die physikalischen Grundprinzipien gelingt bei der feldtheoretischen Modellie-
rung durch ausschlieliches Betrachten einfacher Materialien, das Vernachlassigen
von Verlusten und die Konzentration auf die fiir technische Anwendungen primér
interessanten ausbreitungsfahigen Wellen.

Der zweite Teil des Buchs beschéftigt sich mit der abstrakteren auf kom-
plexen Wellenamplituden basierenden Modellierung | ; |. Durch eine
derartige Abstraktion werden auch komplexe Systeme beherrschbar, ohne dass
Modellierungsgenauigkeit verloren geht. Die moderne Hochfrequenzschaltungs-
technik basiert auf der Modellierung mittels komplexer Wellenamplituden und
mit dem Vektornetzwerkanalysator existiert auch eine entsprechende Messtech-
nik | ]. Neben dem idealen Verhalten hochfrequenztechnischer Komponenten
[ ; | wird auch das in vielen Féllen performanzbegrenzende und prak-
tische Systemarchitekturen motivierende Rauschen diskutiert | ]

Im Anhang findet man neben den Losungen der Aufgaben ergénzende Aus-
fithrungen zu nichtlinearen Systemen und der Fourier-Analyse. Nichtlineares Ver-
halten tritt haufig unerwiinschter Weise in realen Systemen auf, kann aber auch
gezielt genutzt werden [ |. Die Fourier-Analyse ist Grundlage vieler Verfah-
ren der Hochfrequenzmesstechnik wie der Spektralanalyse | ; ].
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Kapitel 1.

Feldtheoretische Grundlagen

1.1. Maxwellsche Gleichungen

1.1.1. FeldgroBen und ihre komplexen Amplituden

In der Hochfrequenztechnik interessieren wir uns fiir rein harmonische, das heifit
sinusformige Zeitverlaufe der Frequenz f der betrachteten Feldgroflen. Gegebe-
nenfalls auftretende nichtharmonische Vorginge kann man mittels der Fourier-
Transformation als Uberlagerung harmonischer Vorginge darstellen. Die folgen-
den Betrachtungen konnen somit allgemeiner als Modellierung im Frequenzbereich
aufgefasst werden | ].! Harmonische (vektorielle) Feldgrofien konnen durch
ihre (vektoriellen) komplexen Amplituden beschrieben werden. Mit der Kreisfre-

quenz
w=2nf (1.1)

kann man die Feldgroflen wie folgt darstellen:
elektrische Feldstarke:
E(z,y,z,t) = Re(E(x, Y, 2) ej“t) (1.2)
E: vektorieller Momentanwert der elektrischen Feldstéirke
E: vektorielle komplexe Amplitude der elektrischen Feldstérke
elektrische Flussdichte:
ﬁ(x,y, z,t) = Re(ﬁ(:c,y, z) ej“t) (1.3)

D: vektorieller Momentanwert der elektrischen Flussdichte

D: vektorielle komplexe Amplitude der elektrischen Flussdichte

! Die (vektoriellen) komplexen Amplituden kann man weiterhin als die zu den betrachteten
Bandpasssignalen dquivalenten Tiefpasssignale ansehen, siehe (A.39).
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magnetische Feldstarke:

—

H(x,y,2,t) = Re (E(x, Y, 2) ej“t)

H: vektorieller Momentanwert der magnetischen Feldstarke
H: vektorielle komplexe Amplitude der magnetischen Feldstérke

magnetische Flussdichte:

—

B(x,y,z,t) = Re(g(x, y, z) ejwt)

B: vektorieller Momentanwert der magnetischen Flussdichte
B: vektorielle komplexe Amplitude der magnetischen Flussdichte

elektrische Stromdichte:
f(az, Y, 2z, t) = Re(j(x, Y, 2) ej“’t)

J: vektorieller Momentanwert der elektrischen Stromdichte
J: vektorielle komplexe Amplitude der elektrischen Stromdichte

elektrische Ladungsdichte:

po(,y, 2, t) = Re(p, (2, y,2) )

pe: Momentanwert der elektrischen Ladungsdichte

p.: komplexe Amplitude der elektrischen Ladungsdichte

magnetische Stromdichte:

M(l‘,y, Z7t) = RG(M(x’y’ Z) ejwt)

M: vektorieller Momentanwert der magnetischen Stromdichte
M: vektorielle komplexe Amplitude der magnetischen Stromdichte

magnetische Ladungsdichte:

pm(z,y,2,t) = Re (Bm(x, Y, 2) ejwt)

Pm: Momentanwert der magnetischen Ladungsdichte

p,,: komplexe Amplitude der magnetischen Ladungsdichte

(1.4)

(1.5)

(1.6)

(1.8)

(1.9)



1.1. Maxwellsche Gleichungen

Vektoren werden durch einen Pfeil gekennzeichnet und komplexe Grofien wer-
den unterstrichen. Auf eine explizite Angabe der Argumente x, y, z und ¢ zum
Ausdriicken der Ortsabhéngigkeit und der Zeitabhéngigkeit wird im Folgenden
zumeist verzichtet.

Magnetische Ladungen und die daraus resultierende magnetische Ladungsdich-
te pm und magnetische Stromdichte M treten in der Realitit nie auf. Ihre Ein-
filhrung fiihrt aber neben einer totalen Symmetrie der Maxwellschen Gleichun-
gen insbesondere zu erheblichen Vereinfachungen bei vielen Feldberechnungen,
bei denen man das urspriingliche physikalische Problem ohne magnetische La-
dungsdichte p,, und magnetische Stromdichte M durch ein aquivalentes Problem
ersetzt, in dem diese Groflen vorkommen konnen, siehe Abschnitt 4.8.

Materialien, in denen weder elektrische Ladungen noch magnetische Ladungen
vorhanden sind und in denen folglich die Ladungsdichten und die Stromdichten
verschwinden, bezeichnet man als Dielektrika.

1.1.2. Durchflutungsgesetz, erste Maxwellsche Gleichung
1.1.2.1. Integrale Form

Das Umlaufintegral iiber die magnetische Feldstarke H ist gleich dem gesamten
umschlossenen elektrischen Strom:

. . oD -

(A5 = £j< (dA) o+ £j<§,dA> . (1.10)
———— —_———

elektrischer Leitungsstrom  elektrischer Verschiebungsstrom

elektrischer Strom

Der Umlaufsinn ds des Integrals und die Fliachennormale dA bilden dabei eine
Rechtsschraube, siehe Abbildung 1.1. (,-) bezeichnet das Skalarprodukt zweier
Vektoren.” In der Hochfrequenztechnik werden hiufig elektromagnetische Felder
im Dielektrikum mit verschwindender elektrischer Stromdichte J betrachtet.

Mit (1.3) folgt, dass die Ableitung im Zeitbereich einer Multiplikation mit jw
im Frequenzbereich entspricht:

T = (D)) e (B () =re(Be). ()

aq . Ql N
2 Mit den Vektoren @ = (22) und b = (1_72) gilt (@, b) = a;b] + a,b; + asbs.
Qs l_73
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~

ds

Abbildung 1.1.: Zum Durchflutungsgesetz

Mit (1.3), (1.4) und (1.6) erhélt man das Durchflutungsgesetz fiir die vektoriellen
komplexen Amplituden:

-,

gS@,dg) :H(j,d )+jwff(é,dff). (1.12)

0A

1.1.2.2. Differentielle Form, Satz von Stokes

Die Komponenten der Rotation eines Vektorfeldes H definiert man zu

or()] = i, 20— (119

Hierbei steht xyz fiir eine der drei Koordinaten x, y oder z. nyz bezeichnet die
x-, y- oder z-Komponente des Vektors. Der Umlaufsinn ds des Integrals und die
Fléchennormale dA,y, bilden eine Rechtsschraube.

Speziell zum Berechnen der z-Komponente der Rotation in kartesischen Ko-
ordinaten betrachtet man das in Abbildung 1.2 gezeigte, in der z-y-Ebene lie-
gende, infinitesimale Flachenelement dA, mit der Fldchennormalen in positiver
2-Richtung.

Das Umlaufintegral der Feldstirke H entlang des Randes ddA, des Flichen-
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Abbildung 1.2.: Infinitesimales Fléachenelement dA, = dx dy

elements dA, ergibt

rechts unten rechts oben
$ = [ Han+ [ (49
0dA, links unten rechts unten
links oben links unten
+ [ e+ [ (Ha9)
rechts oben links oben

d dz
:Hx<x07y0 - ?yu 207t> ~dx + Hy (370 + ?73;07 207t> ' dy

d d
- HX <l’0,y0 + ?y7207t> ~do — Hy ('IO - §>y07207t> : dy

_ Hy(!Eo + dQ—x,?/o, Zo,t) - Hy<$o — d%,yo,zo,t)
N dx

- Hx(xo,yo + %,zo,t)d—yﬂx(%a?/o -9 Zo’t)) dz dy.

Fiithrt man die Grenziibergédnge dr — 0 und dy — 0 durch, so erhélt man

. OH 0H 0H 0H
H. ds) = Y “ldxdy = Y 1 dA,.
aéEZ( ,ds) ( Ox dy ) vy ( Ox dy )

SchliefSlich erhalt man die z-Komponente

- OH. 0H,
or()], = 2 21
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der Rotation in kartesischen Koordinaten.

Man kann gleichartige Uberlegungen fiir infinitesimale Flichenelemente, die in
der y-z-Ebene oder in der z-z-Ebene liegen, anstellen. Man erhélt die entsprechen-
den Gleichungen auch, indem man die Komponenten und Koordinaten zyklisch

vertauscht. Es folgt
~ OH, O0Hy\ OH, O0H,\ . OH,  OHx

rot(H) = < o 0: )uXJr ( 5 8—x> Uy ( e o )uz (1.14)
fir die Rotation in kartesischen Koordinaten, wobei iy, @y und , die Einheits-
vektoren in x-, y- und z-Richtung sind.

Eine beliebige, nicht infinitesimale Flache A kann man in unendlich viele in-
finitesimale, in x-, y- oder z-Richtung orientierte Flachenelemente zerlegen. Die
Linienintegrale entlang der inneren Begrenzungen kiirzen sich dabei gegenseitig
weg, so dass die Summe der Umlaufintegrale der infinitesimalen Fldchenelemente
das Umlaufintegral der gesamten Fléche A ergibt. Die Summe der Oberflichen-
integrale iiber die infinitesimalen Flachenelemente ergibt das Oberflichenintegral
tiber die gesamte Flache A. Damit folgt aus der Definition der Rotation (1.13)
der fiir beliebige Vektorfelder H giiltige Satz von Stokes

gS(ﬁ, d3) = H@ot(ﬁ),dj). (1.15)

Anwenden des Satzes von Stokes auf das Durchﬂutungsgesetz (1.10) ergibt

i(ﬁ,d@ - £j<rot<ﬁ H (.J, dA) +H T dA).

Man erhalt schlieSlich das Durchflutungsgesetz in differentieller Form:

- . 9D
rot (H) = T+ = (1.16)
Fiir die vektoriellen komplexen Amplituden erhalt man mit (1.3), (1.4), (1.6)
und (1.11) die im Folgenden vorwiegend verwendete Darstellung des Durchflu-

tungsgesetzes

rot(H) = J + jwD (1.17)
und mit (1.14) die folgenden Komponentengleichungen:
a;y[ 88% =J, +jwD,, (1.18)
a(;i 88Hx —J, + jwD,, (1.19)
aaﬂxy - 86%‘ =J, + jwD,. (1.20)
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1.1.3. Induktionsgesetz, zweite Maxwellsche Gleichung
1.1.3.1. Integrale Form

Das negative Umlaufintegral iiber die elektrische Feldstarke E ist gleich dem ge-
samten umschlossenen magnetischen Strom:

. L OB -
— ¢ (E,ds) = M,dA —,dA . 1.21
§(F.a9 £j< Ad) £j<8t, ) (1.21)
—— —
magnetischer Leitungsstrom  magnetischer Verschiebungsstrom

magnetischer Strom

Der Umlaufsinn ds des Integrals und die Flachennormale dA bilden auch hier
wieder eine Rechtsschraube, siche Abbildung 1.3. In realen Szenarien gibt es keine
magnetischen Ladungen p,, und dann verschwindet die magnetische Stromdichte

M. .
it 9B
ot
dA
ds

Abbildung 1.3.: Zum Induktionsgesetz

Mit (1.2), (1.5), (1.8) und (1.11) erhélt man das Induktionsgesetz fiir die vek-
toriellen komplexen Amplituden:

-,

- 98@, d3) = ff(ﬂ,d )+ jw H@, dA). (1.22)
0A A A

1.1.3.2. Differentielle Form

Dual zu Abschnitt 1.1.2.2 erhilt man durch Anwenden des Satzes von Stokes
(1.15) auf das Induktionsgesetz (1.21)

—10t(E) = M + —. (1.23)
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Fir die vektoriellen komplexen Amplituden erhdlt man mit (1.2), (1.5), (1.8)
und (1.11) die im Folgenden vorwiegend verwendete Darstellung des Induktions-
gesetzes

—rot(E) = M + jwB (1.24)
und mit (1.14) die folgenden Komponentengleichungen:
oL, OE,
—— — =M, +jwB 1.25
8y + 82 —X + Jw—X7 ( )
OE OE
- — =M, + jwB 1.26
0z + ox My By, ( )
oL, OE
— — =M, + jwB,. 1.27
0w oy MatiwB, (1.27)

1.1.4. Quellen des elektrischen Feldes, dritte Maxwellsche
Gleichung

1.1.4.1. Integrale Form

Der elektrische Fluss durch eine geschlossene Hiille ist gleich der eingeschlossenen
elektrischen Ladung:

av (D, dA) = H pedV | (1.28)

elektrische Ladung

Die Flichennormale dA zeigt dabei nach auflen. In der Hochfrequenztechnik wer-
den héufig elektromagnetische Felder in Dielektrika mit verschwindender elektri-
scher Ladungsdichte p, betrachtet. Die elektrische Flussdichte D ist dann quel-
lenfrei.

Fiir die komplexen Amplituden erhélt man mit (1.3) und (1.7) die Gleichung

5@8 (D, dA) = pr dv. (1.29)

1.1.4.2. Differentielle Form, Satz von GauB3

Die Divergenz eines Vektorfeldes D definiert man zu

div(D) = lim 2V — (1.30)

10
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Die Flichennormale dA zeigt dabei wieder nach auflen.
Speziell zum Berechnen der Divergenz in kartesischen Koordinaten betrachtet
man das in Abbildung 1.4 gezeigte infinitesimale Volumenelement dV .

dx

z

Abbildung 1.4.: Infinitesimales Volumenelement dV = dz dy dz

Der Fluss durch die Hiille 9dV des Volumenelements dV ergibt sich zu
(fb,ad) = ([ (Bady+ [[ (B,dd)+ ([ (D,dA)

odv rechte Seite linke Seite Deckel
+ [[(B.ady+ ([ (Dady+ [[ (D.d4)
Boden Vorderseite Riickseite

d d
:DX (xO + ;J/m%ﬂf) : d?/ ~dz — DX (xO - ;WO,ZO,Q ' dy -dz
d d
+Dy<x0,yo+7y,zo,t> -dx-dz—Dy<x0,yo—?y,zo,t> ~dx - dz

d d
+Dz<$07y07zo+§at> 'dx'dy_Dz<x07y07ZO_?zat> d[L‘dy

:(Dx<xo + d—;,yo,zo,t) — Dx<x0 — d_gxayo,Zo,t)

dx

Dy(IL'Q,yO + %y, Zo,t) - Dy<l‘0,y0 — %y, Zo,t)
+ "

Dz(ﬂfo,yo,zo + %,t) - DZ(QTO,ZJO, 20 — %J)
+ dz

) drdydz.

11
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Fiihrt man die Grenziibergédnge dx — 0, dy — 0 und dz — 0 durch, so erhélt
man

. . (0D, 0D, D oD, 0D, 0D
D = X Y z = X b z .
a@< L dA) <8x+8y+az>dxdydz <6$+6y+az>dv

SchlieBlich erhélt man die Divergenz in kartesischen Koordinaten:

L= oDy 0Dy 0D,
div(D) = 5w o

Ein beliebiges, nicht infinitesimales Volumen V' kann man in unendlich vie-
le infinitesimale Volumenelemente zerlegen. Die Oberflichenintegrale entlang der
inneren Begrenzungen kiirzen sich dabei gegenseitig weg, so dass die Summe der
Oberflachenintegrale der infinitesimalen Volumenelemente das Oberflacheninte-
gral des gesamten Volumens V' ergibt. Die Summe der Volumenintegrale iiber die
infinitesimalen Volumenelemente ergibt das Volumenintegral iiber das gesamte
Volumen V. Damit folgt aus der Definition der Divergenz (1.30) der fiir beliebige

Vektorfelder D gliltige Satz von Gaufl

@5 (D, dA) H div(D (1.32)

Anwenden des Satzes von Gauf} auf (1.28) ergibt

@ (D, dA) H div(D) av = ﬂjpedv

Man erhélt schliefilich

(1.31)

div(ﬁ) = Pe- (1.33)

Fiir die komplexen Amplituden erhdlt man mit (1.3) und (1.7) die im Folgenden
vorwiegend verwendete Darstellung

div(D) = p,. (1.34)

Aufgabe 1.1 Es wird eine in der x-y-Ebene liegende Fldche A betrachtet, siehe
Abbildung 1.5. Zeigen Sie, dass mit dem nach auflen gerichteten Normalenein-

heitsvektor u auf dem Rand OA der Fliche A fiir beliebige Vektorfelder D folgen-
der, als Gaufscher Satz in der Ebene bekannter Zusammenhang

H <8D ) dA = 95 (1.35)

gilt! Betrachten Sie hierzu zundchst ein infinitesimales rechteckférmiges Flichen-
element dA, = dx dy.

12
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S

Abbildung 1.5.: Fldche A mit Normaleneinheitsvektor @ auf dem Rand 0A

1.1.5. Quellen des magnetischen Feldes, vierte Maxwellsche
Gleichung

1.1.5.1. Integrale Form

Der magnetische Fluss durch eine geschlossene Hiille ist gleich der eingeschlosse-
nen magnetischen Ladung:

(B, dA) = Hf pmdV . (1.36)

ov

—_——

magnetische Ladung

Die Flichennormale dA zeigt auch hier wieder nach auflen. In realen Szenarien
gibt es keine magnetischen Ladungen und dann verschwindet die magnetische
Ladungsdichte py,, das heifit die magnetische Flussdichte B ist quellenfrei.

Fiir die komplexen Amplituden erhélt man mit (1.5) und (1.9) die Gleichung

{§(B,a4) = [{[ o, av. (1.37)

ov

1.1.5.2. Differentielle Form

Dual zu Abschnitt 1.1.4.2 erhilt man durch Anwenden des Satzes von Stokes
(1.15) auf (1.36)
div(B) = pu. (1.38)

Fiir die komplexen Amplituden erhélt man mit (1.5) und (1.9) die im Folgenden
vorwiegend verwendete Darstellung

div(B) =P, (1.39)

13
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1.1.6. Ladungserhaltung

Anwenden der Divergenz auf das Durchflutungsgesetz (1.16) ergibt mit (1.44) und
(1.33) die Kontinuitatsgleichung

0 = div(rot(H)) = div <f+ aa_z?) = div(J) + aa’f. (1.40)

Die Summe aus elektrischer Leitungsstromdichte J und elektrischer Verschie-
bungsstromdichte 9D /Ot ist quellenfrei und eine abflieende elektrische Strom-
dichte J &uBert sich in einer abnehmenden elektrischen Ladungsdichte p,. Fiir die
komplexen Amplituden erhédlt man mit (1.6), (1.7) und (1.11) die Kontinuitats-
gleichung

0 = div(.J) + jwp,- (1.41)

Mit dem Satz von Gaufl (1.32) folgt fiir den aus einem Volumen V herausflie-
Benden elektrischen Leitungsstrom

ffiran = [[fas(nar=- jﬂ%@e av=-2 JJf e

— ~—
elektrischer Leitungsstrom elektrische Ladung

das heifit der aus dem Volumen V' herausflieBende elektrische Leitungsstrom ent-
spricht der Abnahme der elektrischen Ladung in dem Volumen V.

Vollig dual folgt aus dem Induktionsgesetz (1.23) mit (1.44) und (1.38) die
Kontinuitédtsgleichung

0 = div(—rot(E)) = div (M + aa—?) = div(M) + %“. (1.42)

Die Summe aus magnetischer Leitungsstromdichte M und magnetischer Verschie-
bungsstromdichte OB /Ot ist quellenfrei und eine abflielende magnetische Strom-
dichte M &uBert sich in einer abnehmenden magnetischen Ladungsdichte py,. Fir
die komplexen Amplituden erhélt man mit (1.8), (1.9) und (1.11) die Kontinui-
tatsgleichung

0= div(ﬂ) jwp_ . (1.43)

Diese Ladungserhaltungssiatze sind letztendlich aus den Maxwellschen Glei-
chungen ableitbar und stellen keine weiteren unabhéangigen Naturgesetze dar. His-
torisch gesehen hat die Forderung nach der Ladungserhaltung das Einfithren einer
elektrischen Verschiebungsstromdichte oD /0t in den Maxwellschen Gleichungen
motiviert.

14
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Aufgabe 1.2 Zeigen Sie unter Verwenden kartesischer Koordinaten, dass fiir je-
des Vektorfeld H
div(rot (H)) =0 (1.44)

gilt!

1.1.7. Materialgleichungen

Die Materialgleichungen stellen einen Zusammenhang zwischen den Feldstarken
und den Flussdichten her. Weiterhin sind die elektrische Stromdichte und die elek-
trische Feldstirke miteinander verkniipft. Im Rahmen dieses Buchs werden nur
einfache Materialen betrachtet, die sich durch folgende Eigenschaften auszeichnen:

e Die Materialien sind linear.
e Die Materialien sind zeitinvariant.

» Die Materialien sind isotrop, das heiffit die Eigenschaften sind richtungsun-
abhangig.

« Frequenzabhingigkeiten der Materialeigenschaften und die damit verbun-
dene zeitverzogerte Reaktion werden nicht explizit diskutiert.

Fiir das elektrische Feld gilt

D =c¢E. (1.45)
Mit (1.2) und (1.3) folgt

D=cE (1.46)
Die Permittivitat

€ = E€0&r (1.47)
ist das Produkt der absoluten Permittivitat

g0 =8,8542- 107 AsV~im! (1.48)
und der relativen Permittivitat ..
Fiir das magnetische Feld gilt

B =puH. (1.49)
Mit (1.4) und (1.5) folgt

B=uH (1.50)

15
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Die Permeabilitat
[t = flofh (1.51)
ist das Produkt der absoluten Permeabilitét

po=4m-107" Vs A m™! (1.52)

und der relativen Permeabilitéat p,.
Mit der elektrischen Leitfahigkeit s gilt weiterhin

J = kE. (1.53)
Mit (1.2) und (1.6) folgt
J=kE. (1.54)

Einsetzen der Materialgleichungen in das Durchflutungsgesetz (1.17) ergibt

rot(ﬁ) = (K +jwe) E = jw (a—jg) E. (1.55)

=

Mit der so definierten komplexen Permittivitat ¢ lassen sich Verluste in leitfahigen
Materialien auf einfache Art und Weise beriicksichtigen. Dual kann man eine
komplexe Permeabilitét ;o definieren. Fiir das Induktionsgesetz (1.24) folgt

— rot(E) =M —i—jwuﬁ = jwp H. (1.56)

1.2. Bedingungen an Grenzflachen

1.2.1. Elektrisches Feld an einer Grenzflache

Es wird das elektrische Feld an der lokal ndherungsweise ebenen Grenzflache
zweier Materialien unterschiedlicher Permittivitaten betrachtet. Der Normalen-
vektor auf der Grenzfliche und die Einfallsrichtung spannen die Einfallsebene
auf. Das Koordinatensystem wird vereinfachend so gewahlt, dass sich die Grenz-
flache bei z = 0 befindet und die Einfallsebene der x-z-Ebene entspricht, siehe
Abbildung 1.6. Der Normaleneinheitsvektor auf der Grenzfliche in Richtung des
ersten Mediums ist dann der Einheitsvektor u, in z-Richtung. Bei Anwenden
der Maxwellschen Gleichungen auf das elektrische Feld an der Grenzflache sind
die magnetische Fléachenstromdichte M r in der Grenzfliche, die elektrische Fl&-
chenladungsdichte p_ in der Grenzfliche und die sprunghaften Anderungen der

elektrischen Feldstarke E und der elektrischen Flussdichte é an der Grenzflache
relevant. Die Ableitung der Sprungfunktion ist der Dirac-Impuls §(-).

16
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>
P>

Abbildung 1.6.: Elektrisches Feld an einer Grenzflache

Fiir die linke Seite der Gleichung (1.34) erhalt man mit (1.31)
le(l_j) = (le - QZZ) 5(2) = <Dl - 227 ﬁz> 5(’2) )

da man alle Ableitungen aufler denen in z-Richtung vernachléssigen kann. Fiir
die rechte Seite der Gleichung (1.34) erhalt man

Es folgt
(Dy — Dy, ) = pp- (1.57)

Die Differenz der Normalkomponenten der elektrischen Flussdichten an einer
Grenzflache entspricht der elektrischen Flachenladungsdichte p . in der Grenz-
flache.

Fir die linke Seite des Induktionsgesetzes (1.24) erhélt man mit (1.14)

—10t(E) = (Eyy — Eay) 0(2) il — (Erx — ) 6(2) @y
— ((E1 —EQ) X ﬁz) i(2),

da man alle Ableitungen aufler denen in z-Richtung vernachlédssigen kann. X
bezeichnet hierbei das Vektorprodukt zweier Vektoren.® Fiir die rechte Seite des
Induktionsgesetzes (1.24) erhélt man

M:MF(S(Z)u

ay . by -
3 Mit den Vektoren @ = [ a, | und b= | by | gilt @x b= (asbs — asbs) dx+ (asb; — a bs) @y +
Qs l_73
(a1by = @9b,) .

17
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da man die auch an der Grenzfliche endlich grofle magnetische Flussdichte B
vernachléssigen kann. Es folgt

(E\ — Es) x 1, = My. (1.58)

Die Differenz der Tangentialkomponenten der elektrischen Feldstédrken an einer
Grenzflache ist proportional zur magnetischen Flachenstromdichte My in der
Grenzflache.

1.2.2. Magnetisches Feld an einer Grenzflache

Es wird das magnetische Feld an der lokal naherungsweise ebenen Grenzflache
zweier Materialien unterschiedlicher Permeabilitaten betrachtet. Das Koordina-
tensystem wird vereinfachend wieder so gewéhlt, dass sich die Grenzfliche bei
2z = 0 befindet und die Einfallsebene der z-z-Ebene entspricht, siehe Abbildung
1.7. Bei Anwenden der Maxwellschen Gleichungen auf das magnetische Feld an
der Grenzflache sind die elektrische Fldachenstromdichte i r in der Grenzflache, die
magnetische Flachenladungsdichte p . in der Grenzfliche und die sprunghaften

Anderungen der magnetischen Feldstérke H und der magnetischen Flussdichte B
an der Grenzfliche relevant.

Z
A
= El = Mlﬁl
241 Jr
mF > T
M2
BQ = MQHQ

Abbildung 1.7.: Magnetisches Feld an einer Grenzflache

Fir die linke Seite der Gleichung (1.39) erhélt man mit (1.31)

—

div(B) = (By, — Bs,) 6(2) = (By — Bs,1,) 8(2) .

da man alle Ableitungen aufler denen in z-Richtung vernachlassigen kann. Fiir
die rechte Seite der Gleichung (1.39) erhalt man
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1.2. Bedingungen an Grenzflichen

Es folgt . .
(By — By, ii,) = p, - (1.59)
Die Differenz der Normalkomponenten der magnetischen Flussdichten an einer
Grenzflache entspricht der magnetischen Flachenladungsdichte p__ in der Grenz-
flache.
Fiir die linke Seite des Durchflutungsgesetzes (1.17) erhélt man mit (1.14)

rot (ﬁ) =— (ﬂly - sz) 0(2) tx + (Hix — Hoy) 6(2) ty
= - ((ﬁl - E2) X QZZ) 5(2) ’

da man alle Ableitungen aufler denen in z-Richtung vernachléssigen kann. Fiir
die rechte Seite des Durchflutungsgesetzes (1.17) erhdlt man

j:iF5<Z)7

da man die auch an der Grenzfliche endlich grofle elektrische Flussdichte D ver-
nachlédssigen kann. Es folgt

- (ﬁl - EQ) X i, = Jp. (1.60)

Die negative Differenz der Tangentialkomponenten der magnetischen Feldstarken
an einer Grenzflache ist proportional zur elektrischen Flachenstromdichte Jy in
der Grenzflache.

Aufgabe 1.3 Die betrachteten elektromagnetischen Felder seien im jeweiligen
Medium Lésungen der Maxwellschen Gleichungen. Zeigen Sie, dass dann die
Grenzflachenbedingungen (1.57) und (1.59) der Normalkomponenten der Fluss-
dichten erfillt sind, falls die Grenzflichenbedingungen (1.58) und (1.60) der Tan-
gentialkomponenten der Feldstirken erfillt sind!

1.2.3. Grenzflache zweier Dielektrika

An der Grenzfliche zweier Dielektrika sind die Flédchenladungsdichten und die
Flachenstromdichten Null. Wenn man das Koordinatensystem vereinfachend wie-
der so wéhlt, dass die Grenzfliche der z-y-Ebene entspricht, folgen aus (1.57),
(1.58), (1.59) und (1.60) an der Grenzflache z = 0:

(Dy — Dy, 1i,) =0, (1.61)
(E\ - E,) x ii, =0, (1.62)
(B, — By, i1,) =0. (1.63)
(H, - Hy) x i, =0, (1.64)
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Die Normalkomponenten der Flussdichten und die Tangentialkomponenten der
Feldstarken sind an der Grenzfliche zweier Dielektrika stetig.

1.2.4. Oberflache eines idealen elektrischen Leiters

In einem idealen elektrischen Leiter muss das elektrische Feld verschwinden. We-
gen des Induktionsgesetzes (1.24) und der verschwindenden magnetischen Strom-
dichte ﬂ kann dann in einem idealen elektrischen Leiter auch kein zeitveran-
derliches magnetisches Feld existieren. Ideale elektrische Leiter sind feldfrei. An
der Oberfliache eines idealen elektrischen Leiters konnen eine elektrische Flachen-
stromdichte J, r und eine elektrische Flichenladungsdichte p .. vorhanden sein. Die

magnetische Flachenstromdichte M r und die magnetische Flachenladungsdichte
p.p sind jedoch an der Oberfliche eines idealen elektrischen Leiters stets Null.

Folglich miissen die Tangentialkomponenten der elektrischen Feldstarke E und
die Normalkomponente der magnetischen Flussdichte B an der Oberfliche eines
idealen elektrischen Leiters Null sein, siche (1.58) und (1.59). Wenn das Koordi-
natensystem so gewahlt wird, dass der Bereich z < 0 mit dem idealen elektrischen
Leiter gefiillt ist, miissen an der Oberfliche z = 0

=,

X i, =0 (1.65)

und

(B,d,) =0 (1.66)

gelten.
Mit (1.57) ergibt sich an der Oberfliche z = 0 des idealen elektrischen Leiters
die elektrische Flédchenladungsdichte

pp = (D, 1,). (1.67)

Der negative magnetische Feldstéarkevektor H , der Normaleneinheitsvektor 7, und
die elektrische Flachenstromdichte Jy an der Oberfliche z = 0 des idealen elek-
trischen Leiters bilden wegen (1.60) ein Rechtssystem:

Jp = —H x i, (1.68)

1.2.5. Oberflache eines idealen magnetischen Leiters

Aus Dualitdtsgrinden wird auch ein idealer magnetischer Leiter eingefiihrt. In ei-
nem idealen magnetischen Leiter muss das magnetische Feld verschwinden. Wegen
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1.2. Bedingungen an Grenzflichen

des Durchflutungsgesetzes (1.17) und der verschwindenden elektrischen Strom-
dichte j kann dann in einem idealen magnetischen Leiter auch kein zeitveran-
derliches elektrisches Feld existieren. Ideale magnetische Leiter sind feldfrei. An
der Oberflache eines idealen magnetischen Leiters konnen eine magnetische Fla-
chenstromdichte M p und eine magnetische Flachenladungsdichte p .. vorhanden

sein. Die elektrische Flachenstromdichte j r und die elektrische Fléachenladungs-
dichte p_.. sind jedoch an der Oberfliche eines idealen magnetischen Leiters stets
Null. Folglich miissen die Tangentialkomponenten der magnetischen Feldstarke
H und die Normalkomponente der elektrischen Flussdichte é an der Oberflache
eines idealen magnetischen Leiters Null sein, sieche (1.60) und (1.57). Wenn das
Koordinatensystem so gewéhlt wird, dass der Bereich z < 0 mit dem idealen
magnetischen Leiter gefiillt ist, miissen an der Oberfliche z = 0

sl

X i, =0 (1.69)

und
(D,,) =0 (1.70)

gelten.
Mit (1.59) ergibt sich an der Oberfliche z = 0 des idealen magnetischen Leiters
die magnetische Fliachenladungsdichte
pop = (B, U,). (1.71)
Der elektrische Feldstarkevektor E , der Normaleneinheitsvektor u, und die magne-

tische Flachenstromdichte ﬂ r an der Oberfliche z = 0 des idealen magnetischen
Leiters bilden wegen (1.58) ein Rechtssystem:

My =E x i, (1.72)

1.2.6. Dualitat von elektrischem und magnetischem Feld

Aufgrund der Dualitdt der Maxwellschen Gleichungen erhilt man aus einem die
Maxwellschen Gleichungen erfiillendem elektromagnetischen Feld bei Durchfiih-
ren der Ersetzungen in Tabelle 1.1 wieder ein mogliches elektromagnetisches Feld.
Speziell die Maxwellschen Gleichungen und die Materialgleichungen gehen durch
die Ersetzungen in sich selbst iiber.
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Kapitel 1. Feldtheoretische Grundlagen

Tabelle 1.1.: Dualitdt von elektrischem und magnetischem Feld

ersetze E durch — E
ersetze E durch E
ersetze B durch — D
ersetze é durch B
ersetze ﬂ durch — i
ersetze j durch M
ersetze p  durch — P,
ersetze  p_ durch  p
ersetze ¢ durch pu
ersetze p  durch ¢

1.3. Poynting-Vektor

Charakteristisch und fiir viele technische Anwendungen essentiell ist die Féahig-
keit elektromagnetischer Felder Energie zu transportieren. Das Ziel der folgenden
Betrachtungen ist das Gewinnen von Aussagen iiber den Energiefluss in elektro-

magnetischen Feldern.

Die folgenden Betrachtungen gehen von

o der Verlustleistungsdichte

o der elektrischen Energiedichte

und

pv = (E, )|, (1.73)

(1.74)

o der magnetischen Energiedichte

wy, = 3(H, B)

(1.75)

aus. Die aus einem Volumen V' austretende Strahlungsleistung P entspricht der
Abnahme der im Volumen V' gespeicherten elektrischen und magnetischen Energie
weniger der Verlustleistung im Volumen V. Mit (1.45), (1.49) und (1.53) erhalt
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1.3. Poynting-Vektor

man

P=- %jﬂwewm)dv_gfpvdv

Multiplizieren der elektrischen Feldstérke E mit dem Durchflutungsgesetz (1.16)
ergibt mit (1.45) und (1.53)

L LaB .. oF
(Eoxot(H)) = (E,J) + (E. ) = k(E, E) + (E, ).

Multiplizieren der magnetischen Feldstérke H mit dem Induktionsgesetz (1.23)
ergibt mit (1.49)

. , . OB . OH
—(H,rot(E)) = (H, o) = mH. ).

Mit (1.81) folgt fiir die Strahlungsleistung
P=- jjj ((E, rot(ﬁ)> - (ﬁ,rot(ﬁ))) dV = jjj div(E X ﬁ) dv.
v v
Man definiert den Poynting-Vektor

S=ExH. (1.77)

Mit dem Satz von Gaufl (1.32) folgt die Strahlungsleistung

P = [[[ div(S)av = (S, d4). (1.78)

ov

Der Poynting-Vektor S beschreibt die Strahlungsleistungsdichte.

In der Hochfrequenztechnik interessieren wir uns insbesondere fiir den zeitlichen
Mittelwert des Poynting-Vektors S bei harmonischer Zeitabhangigkeit der Feld-
starken. Bei harmonisch zeitabhangigen Feldstérken berechnet sich der Poynting-
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Kapitel 1. Feldtheoretische Grundlagen

Vektor mit (1.2) und (1.4) zu*
§ =Re(E ') x Re(H )
=5 (Bt B o) o (H o 4 o)
L (Bx @) et gt (Bx B7) 47 (B xf) 41 (B % ) e,
Der Mittelwert
VEx )+ (B x ) =Re(SEx )
entspricht dem Realteil des komplexen Poynting-Vektors

x H . (1.79)

[Ty
I
=,

DO | =

Die im Mittel aus einem Volumen V' austretende Strahlungsleistung ist
P = {f(Re(S),d). (1.80)
oV

Aufgabe 1.4 Zeigen Sie unter Verwenden kartesischer Koordinaten, dass fir be-
liebige Vektorfelder E und H

div(E x H) = (H,rot(E)) — (E,rot(H)) (1.81)

gilt!

* Der Realteil einer komplexen Grofie z berechnet sich zu Re(z) = § (z + z*).
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Kapitel 2.

Elektromagnetische Wellen

2.1. Helmholtz-Gleichungen

Im Folgenden wird das elektromagnetische Feld in einem homogenem Dielek-
trikum betrachtet. Es werden vereinfachend kartesische Koordinaten verwendet.
Wendet man auf das Durchflutungsgesetz (1.17) nochmals die Rotation an, so
erhalt man mit (1.46) bei verschwindender elektrischer Stromdichte J

— —

ot (rot(H) ) = jwe rot(E) .

Mit dem Gradienten

do . 9¢_ 09
grad(?) = g Ux + 8—;uy + 5, U (2.1)

eines Skalarfeldes ¢ in kartesischen Koordinaten, dem Laplace-Operator

AH = grad(div(ﬁ)) — rot(rot(ﬁ)) (2.2)

und der Quellenfreiheit des magnetischen Feldes H im ladungsfreien Raum p,,, =
0, siehe (1.39) und (1.50), erhalt man

~AH = jwe rot(E) )
Einsetzen des Induktionsgesetzes (1.24) ergibt mit (1.50) und
Bo = wy/Elt (2.3)
bei verschwindender magnetischer Stromdichte M die Helmholtz-Gleichung
AH+3H =0 (2.4)

fiir die magnetische Feldstéirke H. Dual erhilt man ausgehend vom Induktions-
gesetz (1.24) durch Einsetzen des Durchflutungsgesetzes (1.17) die Helmholtz-
Gleichung

=,
=,

AE + B2E=0 (2.5)
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Kapitel 2. Elektromagnetische Wellen

—

fir die elektrische Feldstarke E. Ziel wird es sein, spezielle Randbedingungen
erfiillende, als elektromagnetische Wellen bezeichnete, Losungen der Helmholtz-
Gleichungen zu finden. Zunéchst werden jedoch charakteristische Eigenschaften

moglicher Losungen der Helmholtz-Gleichungen studiert.

Aufgabe 2.1 Aus dem Durchflutungsgesetz (1.17) erhalt man mit (1.46) bei ver-
schwindender elektrischer Stromdichte j die elektrische Feldstarke

=i wot(H).

Zeigen Sie, dass die so berechnete elektrische Feldstirke E die Helmholtz- Gleichung
(2.5) erfillt, falls die magnetische Feldstarke H die Helmholtz-Gleichung (2.4) er-
fullt!

Aufgabe 2.2 Zeigen Sie ausgehend von der Definition des Laplace-Operators
(2.2), dass fir den Laplace-Operator in kartesischen Koordinaten

823 aQE 823
+ +

A= 0x? oy? 072

(2.6)

gilt!

2.2. Zylindrische Wellenleiter

2.2.1. Helmholtz-Gleichungen fiir zylindrische Wellenleiter

Zylindrische Wellenleiter, wie der in Abbildung 2.1 gezeigte, zeichnen sich durch
ihren konstanten Querschnitt aus. Das Koordinatensystem wird so gewahlt, dass
die Langsachse des zylindrischen Wellenleiters der z-Achse entspricht. Das Dielek-
trikum sei homogen und von idealen elektrischen Leitern berandet.

Es werden Losungen der Helmholtz-Gleichungen mit einer harmonischen z-
Abhéngigkeit gesucht. Fiir eine sich in positive (negative) z-Richtung ausbreitende
elektromagnetische Welle wahlt man daher den Ansatz

—

H(w,y,2,1) = Re(H(z,y, 2) ') = Re(Hy(w,y) P e) - (2.7)

fiir die magnetische Feldstirke H. Das obere (untere) Vorzeichen gilt hier und
im Folgenden stets bei Ausbreitung in positiver (negativer) z-Richtung. /3 ist die
Phasenkonstante. Dual verwendet man den Ansatz

—

E(w,y, %) = Re(E(,y, 2) ') = Re(Ey(w,y) P ) (28)
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2.2. Zylindrische Wellenleiter

z

Abbildung 2.1.: Kurzes Stiick eines zylindrischen Wellenleiters bestehend aus zwei
Leitern, deren Querschnitt grau dargestellt ist

fir die elektrische Feldstarke E )

Eine genauere Betrachtung des Anwendens des Laplace-Operators (2.6) auf die
magnetische Feldstarke E einer sich auf einem zylindrischen Wellenleiter ausbrei-
tenden elektromagnetischen Welle ergibt

9?H, N &2H,
Ox? 0y?

AE — A (EO eﬂFjBZ) _ ( _ BQEO> oFibz

Man definiert den zweidimensionalen Laplace-Operator

g, £ | M,

A — )
e Ox? + Oy?

(2.9)

Dies in die Helmholtz-Gleichung (2.4) eingesetzt ergibt nach Wegkiirzen von e¥#
die zweidimensionale Helmholtz-Gleichung

A Hy+ (83— 8°) Hy =0 (2.10)
2
7

fiir die magnetische Feldstirke H, bei z = 0. Dual erhilt man aus (2.5) die
zweidimensionale Helmholtz-Gleichung

AwEo+ (83— B?) By =0 (2.11)
2
/BC
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fir die elektrische Feldstirke Eo bei z = 0.

Man findet zunéchst elektromagnetische Felder H o und Eo in der Querschnitts-
ebene z = 0 des zylindrischen Wellenleiters und zugehorige kritische Phasenkon-
stanten [, mit

52 = B2 — (212)
als frequenzunabhéngige Losungen der zweidimensionalen Helmholtz-Gleichungen.
Die kritische Phasenkonstante . hangt nur von der Geometrie des zylindrischen
Wellenleiters, nicht aber von der Kreisfrequenz w ab. Mathematisch gesehen han-
delt es sich bei den zweidimensionalen Helmholtz-Gleichungen mit ihren durch die
Geometrie des zylindrischen Wellenleiters gegebenen Randbedingungen um Ei-
genwertprobleme | ]. Es gibt unendlich viele diskrete, aus Eigenwerten — 32
und zugehoérigen Eigenfunktionen H H, oder EO bestehende Losungen. Diese die
Feldstruktur beschreibenden Losungen des Eigenwertproblems werden als Moden
bezeichnet. Zu jedem Mode gibt es unendlich viele elektromagnetische Wellen, die
sich in Amplitude, Phase und Ausbreitungsrichtung unterscheiden.

Falls sich die Langsachse des zylindrischen Wellenleiters in eine beliebige, durch
den Einheitsvektor @ beschriebene, Raumrichtung erstreckt, erhalt man fiir die
sich in diese Raumrichtung ausbreitende elektromagnetische Welle mit dem Pha-
senvektor

3 = Bit = Byiiy + Byily + By, (2.13)
und dem Ortsvektor
T = Uy + Yty + 21,
des Beobachtungsortes die Ansétze
ﬁ = Re(ﬁo e_j<gv7_'> ej“)t) = Re (EO e_jﬁxx e_jﬁyy e_jﬂzz GJWt) (214)
und B
E = Re(Eo e 38 ej“t) = Re(ﬂo eI oTIBvY o mife ej“’t) : (2.15)

E o und Eo diirfen hier nur von den zum Phasenvektor 5 senkrechten Transver-
salkoordinaten abhangen.

2.2.2. Transversalkomponenten und Longitudinalkomponenten

Fiir eine sich in positive (negative) z-Richtung ausbreitende elektromagnetische
Welle kann man die Transversalkomponenten H , H v B und L, der Feldstarken
aus den Longitudinalkomponenten H, und E, der Feldstarken berechnen.

Fiir sich in positive (negative) z-Richtung ausbreitende elektromagnetische Wel-
len geméB (2.7) lauten die ersten beiden Komponentengleichungen (1.18) und
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2.2. Zylindrische Wellenleiter

(1.19) des Durchflutungsgesetzes im Dielektrikum J, = iy = 0 unter Verwenden
von (1.46):
oH

Sy T8Hy =jweEs. (2.16)

. OH, .
FiBH — = =jwek. (2.17)

Dual erhilt durch Einsetzen von (2.8) in die ersten beiden Komponentenglei-
chungen (1.25) und (1.26) des Induktionsgesetzes im Dielektrikum M, = M, =0
unter Verwenden von (1.50):

oE

%L 351, =jontl, 218
4, + 2 jup,, (2.19)

Auflésen nach den Transversalkomponenten ergibt mit (2.3) und (2.12):
B =F 052 ~ jon'g, (2.20)
B, = F 1052 + o2, (2.21)
HL5 =875 + e (2.22)
H, B = F I8 0 — e (2.23)

2.2.3. Transversalelektromagnetische Wellen

Transversalelektromagnetische Wellen (TEM-Wellen), die auch als Lecher-Wellen
(L-Wellen) bezeichnet werden, sind elektromagnetische Wellen, deren Feldstérken
keine Longitudinalkomponenten H, und £, haben. Fiir die kritische Phasenkon-
stante transversalelektromagnetischer Wellen muss f. = 0 gelten, siche (2.20),
(2.21), (2.22) und (2.23), wenn das elektromagnetische Feld nicht vollstandig ver-
schwinden soll. Aus (2.12) und (2.3) folgt die Phasenkonstante

B =Py = wy/Ep. (2.24)
Weiterhin folgt aus (2.16) und (2.17) oder (2.18) und (2.19) fiir die Transver-

salkomponenten einer sich in positive (negative) z-Richtung ausbreitenden trans-

versalelektromagnetischen Welle
E.__E_ B8 _ v

H H, we

Y
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Man erhélt den Feldwellenwiderstand

_ B wn f
== \E (2.25)

transversalelektromagnetischer Wellen. Der Feldwellenwiderstand des Vakuums
ergibt sich mit (1.48) und (1.52) zu

Zm::M50_1%m9_4W7Q (2.26)
0

Der elektrische Feldstirkevektor E und der magnetische Feldstarkevektor H einer
transversalelektromagnetischen Welle sind in Phase und stehen zu jedem Zeit-
punkt senkrecht aufeinander:

E =4 ZpH x @, (2.27)

— E T

g=g=2t (2.28)
Zy

Mit (1.79) folgt der komplexe Poynting-Vektor
= 1 . £\ -
5:5@%{ — E,H}) .
_i——o \+@\)@: 2%HHM” (2.29)
== 220 (I + L) . = =52 | ] .

einer sich in positive (negative) z-Richtung ausbreitenden transversalelektroma-
gnetischen Welle. ||-|| bezeichnet die Norm des Vektors.! Der komplexe Poynting-
Vektor S einer transversalelektromagnetischen Welle ist rein reell, das heifit die
transversalelektromagnetische Welle transportiert nur Wirkleistung.

Aufgabe 2.3 Zeigen Sie, dass bei transversalelektromagnetischen Wellen die elek-
trische Energiedichte w, und die magnetische Energiedichte wy, zu jedem Zeit-
punkt gleich sind! Die Energiedichten selbst kénnen dabei sehr wohl zeitabhdngig
oder ortsabhdingig sein. Wie grof ist die Energiegeschwindigkeit

Vg = ——— (2.30)

transversalelektromagnetischer Wellen?

! Die Norm des Vektors @ ist ||d@|| = \/(@, @)-
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2.2.4. Transversalelektrische Wellen

Transversalelektrische Wellen (TE-Wellen), die auch als H-Wellen bezeichnet wer-
den, sind elektromagnetische Wellen, deren elektrische Feldstérke E keine Longi-
tudinalkomponente £, hat. Die magnetische Feldstérke H hat jedoch eine Longi-
tudinalkomponente H,. Fiir die kritische Phasenkonstante transversalelektrischer
Wellen muss (. # 0 gelten, siche (2.20), (2.21), (2.22) und (2.23), wenn die Lon-
gitudinalkomponente H, der magnetischen Feldstéarke H nicht iiber die gesamte
Querschnittsflache konstant sein soll, was im Widerspruch zu den Randbedingun-
gen stiinde.

Im Folgenden wird gezeigt, dass 32 reell und nichtnegativ ist.? Sei A die mit
dem Dielektrikum gefiillte Querschnittsebene des zylindrischen Wellenleiters. Der
Rand 0A der Querschnittsebene A entspricht den Leiteroberflachen. @ sei der Nor-
maleneinheitsvektor auf der Leiteroberflache. Mit der zweidimensionalen Helmholtz-
Gleichung (2.10), (2.9) und dem GauBschen Satz in der Ebene (1.35) erhilt man
unter Beriicksichtigen der Produktregel der Ableitung

82 [ |Ho,|* dA = jj H;, 02Hy, dA = — jj Hj, Ay Ho, dA
A
(7 2

_ aHOZ g * aﬂOz
= H (8$ <—OZ Oz >+8y (ﬂOZ oy ))dA

ff 8HOZ aHOZ aﬂ;z aﬂOz dA
or O oy 0Oy

B . O0H Ho, | . O0H,,

__95 Mo, T o5,
H(}M” Jaa

Die Ableitung der tangentialen z-Komponente H,, der magnetischen Feldstarke
H an der Oberfliche des idealen elektrischen Leiters nach der Normalenrichtung
ergibt Null, siehe (2.20), (2.21) und (1.65). Damit folgt

0H, 8H0 . 8H0 8&0 .
H, =+ Hp, “ uyds = (P Hj, - Z )yds = 0.
§E< % g %% dy 96 83: dy )

= 0 auf dem Rand 0A

, ) ds

‘8HOZ

2 Die Eigenwerte des Laplace-Operators sind reell und nichtnegativ, da der Laplace-Operator
auf der Menge der die Randbedingungen erfiillenden Funktion selbstadjungiert ist.
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Man erhélt schliefllich

Jf (2] + | %ee]*) 0
_ A > ()
& flmfar =

reell

Zum Berechnen des Feldwellenwiderstands Zytg bildet man das Verhéltnis aus
(2.20) und (2.23) oder aus (2.21) und (2.22) und setzt E, = 0 ein. Mit (2.12),
(2.3) und (2.25) erhalt man den Feldwellenwiderstand

E L,

€,  Hy 50\/1— e \/1—

transversalelektrischer Wellen, siehe auch (2.42). Zusammenfassend schreibt man

E =+ ZprpH x ,. (2.32)

2.2.5. Transversalmagnetische Wellen

Transversalmagnetische Wellen (TM-Wellen), die auch als E-Wellen bezeichnet
werden, sind elektromagnetische Wellen, deren magnetische Feldstérke H keine
Longitudinalkomponente H, hat. Die elektrische Feldstarke E hat jedoch eine
Longitudinalkomponente E,. Fir die kritische Phasenkonstante transversalma-
gnetischer Wellen muss . # 0 gelten, siehe (2.20), (2.21), (2.22) und (2.23),
wenn die Longitudinalkomponente £, der elektrischen Feldstéarke E nicht iiber
die gesamte Querschnittsfliche konstant sein soll, was im Widerspruch zu den
Randbedingungen stiinde.

Die tangentiale z-Komponente £, der elektrischen Feldstarke E an der Ober-
fléiche des idealen elektrischen Leiters ist Null, vergleiche (1.65). Damit folgt

* aEﬂOz aEﬂOz — * GEOZ aEOZ — _
¢<EOZ a +EOZ 8 >d$—¢ EOZ < ax + ay 7u>d$_0'

oA oA _ =0 auf dern Rand 0A

Mit einer im Ubrigen formal zur Rechnung in Abschnitt 2.2.4 gleichartigen Rech-
nung ausgehend von der zweidimensionalen Helmholtz-Gleichung (2.11) kann man
zeigen, dass (2 auch hier reell und nichtnegativ ist.

Zum Berechnen des Feldwellenwiderstands Zyry bildet man das Verhéltnis aus
(2.20) und (2.23) oder aus (2.21) und (2.22) und setzt H, = 0 ein. Mit (2.12),
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2.2. Zylindrische Wellenleiter

(2.3) und (2.25) erhalt man den Feldwellenwiderstand

B, _E 5 Bi-(%) 8
ZFTM:i_—X::F_—y:—I—BOIZF 1—<ﬂ—c
0

H H we we
transversalmagnetischer Wellen, siehe auch (2.42). Zusammenfassend schreibt man

)2 (233)

y =£x

q Ex i
g=g=2 (2.34)
ZFTM
2.2.6. Phasenkonstante und Wellenliange
Aus (2.12) ergibt sich mit (2.3) die Phasenkonstante
B= /B3 — B2 = \Jwep — B2, (2.35)

Die elektromagnetische Welle ist nur dann ausbreitungsfahig, das heifit die Pha-
senkonstante [ ist nur dann reell, wenn die Kreisfrequenz w grofler als die kritische
Kreisfrequenz

Be

VEH
ist. Anderenfalls entstiinde ein aperiodisch abklingendes elektromagnetisches Feld.

Fiir diesen Fall und verallgemeinernd fiir den Fall verlustbehafteter Dielektrika
mit komplexen Permittivitaten ¢ und komplexen Permeabilititen p ergibt sich

eine komplexe Wellenzahl
k=0 —jo= |wu— 2. (2.37)

Der negative Imaginérteil o der Wellenzahl k£ wird als Dampfungskonstante be-
zeichnet. Im Folgenden werden jedoch nur die fiir technische Anwendungen beson-
ders interessanten ausbreitungsfihigen und ungedampften elektromagnetischen
Wellen mit rein reeller Wellenzahl & = 3 weiter betrachtet.

Aus der Phasenkonstante § berechnet man die Wellenldnge

We = 27ch =

(2.36)

2 2
A= AT (2.38)

B /-8

siehe (2.7), (2.8) und Abbildung 2.2. Es gibt elektromagnetische Wellen, deren
kritische Phasenkonstante 3. Null ist, siche Abschnitt 2.2.3. Die Wellenldnge A
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Kapitel 2. Elektromagnetische Wellen

einer derartigen elektromagnetischen Welle entspricht der sogenannten Freiraum-
wellenlange

2
Ao = —. 2.39
= (239
Hiermit folgt fiir die Wellenlédnge
A
A= —— (2.40)
Be
1= (%)
nyz(l‘Oa Yo, =, tO)
| A
\/ :
Abbildung 2.2.: Elektromagnetische Welle mit der Wellenldnge A
Man definiert weiterhin die kritische Wellenldnge
2T
Ae = —. 241
5. 240

Unter Verwenden von (2.3) folgt fiir den Term im Nenner von (2.40)

Jl—(%)Q:«—(i—S)z: 1—<%>2. (2.42)

2.2.7. Phasengeschwindigkeit

Die Phasengeschwindigkeit ergibt sich mit der Strecke Az, welche die Phasenfront

in der Zeit At zuriicklegt, zu
Az

PTAL
siehe Abbildung 2.3. An der Phasenfront einer sich in positive z-Richtung aus-
breitenden elektromagnetischen Welle gilt

(%

o—iBzHiwt _ (—iB(z+Az)+w(t+AY)
)
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2.2. Zylindrische Wellenleiter

siehe (2.7) und (2.8). Es folgt die Phasengeschwindigkeit

vp = 3 (2.43)

und mit (2.35) und (2.3) schliefllich

w 1

a1- (&) vemf1- (&)

Up:

Az Hyy, (20, Y0, 2, to + At)

nyz(x07 Yo, 2, tO)

Abbildung 2.3.: Sich in positive z-Richtung ausbreitende elektromagnetische Wel-
le

Die Phasengeschwindigkeit v, einer sich in einem Dielektrikum mit frequenzu-
nabhéngigen Materialeigenschaften ausbreitenden elektromagnetischen Welle ist
nur dann frequenzunabhéingig, wenn die kritische Phasenkonstante . Null ist.
Fir derartige elektromagnetische Wellen entspricht die Phasengeschwindigkeit v,
der Lichtgeschwindigkeit

c=—. (2.44)
NG
Mit (1.48) und (1.52) ergibt sich die Vakuumlichtgeschwindigkeit zu
1

Co = =3-10ms™ . 2.45
0 VEolo (2.45)

Fiir die Phasengeschwindigkeit folgt

Up = ————, (2.46)

siehe auch (2.42). Beim Annédhern an die kritische Kreisfrequenz w, wird die Pha-
sengeschwindigkeit v, unendlich grof3, siehe Abbildung 2.5.
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Kapitel 2. Elektromagnetische Wellen

2.2.8. Gruppengeschwindigkeit

Es wird die Nachrichteniibertragung tiber ein Wellenleiterstiick der Léange Az
mit einer sich in positive z-Richtung ausbreitenden elektromagnetischen Welle
betrachtet, sieche Abbildung 2.4. Die Phasenkonstante [ sei zunéchst beliebig
frequenzabhéngig. Aus nachrichtentechnischer Sicht ist insbesondere die aus der
Impulsantwort einfach ablesbare Laufzeit At der Nachrichten interessant | l.
Die gesuchte Impulsantwort lisst sich prinzipiell aus der Ubertragungsfunktion
e i8wA2 qurch inverse Fourier-Transformation berechnen. Man wird jedoch typi-
scherweise aufgrund der komplizierten Frequenzabhéngigkeit der Phasenkonstante
f(w) keine analytische Losung fiir die Impulsantwort finden.

E efj ﬁ(w) AZ
Wellenleiter —>

:

Az

Abbildung 2.4.: Lineares zeitinvariantes System

Fiir schmalbandige Nachrichtensignale der mittleren Kreisfrequenz wgy kann
man zum Vereinfachen des Problems die lineare Taylor-Approximation

B()  Blen) + 90 (10— o)

verwenden. Damit folgt fiir die Ubertragungsfunktion

. . . 0 . . 0 -9
e—JB(w)Az ~ e—Jﬁ(UJO)AZ—J%(w—UJO)AZ — e—JB(wo)Az-l—J%woAz e—J%u}Az )

Phasenverschiebung

Durch inverse Fourier-Transformation erhilt man hieraus bis auf eine nicht weiter
interessierende Phasenverschiebung die Impulsantwort

1 e :
f e_J%“AZ etdw =6t — %Az
ow

F! (e—j%wAz) _ o
T

At
d(+) ist der Dirac-Impuls. Es folgt die Gruppengeschwindigkeit
Az 1 ow

e Sl (2.47)
At 295

Vg
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2.2. Zylindrische Wellenleiter

Mit (2.35), (2.3) und (2.44) folgt fiir elektromagnetische Wellen bei frequenzu-
nabhangigen Materialeigenschaften

1 1 8.\ <8C>2
= = 1— (5] =1 -(=], 2.48
Ug 82; ( (72611 6’02) \/EMN <BO> ¢ BO ( )

siehe auch (2.42). Beim Annéhern an die kritische Kreisfrequenz w. wird die Grup-
pengeschwindigkeit v, Null, siche Abbildung 2.5.

3

We /W
Abbildung 2.5.: Phasengeschwindigkeit v, und Gruppengeschwindigkeit v,

Die Gruppengeschwindigkeit v, ist frequenzunabhangig, falls die Phasenkon-
stante 3 proportional zur Kreisfrequenz w ist, sieche Abbildung 2.6. Dies ist bei
einer sich in einem Dielektrikum mit frequenzunabhéangigen Materialeigenschaften
ausbreitenden elektromagnetischen Welle der Fall, wenn die kritische Phasenkon-
stante 3. Null ist. Dann sind Phasengeschwindigkeit v, und Gruppengeschwin-
digkeit v, gleich der Lichtgeschwindigkeit c. Man bezeichnet die elektromagne-
tische Welle als dispersionsfrei. Dispersionen resultieren aus einer nichtlinearen
Frequenzabhangigkeit der Phasenkonstante . Dispersionen sind meistens uner-
wiinscht, da die frequenzabhangige Gruppengeschwindigkeit vy zu Verzerrungen
bei der Signaliibertragung fithrt. Man unterscheidet im Allgemeinen

Wellenleiterdispersionen, die aus der charakteristischen nichtlinearen Frequenz-
abhéngigkeit (2.35) der Phasenkonstante /3 bei elektromagnetischen Wellen
mit einer kritischen Phasenkonstante (5, grofler Null resultieren und
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dispersionsbehaftet

0o 05 1 15 2 25 3

w/we

Abbildung 2.6.: Dispersionsdiagramm

Materialdispersionen, die aus einer nichtlinearen Frequenzabhangigkeit der Pha-
senkonstante [ infolge frequenzabhangiger Materialeigenschaften resultie-
ren.

Aufgabe 2.4 Zeigen Sie, dass sich die Gruppengeschwindigkeit gemdyfs

Up
_ w O

vp Ow

Vg =
aus der Phasengeschwindigkeit v, berechnen ldsst!

2.3. Ebene homogene Welle im freien Raum

Die ebene homogene Welle stellt die einfachste Losung der Helmholtz-Gleichungen
dar. Eine ebene Welle ist dadurch charakterisiert, dass die Phasenfronten, das
heifit die Orte gleicher Phasen, Ebenen im Raum sind. Von einer ebenen homo-
genen Welle fordert man zusétzlich, dass diese Ebenen konstanter Phase auch
Orte konstanter Amplitude sind. Der freie Raum entspricht einem zylindrischen
Wellenleiter mit unendlichem Querschnitt. Bei einer ebenen homogenen, sich in
positive (negative) z-Richtung ausbreitenden, elektromagnetischen Welle gelten
folglich

H(z,y,z) = HyeT% (2.49)
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2.3. Ebene homogene Welle im freien Raum

und .
E(:Ea Y, Z) = EO e:Fszv (250)

vergleiche (2.7) und (2.8).
Da die Feldstarken einer sich in z-Richtung ausbreitenden ebenen homogenen
Welle nicht von den Transversalkoordinaten x und y abhéngen, folgt aus der

z-Komponente (1.20) des Durchflutungsgesetzes im Dielektrikum J, = 0 unter
Verwenden von (1.46)

1 (0H, OH
E,=— & =)o
= jwe(@x 8y> 0

Dual folgt aus der z-Komponente (1.27) des Induktionsgesetzes im Dielektrikum
M, = 0 unter Verwenden von (1.50)

1 OE, OF
H, = _O=y Y ),
= jwu( Ox + 8y> 0

Die ebene homogene Welle ist also eine transversalelektromagnetische Welle. Man
kann beispielsweise die konstanten, von den Transversalkoordinaten x und y un-
abhéngigen Transversalkomponenten E,, und E, der elektrischen Feldstérke Eo
fir z = 0 oder alternativ die Transversalkomponenten H, und H, oy der ma-

gnetischen Feldstarke H o fiir z = 0 beliebig vorgeben. Wie man leicht durch
Einsetzen tiberpriift, erfiillt dieser Ansatz unter Berticksichtigen von . = 0 die
zweidimensionalen Helmholtz-Gleichungen (2.10) und (2.11). Wie bei allen trans-
versalelektromagnetischen Wellen sind die elektrische Feldstarke E und die ma-
gnetische Feldstarke H iiber den Feldwellenwiderstand Zp miteinander verkntipft,
siehe (2.27) und (2.28). Des Weiteren gelten natiirlich alle allgemeinen Eigenschaf-
ten transversalelektromagnetischer Wellen auch hier, siche Abschnitt 2.2.3.

Die folgende Betrachtung der zeitabhéngigen raumlichen Ausrichtung des elek-
trischen Feldstirkevektors E einer sich in positive z-Richtung ausbreitenden ebe-
nen homogenen Welle fithrt zum Begriff der Polarisation. Willkiirlich wird die
Ebene z = 0 betrachtet. Fiir den Momentanwert der elektrischen Feldstarke gilt
mit (1.2)

Eox = Re(EOX ej“t) = Re(Eyy) cos(wt) — Im(Ey, ) sin(wt)

d
o Eoy = Re (EOy ej“’t) = Re (EOy) cos(wt) — Im (EOy) sin(wt) .

Die Spitze des elektrischen Feldstarkevektors Ej durchliuft mit fortschreitender
Zeit eine Ellipse in der z-y-Ebene, sieche Abbildung 2.7.
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|6

max

Abbildung 2.7.: Polarisationsellipse

Den Drehsinn definiert man beziiglich der Blickrichtung in Ausbreitungsrich-
tung der ebenen homogenen Welle. Diese Blickrichtung ist willkiirlich aber in
der Hochfrequenztechnik iiblich. In der Optik wahlt man die Blickrichtung bei-
spielsweise genau umgekehrt, so dass sich der Drehsinn umkehrt. Anhand der in
Abbildung 2.8 eingefithrten Groflen unterscheidet man folgende Polarisationszu-
stande:

e 0 <ayx—ay <m Ey eilt Ey, vor, rechtsdrehend polarisiert
e 0 <ay—ayx <m Eyy eilt Ey vor, linksdrehend polarisiert

o ayx —ay = 0 oder ay — oy = 7 Ep und Eyy gleichphasig oder gegenphasig,
linear polarisiert

o ax — oy =7m/2und |Ey| = ’E(]y‘: rechtsdrehend zirkular polarisiert

o oy —ay =m/2und |Ey| = ‘Eoy’: linksdrehend zirkular polarisiert

Bei linearer Polarisation entartet die Polarisationsellipse zu einer Linie und bei
zirkularer Polarisation ist die Polarisationsellipse ein Kreis. Jede ebene homogene
Welle kann man eineindeutig als Uberlagerung zweier orthogonaler Basiswellen
darstellen. Als derartige Polarisationsbasen kommen beispielsweise linear hori-
zontal und linear vertikal oder zirkular rechtsdrehend und zirkular linksdrehend
polarisierte ebene homogene Wellen in Frage. Dies wird in Richtfunksystemen und
Satellitenkommunikationssystemen ausgenutzt, um unter Verwenden der beiden
orthogonal polarisierten Basiswellen unabhéngige Informationen zu iibertragen.

40



2.3. Ebene homogene Welle im freien Raum

Im
A on

Qx = arg (EOX) =0y

Qy = arg (Eoy)

Abbildung 2.8.: Ermitteln des Drehsinns

Aufgabe 2.5 Fine ebene homogene Welle breite sich in positive z-Richtung aus.
Die Transversalkomponenten Ey und Ey der elektrischen Feldstirke £ haben bei
z =0 die komplezen Amplituden

Eyp = (1+j05)Vm™!

beziehungsweise
Ey, = (1—-3j0,5)Vm .

Zeichnen Sie die Polarisationsellipse!

y
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Kapitel 3.

Wellenleiter

3.1. Hohlleiter
3.1.1. Aufbau von Hohlleitern

Hohlleiter sind mit einem homogenen Dielektrikum, wie zum Beispiel Luft, ge-
filllte rohrformige Wellenleiter konstanten Querschnitts aus ndherungsweise ideal
elektrisch leitendem Material. Es handelt sich um Einleitersysteme.

Im Folgenden werden nur die mathematisch einfach zu handhabenden Recht-
eckhohlleiter betrachtet. Dies ist keine wesentliche Einschrankung, da auch bei
Hohlleitern anderen Querschnitts wie Rundhohlleitern keine fundamental anders-
artigen Effekte auftreten. Abbildung 3.1 zeigt das verwendete Koordinatensystem.
Die Langsachse des Hohlleiters, in deren Richtung sich die elektromagnetische
Welle ausbreitet, entspricht der z-Richtung. Die Breite des Hohlleiters wird mit
a, die Hohe mit b bezeichnet. Das Koordinatensystem wird in der Regel so ge-
wahlt, dass a > b gilt.

Abbildung 3.1.: Rechteckhohlleiter
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3.1.2. Transversalelektrische Wellen in Hohlleitern

Zunéchst werden transversalelektrische Wellen, das heifit elektromagnetische Wel-
len, deren elektrische Feldstéirke E keine Longitudinalkomponente £, hat, unter-
sucht. Es wird eine die z-Komponente der zweidimensionalen Helmholtz-Gleichung
(2.10) und die Randbedingungen

H

8_Z:O firx=0und z =a
ox

und S
— =0 firy=0und y =0,
dy

siehe (2.20), (2.21) und (1.65), erfiillende Longitudinalkomponente H, der ma-
gnetischen Feldstarke H gesucht.
Es wird der Ansatz

H,=H, cos(mﬁx) COS(%) eFifz (3.1)
a

HOZ

fiir die Longitudinalkomponente der magnetischen Feldstéarke H verwendet, der
die Randbedingungen erfiillt, falls m und n ganzzahlig sind. Die zu den ganzzah-
ligen Parametern m und n gehorenden transversalelektrischen Wellen bezeichnet
man als TE,, ,-Wellen. m oder n muss von Null verschieden sein. Einsetzen der
Longitudinalkomponente H, der magnetischen Feldstarke H o bei z =0 in die 2-
Komponente der zweidimensionalen Helmholtz-Gleichung (2.10) ergibt mit (2.9)

2
0=—-H, (m) Cos<m7m> cos(mry)
a a b
2
~ () eos(F ) eos(F)
mmT

Die kritische Phasenkonstante ergibt sich zu

mm\ 2 nm\?
=1/ — — . 3.2
2 \/< a ) +< b > (3:2)
Die Transversalkomponenten der Feldstéarken einer sich in positive (negative) z-
Richtung ausbreitenden transversalelektrischen Welle berechnet man mit (2.20),
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(2.21), (2.22) und (2.23) aus den Longitudinalkomponenten A, und E, = 0 der
Feldstérken:

H, = :Fj%aaﬂxz = &j ﬁﬁﬂgo% sin(m;m) cos<n—7bry> eTi02, (3.5)
H, = ;j%aaﬂyz — %07’% cos<mm> sin(n—zy) S (3.6)

Im Allgemeinen ist nur das elektrische Feld transversalelektrischer Wellen tiber-
sichtlich darstellbar, da es hier ausreicht, die elektrische Feldstarke in einer belie-
bigen Querschnittsebene zweidimensional darzustellen, siehe Abbildung 3.2.

S I WaNS
e o] PRng
I NI ca [~

Abbildung 3.2.: Elektrische Felder transversalelektrischer Wellen

Aufgabe 3.1 Berechnen Sie die kritischen Kreisfrequenzen we ., der TE,, -
Wellen eines luftgefiillten Hohlleiters der Breite a = 50 mm und der Hohe b =
30mm fiir m, n < 2! Berechnen Sie weiterhin fiir eine sich auf diesem Hohlleiter
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ausbreitende transversalelektrische Welle der Kreisfrequenz w = 2-10%s7! die
Phasengeschwindigkeit vy, die Gruppengeschwindigkeit v, und die Wellenlinge X!

Aufgabe 3.2 Berechnen Sie auf den Hohlleiterwanden ]ewezls die elektrische
Flachenladungsdzchte P aus der elektrischen Feldstarke E und die elektrische

Fldchenstromdichte JF aus der magnetischen Feldstarke H wenn sich im Hohl-
leiter eine TE,, ,- Welle ausbreitet! Uberpriifen Sie Ihr Ergebnis mit Hilfe der Kon-
tinuitdtsgleichung (1.41)!

3.1.3. Transversalmagnetische Wellen in Hohlleitern

Nun werden transversalmagnetische Wellen, das heifit elektromagnetische Wellen,
deren magnetische Feldstarke H keine Longitudinalkomponente H, hat, unter-
sucht. Hier wiahlt man den Ansatz

b,=FE, sin(mwx) sin(%) eTihz (3.7)
a

EOZ

fiir die Longitudinalkomponente der elektrischen Feldstérke E. Der Ansatz erfiillt
die Randbedingungen

E,=0 firr=0undz=a

und
E,=0 firy=0undy=0,

vergleiche (1.65), falls m und n ganzzahlig sind. Die zu den ganzzahligen Para-
metern m und n gehorenden transversalmagnetischen Wellen bezeichnet man als
TM,,, ,-Wellen. Im Gegensatz zu transversalelektrischen Wellen, bei denen nur m
oder n von Null verschieden sein muss, miissen bei transversalmagnetischen Wel-
len m und n von Null verschieden sein. Einsetzen der Longitudinalkomponente
E,, der elektrischen Feldstérke Eo bei z = 0 in die z-Komponente der zweidimen-
sionalen Helmholtz-Gleichung (2.11) ergibt mit (2.9)

2
0=—FE, (?) sin(m;mc sin(mbry)

N—
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Die kritische Phasenkonstante ergibt sich wie bei den transversalelektrischen Wel-

len, siehe (3.2), zu : :
= () (5 @

Die Transversalkomponenten der Feldstéirken einer sich in positive (negative) z-
Richtung ausbreitenden transversalmagnetischen Welle berechnet man mit (2.20),
(2.21), (2.22) und (2.23) aus den Longitudinalkomponenten £, und H, = 0 der
Feldstarken:

E, = :;:j%aaﬂ; = Fj ﬁﬂﬂgo@ cos<m;m> sin(mgy) eFihz (3.9)
E, = :Fjé%aﬁ%cyz = Fj Bf?on% sin(m;m) cos(nﬁ:y) eFihz, (3.10)
H, :j;—;aaﬂyz = j%gﬁo% sin(m;m) COS(TL_Z?J) eTihz, (3.11)
H, = —j;—;aaﬂ; = —j w;gﬁog Cos<m;m) sin<%) eFihz (3.12)

Im Allgemeinen ist nur das magnetische Feld transversalmagnetischer Wellen
iibersichtlich darstellbar, da es hier ausreicht, die magnetische Feldstérke in einer
beliebigen Querschnittsebene zweidimensional darzustellen, siehe Abbildung 3.3.

m=2

Abbildung 3.3.: Magnetische Felder transversalmagnetischer Wellen
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3.2. Zweileitersysteme

3.2.1. Aufbau von Zweileitersystemen

Im Folgenden werden Zweileitersysteme mit konstantem Querschnitt und homo-
genem Dielektrikum betrachtet. Das Koordinatensystem wird so gewéhlt, dass
die der Ausbreitungsrichtung entsprechende Langsachse des Zweileitersystems der
2-Achse entspricht, siehe Abbildung 3.4. Im Folgenden werden zunéchst transver-
salelektromagnetische Wellen nédher untersucht. Bei hoheren Kreisfrequenzen sind
aber moglicherweise auch andere Wellentypen ausbreitungsféhig.

Y

A

z

Abbildung 3.4.: Koaxiales Zweileitersystem

3.2.2. Transversalelektromagnetische Wellen auf
Zweileitersystemen

3.2.2.1. Feldstarken

Es wird der Ansatz . .
E = —U,grad(¢) e™?* (3.13)
—_———

—

Ey

fir die elektrische Feldstérke einer sich in positive (negative) z-Richtung ausbrei-
tenden transversalelektromagnetischen Welle verwendet. ¢ ist das auf die Span-
nung zwischen den Leitern normierte elektrostatische Potential. Da die Tangen-

48



3.2. Zweileitersysteme

tialkomponenten des elektrostatischen Feldes an den Leiteroberflichen Null sind,
erfullt der Ansatz die (1.65) entsprechenden Randbedingungen.

Das elektrostatische Feld ist wirbelfrei, siche (3.14). Im ladungsfreien Dielek-
trikum p, = 0 ist das elektrostatische Feld zudem gemaf (1.33) und (1.46) auch
quellenfrei, das heifit es ist Losung der Laplace-Gleichung

div(grad(¢)) = A¢ = 0.

Einsetzen der elektrischen Feldstéarke Eo bei z = 0 in die zweidimensionale
Helmholtz-Gleichung (2.11) ergibt mit (2.2)

0=~ UpAsy (grad(¢)) — Uy grad(¢)
= — UpA (grad(¢)) — Uyf5? grad(¢)
— — Uy grad(div(grad(6))) + U rot(rot(grad(9))) — Uy grad(9)
= — Uy grad().
Der Ansatz ist folglich eine Losung der zweidimensionalen Helmholtz-Gleichung,
falls fir die kritische Phasenkonstante Be =10 gilt. Die so gefundene elektrische
Feldstirke E hat keine Longitudinalkomponente E Mit Hilfe der z-Komponente

(1.27) des Induktionsgesetzes, (1.50) und (2.1) findet man, dass auch die Longi-
tudinalkomponente

2 2
ﬂzz—jﬂoi<a¢ a¢>e¢jﬂz:0

Jxdy  Oyox
der magnetischen Feldstérke H verschwindet. Es handelt sich folglich um ei-

ne transversalelektromagnetische Welle. Es gelten die allgemeinen Eigenschaften
transversalelektromagnetischer Wellen, siehe Abschnitt 2.2.3.

In einem Hohlleiter, das heifit einen Einleitersystem, kann keine derartige trans-
versalelektromagnetische Welle existieren. Das elektrostatische Potential ¢ muss
auf der gesamten leitenden Berandung des Einleitersystems konstant sein und
somit ist das elektrostatische Potential ¢ auf einem Einleitersystem insgesamt

konstant. Die elektrische Feldstarke E ist dann Null.

Aufgabe 3.3 Zeigen Sie unter Verwenden kartesischer Koordinaten, dass fiir al-
le Skalarfelder ¢

rot(grad(¢)) = 0 (3.14)
qgilt!
Aufgabe 3.4 Zeigen Sie, dass fir den skalaren Laplace-Operator in kartesischen
Koordinaten o Po P
A¢ = div(grad(¢)) = 5 + e + 53 (3.15)
qgilt!
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3.2.2.2. Spannung

Fiir eine in der Querschnittsebene im Dielektrikum mit verschwindender magne-
tischer Stromdichte M liegende Fliache A folgt mit H, = 0 aus dem Induktions-
gesetz (1.22) und (1.50)

—,

— P(E, aR) = jwp || (H, dA) = jwp [[ H,dA = 0.
dA X s

Die elektrische Feldstarke E ist bei transversalelektromagnetischen Wellen in der
Querschnittsebene wirbelfrei. Man kann daher in einer Querschnittsebene eine
Spannung U zwischen den beiden Leitern definieren, die vom Integrationsweg
unabhéngig ist. In einer Querschnittsebene gilt unter Verwenden von (3.13) mit
einem beliebigen Integrationsweg zwischen den Leitern

U = [(E.dr) = ™% [{Ey, dn), (3.16)

T

Y

sieche Abbildung 3.5. Fiir eine sich in positive (negative) z-Richtung ausbreitende
transversalelektromagnetische Welle gilt daher

U=Uje"?. (3.17)

Abbildung 3.5.: Zur Definition der Spannung U

3.2.2.3. Strom

Fiir eine in der Querschnittsebene im Dielektrikum mit verschwindender elektri-
scher Stromdichte J liegende, das heifit keinen Leiter beinhaltende, Flache A folgt
mit £, = 0 aus dem Durchflutungsgesetz (1.12) unter Verwenden von (1.46)

PO, 45) = jos [[{E,0) = jue [[ E,aA =0,

0A
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3.2. Zweileitersysteme

Die magnetische Feldstarke H ist bei transversalelektromagnetischen Wellen in
der Querschnittsebene innerhalb des Dielektrikums wirbelfrei. Man kann daher
in einer Querschnittsebene einen Strom I durch einen der Leiter definieren, der
vom Integrationsweg unabhéngig ist. In der Querschnittsebene gilt mit einem
beliebigen Integrationsweg um einen der Leiter herum

1= (P, ds) = ™ (H, ds) (3.18)

—_——
Ly

d7, d§ und die positive z-Richtung sollen hierbei ein Rechtssystem bilden, siehe
Abbildung 3.5 und Abbildung 3.6. Fiir eine sich in positive (negative) z-Richtung
ausbreitende transversalelektromagnetische Welle gilt

I=1,e7"%, (3.19)

ds

Abbildung 3.6.: Zur Definition des Stroms [

3.2.2.4. Wellenwiderstand

Das Verhéltnis aus Spannung U und Strom [ ist eine vom Ort z unabhéangige,
als Wellenwiderstand Z;, bezeichnete und fiir das Zweileitersystem charakteris-
tische Konstante. Fiir eine sich in positive (negative) z-Richtung ausbreitende
transversalelektromagnetische Welle gilt

v
I I,
siehe (3.17) und (3.19). Wegen der aus der Proportionalitéit der Feldstarken einer
transversalelektromagnetischen Welle, siehe (2.27) und (2.28), folgenden Gleich-

phasigkeit (Gegenphasigkeit) von Spannung U und Strom [ ist der Wellenwider-
stand Zi, reell und positiv.

=17, (3.20)
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3.2.2.5. Ersatzschaltbild

Fiir die Ableitung der Spannung U einer sich in positive (negative) z-Richtung
ausbreitenden transversalelektromagnetischen Welle nach z gilt mit (3.17), (3.20)

und (2.24)
ou

3—_ =FjpU = —jpZLl = —jwJepZy 1. (3.21)
z ———
L/
Der Induktivitatsbelag
L' = \/enzy, (3.22)

hat die Einheit Hm™!.

Fiir die Ableitung des Stroms [ einer sich in positive (negative) z-Richtung
ausbreitenden transversalelektromagnetischen Welle nach z gilt mit (3.19), (3.20)
und (2.24)

o0l 1 1
= =TiBl = —if—U = —j —U. 3.23
o, = TL=—if5 U= —jw e U (3.23)
————
Cl
Der Kapazititsbelag
1
C' = \Jep— (3.24)
A9

hat die Einheit Fm~?.
Der Wellenwiderstand (3.20) ergibt sich zu

NG \/?
e O C (3:25)

Mit (2.45), (2.46) und (2.48) folgt unter Beriicksichtigen von . = 0 fir die
Phasengeschwindigkeit und die Gruppengeschwindigkeit
1
Vp = Vg = \/?C’/ (326)
Die Gleichungen (3.21) und (3.23) bilden ein als Leitungsgleichungen bezeich-
netes Differentialgleichungssystem, mit dem man Spannung U und Strom I be-
stimmen kann. Nochmaliges Ableiten von (3.21) nach z und Einsetzen von (3.23)
ergibt mit (2.24)

2 ol
687% = —’w[/a—; = —w?L'C'U = —*U. (3.27)
Dual erhalt man
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3.2. Zweileitersysteme

Man hétte diese Differentialgleichungen auch direkt aus dem Ersatzschaltbild in
Abbildung 3.7 ablesen kénnen. Der hier verfolgte feldtheoretische Ansatz liefert
jedoch zusétzlich die Erkenntnis, dass Induktivitatsbelag L’ und Kapazitatsbelag
C’ bei Zweileitersystemen mit homogenem Dielektrikum wegen

L'C' =eu (3.29)
abhéngige Groflen sind.
I(z) L'de I(z+dz)
o—1l _L >—O
U(z) C'dz U(z+dz)

: T3

Abbildung 3.7.: Ersatzschaltbild eines kurzen Stiicks der Lange dz eines Zweilei-
tersystems

3.2.2.6. Leistung

Die transportierte Leistung P lasst sich gemafl (1.80) mit Hilfe des komplexen
Poynting-Vektors S durch Integration iiber eine Querschnittsfliche berechnen.
Fiir das Flachenelement gilt .

dA = dr' x ds,
wobei wie in Abbildung 3.8 gezeigt der Integrationsweg dr” entlang der elektri-

schen Feldlinien verlaufe und der Integrationsweg ds entlang der magnetischen
Feldlinien verlaufe. Mit (1.79), (1.80), (3.16) und (3.18) folgt'

p— H Re( ExH) dF x d3)
_Re(ﬂ (B, dr\/(H",d3) — <ﬁ*,df}<E,d§}))

=Re (5 !(E, d7) !<E*’ d§))
wfier)

— - — —

! Es wird die Lagrange-Identitét (@ x b, & x dy = (@, & (b, d) — (@, d) (b, &) verwendet.

(3.30)
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Kapitel 3. Wellenleiter

Abbildung 3.8.: Infinitesimales Flachenelement dA = d7x d5'in der Querschnitts-
ebene

3.2.3. Beispiele von Zweileitersystemen
3.2.3.1. Bandleitung

Die Breite a der Leiter der in Abbildung 3.9 gezeigten Bandleitung sei viel grofer
als der Abstand b, so dass Streufelder vernachléssigbar sind.

Das normierte Potential des elektrostatischen Feldes des Plattenkondensators
ist

vy
Mit (3.13) und (2.1) folgt die elektrische Feldstérke
- 1 _.
E=-Upy ™77 i, (3.31)
und mit (2.28) erhilt man schliefllich die magnetische Feldstéarke
f = 40— % (3.32)
E¥ S 0 ZFb X

einer sich in positive (negative) z-Richtung ausbreitenden transversalelektroma-
gnetischen Welle auf der Bandleitung.
Die Kapazitat eines Plattenkondensators der Lange [ ist

eal
C=—.
b

Damit folgen der Kapazititsbelag

C' =

%:% (3.33)
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3.2. Zweileitersysteme

Yy
A
N L _ | L1 _1_13)
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/. ol A A e > T -
—> F

z

Abbildung 3.9.: Bandleitung mit einer sich in positive z-Richtung ausbreitenden
transversalelektromagnetischen Welle

unter Verwenden von (3.29) der Induktivitdtsbelag
b
a
und mit (3.25) und (2.25) der Wellenwiderstand
b b
7 = \/E— — Zp (3.35)

ga a

L (3.34)

Fiir transversalelektrische Wellen wéhlt man den fiir ganzzahlige n die Rand-
bedingungen erfiilllenden Ansatz

H, = H, cos(n—zy) o0z (3.36)

—_——

ﬂ(')z

fiir die Longitudinalkomponente der magnetischen Feldstérke H, siehe (2.20) und
(1.65). Die zu den ganzzahligen Parametern n > 0 gehorenden transversalelek-
trischen Wellen bezeichnet man als TE,,-Wellen, siehe Abbildung 3.10. Einsetzen
der Longitudinalkomponente H,, der magnetischen Feldstarke H o bei z = 0 in
die z-Komponente der zweidimensionalen Helmholtz-Gleichung (2.10) ergibt mit

(2.9)
2
o=t () (75 ¢ ().
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Kapitel 3. Wellenleiter

Die kritische Phasenkonstante ergibt sich zu

g, ="" (3.37)

b
Die Transversalkomponenten der Feldstérken einer sich in positive (negative) z-
Richtung ausbreitenden transversalelektrischen Welle berechnet man mit (2.20),
(2.21), (2.22) und (2.23) aus den Longitudinalkomponenten H, und E, = 0 der

Feldstarken:

H .
B, =i w%g_o "—;T sin<7%ry> eFIBz. (3.38)
B, =0, (3.39)
H, =0, (3.40)
BHonm . (nmy 3z
H,=+] 2 b 5111(7) eFihz (3.41)

<- o PR P -
/ \ / \
n=1 O IO DR
// \\ 7/ \\ \\
<« - - _ = - = - —~— = _ -
) ® ( \ @ t \ ® ( ——)ﬁ
n=2 \---------- - EEEEEEEREEEE R
) @ ( \ ® l/ \ @ ( —»E_”
- - e T e -7 - ->

Abbildung 3.10.: Transversalelektrische Wellen auf einer Bandleitung. Dargestellt
ist ein Langsschnitt durch die Bandleitung in der y-z-Ebene

Fiir transversalmagnetische Wellen wihlt man den fiir ganzzahlige n die (1.65)
entsprechenden Randbedingungen erfiillenden Ansatz

E,=E, sin(%) eTifz (3.42)
—_—

£,

zZ

fiir die Longitudinalkomponente der elektrischen Feldstarke E. Die zu den ganz-
zahligen Parametern n > 0 gehorenden transversalmagnetischen Wellen bezeich-
net man als TM,,-Wellen, siehe Abbildung 3.11. Einsetzen der Longitudinalkom-
ponente E,, der elektrischen Feldstarke Eo bei z = 0 in die z-Komponente der
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3.2. Zweileitersysteme

zweidimensionalen Helmholtz-Gleichung (2.11) ergibt mit (2.9)

2
0=—-E, (@) sin(@) + B*E, sin(@) :
b b b
Die kritische Phasenkonstante ergibt sich wie bei transversalelektrischen Wellen,

siehe (3.37), zu
_nr

Be =" (3.43)

Die Transversalkomponenten der Feldstirken einer sich in positive (negative) z-
Richtung ausbreitenden transversalmagnetischen Welle berechnet man mit (2.20),
(2.21), (2.22) und (2.23) aus den Longitudinalkomponenten £, und H, = 0 der
Feldstérken:

E, =0, (3.44)
BEynm  (nmy\ i

Ey = :FJB—ET COS(T) €$J6 s (345)
E .

H, =j w;go n_b7r cos<7%ry> eFibaz, (3.46)

H, =0. (3.47)

Abbildung 3.11.: Transversalmagnetische Wellen auf einer Bandleitung. Darge-
stellt ist ein Langsschnitt durch die Bandleitung in der y-z-
Ebene

Aufgabe 3.5 Es wird die Uberlagerung zweier sich in unterschiedliche Richtun-
gen ausbreitender ebener homogener Wellen gleicher Amplitude betrachtet, siehe
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Kapitel 3. Wellenleiter

Abbildung 3.12. Zeigen Sie, dass sich die transversalelektrischen Wellen auf einer
Bandleitung als Uberlagerung zweier derartiger horizontal polarisierter Wellen
darstellen lassen! Zeigen Sie, dass sich die transversalmagnetischen Wellen auf
einer Bandleitung als Uberlagerung zweier derartiger vertikal polarisierter Wellen
darstellen lassen!

Yy
1 B = Bosin(a) iy + By cos(a) i,
(6%
> Z
X (6%
By = —Bysin(a) ity + Bo cos(av) i,

Abbildung 3.12.: Ausbreitungsrichtungen der beiden zu tiberlagernden Wellen

3.2.3.2. Koaxialleitung

Bei der in Abbildung 3.13 gezeigten Koaxialleitung handelt es sich um einen kreis-
zylindrischen aus Innenleiter, Dielektrikum und Auflenleiter bestehenden Wellen-
leiter.

/
P .

z

Abbildung 3.13.: Koaxialleitung
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3.2. Zweileitersysteme

Die Kapazitat eines Zylinderkondensators der Lange [ ist

2mel

n(2)

C =

Damit folgen der Kapazititsbelag

2
o= Y- 2me (3.48)

()
unter Verwenden von (3.29) der Induktivitétsbelag

_ nin(§)
L

L (3.49)

und mit (3.25) und (2.25) der Wellenwiderstand

1 /i D 1 D

In der Hochfrequenztechnik verwendet man tblicherweise Koaxialleitungen mit
einem einheitlichen Wellenwiderstand von Z;, = 50 €.

3.2.3.3. Planare Wellenleiter

Die in Abbildung 3.14 gezeigten planaren Wellenleiter konnen aufwandsgiinstig
gefertigt werden. Die technischen Herausforderungen bestehen neben den héau-
fig ungiinstigen Eigenschaften der verwendeten Dielektrika insbesondere darin,
dass viele dieser Wellenleiter inhomogene Dielektrika haben. Von den in Abbil-
dung 3.14 gezeigten Beispielen planarer Wellenleiter hat nur die Streifenleitung
ein homogenes Dielektrikum. Die Streifenleitung ist allerdings nur in Mehrlagen-
technik zu fertigen. Bei den iibrigen einfacher zu fertigenden planaren Wellen-
leitern besteht das felderfiillte Dielektrikum aus dem Substrat und aus Luft.
Die sich auf einem derartigen planaren Wellenleiter mit inhomogenem Dielek-
trikum ausbreitenden elektromagnetischen Wellen sind keine transversalelektro-
magnetischen Wellen. Haufig handelt es sich jedoch in hinreichend guter Nahe-
rung um transversalelektromagnetischen Wellen. Man spricht dann von quasi-
transversalelektromagnetischen Wellen.

99
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| Substrat. | Substrat.

(a) Mikrostreifenleitung (b) Streifenleitung

Substrat

(c) Koplanare Leitung

Abbildung 3.14.: Planare Wellenleiter

3.3. Transversalelektromagnetische Wellen auf
Mehrleitersystemen

3.3.1. Allgemeine Mehrleitersysteme

Es werden Mehrleitersysteme mit konstantem Querschnitt und homogenem Di-
elektrikum betrachtet, sieche Abbildung 3.15. Einer der Leiter wird als Bezugsleiter
ausgewahlt und im Folgenden als Masse bezeichnet. Es verbleiben N > 1 weitere
Leiter, wobei der Spezialfall N = 1 den in Abschnitt 3.2 besprochenen Zweilei-
tersystemen entspricht. Das Koordinatensystem wird wieder so gewéhlt, dass die
der Ausbreitungsrichtung entsprechende Léangsachse des Mehrleitersystems der
z-Achse entspricht.

Im Folgenden werden nur transversalelektromagnetische Wellen néher unter-
sucht. Eine die Helmholtz-Gleichung (2.5) und die Randbedingungen erfiillende
elektrische Feldstirke E einer sich in positive (negative) z-Richtung ausbreiten-
den transversalelektromagnetischen Welle findet man wieder ausgehend von ei-
nem normierten elektrostatischen Potential ¢. Der Nachweis erfolgt genau so wie
in Abschnitt 3.2.2.1. Der wesentliche Unterschied zu Zweileitersystemen besteht
darin, dass das normierte elektrostatische Potential ¢ und damit die Struktur des
elektrostatischen Feldes auf Mehrleitersystemen nicht eindeutig ist. Abhéngig von
der Ladungsverteilung auf den Leitern ergeben sich elektrostatische Felder unter-
schiedlicher Struktur. Es bestehen N Freiheitsgrade und man kann folglich jedes
elektrostatische Potential —U ¢ auf dem Mehrleitersystem als Linearkombination
von N linear unabhéngigen, aber ansonsten beliebigen, normierten elektrostati-
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>
>

Leiter 1

Leiter 2

| Bezugsleiter, gse |/

z

Abbildung 3.15.: Dreileitersystem

schen Potentialen ¢™, n = 1...N, darstellen. Fiir die elektrische Feldstarke
einer sich in positive (negative) z-Richtung ausbreitenden transversalelektroma-
gnetischen Welle folgt in Verallgemeinerung von (3.13)

N
E = > —Q(()") grad(¢(")) eTif (3.51)
n=1

E(n)

Auf dem Mehrleitersystem sind also N verschiedene transversalelektromagneti-
sche Moden gleichzeitig ausbreitungsfihig. Phasenkonstante /3, Phasengeschwin-
digkeit v, und Gruppengeschwindigkeit v, aller transversalelektromagnetischen
Moden auf Mehrleitersystemen mit homogenem Dielektrikum sind gleich.

Analog zur Vorgehensweise bei Zweileitersystemen in den Abschnitten 3.2.2.2
und 3.2.2.3 kann man bei Mehrleitersystemen die Spannung

U, =Ug, e (3.52)
zwischen Leiter n und Masse und den Strom

61



Kapitel 3. Wellenleiter

durch Leiter n definieren. Man definiert den Spannungsvektor

U,
U= : (3.54)
Uy
und den Stromvektor
L,
- (3.55)
Iy
Mit einer geeignet gewahlten reellen Wellenwiderstandsmatrix
Ziig o ZunN
Zy, = : : (3.56)
ZiNa t+ ZLNN

gilt aufgrund der Linearitat fiir eine sich in positive (negative) z-Richtung aus-
breitende transversalelektromagnetische Welle

U=+7; 1 (3.57)

vergleiche Abschnitt 3.2.2.4. Aufgrund der Reziprozitat des Mehrleitersystems ist
die Wellenwiderstandsmatrix Z;, symmetrisch.? Ableiten der Spannungen U nach
z ergibt mit (2.24)

ou . . .
8—_ = FjpU = —jfZy, -1 = —jw \/epZy, L (3.58)
z ——
L/

Die Induktivitéatsbelagsmatrix

L' = : : = /enZy, (3.59)
L'y -+ L'ny

ist wie die Wellenwiderstandsmatrix Zp, reell und symmetrisch.

Die inverse Wellenwiderstandsmatrix Z;' ist reell und symmetrisch, da die
Inverse einer reellen symmetrischen Matrix wieder eine reelle symmetrische Matrix
ist. Es gilt

I=+7;'-U

(3.60)

2 Das Mehrleitersystem kann man als Mehrtor auffassen und die Impedanzmatrix Z eines
reziproken Mehrtors ist wie auch dessen Streumatrix S symmetrisch, siche Aufgabe 9.2.
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Ableiten der Strome I nach z ergibt mit (2.24)

o - . _
5, = FiBU = —ipZ" - U = —jw /EuZy -U. (3.61)
z —_———
C/

Die Influenzbelagskoeffizientenmatrix

/ /
i1 *++ Ci1N

o= | = vz (3.62)
C/N,l s C/N,N
ist wie die Wellenwiderstandsmatrix Zj, reell und symmetrisch. Sie enthélt die
Influenzbelagskoeffizienten ¢y, ., = ¢ 1.
Fiir ein kurzes Stiick eines Dreileitersystems erhélt man das in Abbildung 3.16
gezeigte Ersatzschaltbild mit den folgenden Kapazitiatsbeldgen:

C'0=C11+ 1, (3.63)
C'90 =Cop + 1, (3.64)
C'ia=—C12. (3.65)

Mit der Einheitsmatrix E gilt weiterhin
L' -C' =cuE, (3.66)

was eine Verallgemeinerung der Zusammenhénge (3.29) beim Zweileitersystem
darstellt. Induktivitdtsbelagsmatrix L’ und Influenzbelagskoeffizientenmatrix C’
sind bei Mehrleitersystemen mit homogenem Dielektrikum abhéngige Grofien.
Speziell fir Dreileitersysteme gilt

C — (Clm 0/1,2> _ Euth _ - Ep ( L/2,2 —L/1,2> . (3.67)

/ / 9 / /
C12 Co22 "aLllao — L’L2 —L'o L'y,

Nochmaliges Ableiten von (3.58) nach z und Einsetzen von (3.61) ergibt mit
(2.24)

62U 27 / / 2 2'
Dual erhalt man
9’1 9
5 = — 21 (3.69)
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S
Abbildung 3.16.: Ersatzschaltbild eines kurzen Stiicks der Lange dz eines Dreilei-
tersystems
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3.3.2. Symmetrische Dreileitersysteme

Symmetrisch zur Masse aufgebaute Dreileitersysteme zum Verbinden elektroni-
scher Komponenten sind von besonderer technischer Bedeutung. Einerseits kann
man die Einkopplung von Storsignalen durch Verwenden differentieller Signale
reduzieren. Andererseits ist es haufig vorteilhaft, elektronische Schaltungen sym-
metrisch zur Masse aufzubauen. Man erhélt dann zwangslaufig massesymmetri-
sche differentielle Eingénge und Ausgénge. Abbildung 3.17 zeigt zwei Beispiele
symmetrisch aufgebauter Dreileitersysteme.

(a) Allgemeines symmetrisches Dreileiter-(b) Rein massegekoppeltes symmetrisches Dreilei-
system tersystem

Abbildung 3.17.: Symmetrische Dreileitersysteme

Der symmetrische Aufbau bewirkt insbesondere, dass die Induktivitatsbeldge
L'=1L1,=1L5
und die Influenzbelagskoeffizienten
d = 0/1,1 = Clz,Q

fir beide Leiter gleich sind. Mit (3.59) folgt

Ziig = Zia2-
Der Grad der Kopplung wird durch den Kopplungsfaktor
Z112 L' 12
k= == 3.70
ZLl 1 L c ( )
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beschrieben. Fiir die Umformungen wurden (3.59) und (3.67) verwendet. Insbe-
sondere sind die induktiven und die kapazitiven Kopplungen gleich.

Ein eleganter Ansatz besteht darin, Eigenvektoren der Wellenwiderstandsma-
trix Z als Moden zu verwenden | |. Speziell bei symmetrischen Dreileitersys-
temen sind die Eigenvektoren alleine durch die Struktur der Matrizen gegeben.
Es gelten

Ziag Zia2 A o A o U
+ (ZLI,Z ZL1,1> ' (—l() =+ (Z11,1 — Z11p) o) = + e
——— ——

Zy, 1) 1) u-)
und
Zug Zug\ (I I\ (Ut
= (ZLLQ Zraa) \IH) £ (Zuag + Zu12) &)~ + Uu® |-
7y, S 1) u-)

Das heifit die Gegentaktwelle und die Gleichtaktwelle sind solche Eigenvektoren
entsprechenden Moden. Die Stromvektoren 1) und IP) sind die Eigenvektoren
der Wellenwiderstandsmatrix Zi,. Der Wellenwiderstand

U=

(=) _ 4 =< _ _
Zy ==+ o) = Z1a1 — 2112

L/:L,LQ . \EM

\EM c — CI172
=L, |L'(1-k)
N —cia \c(1+k)

der Gegentaktwelle und der Wellenwiderstand

U
ZI(JJF) == F = Zia1+ Zuap

L+ L, e
R+
|+ Ly | L(1+E)
SV d+cdi, \d(1—k)

der Gleichtaktwelle sind die zugehorigen Eigenwerte. Fiir die Umformungen wur-
den (3.59), (3.67) und (3.70) verwendet. Weiterhin sind die Spannungsvektoren
U und U die Eigenvektoren der inversen Wellenwiderstandsmatrix Z; L
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3.3. Transversalelektromagnetische Wellen auf Mehrleitersystemen

Man definiert den Wellenwiderstand

oo -k L(+k) [
ARV ARNA _\lc’(1+k)'c’(1—k)_ — (3.71)

C/

Damit folgt fiir den Wellenwiderstand der Gegentaktwelle

. 1—k
z) =7, T (3.72)

und fir den Wellenwiderstand der Gleichtaktwelle

14k
70 = 4| ——. 3.73
L L 11—k ( )
Jede sich auf einem symmetrischen Dreileitersystem ausbreitende transversal-
elektromagnetische Welle kann man in eine Gegentaktwelle und eine Gleichtakt-
welle zerlegen, siehe Abbildung 3.18.
Die Spannungen

U, =u"+u™ (3.74)

und
U,=-U9+u™ (3.75)

der Leiter ergeben sich durch Uberlagern der Gegentaktspannung U™ und der
Gleichtaktspannung U™, Es folgen

vt == =2 3.76
U . (3.76)
und U U

U™ = % (3.77)
Die Strome

I =10+ 1) (3.78)
und

I, =—10 + % (3.79)

der Leiter ergeben sich durch Uberlagern des Gegentaktstroms I~ und des
Gleichtaktstroms (). Es folgen

I, -1
IO == 5 = (3.80)
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1,
¢ = O
Ql ZL; k
——eeee= 0 — -
o
C — O
1,
l(*)
¢ = O
Q(—)l Zﬁ_)
—_——eee === D —
N
) :
.= T 9]
_ l(*)
l(+)
( — O
Q(Jr) l Z£+)
— — e _______________ ( — —
N
U :
. =TT 9]
l(+)

Abbildung 3.18.: Zerlegung eines symmetrischen Dreileitersystems in ein Gegen-
taktsystem und ein Gleichtaktsystem. Die gestrichelt gezeich-
neten Hélften brauchen aus Symmetriegriinden nicht weiter be-
trachtet zu werden
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und
w_Litls

2
Fiir die transportierte Leistung erhélt man aufgrund der Orthogonalitit von
Gegentaktmode und Gleichtaktmode

[~

(3.81)

P =1 Re(UI3) + 3 Re(Ua3)
1 +
:éRe((m + Ut )(I RN >)) -
1 3.82
45 Re((~U 4+ u) (=10 4+ 19))
—Re(UOIC) ) +Re (U<+ I )

Gegentaktwelle Gleichtaktwelle

vergleiche (3.30). Man beachte den Wegfall des Faktors 1/2 beim Berechnen
der transportierten Leistung aus den Gegentaktgrofien und den Gleichtaktgro-
Ben der daraus resultiert, dass Spannungen und Stréome der Gegentaktwelle und
der Gleichtaktwelle jeweils nur die Spannung beziehungsweise den Strom eines
einzigen Leiters berticksichtigen.

Eine Sonderstellung nehmen die rein massegekoppelten symmetrischen Dreilei-
tersysteme mit

L/1,2 =0

und
CI172 =0

ein, siehe Abbildung 3.17b. Mit (3.70) folgt fiir den Kopplungsfaktor
k=0 (3.83)

und folglich sind der Wellenwiderstand (3.72) der Gegentaktwelle und der Wel-
lenwiderstand (3.73) Gleichtaktwelle gleich:

Z\) =710 =7, (3.84)
Aufgabe 3.6 Es wird ein aus drei gleichartigen Leitern in gleicher relativer An-

ordnung bestehendes Dreileitersystem betrachtet, siehe Abbildung 5.19. Wie grofs
ist der Kopplungsfaktor k¢
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Leiter 2

Abbildung 3.19.: Aus drei gleichartigen Leitern in gleicher relativer Anordnung
bestehendes Dreileitersystem
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Antennentheorie

4.1. Vektorpotential

Das Ziel der folgenden Betrachtungen ist es, das von der elektrischen Stromdichte
J einer Antenne in ein homogenes Dielektrikum abgestrahlte elektromagnetische
Feld zu berechnen. Die magnetische Stromdichte M sei hier Null.

Man definiert das magnetische Vektorpotential A als Losung der inhomogenen
Helmholtz-Gleichung

—

A+ B A= —pl, (4.1)

wobei
B = wy/En (4.2)

die Phasenkonstante ist. Die elektrische Stromdichte i ist die Quelle des magne-
tischen Vektorpotentials A Bei Verwenden kartesischer Koordinaten zerfallt die
vektorielle inhomogene Helmholtz-Gleichung (4.1) des magnetischen Vektorpo-
tentials A in drei skalare inhomogene Helmholtz-Gleichungen

AAX + BZAX = - ”lxv (43)
AA, + B*A, = — pd,, :
AAZ =+ 62Az = ,uim (45>

siche (2.6) und (3.15), das heifit die Komponenten der elektrischen Stromdichte
J sind die Quellen der entsprechenden Komponenten des magnetischen Vektor-
potentials A. Im Folgenden wird gezeigt, dass man mittels

B = rot (A) (4.6)

aus dem magnetischen Vektorpotential A ein die Maxwellschen Gleichungen er-
fiillendes elektromagnetisches Feld erhalt.

Wegen (1.44) ist die aus dem magnetischen Vektorpotential A mit (4.6) be-
rechnete magnetische Flussdichte B wie im Fall verschwindender magnetischer
Ladungsdichte p_ von (1.39) gefordert stets quellenfrei.
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Mit dem Durchflutungsgesetz (1.17), (1.50) und (4.6) erhalt man die elektrische
Flussdichte . .
D = — rot(rot(/_f)) — —i
jop jw
Mit (1.44) und (1.41) erhélt man wie von (1.34) gefordert

div(B) = = div(rot(vot(4)) - = div(J) = o,

Schliefilich setzt man die aus der elektrischen Flussdichte é unter Verwenden
von (1.46), (2.2), (4.1) und (4.2) berechnete elektrische Feldstarke

_ 1 - 1 -
E :jW5M rot (rot (A)) — jw—sl

grad (div(4)) - ——Ad— L] (4.7)

~jwen

st,u grad(dlv (A)) — jwA
noch in das Induktionsgesetz (1.24) ein. Unter Verwenden von (3.14) und (4.6)
erhalt man wie bei verschwindender magnetischer Stromdichte M vom Indukti-
onsgesetz (1.24) gefordert

L 1 L L ,
rot (E) = e rot(grad(dlv(A))) + jwrot (A) = jwB.

Im allgemeinen Fall, dass sowohl eine nichtverschwindende elektrische Strom-
dichte J als auch eine nichtverschwindende magnetische Stromdichte M vorhan-
den ist, kann man das elektromagnetische Feld aufgrund der Linearitat der Max-
wellschen Gleichungen als Uberlagerung des nur von der elektrischen Stromdichte
J abgestrahlten elektromagnetischen Feldes und des nur von der magnetischen
Stromdichte M abgestrahlten elektromagnetischen Feldes berechnen. Das Berech-
nen des von der magnetischen Stromdichte M abgestrahlten elektromagnetischen
Feldes erfolgt unter Ausnutzen der Dualitatsbeziehungen aus Tabelle 1.1 mit Hilfe
eines elektrischen Vektorpotentials.

4.2. Kugelkoordinaten

4.2.1. Koordinatentransformation

Bei der Analyse von Antennenproblemen interessiert hidufig nur das als Fernfeld
bezeichnete elektromagnetische Feld in grofler Entfernung von der Sendeantenne.
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Von hier aus betrachtet erscheint die Antenne wie eine weit entfernte Punktquel-
le. Das Berechnen des Fernfeldes vereinfacht sich daher signifikant, wenn man
Kugelkoordinaten Radius 7, Poldistanzwinkel ¥ und Azimutwinkel ¢ als ein an
das Problem angepasstes Koordinatensystem verwendet, siehe Abbildung 4.1. Die
kartesischen Koordinaten x, y und z ergeben sich als Funktionen von Radius 7,
Poldistanzwinkel ¢ und Azimutwinkel ¢ wie folgt:

x =rsin(?) cos(p) , (4.8)
y =rsin(¥) sin(yp) , (4.9)
z =rcos(V). (4.10)

Abbildung 4.1.: Kugelkoordinaten

Die Koordinatenlinien sind die Orte, an denen alle Koordinaten bis auf eine
einzige ausgewahlte Koordinate konstante Werte annehmen. Da die Koordina-
tenlinien im Gegensatz zu kartesischen Koordinaten hier im Allgemeinen keine
Geraden sind, spricht man von krummlinigen Koordinaten. Man erhélt die Tan-
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gentialvektoren der Koordinatenlinien:
) 0 0
t :—xﬁx + —yﬁy + —zﬁz = sin(¥) cos(yp) Uy + sin(F) sin(p) @y + cos(V) iy,
-0 0 0
i —yﬁy —zﬁz = 1 cos(1) cos(p) Uy + 7 cos(¥) sin(p) tdy — 7sin(d) u,,

- 0 0
D iy + —yﬁy - %ﬁz = —rsin(v) sin(p) iy + rsin(J) cos(p) .

Man definiert die metrischen Grofien:

g =||t:|| = 1, (4.11)
g0 =t =7, (4.12)
Gp = H{“’H = rsin(v) . (4.13)

Durch Normieren der Tangentialvektoren erhalt man die Einheitsvektoren in Rich-
tung der Koordinatenlinien:

—

b _ : : " L
Uy =— = sin(¥) cos(p) tx + sin(V) sin(p) ty, + cos(V) iy, (4.14)
gr
t
iy =2 = cos(V) cos () ty + cos(V) sin(yp) uy, — sin(V) u,, (4.15)
9o
t,
i, =—2 = —sin(0) sin(p) Uy + sin() cos(p) dy. (4.16)
9o

4.2.2. Integrationselemente

Im Folgenden werden zunéchst die allgemeinen Beziehungen hergeleitet und dann
in einem letzten Schritt die metrischen Groen g., gy und g, fir Kugelkoordinaten
gemaf (4.11), (4.12) und (4.13) eingesetzt. Fiir ein Linienelement erhélt man

A5 =t, dr +tydv + t, dp

=y gy dr + Uygy AU + Uyg, dp (4.17)
=1, Qﬁ/ +iiy r dY +u, rsin(V) de . (4.18)
dsy dsy ds,

Kugelkoordinaten sind orthogonale Koordinaten, das heifit die Einheitsvektoren

1 p=gq
0 p#gq

— —

sind orthonormal:
(i), 1,) = {
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Da die Kugelkoordinaten orthogonal sind, gilt
dsi? =(ds, ds)
=(Uy gy dr + Uy gy AV + U,g, dp, Urg, dr + Uygy AU + U,g, dp)
=g2dr? + g2dv* + gidgpQ (4.19)
=dr® + r2d¥? + r? sin*(9) dp”. (4.20)

Da die Einheitsvektoren iy, u, und u, = 1wy X i, orthogonal sind und ein
Rechtssystem bilden, gilt fiir das Flachenelement

dA, = (£ ) x (£, dp) = (tygs V) x (if,g, dp)

=999, AV dpt, (4.21)
=r?sin(v) dv dyi,. (4.22)
Analog erhélt man die iibrigen Flédchenelemente
dAy = g9, dr dpily = rsin(9) dr deiy (4.23)
und .
dA, = grgy dr v, = rdr dvi,. (4.24)

Mit dem Spatprodukt erhélt man schlieflich das Volumenelement

AV =(tdr, (B d9) x (£, dg)) = (g, dr, (ilagg ) X (ii,g, dg))
=G:999, dr dd dyp (4.25)
=r?sin(0) dr dv de. (4.26)

4.2.3. Vektoranalysis fiir krummlinige orthogonale Koordinaten
4.2.3.1. Gradient

Die Komponenten des Gradienten ergeben sich aus der Anderung des Skalarfeldes
¢ in die entsprechenden Richtungen. Fiir die r-Komponente gilt beispielsweise

. ?T+Q719790 —Qr—ﬂ,ﬁ,gp 1 0¢
()], - A E AR e
——

dsy

Zusammengefasst erhélt man

106, 100, 109,
grad (o) Tt T o a (4.27)
o6 . 106 . 1 06
g m g — & 4.2
o T e T 7 sin(9) &OUW (4.28)
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wobei in der letzten Zeile die metrischen Grofen g, gy und g, fiir Kugelkoordi-
naten gemafl (4.11), (4.12) und (4.13) eingesetzt wurden.

4.2.3.2. Divergenz

Eine Rechnung analog zu Abschnitt 1.1.4.2 ergibt fiir ein infinitesimales Volu-
menelement dV/

L d d dr
Sfﬁ@adfl) =2r<r+ T,0,¢>-ga<r+§,ﬁ,w> gw<7“+ ﬁw)-dﬁ-dw

odv
_Qr<r 7197§0> gﬁ( _7797§0> < —_ , )dﬂd@
d? dd dd
—i—Dﬁ(r,'&‘—l—?,g{J)-gr<r,19+7,<p>- <r19+ 2,@) ~dr-dy
d dd d19
—Qﬁ<7”ﬂ9——790>‘9r<7“,19——,g0>-g < ,gp) dr-dep
2 2 2
de de de
+Q<p<r719790+7> r 7‘719, +7> <T 9 , 0+ 7) dr - dv

o y
de de
—an(nﬁ,cp—?)-gr<r,19,cp—7>-gg<r19@—7> dr - dv.

Dies in die Definition der Divergenz (1.30) eingesetzt ergibt mit dem Volumen-
element dV' geméaf (4.25)

f (D, d4)
R gdv
(D) =, lm_, 7989, dr A0 dy
dv
1 (0 9 9
— 2D C (Dygegs) + (D 1.2
G000 < o (Le9990) + 55 (D99:9¢) + r (Dyg gﬁ)> (4.29)
10, 10 1 oD,
=2y R+ s ORIt s, (190)

wobei in der letzten Zeile die metrischen Groflen gr, gy und g, fiir Kugelkoordi-
naten gemafl (4.11), (4.12) und (4.13) eingesetzt wurden.
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4.2.3.3. Rotation

Eine Rechnung analog zu Abschnitt 1.1.2.2 ergibt fiir ein infinitesimales Flachen-
element dA,

¢ <E,d§> :ﬂr<7“,’l9— ?,(p) -gr<’r‘,19— d—j,(p) - dr
0dA,

d d
+ﬂﬁ<r+§7ﬁ7¢> 'g19<7“+§,’l9,(,0> -dv

dd dv
_ﬂr<r7ﬁ+77gp> 'gr<r7ﬁ+77¢> ~dr

d d
—ﬂw<7“—§ﬂ9>§0> '919<T_§7197S0> -dv.

Dies in die Definition der Rotation (1.13) eingesetzt ergibt mit dem Flachenele-
ment dA, geméB (4.24) fir die p-Komponente der Rotation

) (;]SA (H,d3) 5 5
[I"Ot (ﬂ)}lp - drl(ilv}pao Gr gy dr do - Gr Gy <E (ﬂﬁgﬁ) - % (ﬂrgr)> :
dA,

Die iibrigen Komponenten erhélt man auf analoge Art und Weise, so dass man
zusammengefasst das Endergebnis

rot<E) :g;g¢ (% (ﬂ@gga) — % (ﬂg%)) a.
1 o 9 )
' 9:9¢ (% (Hrg:) = or <ﬂw9¢)> b

(5 (o) — 35 (L)) 3, (431)

grgy
B L9 /. 1 0Hy\ .
B <r sin(0) 90 (SIDW) ﬂ“’) ~ rsin(9) d¢ ) o
1 o0H, 10 _
i <r sin(d) dp  ror (rﬂ@) b

10 104, .
’ (?5 (riy) - ?a—v> %, (432

erhalt, wobei in der letzten Gleichung die metrischen Groflen g., gy und g, fir
Kugelkoordinaten geméaf (4.11), (4.12) und (4.13) eingesetzt wurden.
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4.2.3.4. Laplace-Operator

Anwenden des skalaren Laplace-Operators (3.15) auf ein Skalarfeld ¢ ergibt

. (10¢ 1a¢ﬁ 1099
VS dw(m - S+ )

= + 59 + — 4.33
grgﬁg¢ <8r ( Iy 0r 019 gy 019 8g0 G 8@ ( )
,0¢ 1 0 0¢ 1 d*¢

r2 or < 6r> * r2sin(0) 90 <s1n(19) %) N 2 sin2(0) Op?” (4.34)

In der letzten Zeile wurden die metrischen Groen g, gy und g, fiir Kugelkoor-
dinaten geméaf (4.11), (4.12) und (4.13) eingesetzt.

Aufgabe 4.1 FEin weiteres haufig verwendetes Koordinatensystem sind die Zylin-
derkoordinaten Radius r, Azimutwinkel ¢ und Hohe z, siehe Abbildung /.2. Die

kartesischen Koordinaten x, y und z ergeben sich als Funktionen von Radius r,
Azimutwinkel p und Héhe z wie folgt:

x =rcos(p),
y =rsin(p),

z =Z.

Berechnen Sie die Tangentialvektoren, die metrischen Grifen, die Integrations-
elemente und die Differentialoperatoren fir Zylinderkoordinaten!

Abbildung 4.2.: Zylinderkoordinaten
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4.3. Berechnen des magnetischen Vektorpotentials

Die folgenden Betrachtungen gelten nur fiir homogene Dielektrika. Zunéchst be-
trachten wir einen in z-Richtung orientierten idealen elektrischen Dipol (Hertz-
schen Dipol) im Ursprung, siehe Abbildung 4.3. Der ideale elektrische Dipol be-
steht aus zwei im Gegentakt oszillierenden elektrischen Ladungen @ und —@ in
einem infinitesimalen Abstand [. Zwischen diesen Ladungen flieit ein elektrischer
Linienstrom

lO = JWQa
siche Abschnitt 1.1.6. Trotz des infinitesimalen Abstands [ soll das elektrische
Dipolmoment

15l
Ql==" (4.35)
< jw
einen endlichen Wert annehmen.
z
7_,"
+1/2 +0
B y
T
Q

—1/2 X
|

Abbildung 4.3.: Idealer elektrischer Dipol

-

Die elektrische Stromdichte J(7) mit der z-Komponente
S, () = Lol ()

erzeugt die z-Komponente A, des magnetischen Vektorpotentials A. AufBerhalb
des Ursprungs, das heifit fiir » > 0 ist die z-Komponente J,(7) der elektrischen
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—

Stromdichte J(7) Null und aus der inhomogenen Helmholtz-Gleichung (4.5) folgt
die homogene Helmholtz-Gleichung

AA, + %A, =0.

Die hier gesuchte Losung der homogenen Helmholtz-Gleichung muss kugelsym-
metrisch sein, das heifit die z-Komponente A, des magnetischen Vektorpotentials
A darf nur vom Radius 7 und nicht von Poldistanzwinkel 9 und Azimutwinkel ¢
abhéngen. Mit dem skalaren Laplace-Operator (4.34) in Kugelkoordinaten folgt
die homogene Helmholtz-Gleichung

1 A
g (7,2 a—Z

2
— A =
r2 Or 8r>+6_z 0

fiir ein kugelsymmetrisches Szenario. Man findet die hier interessierende retar-

dierte Losung
1

A ~ Zeir
£27 r
sowie die wegen Verletzens des Kausalitdtsprinzips physikalisch unsinnige avan-
cierte Losung
1 ..
A ~ Zetifr
L2z r
Zum Bestimmen des Proportionalitéitsfaktors betrachten wir die z-Komponente
A, des magnetischen Vektorpotentials A in unmittelbarer Nahe des idealen elek-
trischen Dipols, das heifit fiir sehr kleine r < 1/3. Dann ist die Phasenkonstante
[ vernachlassigbar klein und die z-Komponente

1
A, ~—

e
des magnetischen Vektorpotentials A muss der Poisson-Gleichung
AA, = div(grad(4,)) = —pdol 6(7)

gentigen, siche (4.5) und (3.15). Fiir eine kleine Kugel um den Ursprung folgt mit
dem Satz von Gauss (1.32) und dem Gradienten in Kugelkoordinaten (4.28)

plol = {[ [ ulol 6y v = — [{[ div(grad(A,)) dV

Kugel Kugel
: 1 I
~— ff dlv(grad(;)) dV = — gjs " (grad(;),dAQ
Kugel Kugeloberfliche

= @ % dA, = 4.

Kugeloberflache
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Der Proportionalitatsfaktor muss also %‘;l sein und man erhéalt die z-Komponente

efjﬁr

Az (F) = lul(]l

4.
A7r ( 36)
——

U

—

des magnetischen Vektorpotentials A eines idealen elektrischen Dipols im Ur-
sprung. Die im Folgenden immer wieder verwendete, einer Kugelwelle entspre-
chende Elementarlosung
e—iBr =Bl
¥lr) = drr 4w |7
ist als Greensche Funktion des freien Raumes bekannt.
Aufgrund der Verschiebungsinvarianz der Helmholtz-Gleichung (4.5) ergibt sich

die von einem an den Ort 77 verschobenen idealen elektrischen Dipol

J,(7) = Lol o(F = 1)

(4.37)

erzeugte z-Komponente des magnetischen Vektorpotentials A zu
A,(7) = pyl (7 = 17)

Mit Hilfe der Ausblendeigenschaft des Dirac-Impulses §(-) kann man eine be-
liebige elektrische Stromdichte .J,(7) in z-Richtung als gewichtete Uberlagerung
von verschobenen idealen elektrischen Dipolen darstellen:

J,(F) = Hf 1(r) §(7 =) av".

Aufgrund der Linearitdt und Verschiebungsinvarianz der Helmholtz-Gleichung
(4.5) ergibt sich die z-Komponente des magnetischen Vektorpotentials A zu

A7) = ﬂ nd, (7Y (7Y av”. (4.38)

Formal handelt es sich bei diesem Integral um ein Faltungsintegral | |. Die z-
Komponente A,(7) des magnetischen Vektorpotentials A erhélt man durch Falten
der mit 4 skalierten z-Komponente .J,(7) der elektrischen Stromdichte J(7) mit
der Greenschen Funktion (7).

Gleichartige Betrachtungen gelten auch fiir die iibrigen Komponenten des ma-
gnetischen Vektorpotentials A. Bei Verwenden kartesischer Koordinaten erhalt

man zusammengefasst das magnetische Vektorpotential

A(F) = ﬂj pd(r7) (7 =) av. (4.39)
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Mit den hier eingefiihrten Hilfsmitteln ist es beispielsweise moglich, bei gege-
bener Strombelegung J (7?’ ) in einer Antenne das abgestrahlte elektromagnetische
Feld zu berechnen. Hierzu wird man zunéchst das magnetische Vektorpotential
A(7) und daraus die Feldstéirken berechnen.

4.4. Fernfeldnaherung

Beim Einsatz in Funkkommunikationssystemen interessiert man sich primér fiir
das Fernfeld der Sendeantenne, das heifit fiir das elektromagnetische Feld in einer
relativ zu den Antennenabmessungen und zu 1/ groBen Entfernung von der
Sendeantenne.

Allgemein gilt nach dem Kosinussatz

= \/r2 + 72 — 2rr' cos(§),

v

siche Abbildung 4.4. Im Fernfeld ist 7’ relativ klein, das heifit es gilt ' < r, und
man kann die lineare Taylor-Approximation

(&)

verwenden. Eingesetzt in die Greensche Funktion (4.37) erhdlt man mit dem in
die betrachtete Ausbreitungsrichtung zeigenden Phasenvektor § gemé8 (2.13) die
Fernfeldndherung der Greenschen Funktion

HF—T’

N efjﬁ(rfr/ COS(&)) ef.]Br . , ef.]Br L=
=) A — elBr’ cos&) — el (B 4.40
%(T " ) A7y A7y A7y ( )

Durch Einsetzen der Fernfeldnaherung der Greenschen Funktion in (4.39) er-
halt man die Fernfeldndherung des magnetischen Vektorpotentials in kartesischen
Koordinaten

A~ e JIJ 27y eo av

47TT
Abstandsfaktor

vektorieller Richtungsfaktor E

el G

Abstandsfaktor

(4.41)

vektorieller Richtungsfaktor E
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Abbildung 4.4.: Zur Fernfeldndherung

Der Faktor ¢/#") resultiert aus den bei der Uberlagerung der magnetischen Vek-
torpotentiale A(F’) der elektrischen Stromdichten i (7?’) in den Volumenelemen-
ten dV’ zu berticksichtigenden geometriebedingten Phasenverschiebungen. Die
Richtungsabhéngigkeit des magnetischen Vektorpotentials A(F) wird im Fernfeld
durch den vektoriellen Richtungsfaktor

F= ﬂj 7) i odE) qy” = Hf @) qy (4.42)

beschrieben. Die Entfernungsabhéngigkeit des magnetlschen Vektorpotentials A(f')
ist im Fernfeld durch den Abstandsfaktor “e— gegeben, das heiflit der Betrag

des magnetischen Vektorpotentials (f') nlmmt im Fernfeld mit 1/r ab. Die Wel-

lenldnge ist
27

A= —. (4.43)

G
Bei vielen Antennen gelingt es zumindest ndherungsweise, einen Nullpunkt
des Koordinatensystems so zu definieren, dass die Argumente der Komponenten

des vektoriellen Richtungsfaktors F (9, ¢) fur den interessierenden Winkelbereich
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Kapitel 4. Antennentheorie

¥ und ¢ konstant sind. Die im Fernfeld beobachtete elektromagnetische Welle
scheint dann eine von diesem als Phasenzentrum bezeichneten Nullpunkt ausge-
hende Kugelwelle zu sein.

Durch Berechnen der Rotation (4.32) des magnetischen Vektorpotentials Ain
Kugelkoordinaten erhélt man gemafl (4.6) unter Verwenden (1.50) die magneti-
sche Feldstarke

L1 11 a 1A
4 iy rot (A) o (sin(ﬁ‘) oV (SIHW) A“") sin(d) Oy ) o

1/ 1 0A, 9 1 (8 OA,\
v (e~ o 049 o (51 04 = 5 )

Im Fernfeld dominieren die nur mit 1/ abnehmenden Terme und man kann alle
stéarker abnehmenden Terme vernachlédssigen. Man erhélt die Fernfeldndherung

(4.44)

q 10 L 10 L 19 (e . .
H~— o (TA¢) Uy + o (rdy) d, = 5 ( o ) (—E¢Ug +E0u¢)
jBe i . ,
= (E¢uﬁ - Eguga) (4.45)
zjééﬂw - jéAﬁ% = jéi X Uy (4.46)
p 2 p

fir die magnetische Feldstarke. £y und F, sind die ¥-Komponente beziehungs-
weise die p-Komponente des vektoriellen Richtungsfaktors F.

Mit Hilfe des Durchflutungsgesetzes (1.17) und (1.46) kann man nun aus der
magnetischen Feldstarke E die elektrische Feldstarke E berechnen. Mit der Rota-
tion in Kugelkoordinaten (4.32) ergibt sich unter Verwenden von (4.2) die Fern-
feldndherung der elektrischen Feldstéirke, wenn man wieder alle starker als mit
1/r abnehmende Terme vernachlassigt, zu

5 1 o1 1 0 /. 1 0Hy\ .
= jwe rot(ﬂ)  jwer ( <Sin(19) o) (S1n<19> ﬂ“") sin(v) dp ) o

1 aﬂr 0 N 0 aﬂr .
* <sin(19) do o (Tﬂw)> U+ (5 (rfy) — 8—0> uw) (4.47)

1 0 . 0 . B O [eiFr . .
NJ(A]? (-5 (Tﬂtp) Uy + E (Tﬂg) U¢> ~ Ea < . ) (Eﬁuﬁ + ESOU“P)
s e IAr S S
— Jw_s o (Eﬁqu + Eg,ug,) (4.48)
= —jw (Aylly + Al,) = jw (A x ;) X @, (4.49)
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4.4. Fernfeldndherung

Mit dem Feldwellenwiderstand

Tp = \/g (4.50)

und (4.2) folgt aus (4.46) und (4.49) fir das Fernfeld
E = ZpH x ,. (4.51)

Die von einer Antenne abgestrahlte elektromagnetische Welle ist im Fernfeld ei-
ne transversalelektromagnetische Welle. Magnetischer Feldstarkevektor H und
elektrischer Feldstirkevektor E sind in Phase und stehen zu jedem Zeitpunkt
senkrecht aufeinander. Die Feldstarken nehmen mit 1/r ab und es gibt eine Rich-
tungsabhéngigkeit der Feldstarken. Der in (1.79) eingefiihrte komplexe Poynting-
Vektor

— —

=zl x ) < 8 =z 0= |E]'5  @52)

QZF
zeigt im Fernfeld von der Antenne radial nach aufien weg und nimmt mit 1/r2 ab,
was auch aus der Energieerhaltung folgt. Da der komplexe Poynting-Vektor S im
Fernfeld rein reell ist, transportiert die abgestrahlte elektromagnetische Welle im
Fernfeld nur Wirkleistung, deren Betrag durch die Strahlungsleistungsdichte

— 1 -
= [re(8)]| = 520 2] = 5 £ (4.53)

77|
gegeben ist. Ausgehend von (1.80) kann man die abgestrahlte Leistung P durch
Integration der Strahlungsleistungsdichte S tiber eine Kugeloberfliche mit dem
Fléachenelement dA, gemaf (4.22) berechnen:

T 27
P = gjs SdA, = f f Sr?sin(0) dp d. (4.54)
Kugeloberflache ¥=0 =0

Als Beispiel wird der ideale elektrische Dipol betrachtet. Das magnetische Vek-
torpotential A des idealen elektrischen Dipols wurde bereits in (4.36) berechnet.
Umgerechnet in Kugelkoordinaten erhalt man
pLol e3P

A7y

siche (4.14), (4.15) und (4.16). Hieraus ergibt sich mit (4.44) die magnetische
Feldstéarke

. 10 DA, ~jpr 1
H=— < o (rdy) - ) —iBLol; c — <1 + —> sin(9) i@,  (4.55)

A= (A @), + (A )iy + (A, 1), = (cos(9) @, — sin(d) @),

iBr
sin(¥) ., (4.56)

*JﬁT
~iB1,l
~jB1 0 -

85



Kapitel 4. Antennentheorie

des idealen elektrischen Dipols und mit (4.47), (4.2) und (4.50) die elektrische
Feldstérke

a —
jwer Or (Tﬂ“’) h
e T 2 2
=iBZp Lyl —t— V) i,
Pt gy ((m <wr>2>m( i

+ (1 + L + ;> sin(v) ’l_[g) (4.57)

iBr (ipr)?
—jpr
zjb’ZFlolz

— sin(v) iy (4.58)
des idealen elektrischen Dipols. Die jeweils in den letzten Zeilen angegebenen
Néherungen gelten im Fernfeld, wo es sich erwartungsgeméfl um eine transver-
salelektromagnetische Welle handelt. Das gesamte elektromagnetische Feld ist,
wie aufgrund der Antennengeometrie erwartet, rotationssymmetrisch beziiglich
der z-Achse. Man erkennt, dass die magnetischen Feldlinien kreisformig um die
2-Achse, das heifit entlang von Breitenkreisen auf Kugeln um die Antenne verlau-
fen. Die elektrischen Feldlinien verlaufen im Fernfeld entlang der Meridiankreise
auf Kugeln um die Antenne, siche Abbildung 4.5. Die Richtungsabhingigkeit der
Feldstarken im Fernfeld wird durch den Faktor sin(v}) beschrieben. Die transver-
salelektromagnetische Welle im Fernfeld ist linear vertikal polarisiert. Der kom-

plexe Poynting-Vektor
1 B Lyl lsin(®)\*
= Jp | V—/——""7 4.

27" < 4drr o (4:59)

[Ty

des idealen elektrischen Dipols gemé$ (4.52) ist im Fernfeld wie erwartet reell und
zeigt von der Antenne radial nach aulen weg. Die vom idealen elektrischen Dipol
abgestrahlte Strahlungsleistungsdichte (4.53) im Fernfeld ist

1, (Bl lsin(®)\

Die Strahlungsleistungsdichte S nimmt erwartungsgemaf mit 1/r* ab.

Aufgabe 4.2 Zeigen Sie, dass das Phasenzentrum einer Antenne mit einer zum
Ursprung symmetrischen elektrischen Stromdichte

J(7) = ' (=)

im Ursprung liegt!
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4.4. Fernfeldndherung
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Abbildung 4.5.: Elektrisches Feld eines idealen elektrischen Dipols [I[<D90]. Mo-
mentaufnahmen im Abstand einer zwolftel Periodendauer
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Kapitel 4. Antennentheorie

4.5. Reziprozitatstheorem

Die Feldstarken E und E beschreiben das durch eine erste Konfiguration an
Quellen auBerhalb des Gebiets V' verursachte elektromagnetische Feld und die
Feldstarken E, und E , beschreiben das durch eine zweite Konfiguration an Quel-
len aulerhalb des Gebiets V' verursachte elektromagnetische Feld. Es wird eine
geschlossene Hiille 9V um das quellenfreie, mit einem reziproken, das heifit einem
linearen und isotropen Material ausgefiillte Gebiet V' betrachtet. Mit dem Satz
von Gauss (1.32) und (1.81) erhdlt man

{r

ov
:fjfdiv(E X El —E, X E) dVv
v

— —.

xﬁ/—Elxﬂ,dA)

[eSh

:fjf ((E/,rot(E)> —(E, rot(El)) —(H, rot(E/)) + (E/,rot(ﬁ)>) dv.

Mit dem Durchflutungsgesetz (1.17), dem Induktionsgesetz (1.24), (1.46), (1.50)

—

und (1.54) folgt im quellenfreien Gebiet V mit J =0 und M = 0 weiter
(PExH ~ E x d,d4)
:f f <<E,, —jwpH) = (E,kE +jweE) — (H, —jwp ) + (E , kE +jwaﬁ)> dv
=0.
Es folgt das Reziprozitatstheorem

@S(E x H' dA) = @RE’ x H,dA). (4.61)
oV ov

4.6. Eindeutigkeitstheorem

Es wird ein quellenfreies Gebiet V' betrachtet. Die elektrische Feldstérke E und die
magnetische Feldstarke H beschreiben ein durch Quellen auBerhalb des Gebiets
V' erzeugtes elektromagnetisches Feld im Gebiet V. Die elektrische Feldstéarke
E’ und die magnetische Feldstarke H’ beschreiben ein weiteres in dem Gebiet
V' mogliches, im Allgemeinen durch andere Quellen auflerhalb des Gebiets V
erzeugtes elektromagnetisches Feld, siehe Abbildung 4.6. Aufgrund der Linearitéit
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4.6. Eindeutigkeitstheorem

M / \M’
Abbildung 4.6.: Eindeutigkeitstheorem

der Maxwellschen Gleichungen ist dann auch das Differenzfeld E—FE und H—H'

ein in dem quellenfreien Gebiet V' mogliches elektromagnetisches Feld.
Gleichsetzen der aus dem Poynting-Vektor (1.77) mit (1.78) berechneten Strah-

lungsleistung P und der mit (1.76) berechneten Strahlungsleistung P ergibt

(5 ) (7 - 7)), 04

ov

~

2
dv.

i - A

:_%fﬂ(%auﬁ—ﬁ' Q)dv—j‘lfﬁ“ﬁ—ﬁ/

Falls die Tangentialkomponenten der elektrischen Feldstarken E und E' oder die
Tangentialkomponenten der magnetischen Feldstarken H und H' auf der Hiil-
le OV tibereinstimmen, so ist die durch die Hiille OV transportierte Leistung P
gemaf der ersten Zeile der Gleichung Null. Die letzte Zeile der Gleichung muss
dann ebenfalls zu allen Zeiten Null sein. Dies ist nur moglich, falls E = E' und
H = H gelten, das heifit wenn die Feldstarken in jedem Punkt im Gebiet V
gleich sind. Das von Quellen auflerhalb eines Gebiets V' erzeugte elektromagneti-
sche Feld innerhalb eines quellenfreien Gebiets V' ist folglich durch die Tangenti-
alkomponenten der elektrischen Feldstarke oder die Tangentialkomponenten der
magnetischen Feldstarke auf der Hiille 0V des Gebiets eindeutig bestimmt. Dies
ist die Aussage des Eindeutigkeitstheorems. Das Eindeutigkeitstheorem gilt auch,
wenn sich im Gebiet V' zuséitzlich in beiden Szenarien gleiche Quellen befinden,
da die im obigen Beweis zu bildende Differenz der Quellen dann Null ist.
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4.7. Spiegelungsprinzipien

4.7.1. Spiegelung am idealen elektrischen Leiter

In der Oberflache einer unendlich ausgedehnten ideal elektrisch leitenden Ebene
werden sich elektrische Flachenstromdichten j r derart einstellen, dass die Grenz-
flichenbedingungen erfiillt sind. Insbesondere missen geméaf (1.65) die Tangen-
tialkomponenten der elektrischen Feldstérke E verschwinden. Wie man zum Bei-
spiel durch Uberlagern der elektromagnetischen Felder idealer elektrischer Dipole
leicht feststellt, sind die Grenzflichenbedingungen am Ort des idealen elektrischen
Leiters auch dann erfiillt, wenn statt der elektrischen Flachenstromdichten J, r ge-
spiegelte Quellen geméafl Abbildung 4.7 vorhanden sind. Die elektromagnetischen
Felder im rechten Halbraum sind in beiden Fallen wegen des Eindeutigkeitstheo-
rems identisch, da die Tangentialkomponenten der elektrischen Feldstdarken am
Ort der Oberfliche des idealen elektrischen Leiters in beiden Féllen gleich Null
sind und die Quellen im rechten Halbraum gleich sind.

-
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=
=
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- i 1.

Abbildung 4.7.: Spiegelung elektrischer Stromdichten J und magnetischer Strom-
dichten M an einem unendlich ausgedehnten ebenen idealen elek-
trischen Leiter

4.7.2. Spiegelung am idealen magnetischen Leiter

Dual zum Fall der unendlich ausgedehnten ideal elektrisch leitenden Ebene kann
man auch die Grenzflachenbedingungen an der unendlich ausgedehnten ideal ma-
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gnetisch leitenden Ebene durch gespiegelte Quellen berticksichtigen, siehe Abbil-
dung 4.8.
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Abbildung 4.8.: Spiegelung elektrischer Stromdichten J und magnetischer Strom-
dichten M an einem unendlich ausgedehnten ebenen idealen ma-
gnetischen Leiter

4.8. Aquivalenztheoreme

4.8.1. Huygenssches Prinzip

Anschaulich kann nach dem Huygensschen Prinzip jeder Punkt einer Wellenfront
als Ausgangspunkt einer sekundéren Kugelwelle betrachtet werden und man kann
die Wellenfront wieder als Einhiillende dieser sekundaren Wellenfronten rekonstru-
ieren. Das Huygenssche Prinzip ist bei vielen Berechnungen zur Wellenausbreitung
hilfreich. Beispielsweise kann ein auf einer beliebigen Hiille um die eigentliche An-
tenne vorhandenes elektromagnetisches Feld wieder als Ausgangspunkt der elek-
tromagnetischen Welle betrachtet werden, das heifit die Hiille wirkt als virtuelle
Antenne. Im Folgenden sollen die Ideen des Huygensschen Prinzips mathematisch
prazise formuliert werden.
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4.8.2. Formulierung mit feldfreiem Innenraum

Eine Hiille teilt den Raum in ein Gebiet V; mit den ein elektromagnetisches Feld
erzeugenden Quellen j und ﬂ und ein quellenfreies Gebiet V5, siehe Abbildung
4.9. E und E sind die Feldstarken des von den Quellen j und ﬂ erzeugten, den
gesamten aus den Gebieten V] und V5 bestehenden Raum erfiillenden elektroma-
gnetischen Feldes.

Va Va

~

=,
sl
I
=0
(s
I
=

/MF:EXﬁ

-

U
Jp=—H X u

Abbildung 4.9.: Formulierung des Aquivalenztheorems mit feldfreiem Innenraum

Das elektromagnetische Feld

E/: 0_’ ln‘/1
E inV;

und
ﬂ—»/ _ 0_) ln ‘/1 .
H inV,
erfiillt zusammen mit den virtuellen Quellen
Jp=—H x (4.62)
und
My=FExu (4.63)

auf der Hiille des nun quellenfreien und feldfreien Gebiets V] die (1.58) und (1.60)
entsprechenden Grenzﬂéchgnbedingungen auf der Hiille des Gebiets V7, ist also bei
Abwesenheit der Quellen J und M eine Losung der Maxwellschen Gleichungen.
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4.8. Aquivalenztheoreme

Aufgrund des Eindeutigkeitstheorems entspricht dieses durch die Flédchenstrom-
dichten jF und M My bei Abwesenheit der Quellen j und M erzeugte elektroma-
gnetische Feld im Gebiet V2 dem von den Quellen J und M bei Abwesenheit der
Fléchenstromdichten JF und M My erzeugten elektromagnetischen Feld im Gebiet
V.

4.8.3. Formulierung mit idealen Leitern

In einem nachsten Schritt kann man das nun feldfreie Gebiet V; mit einem idea-
len elektrischen Leiter oder einem idealen magnetischen Leiter ausfiillen, siehe
Abbildung 4.10.

Vs

[sal
8~

idealer
elektrischer

Vs

T
[aal

idealer

magnetischer
Leiter

Abbildung 4.10.: Formulierung des Aquivalenztheorems mit idealen Leitern
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Das von den Flachenstromdichten j r und ﬂ r erzeugte elektromagnetische Feld
im Gebiet V5 dndert sich durch das Einbringen eines idealen Leiters im feldfrei-
en Gebiet Vi nicht. Falls das feldfreie Gebiet V; mit einem idealen elektrischen
Leiter ausgefiillt ist, so ist die Tangentialkomponente der elektrischen Feldstér-
ke E auf der Leiteroberfliche durch die magnetische Flachenstromdichte M r und
die (1.58) entsprechende Grenzflichenbedingung eindeutig gegeben. Aufgrund des
Eindeutigkeitstheorems ist dann auch das elektromagnetische Feld im Gebiet V5
eindeutig bestimmt. Die elektrische Flachenstromdichte JF folgt direkt aus der
(1.68) entsprechenden Grenzflachenbedingung und braucht nicht bekannt zu sein.
Dual dazu ist das elektromagnetische Feld im Gebiet V5 eindeutig durch die elek-
trische Flichenstromdichte ./, r und die Grenzflachenbedingungen des idealen ma-
gnetischen Leiters bestimmt.

Das Berechnen des von den Flichenstromdichten ./, p oder M r erzeugten elektro-
magnetischen Feldes ist jedoch im Allgemeinen kompliziert, da die Grenzflachen-
bedingungen an den Leiteroberflichen beriicksichtigt werden miissen. Nur wenn
die Grenzfliche eine unendlich ausgedehnte Ebene ist, sind die Berechnungen re-
lativ einfach, da man die Spiegelungsprinzipien geméfl Abschnitt 4.7 anwenden
kann, siehe Abbildung 4.11. Die elektrische Flachenstromdichte J, r auf dem idea-
len elektrischen Leiter wird durch die gespiegelte elektrische Flédchenstromdichte
kompensiert. Das von der magnetischen Flachenstromdichte ﬂ r auf dem idealen
elektrischen Leiter erzeugte elektromagnetische Feld im Gebiet V5 ist nach dem
Spiegelungsprinzip gleich dem von der doppelten magnetischen Flachenstromdich-
te 2M r alleine bei Nichtvorhandensein des idealen elektrischen Leiters erzeugten
elektromagnetischen Feld im Gebiet V5. Bei Anwenden des Spiegelungsprinzips er-
hélt man im Gebiet V] ein nichtverschwindendes gespiegeltes elektromagnetisches
Feld, das jedoch nicht weiter von Interesse ist. Duales gilt fiir ideale magnetische
Leiter. Zusammenfassend ist bei unendlich ausgedehnten ebenen Grenzflachen das
von den Quellen J und M erzeugte elektromagnetische Feld im Gebiet V5 gleich

e dem von der elektrischen Fliachenstromdichte jF = —E x 4 und der ma-
gnetischen Flachenstromdichte My = E X 4 gemeinsam erzeugten elektro-
magnetischen Feld im Gebiet V5,

e dem von der doppelten elektrischen Flachenstromdichte 2.J; r alleine erzeug-
ten elektromagnetischen Feld im Gebiet V5 und

e dem von der doppelten magnetischen Flachenstromdichte oM p alleine er-
zeugten elektromagnetischen Feld im Gebiet V5.

Das heifit die elektrisghe Flachenstromdichte i P = —E x ¢ und die magnetische
Flachenstromdichte My = E x u auf einer ebenen Grenzflache erzeugen im Gebiet
V5 jeweils das gleiche elektromagnetische Feld.
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Abbildung 4.11.: Formulierung des Aquivalenztheorems mit idealen Leitern und

ebenen Grenzflachen
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Das von einer ideal elektrisch leitenden und damit im Inneren feldfreien An-
tenne abgestrahlte elektromagnetische Feld entspricht dem von der elektrischen
Flachenstromdichte ip und der magnetischen Flachenstromdichte M p auf der
Antenne bei Nichtvorhandensein der ideal elektrisch leitenden Strukturen abge-
strahlten elektromagnetischen Feld. Dieser als Huygens-Aquivalent der Antenne
bezeichnete Ansatz rechtfertigt riickwirkend die Annahme, dass die Antenne ihr
elektromagnetisches Feld in ein homogenes Dielektrikum abstrahlt, obwohl das In-
nere der Antenne in der Realitdt nicht mit dem umgebenden Dielektrikum gefiillt
ist.

In der Antennenmesstechnik ist es aufgrund der begrenzten rdumlichen Abmes-
sungen von Antennenmessplitzen insbesondere bei niedrigeren Kreisfrequenzen w
oft nicht moglich, das eigentlich interessierende Fernfeld direkt messtechnisch zu
untersuchen. Stattdessen misst man die Tangentialkomponenten der elektrischen
Feldstarke E oder der magnetischen Feldstarke H im Nahfeld auf einer Hiulle um
die Antenne. Geméafl dem Huygensschen Prinzip ist es moglich, daraus mit einer
sogenannten Nahfeld-Fernfeld-Transformation das Fernfeld zu berechnen.

4.9. Momentenmethode

4.9.1. Losungsansatz der Momentenmethode

In der Praxis ist die Strombelegung auf einer Antenne nicht a priori bekannt, son-
dern ergibt sich aus dem Wechselspiel zwischen Strombelegung und abgestrahltem
elektromagnetischem Feld. Ziel der folgenden Betrachtungen ist es, unter Bertick-
sichtigen dieser Wechselwirkungen die Strombelegung auf der Antenne zu bestim-
men. Es wird der Fall betrachtet, dass die Quelle des elektromagnetischen Feldes
ausschlieBlich die elektrische Flichenstromdichte .J, P (7:7 ) ist. Eine Erweiterung auf

den Fall, dass auch eine magnetische Flachenstromdichte M P (7:7) vorhanden ist,
ist aufgrund der Dualitat der Gleichungen leicht moglich.

Fiir das durch die elektrische Flichenstromdichte .J/; P (73) erzeugte magnetische
Vektorpotential gilt

A) = ([ wle(7) g (7= 77) 0,

siehe (4.39). Hier wurde davon ausgegangen, dass die elektrische Flachenstrom-
dichte J, P (7:7 ) in den homogenen Raum abstrahlt.
Aus (4.7) folgt mit (4.2) und (4.50) fur die elektrische Feldstarke

E= —j% (% grad (div(4)) + m&) . (4.64)
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Einsetzen des Vektorpotentials A(7) ergibt

E(7) = — jZp (grad(dw(ﬂ ( ) G )) j BT (7 )dA’)
=L(Lx (1)),

das heifit die elektrische Feldstirke E E/(7) ergibt sich durch Anwenden eines linearen

Operators L(+) auf die durch die elektrische Flédchenstromdichte J F( ) gegebene
Strombelegung.

Die elektrische Feldstirke £ (7) in der ideal elektrisch leitenden Antenne ist be-
kannt. Sie ist auler an den Orten, an denen sich speisende Stromquellen befinden,
Null. Obige Gleichung ist also eine Integro-Differentialgleichung zum Bestimmen
der elektrischen Flichenstromdichte J, P (7’7 )

Die Momentenmethode ist ein numerisches Verfahren zum Bestimmen der Lo-
sungen von Integro-Differentialgleichungen | ; |. Sie basiert darauf,
dass man die zu bestimmende Funktion, hier die elektrische Flachenstromdich-
te J F( ) durch eine endliche Summe gewichteter Basisfunktionen approximiert.

Mit den N Basisfunktionen fn( ) n=1...N,und den N komplexen Gewichten
Jpn, n=1...N, gilt naherungsweise

Te (1) = Z Fu(77) T (4.65)
Anwenden des linearen Operators ergibt
B0 = £ 4(7) den) = 3 £(5()
Fiir einzelne Komponenten der elektrischen Feldstarke gilt

xyz F) Zﬁxyz(fn< )) JFn7

wobei xyz fiir eine der drei Koordinaten z, y oder z steht. Fiir eine so am Ort 7,
berechnete elektrische Feldstarkekomponente gilt

E = Exyz Z Zm nJFn
Die hier auftretenden Gewichtsfaktoren

Zn = Ly (Fa(77)), m=1...N, (4.66)
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haben die Einheit einer Impedanz und konnen selbst bei komplizierten Antennen-
geometrien numerisch leicht durch Anwenden des linearen Operators Lyy,(-) auf

die Basisfunktionen ﬁ;(f’ ) berechnet werden. Man erhalt das lineare Gleichungs-
system
E, Zyy .- Zin I
= S IR B (4.67)
E Zyy - ZunN Jrn

fiir die N komplexen Gewichte J,,, n =1... N, das im Fall M = N eine eindeu-
tige Losung hat.

Das von der Antenne am Ort 7 erzeugte magnetische Vektorpotential A(f')
kann man aus der nun bekannten elektrischen Flachenstromdichte i P (F’ ) mit den
bereits vorgestellten Verfahren berechnen. Aus dem so erhaltenen magnetischen
Vektorpotential A(f') kann man die Feldstérken berechnen.

In der Praxis findet man viele Variationen des hier vorgestellten Grundprinzips
der Momentenmethode | ; |. Ein wichtiges Ziel ist hierbei das Maxi-
mieren der Genauigkeit des Ergebnisses bei moglichst kleinem Rechenaufwand.
Insbesondere die Art und die Anzahl N der Basisfunktionen ist geschickt zu wéah-
len.

4.9.2. Analyse einer Dipolantenne

Die in Abschnitt 4.9.1 eingefiihrten Grundprinzipien werden nun auf eine Dipol-
antenne angewendet. Die Dipolantenne besteht aus einer speisenden Stromquelle
und zwei gleich langen, kreiszylinderférmigen, ideal elektrisch leitenden Draht-
stiicken, siehe Abbildung 4.12. Die Lénge der Dipolantenne sei [ und der Radius
sei p.

Aus Symmetriegriinden kann man davon ausgehen, dass die elektrische Flachen-
stromdichte ./, r auf dem Antennenumfang konstant ist und nur eine z-Komponente
hat. Es gilt also

Jp(2) = Jp(2) .

Da der elektrische Strom nur eine z-Komponente hat, hat auch das magnetische
Vektorpotential A nur eine z-Komponente A,. Die z-Komponente des magneti-
schen Vektorpotentials fiir Punkte auf der z-Achse ergibt sich mit dem Abstand

VP2 + (2 — 2')? eines Punktes auf der kreiszylinderformigen Antennenoberfliache
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z
A
/24
2N | Ipgn

Z—N—1—— Jr_n

—1/2 -

Abbildung 4.12.: Anwenden der Momentenmethode auf eine Dipolantenne
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bei 2/ und einem Punkt auf der z-Achse bei z zu

2 e iBV PP H(E—2)?
LT A (-2
2 Fi¢4

Wz—2')

dz/,

siehe (4.39) und (4.37). Es wird nur die z-Komponente der elektrischen Feldstarke
E auf der z-Achse benotigt, die sich mit (4.64), (1.31) und (2.1) zu

0*A
£() = -2 (55542

: +@Az<z>)

berechnet. Einsetzen des magnetischen Vektorpotentials A,(z) und vertauschen
der Reihenfolge von Integration und Differentiation ergibt z-Komponente

Jr

Pz — 2
B =iz [ (5755 e = ) 2mpai) 0

N~

N~

der elektrischen Feldstarke E,(z) am Ort z.
Die Dipolantenne wird in 2NV 41 als Elementardipole bezeichnete Segmente der

Lange
l

Az =
TTaNT1
unterteilt. Der Mittelpunkt des n-ten Elementardipols liegt bei
nl
I =NAL= o 1

Die elektrische Flachenstromdichte wird durch eine gewichtete Summe von Basis-
funktionen approximiert:

+N
JF<ZI): Z fn(zl)iFn-
n=—N

Man kann beispielsweise jeweils auf einem Elementardipol konstante und sonst
verschwindende Basisfunktionen

, n=—-N...+ N,
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verwenden. Einsetzen der approximierten elektrischen Flachenstromdichte Jg(z')
in die Gleichung zum Berechnen der z-Komponente E,(z) der elektrischen Feld-
starke £,(z) ergibt fiir den Abtastpunkt z = z,,

+N
Em = EZ(Zm) - Z Zm,niFn

n=—N
Die Impedanzen

N
Ly == JLF f

|~

1 62%2 — Z/) / / /
(ET + BY(z — 2 )) 2rpfn(2")d2, (4.68)

L
2

mn=—N...+ N,

sind im Allgemeinen nur numerisch und nicht analytisch berechenbar.

Die Dipolantenne wurde in eine groffe Anzahl 2N + 1 an Elementardipolen
der Linge Az zerlegt. Die die Strombelegung beschreibenden Gewichte Jy,,, n =
—N ...+ N, sind unter Beriicksichtigen der Verkopplungen zwischen den Ele-
mentardipolen so zu bestimmen, dass insbesondere die z-Komponenten E,,, m =
—N...—1,41... 4+ N, der elektrischen Feldstarken FE,(z,,) in den Elementar-
dipolen mit Ausnahme des mittleren O-ten Elementardipols mit der speisenden
Stromquelle Null sind. Im mittleren 0-ten Elementardipol mit der speisenden
Stromquelle muss fir die z-Komponente der elektrischen Feldstéarke

U
FE(0) = ——
E0)= -2
gelten. Man kann nun das eindeutig losbare lineare Gleichungssystem
0
£y 0 Z_N-N - Z_N4N Jr_n
g _% — N .
Az
Ein 0 ZyN-N -+ ZiN4N Jrin
0

geméB (4.67) fiir die 2N + 1 komplexen Gewichte Jp,, n = —N ...+ N, aufstellen.

Abbildung 4.13 zeigt die mit Hilfe der Momentenmethode ermittelte Strom-
belegung einer schlanken Dipolantenne der Lénge 21 = 3A/2. Der Durchmesser
der Dipolantenne ist 2p = 0,005\. Es wurden 2N + 1 = 201 Segmente und stiick-
weise sinusformige Basisfunktionen nach Aufgabe 4.4 verwendet. Zum Vergleich
ist durchgezogen eine sinusférmige Strombelegung eingezeichnet.
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==
o o0
60 T T
Q0
OOOOOO
5000
56000°°

=
~

‘iFn| / ‘iFn|max

0,2

-0,75 -0,5 -0,25 0 025 0,5 0,75
2

Abbildung 4.13.: Mit der Momentenmethode ermittelte Strombelegung einer Di-
polantenne. Durchgezogen sinusféormiger Verlauf

Aufgabe 4.3 Berechnen Sie die erste und die zweite Ableitung der Greenschen

Funktion
e~ iB\ P42

V) = pE T

nach z! Zeigen Sie, dass im Falle stiickweise konstanter Basisfunktionen

1 z, AZ§2’<zn+%

mit der Abkiirzung

T'm = \/p2 -+ (Zm — ZI)Z
fiir die in (4.68) eingefiihrten Impedanzen
Az
R oifRm

2BR5,

Ly = ~iZ (48R (2B, = 30%) + 6*°R;,) pd2
Az

n—5F

gilt!
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Aufgabe 4.4 Zeigen Sie zundchst, dass fir beliebige Basisfunktionen f,(2')

(2 —

:_layu—z» anuarl

S )+ (e = ) 2

+ f <8 8fn/2 + 52fn(z/)> P(z —2')d?

gilt! Nutzen Sie hierzu aus, dass fir die Ableitungen der Greenschen Funktion

o(z—2) o(z—2)

0z 0z
und
Pz —2) Pz —2)
022 n 02'?
qgilt.

Speziell fir stickweise sinusformige Basisfunktionen

sin(f (2 = 2n-1))

21 <2< 2

no_ sin(8Az)
T = i o =)
sin(SAz) n= = e
siche Abbildung /.14, kann man die in (4.08) eingefiihrten Impedanzen Z,,, ,, ana-

lytisch berechnen. Zeigen Sie, dass sich die Impedanzen mit den Abkur’zungen

P 1=\/p2+ m — Zn— 1)2,
mn \/P _'_ - zn )
Rm,n—i—l :\/p + Zm Zn+1)2

2u
1 e IPFmn—1 e IBmn sin(268A 2 e JBRmnt1
AR A . - . (25 >+ .
’ 2 Ryn—1sin(BAz) Rynsin?(BAz) Ry ni1sin(SAz)
ergeben!
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e~ P
.7 > 7 N
s N ’ N
’ A ’ \
’ N ’ N
’ N 4 N
/ \ ’ \
/ Mo \
1 v Ny N
—~
<
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Abbildung 4.14.: Stiickweise sinusférmige Basisfunktion f,(z") fir Az = \/8

Aufgabe 4.5 Implementieren Sie die Momentenmethode zum Berechnen der Strom-
belequng einer Dipolantenne in Matlab! Verwenden Sie die stiickweise sinusformi-
gen Basisfunktionen aus Aufgabe 4.4.
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Antennenbauformen

5.1. KenngroBBen von Antennen

5.1.1. Richtfaktor und Gewinn

Im Folgenden wird nur das Fernfeld betrachtet. Reale Antennen haben immer
eine mehr oder weniger ausgepragte Richtwirkung, das heifft die von einer Sende-
antenne erzeugte Strahlungsleistungsdichte S ist aufler von der Entfernung r des
Beobachtungspunktes von der Sendeantenne auch noch von der Richtung, unter
welcher der Beobachtungspunkt von der Sendeantenne aus gesehen erscheint, ab-
hangig. In Funkkommunikationssystemen wird man die Sendeantenne bevorzugt
so ausrichten, dass die Hauptstrahlrichtung in Richtung des Empféngers zeigt.
Man interessiert sich also fiir die von der Sendeantenne in der Hauptstrahlrich-
tung erzeugte maximale Strahlungsleistungsdichte Sp,... Um die Richtwirkung der
Sendeantenne beurteilen zu konnen, vergleicht man diese maximale Strahlungs-
leistungsdichte Sy.x mit der von einer fiktiven omnidirektionalen Sendeanten-
ne bei gleicher abgestrahlter Leistung P in der gleichen Entfernung r erzeugten

Strahlungsleistungsdichte
P

g — 1 5.1
07 4mr2’ (5.1)
siehe (4.54). Man definiert den Richtfaktor

D= Smax _ Smax47rr2. (5.2)

So P
Der Richtfaktor D ist fiir das Fernfeld definiert und ist dort entfernungsunabhén-
gig, da die Strahlungsleistungsdichte S mit 1/r? abnimmt.

Wenn man die von der Sendeantenne in Hauptstrahlrichtung erzeugte maximale
Strahlungsleistungsdichte Sy,.x ins Verhéaltnis zu der von einer fiktiven omnidirek-
tionalen Sendeantenne erzeugten Strahlungsleistungsdichte bei gleicher zugefiihr-
ter Sendeleistung setzt, so erhélt man den Gewinn G. Mit dem Wirkungsgrad n
der Sendeantenne gilt

G =nD. (5.3)
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Bei den hier primar betrachteten verlustfreien Sendeantennen ist der Richtfaktor
D gleich dem Gewinn G.

Als Beispiel wird der ideale elektrische Dipol betrachtet. Mit (4.54) berechnet
man aus der Strahlungsleistungsdichte S des idealen elektrischen Dipols gemafl
(4.60) die abgestrahlte Leistung'

IATA L (BILIY, T
P_QZF< f jsm dgpdﬂ_iZF o 27?6[51n () do

¥=0 =0
2

4
4, (AL
3 47

Die Hauptstrahlrichtung des idealen elektrischen Dipols ist ¥ = 7/2. Die in dieser
Hauptstrahlrichtung erzeugte maximale Strahlungsleistungsdichte ist

BIL| 1\
max — _Z )
5 2 < 4rr

siehe (4.60). SchlieBlich erhdlt man mit (5.2) den Richtfaktor

Smax
5 4r? = 5 =15 (5.4)

D=

des idealen elektrischen Dipols.

5.1.2. Richtcharakteristik

Der Richtfaktor D liefert nur eine integrale Beschreibung der Richtwirkung einer
Antenne. Zum detaillierten Beschreiben der Richtungsabhéngigkeit der von einer
Sendeantenne im Fernfeld erzeugten Feldstarken und Strahlungsleistungsdichte S
verwendet man die als Richtcharakteristik bezeichnete auf die maximale Feldstéar-
ke normierte Feldstéarke bei einer bestimmten grofien Entfernung r im Fernfeld:

. 2 2
vy - EO2 _E0. )] V0.0 + \E:w, A
. EL.  Jorer
Die Umformungen folgen aus (4.45) und (4.48). Mit (4.53) folgt weiterhin
C9, ) Sg‘i; f). (5.6)

! Es gilt [ sin®(z)da = — cos(z) + & cos?(x).
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Zur graphischen Darstellung der Richtcharakteristik C(1J,¢) verwendet man
tiberwiegend die folgenden beiden zweidimensionalen Richtdiagrammtypen:

Horizontaldiagramm: Fir ¢ = 7/2 trdgt man in Polarkoordinaten C(7/2,¢)
auf.

Vertikaldiagramm: Fir ¢ = 0 triagt man in Polarkoordinaten C'(¢,0) auf.

Als Beispiel wird der ideale elektrische Dipol betrachtet. Die vom idealen elek-
trischen Dipol im Fernfeld erzeugte elektrische Feldstérke ist

BZp Ll

|20 )] = =7

[sin(J)],
siehe (4.58). Der Maximalwert der elektrischen Feldstdrke in der Hauptstrahlrich-
tung ¥ = 7/2 ist
_ BZr L)l
max  dmr
Mit (5.5) erhélt man die Richtcharakteristik

£

C(0, ) = |sin(V)| (5.7)

des idealen elektrischen Dipols. Diese Richtcharakteristik C'(1J, ¢) hangt nicht vom
Azimutwinkel ¢ ab, das heifit sie ist wie erwartet rotationssymmetrisch beziiglich
der z-Achse. Abbildung 5.1 zeigt das dreidimensionale Richtdiagramm des idealen
elektrischen Dipols. Das in Abbildung 5.2 dargestellt Vertikaldiagramm ergibt sich
als vertikaler Schnitt durch das dreidimensionale Richtdiagramm.
Die in einer beliebigen Richtung erzeugte Strahlungsleistungsdichte ergibt sich
mit (5.6) und (5.2) zu
S0, p) = DSeC*(9, p) . (5.8)

Den Richtfaktor D der Antenne kann man nun aus der Richtcharakteristik C(1J, ¢)
berechnen. Die abgestrahlte Leistung ergibt sich mit (4.54) zu

T 27T
P = DS, j f C2(¥, ) 2 sin(¥) d dv.

9=0 =0
Daraus folgt mit (5.1) der Richtfaktor

P dr
D= T 27 ~ Tr on '
So | [ C?0,¢)r?sin(9) de dd [ C*(0,p)sin(d) dp d

=0 =0 9¥=0 ¢=0

(5.9)
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N\
=\~
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il

/NN

Abbildung 5.1.: Dreidimensionales Richtdiagramm des idealen elektrischen Dipols

sin(19)

\ 4
8

Abbildung 5.2.: Vertikaldiagramm des idealen elektrischen Dipols
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Manchmal interessiert man sich nicht nur fiir die Betrige der von einer Sen-
deantenne erzeugten Feldstarken, sondern auch fiir die durch die zeitabhéngige
rdumliche Ausrichtung des elektrischen Feldstarkevektors E beschriebene Polari-
sation und die Nullphase. Diese Informationen sind in der vektoriellen komplexen

Richtcharakteristik ( )
Cy(0,

Q(Wp):(_’? ’ ) (5.10)
C, (v, )

mit den sich aus den entsprechenden Komponenten des elektrischen Feldstarke-
vektors ergebenden Komponenten

. Eﬂ‘ﬂ ('19, (,0) ejﬂr . _jEﬂLp (,197 ()0)

Cy, (¥, p) = _ -
I HE o /|E79|2+ ‘wa

enthalten, siehe auch (4.48). Yy steht hierbei fiir eine der zwei Koordinaten ¢ oder
. Die Definition ist nur in Kombination mit der Festlegung einer Referenzphase
eindeutig. Man legt sie beispielsweise durch die Phase des Speisestroms I, fest.
Wegen der Normierung auf den maximal auftretenden Feldstarkebetrag und der
Kompensation der entfernungsbedingten Phasendrehung durch die Multiplikation
mit e" ist auch die vektorielle Richtcharakteristik C(4J, ) entfernungsunabhén-
gig. Die Richtcharakteristik (5.5) berechnet sich aus der vektoriellen komplexen
Richtcharakteristik zu

(5.11)

max

C0,¢) = [IC(0, o)l - (5.12)

5.2. Lineare Antennen

5.2.1. Allgemeine Betrachtungen zu linearen Antennen

Lineare Antennen bestehen aus einem geraden, sehr diinnen, idealen elektrischen
Leiter. Das Koordinatensystem wird vereinfachend so gewéahlt, dass die Langsach-
se des Leiters der z-Achse entspricht. Abbildung 5.3 zeigt eine schlanke Dipolan-
tenne mit Radius p < A und der Léange [ als Beispiel einer linearen Antenne.

Der Strom I(z') flieBt ausschliefllich in z-Richtung, so dass der hier aufgrund

der Antennensymmetrie nur vom Poldistanzwinkel ¢} abhéngende vektorielle Rich-
tungsfaktor F' gemdf (4.42) in kartesischen Koordinaten nur eine z-Komponente

E,(9) = jl(z’) B cos?) 1/ (5.13)
l
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T
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>
Xy

S

s (Y

1

Abbildung 5.3.: Schlanke Dipolantenne

hat. In Kugelkoordinaten verschwindet die ¢-Komponente F,(J) = 0 und die
¥-Komponente ist

Fy(9) = —sin(v) f ") e eot?) 4 (5.14)

FE(19 !

Eg(9)

siche (4.15). Die ebenfalls von Null verschiedene r-Komponente F (9) interes-
siert hier nicht weiter. Der Richtungsfaktor Fy(1)) einer aus gleichartigen und
gleich ausgerichteten Elementarantennen, hier idealen elektrischen Dipolen, zu-
sammengesetzten Antenne entspricht stets dem Produkt aus Elementrichtungs-
faktor F'g(1) und Gruppenrichtungsfaktor Fq (). Diesen allgemeingiiltigen Zu-
sammenhang bezeichnet man als multiplikatives Gesetz. Der Gruppenrichtungs-
faktor

f] ) el cos?) 1/ (5.15)

beschreibt das Zusammenwirken der infinitesimalen, die Strombelegung I(2’) ap-
proximierenden, idealen elektrischen Dipole. Der im Integral auftretende Faktor
@87 col?) heriicksichtigt die sich aus den geometriebedingten Pfadlingenverkiir-
zungen z’' cos(¥) ergebenden Phasenverschiebungen, sieche Abbildung 5.4.

Die Richtcharakteristik (5.5) ergibt sich entsprechend dem multiplikativen Ge-
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z
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P4
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0 -
2’ cos (V)

Abbildung 5.4.: Geometriebedingte Pfadldngenverkiirzung 2’ cos(?)

setz zu

Ey()] _ |Ee(¥) Ec(W)] . [ (9)]
c) = = ~ |sin (v ) 5.16
( ) ‘Eﬁ‘max |EEEG‘D’1&X ‘?é;)l ‘EG|max ( )

C(?)
Die Richtcharakteristik C'(¢) ist proportional zum Produkt aus Elementrichtcha-
rakteristik Cg(?) und Gruppenrichtcharakteristik Cq(¥). Es gilt Gleichheit, falls
die Hauptstrahlrichtungen der Elementrichtcharakteristik Cg(¢)) und der Grup-
penrichtcharakteristik C()) zusammenfallen. Den Richtfaktor kann man wegen
der Rotationssymmetrie um die z-Achse gemafl

D= (5.17)

aus der Richtcharakteristik C'()) berechnen, siehe (5.9).
Wenn man den Gruppenrichtungsfaktor F'(¢J) nicht als Funktion des Poldi-
stanzwinkels 9 sondern als Funktion der z-Komponente

B, = Bcos(V) (5.18)

des in die betrachtete Ausbreitungsrichtung zeigenden Phasenvektors 5 gemaf
(2.13) betrachtet, erkennt man, dass der Gruppenrichtungsfaktor

Fo(f,) = [ 1()) % a7 (5.19)
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die Fourier-Transformierte der Strombelegung I(2’) ist | ]. Man spricht von
der Strombelegung I(z’) im Ortsbereich und dem Gruppenrichtungsfaktor F(5,)
im Wellenzahlbereich. Die quadrierte Gruppenrichtcharakteristik ist proportional
zum Betragsquadrat des Gruppenrichtungsfaktors

C&(B,) ~ |Ea(B,)°

und das Betragsquadrat des Gruppenrichtungsfaktors ergibt sich nach den Ergeb-
nissen der Signaltheorie als Fourier-Transformierte der Autokorrelationsfunktion
der Strombelegung I(z'):

[Fa(B)I =E&(8,) Ea(6,)
_ f [* l/ —Jﬂzz dZ” j [ ejﬂzz dZ

:f fl*(z”)l(z)ejﬂzz_z dz" d7

= j j I'(2") (2" + ') d2" &% d2

Autokorrelationsfunktion

Fourier-Transformation

Diese in Abbildung 5.5 dargestellten Zusammenhénge erweisen sich als aufler-
ordentlich niitzlich, da sie es ermoglichen, aus der Signal- und Systemtheorie
bekannte Verfahren auch zur Antennenanalyse und zur Antennensynthese ein-
zusetzen.

5.2.2. Dipolantennen mit sinusformiger Strombelegung

Mit numerischen Untersuchungen wie zum Beispiel mit der Momentenmethode
und auch mit approximativen feldtheoretischen Betrachtungen findet man, dass
die Strombelegung auf einer in der Mitte mit dem Strom [, gespeisten schlanken
Dipolantenne mit Radius p < A in guter Naherung sinusférmig ist:

l<z,> ) [Osin<fi£2(ﬂ_é)z')) 12 < <12 |

0 sonst

(5.20)

Mit der nun bekannten Strombelegung I(z’) ist die weitere Analyse der Dipolan-
tenne einfach. Der Gruppenrichtungsfaktor ergibt sich gemafl (5.19) als Fourier-
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Abbildung 5.5.: Ortsbereich und Wellenzahlbereich
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Transformierte der Strombelegung I(z'):*

osin(B(5-171) .
Fe(3,) = I B2 2
Fo(B,) { " (3] RN

oy 5m8 (5 - )
= jﬂo cos(3,2") 2’
s1n< )

1/2
= — l (sm( l— (B, +B) )—i—sin(ﬁé—l—(ﬂz—ﬂ)z'))dz’
Sln 5

el

U (5.21)
_ Ly [eos(B5 (Bt B)7) cos(B3+ (B =P)7)
= n(5Y) B+ B B, — B o
Ly (eos(83) —cos(5)  con(8ut) - con(54)
N Sin(ﬁé) B.+ B B,— B8

281, COS(B%) — cos(ﬂzé)
sin(ﬁi) Bz — B2 '

2

Die Richtcharakteristik C'(5,) entspricht gemafl (5.16) dem normierten Betrag des
mit dem Elementrichtungsfaktor £ (/3,) multiplizierten Gruppenrichtungsfaktors
F(B,). Die in Abbildung 5.6 gezeigten Richtcharakteristiken C'(9) sind als Funk-
tionen des Poldistanzwinkels ¥ dargestellt, siehe (5.18). Fiir grofe Langen [ > A
der Antenne bilden sich zusétzlich zu den Hauptkeulen auch noch Nebenkeulen
aus. Die Anzahl der Nebenkeulen nimmt mit wachsender Lange [ der Antenne zu.
Die zugehorigen Richtfaktoren D wurden mit (5.17) numerisch berechnet.

Aufgabe 5.1 Berechnen Sie den Richtfaktor D einer schlanken Dipolantenne der
Linge I = X\/2 mit sinusformiger Strombelequng I(2')!

Aufgabe 5.2 Berechnen Sie die Richtcharakteristik C(0) einer schlanken Dipol-

antenne der Lange | mit konstanter Strombelegung

() = {10 S22,

0 sonst

Skizzieren Sie die Richtcharakteristik C(9) fir l = \/2 und | = 4\! Vergleichen
Sie das Ergebnis mit der Richtcharakteristik eines idealen elektrischen Dipols und
einer Dipolantenne der Lange | = \/2 mit sinusformiger Strombelegung!

2 Es wird das Additionstheorem sin(a) cos(8) = 1 (sin(a — ) + sin(a + 3)) verwendet.
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MJE]

(b)I= )\ D =241

Lz §=0 =
6

Lz §=0 =
6

5m
3

3m us T

2 2 2

4 . o

3 3

(¢) 1 =3)\/2, D =223 (d) I =4\, D = 3,56

Abbildung 5.6.: Richtcharakteristiken C'(9) von Dipolantennen mit sinusférmiger
Strombelegung I(2’). In Abbildung 5.6a gestrichelt zum Vergleich

idealer elektrischer Dipol
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5.3. Aperturantennen

5.3.1. Aligemeine Betrachtungen zu Aperturantennen

Nach dem Huygensschen Prinzip kann man das abgestrahlte elektromagnetische
Feld ausgehend von ersatzweise angenommenen Flédchenstromdichten in der Aper-
tur berechnen. Im Folgenden soll allgemein das Zustandekommen der Richtcha-
rakteristik bei einer als bekannt vorausgesetzten zweidimensionalen Strombele-
gung in der Apertur betrachtet werden. Es werden folgende vereinfachende Ein-
schrdnkungen gemacht:

o Die Apertur sei eben und liege in der y-z-Ebene. Letzteres ldsst sich durch
geeignete Wahl des Koordinatensystems erreichen.

o Es gebe nur eine elektrische Fléachenstromdichte J, r, das heiflit die magneti-
sche Flichenstromdichte M r sei Null. Sollte es auch eine magnetische Fla-
chenstromdichte M r geben, so kann man separat in dualer Vorgehensweise
das von ihr abgestrahlte elektromagnetische Feld berechnen. Anschlieflend
iiberlagert man die von elektrischer Flachenstromdichte iF und magne-
tischer Flichenstromdichte M r abgestrahlten elektromagnetischen Felder
vektoriell.

o Die elektrische Flachenstromdichte jF habe nur eine z-Komponente. Sollte
es auch eine y-Komponente geben, so kann man separat in dualer Vorgehens-
weise das von dieser y-Komponente abgestrahlte elektromagnetische Feld
berechnen. Anschliefend iiberlagert man die von den verschiedenen Kompo-
nenten der Flachenstromdichte ip abgestrahlten elektromagnetischen Fel-
der vektoriell.

Abbildung 5.7 zeigt das beschriebene Szenario. .
Mit dem in die betrachtete Ausbreitungsrichtung zeigenden Phasenvektor [
gemaf (2.13) und dem Ortsvektor r’ des Flachenelements dA’ folgt

<B’, 77’) = By’ sin(p) sin(?) + B2’ cos(¥)),
a

siehe Abbildung 5.7. Damit berechnet man den Gruppenrichtungsfaktor

Fo(0.9) = ([ Zuy(y, ) P05 o qyf 0, (5.22)
A/
vergleiche (4.42) und (5.15).
Der Richtungsfaktor ergibt sich gemafl dem multiplikativen Gesetz zu

Eﬁ(ﬁv 90) = EE(ﬁa gp) EG(’&? 30) - - Sin(ﬁ) e (197 90) ) (523)
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5.3. Aperturantennen

in() cos(p) iy + B sin(v) sin(y) uy + B cos(V) 4,

/

\

Abbildung 5.7.: Aperturantenne

vergleiche (5.14). Die Richtcharakteristik (5.5) ergibt sich entsprechend dem mul-
tiplikativen Gesetz zu

= = ~ _— .24
C(ﬁ’ ) |E79‘max ‘EEEG|max w |EG|max (5 )

Die Richtcharakteristik C'(¢, ) ist proportional zum Produkt aus Elementricht-
charakteristik Cg(?, ¢) und Gruppenrichtcharakteristik Cq (9, ). Es gilt Gleich-
heit, falls die Hauptstrahlrichtungen der Elementrichtcharakteristik Cg(9, ¢) und
der Gruppenrichtcharakteristik C (9, ¢) zusammenfallen.

Mit der y-Komponente

By = Bsin(yp) sin(d) (5.25)

und der z-Komponente

B, = [ cos(V) (5.26)
des Phasenvektors 5 aus Abbildung 5.7 folgt fiir den Gruppenrichtungsfaktor

Fq(By, B,) = jj I, (Y, 2) el (Byy' +522") dy’ d7/, (5.27)
A/

das heiit der Gruppenrichtungsfaktor Fq(fy, 5,) ist die zweidimensionale Fourier-
Transformierte der Strombelegung Jy,(vy', 7).
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Die Orte konstanten Poldistanzwinkels ¢ entsprechen Orten konstanten [, in
der 3,-5,-Ebene, siche Abbildung 5.8. Weiterhin gilt

(3 (3 oo

das heift die Orte konstanten Azimutwinkels ¢ entsprechen Ellipsen in der 3,-(,-
Ebene, siehe Abbildung 5.8.

62/6 :‘ Cos(ﬁ)

Y= %_
6// 7 / \ \\ N\
/s / \ NN
L — —— ] — — -
4 / / \ \ N\
/ \
/ / \ A\
19:5 / / L \ A\ N
/ / I
|
!

> 3,/5 = sin() sin(0)

Abbildung 5.8.: Abbildung der ¥-¢-Ebene auf die fy-3,-Ebene

Héufig ist die Hauptstrahlrichtung senkrecht zur Apertur. Fiir einen kleinen
Bereich um diese Hauptstrahlrichtung ¢ = 7/2 und ¢ = 0 beziehungsweise f; = 0
und (£, = 0 erhalt man die folgenden linearen Taylor-Approximationen:

sin(v) ~1, (5.28)
cos(1) zg — 49, (5.29)
sin(p) ~p, (5.30)
By =P, (5.31)

™
B, =P (5 - 19) : (5.32)
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5.3. Aperturantennen

5.3.2. Aperturantennen mit konstanter Strombelegung

Es wird die in Abbildung 5.9 gezeigte rechteckférmige Apertur mit konstanter
Strombelegung

b b
Jro —5<y <fund —3 <2 <3

Je, (Y, 2) = 5.33
Le Y, %) {O sonst ( )
betrachtet.
z
A
b ® > Y
T
le N
< a g

Abbildung 5.9.: Rechteckformige Apertur

Der Gruppenrichtungsfaktor ergibt sich geméf (5.27) als zweidimensionale Fourier-
Transformation der Strombelegung Jp,(v', 2):

EG(ﬁw Bz> = JFO ej(ﬁyyurﬁzz') dyl ds

z

‘|‘ le@

SIIS)

l\l %MI@

NS
<

!

=Jro cos(B,2') dz' (5.34)

le@
%wlc‘

cos(Byy’) dy’

sin(%ﬂy) sin(%ﬂz) a (b
=Jpoab—;, =J absi(—ﬂ ) si| =0, | .
" )
Die Fourier-Transformierte si(-) des Rechteckimpulses wird als Spaltfunktion be-

zeichnet. Abbildung 5.10 zeigt die sich aus dem Gruppenrichtungsfaktor mit (5.24)
ergebende Gruppenrichtcharakteristik®
(b
si <§ ﬂz> .

(33

nle
o

Ca(By, B.) = (5.35)

3Es gilt si(0) = 1.
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Cq (Bya Bz)

l

I
\\‘Q\\,}y

I,, 'l' I ‘\\\\\\\ “

' "'""'l II'
l

' ' 5 ln':o
00 2 0...‘ %% 177000000, 1
o3
X3 %

B,/ B = cos(d) -1 5y/5 = sin(yp) sin (1)

Abbildung 5.10.: Gruppenrichtcharakteristik Cg(fy, 3,) einer rechteckférmigen
Aperturantenne mit konstanter Strombelegung. Breite a = 4\
und Hohe b = 2\

Die Hauptstrahlrichtung der rechteckférmigen Aperturantenne mit konstanter
Strombelegung ist 3, = 0 und 3, = 0, das heifit senkrecht zur Apertur. Den
Richtfaktor D kann man mit (5.9) berechnen. Das dabei zu berechnende Integral
ist allerdings nur fiir den Sonderfall in Relation zur Wellenldnge A grofier Ab-
messungen a > A und b > A ndherungsweise analytisch berechenbar. Dann ist
die Strahlungsleistung in einer schmalen Hauptkeule um die Hauptstrahlrichtung
konzentriert. Im Bereich signifikanter Werte der Richtcharakteristik (5.24) gilt
dann wegen (5.28) nédherungsweise

C*(By, B,) = C&(By, B,) -
Fiir den Richtfaktor (5.9) folgt mit (5.31) und (5.32)

47 432

o0 [e.e] o0

I T cawededd [ [ CiB,.5) 5,45,

Y=—o00 p=—00 Bz=—00 By=—00

D =~ (5.36)

Q
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5.3. Aperturantennen

Einsetzen der Gruppenrichtcharakteristik ergibt mit (4.43) der Richtfaktor?
4732 4

S L - ab)\—z. (5.37)

[T si2(58,) si2(36.) dBy dg,

Ba=—00 5y:*00

D=

Aufgabe 5.3 FEs wird die in der Abbildung 5.11 gezeigte Hornantenne betrachtet.
In dem Hohlleiter breite sich eine TE, o- Welle aus. Zeigen Sie, dass man das von
der Hornantenne abgestrahlte elektromagnetische Feld ndherungsweise als das von
der magnetischen Flichenstromdichte

N

2E, cos( Y <y < Synd L <2<
MFy:{ ( ) 2 2 2

0 sonst

in der Apertur x = 0 abgestrahlte elektromagnetische Feld berechnen kann! Be-
rechnen Sie die Gruppenrichtcharakteristik Cc(By, B,) der Hornantenne! Berech-
nen Sie fiir grosse Hornantennen a > X\ und b > X\ mit starker Richtwirkung den
Richtfaktor D als Funktion von Breite a, Hohe b und Wellenlinge \ ndherungs-
weise aus der Gruppenrichtcharakteristik Cg(By, 8,)!

z
A

/7 %

Abbildung 5.11.: Hornantenne

+oo
1 Es wird das bestimmte Integral [ si?(az)dz = \%\ verwendet.

— 00
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5.4. Gruppenantennen

5.4.1. Allgemeine Betrachtungen zu Gruppenantennen

Gruppenantennen bestehen aus N Antennenelementen. Die Speisestrome 1,,, n =
0...N — 1, der Antennenelemente haben im Allgemeinen unterschiedliche Am-
plituden und Nullphasen. Die von den Antennenelementen abgestrahlten elektro-
magnetischen Felder iiberlagern sich vektoriell.

Im Folgenden sollen die Grundprinzipien der Gruppenantennen unter verein-
fachenden, aber in praktischen Realisierungen haufig zumindest ndherungsweise
erfiillten Voraussetzungen erlautert werden:

o Die Gruppenantenne besteht aus identischen gleich orientierten Antennen-
elementen.

o Die Antennenelemente beeinflussen sich gegenseitig nicht. Diese Ndherung
ist nur bei hinreichend groflen Antennenelementabstinden zuléssig.

Mit

o der von einem einzigen Antennenelement im Ursprung bei Speisung mit dem
Strom [ in einer Entfernung r im Fernfeld erzeugten elektrischen Feldstérke
EE?

e der Position 7/,, des n-ten Antennenelements und

+ dem in die durch Poldistanzwinkel ¢ und Azimutwinkel ¢ beschriebene be-
trachtete Ausbreitungsrichtung zeigenden Phasenvektor 5 geméaf (2.13)

folgt fiir die von der Gruppenantenne erzeugte elektrische Feldstarke im Fernfeld

- E N-1 7T

E==EN"1, e, (5.38)
lE n=0
~~
Fy Fg

vergleiche (5.15). Der in der Summe auftretende Faktor el (Brr'n) berticksichtigt
die sich aus den geometriebedingten Pfadlangenverkiirzungen ergebenden Pha-
senverschiebungen. Das Zusammenwirken der Antennenelemente wird durch den
Gruppenrichtungsfaktor

N-1 .
Fo(d,9) = > L, (5.39)

=0

3
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beschrieben. Er ist von der Art der Antennenelemente unabhéngig. Die Richtcha-
rakteristik (5.5) ergibt sich entsprechend dem multiplikativen Gesetz zu

A O A
= R [, 7

CG(ﬂv‘p)

. (5.40)

max

max max

CE(ﬁsz)

Die Richtcharakteristik C'(¢, ) ist proportional zum Produkt aus Elementricht-
charakteristik Cg (1, ¢) und Gruppenrichtcharakteristik

a0, = 202, (5.41)

max

Es gilt Gleichheit, falls die Hauptstrahlrichtungen der Elementrichtcharakteristik
Cg(9, ¢) und der Gruppenrichtcharakteristik C (9, ¢) zusammenfallen.

Der Entwurfsraum der Gruppenantennen bietet viele zur Optimierung der Grup-
penrichtcharakteristik Cg (1, ¢) nutzbare Freiheitsgrade wie

o die rdumliche Anordnung und Ausrichtung der Antennenelemente,

o die Ausrichtung der Gruppenantenne im Raum relativ zur gewtinschten
Hauptstrahlrichtung,

« die relativen Betrége der Speisestrome /,,, n =0... N — 1, und
o die Nullphasen der Speisestréme I,,, n=0... N — 1.

Die Méglichkeit die Richtcharakteristik C'(¢, ) einer Gruppenantenne auf elek-
tronischem Wege insbesondere durch phasenverschobenes Ansteuern der Anten-

nenelemente zu beeinflussen, wird in vielen Anwendungen in der Radartechnik
(Phased Array Radar) und in der Funkkommunikationstechnik (MIMO-Systeme)
genutzt.

5.4.2. Lineare Gruppenantennen
5.4.2.1. Aligemeine Betrachtungen zu linearen Gruppenantennen

Im Folgenden sollen exemplarisch lineare Gruppenantennen betrachtet werden.
Die identischen gleich ausgerichteten Antennenelemente seien im gleichen gegen-
seitigen Abstand d auf der z-Achse angeordnet, sieche Abbildung 5.12. Die Position
des n-ten Antennenelements sei

= 2pil, = ndi,. (5.42)
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¥

T
e

7
7
7
7
v
7
7
d e
7

d cos()

—
0

Abbildung 5.12.: Lineare Gruppenantenne

Die Anordnung ist rotationssymmetrisch beziiglich der z-Achse.
Mit dem in die betrachtete Ausbreitungsrichtung zeigenden Phasenvektor B’
geméaB (2.13) folgt
<§, ) = Bnd cos(9),
siche Abbildung 5.12. Durch Einsetzen in (5.39) erhélt man den wegen der Anten-
nensymmetrie nur vom Poldistanzwinkel ¢ abhédngenden Gruppenrichtungsfaktor

N-1
Fo(9) =3 I, edes?) (5.43)
n=0
Mit der Substitution
Ba = pd cos(V) (5.44)

erkennt man, dass sich der Gruppenrichtungsfaktor

N-1
Fq(Ba) = Y L, %" (5.45)
n=0

als Fourier-Reihe mit den Koeffizienten I,,, n = 0... N — 1, ergibt. Zur Analyse
und Synthese von Gruppenantennen sind daher Methoden der digitalen Signal-
verarbeitung anwendbar | : : : |. Insbesondere entspricht das
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Problem des Entwurfs einer Strombelegung I,,, n = 0... N — 1, zum bestmogli-
chen Approximieren eines gewiinschten Gruppenrichtungsfaktors F¢(/4) und da-
mit einer gewtnschten Gruppenrichtcharakteristik Cq (7, ¢) mathematisch dem
Problem des Entwurfs der Koeffizienten eines digitalen Filters.

Die Koeffizienten I1,,, n = 0...N — 1, kann man auch als Abtastwerte einer
kontinuierlichen Strombelegung ansehen. Der Gruppenrichtungsfaktor F(/3q) ist
infolge des Abtastens der Strombelegung im Ortsbereich eine periodische Funk-
tion mit der Periode 27. Im gesamten Winkelbereich gilt —1 < cos(d) < 1.
Zum Vermeiden sichtbarer periodischer Wiederholungen des Gruppenrichtungs-
faktors F'¢(fq) muss daher entsprechend dem Abtasttheorem fiir den Antennen-
elementabstand

21 > [Bd2,

das heifit \

d< B (5.46)
gelten, siche Abbildung 5.13. Die endliche Ausdehnung der Gruppenantenne im
Ortsbereich kann man als Ergebnis einer Multiplikation einer unendlich ausge-
dehnten Strombelegung mit einer Fensterfunktion auffassen, vergleiche Anhang
B.1. Im Wellenzahlbereich ist der Gruppenrichtungsfaktor der unendlich ausge-
dehnten Strombelegung dann mit der Fourier-Transformierten der Fensterfunkti-
on zu falten, um den Gruppenrichtungsfaktor F(5q) der endlich ausgedehnten
Gruppenantenne zu erhalten. Dies fithrt im Allgemeinen zu einer Verbreiterung
der Maxima und zu zusétzlichen Nebenmaxima der Gruppenrichtcharakteristik

CG(IZ 90>
5.4.2.2. Lineare Gruppenantennen mit Strombelegung konstanten
Phasendekrements

Strombelegung konstanten Phasendekrements Im Folgenden seien die Am-
plituden der Speisestrome I,,, n =0... N — 1, alle gleich:

L] = |Lo| -

Weiterhin seien auch die relativen Phasenverschiebungen der Speisestrome be-
nachbarter Antennenelemente gleich. Der n-te Speisestrom ergibt sich dann mit
dem Phasendekrement ¢ zu

I, =1I,e ™. (5.47)
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°]
>3

|
el

) Hauptkeulen

6 6
(a) d=\/4, N = 16 (b)d=A/2, N =38
Ur =0 =

coln
w
coln

lr =0 =z
6

AN

3 s 3 s
2 2 2 2
Hauptkeulen Hauptkeulen
4m o Gitterkeulen 2m dn o Gitterkeulen 2n
3 3 3 3
s oT
6 6 6 6
(c)d=X\ N=4 (d)d=2\ N =2

Abbildung 5.13.: Einfluss des Antennenelementabstands d auf die Gruppenricht-
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charakteristik Cg (1)) einer linearen Gruppenantenne mit kon-
stanter Strombelegung I,, = I, n = 0...N — 1. Die Grofe
der gesamten Apertur ist konstant Nd = 4\. Bei kleinem An-
tennenelementabstand d konvergiert die Gruppenrichtcharakte-
ristik Cg(¥) gegen die sich bei einer kontinuierlichen Strom-
belegung ergebenden Richtcharakteristik, vergleiche Abbildung
C.6b. Man beachte, dass die Richtcharakteristik in Abbildung
C.6b zusatzlich mit der Elementrichtcharakteristik Cg(d) =
|sin(¥)| gewichtet ist, was jedoch nur im Bereich der Neben-
keulen (Side Lobes) sichtbar ist. Unterabtasten fithrt zu als Git-
terkeulen (Grating Lobes) bezeichneten periodischen Wiederho-
lungen der Hauptkeulen (Main Lobes)



5.4. Gruppenantennen

Gruppenrichtungsfaktor Man erhilt den Gruppenrichtungsfaktor®

_ o= iNY LjNBq —iZ(Ba—¢) _ X (Ba—v
Fa(a) =Ly =S e gy € e Y
1 — e—i¥ eiba e iz(Ba—v) _ oi5(Ba—7)
in (N _
=N ez Ba=v) sin (5 (B — v)) _ (5.48)
Nsin(% (Ba — 1/1))

din(Ba—1)

Die hier auftretende Funktion diy(-) wird als Dirichlet-Kern bezeichnet.

Hauptstrahlrichtung In der Hauptstrahlrichtung

Bd,max = w (549)

des Gruppenrichtungsfaktors F¢(fq) werden die geometriebedingten Phasenver-
schiebungen durch das Phasendekrement ) kompensiert, siche (5.48). Mit (5.44)
findet man den zugehorigen Azimutwinkel

Vmax = arccos(%) : (5.50)

Der Maximalwert des Betrags des Gruppenrichtungsfaktors F(8q) ergibt sich
aus (5.48) mit der de I'Hospitalschen Regel zu®

Eglpn = N 1L (5.51)

Bei grofieren Abstanden d > A/2 der Antennenelemente kann es weitere als Gitter-
keulen bezeichnete sichtbare periodische Wiederholungen der Hauptkeule geben.
Die Hauptstrahlrichtung der Gruppenantenne weicht bei nicht omnidirektionalen
Antennenelementen mehr oder weniger stark von der hier berechneten Haupt-
strahlrichtung des Gruppenrichtungsfaktors F(5q) ab.

Nullstellen Nullstellen des Gruppenrichtungsfaktors F(8q) gemaf (5.48) erge-
ben sich, sofern keine Gitterkeulen auftreten, fiir

sin(5 (500~ 9)) =0,

N-1 1—gN
5 Es wird die Summenformel 3 q" = gq der endlichen geometrischen Reihe verwendet.

1—
n=0
SEs gilt diy(0) = 1.
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das heifit 5
6(1,0:%“@ m=41,+2, .... (5.52)
Mit (5.44) findet man die zugehorigen Azimutwinkel
2mm
Vo = arccos(NT;d}) , m==+1,4+2, ... (5.53)

Richtfaktor Es sei vorausgesetzt, dass die Hauptstrahlrichtungen der Elemen-
trichtcharakteristik Cg(8q) und der Gruppenrichtcharakteristik Cq(q) zusam-
menfallen. In der Hauptstrahlrichtung iiberlagern sich die elektromagnetischen
Felder der Antennenelemente konstruktiv, das heifit die von der Gruppenanten-
ne abgestrahlten Feldstarken in Hauptstrahlrichtung sind N-mal so grofl wie die
von einem einzigen Antennenelement abgestrahlten Feldstéarken. Die Strahlungs-
leistungsdichte S ist folglich um den Faktor N? erhéht. Wenn man noch bertick-
sichtigt, dass die von der Gruppenantenne insgesamt abgestrahlte Leistung P
das N-fache der von einem einzigen Antennenelement abgestrahlten Leistung ist,
ergibt sich der Richtfaktor der Gruppenantenne zu

D = DgN, (5.54)
wobei Dy, der Richtfaktor des Antennenelements ist.
Gruppenrichtcharakteristik Die Gruppenrichtcharakteristik erhalt man gemaf

(5.41) durch Normieren des Betrags des Gruppenrichtungsfaktors (5.48) auf seinen
Maximalbetrag |Iy| N:

= |din(Ba — ¥)|. (5.55)

N-1
3 ein(da—v)
n=0

Ca(fa) = %

In Abbildung 5.14 sind die Gruppenrichtcharakteristiken Cg (1)) einiger exempla-
rischer linearer Gruppenantennen als Funktionen des Poldistanzwinkels 9 dar-
gestellt, siehe (5.44). Zum Ermitteln der Richtcharakteristiken C(¢) der Grup-
penantennen wéare noch eine Wichtung mit der Elementrichtcharakteristik Cg(9)
erforderlich.

Aufgabe 5.4 FEs wird eine lineare Gruppenantenne aus N omnidirektionalen An-
tennenelementen mit einer Strombelegung konstanten Phasendekrements v be-
trachtet. Berechnen Sie mit (5.9) den Richtfaktor D aus der Richtcharakteristik

1 N—-1 )
CW) = ~ Z ein(Bdcot(9)—¢) |
n=0

Wie erkldren Sie sich die Abweichung zu dem in (5.5/) angegebenen Wert D = N ¢
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(c) v = \/§7r/2, Umax = 7/6

us
2
3
(b) ¥ = 7/2, Imax = 27/6
1im I =0 b
6 6
om s
3 3
3 us
o 2
4r L o
3 3

(d) 1/1 =T, ngax =0

Abbildung 5.14.: Schwenken der Hauptstrahlrichtung der Gruppenrichtcharakte-
ristik Cg () einer linearen Gruppenantenne mit zwei Antennen-
elementen durch Einstellen des Phasendekrements 1. Antennen-

elementabstand d = \/2
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Kapitel 6.

Ausbreitung elektromagnetischer Wellen

6.1. Freiraumausbreitung

6.1.1. Wirkflache

Eine als Empfangsantenne betriebene Antenne sei einer einfallenden ebenen ho-
mogenen Welle ausgesetzt. Die Antenne gibt dann an den Empfanger eine Emp-
fangsleistung Pg ab, die proportional zur Strahlungsleistungsdichte S der ein-
fallenden ebenen homogenen Welle ist. Bei sowohl beziiglich der Raumrichtung
optimaler Ausrichtung als auch beziiglich der Polarisation optimaler Anpassung
der Antenne und bei Leistungsanpassung gibt die Antenne die Empfangsleistung

Py = SAg (6.1)

an den Empfanger ab. Der Proportionalitatsfaktor Ar hat die Einheit einer Flache
und wird als Wirkflache der Antenne bezeichnet. Die Wirkflache Agr entspricht
im Allgemeinen nicht der geometrischen Querschnittsfliche der Antenne. Nur bei
groflen Aperturantennen entspricht die Wirkfliche Agr ndherungsweise der geo-
metrischen Querschnittsfliche der Antenne.

6.1.2. Empfangsleistung

Es wird die in Abbildung 6.1 gezeigte Funkiibertragungsstrecke betrachtet. Der
Abstand r zwischen Sender und Empfanger sei grof§ im Vergleich zur Wellenlédnge
A und zu den Antennenabmessungen, das heifit der Empfinger befindet sich im
Fernfeld des Senders.

Sowohl der Sender als auch der Empfanger seien leistungsangepasst. Die vom
Sender an die Sendeantenne abgegebene Sendeleistung ist Pr. Mit dem Gewinn
Gt der Sendeantenne ist die vom Sender am Ort des Empfangers erzeugte Strah-
lungsleistungsdichte bei optimaler Ausrichtung der Sendeantenne

42

S

Gr, (6.2)
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v

PT PR .
Sender Empfanger
Gr Ar

Abbildung 6.1.: Funkiibertragungsstrecke

siche (5.2) und (5.3). Die Empfangsleistung ergibt sich mit der Wirkflache Ag
der Empfangsantenne bei optimaler Ausrichtung der Empfangsantenne und bei
Polarisationsanpassung zu

Pr
42

PR = SAR = GTAR, (63)
siche (6.1). Die Empfangsleistung Pr nimmt mit 1/r? ab, das heifit der Damp-
fungsexponent ist zwei. Das Verhéltnis

Pr 1

— = ——=GrA 6.4

Pr 4mr2 R (64)
aus Empfangsleistung und Sendeleistung wird als Ubertragungsfaktor bezeich-
net. Der Ubertragungsfaktor entspricht aufgrund der hier angenommenen Leis-
tungsanpassungen dem in Abschnitt 12.4.6 eingefithrtem maximalen verfiigbaren
Leistungsgewinn Gyag der als Zweitor betrachteten Funkiibertragungsstrecke.

6.1.3. Zusammenhang zwischen Gewinn und Wirkflache

Der Funkkanal ist reziprok, weil die Antennen und die Szenarien, in denen sich
die elektromagnetischen Wellen ausbreiten, praktisch ausschlieBlich aus linearen
und isotropen Materialien bestehen. Jede Sendeantenne ist auch als Empfangsan-
tenne nutzbar und umgekehrt. Insbesondere hingt der Ubertragungsfaktor (6.4)
einer Funkiibertragungsstrecke nicht davon ab, welche der beiden Antennen als
Sendeantenne und welche als Empfangsantenne genutzt wird. Es sind folglich zwei
Ubertragungsrichtungen zu vergleichen:

1. Antenne 1 mit dem Gewinn G wird als Sendeantenne und Antenne 2 mit
der Wirkfliche A, wird als Empfangsantenne genutzt. Der Ubertragungs-

faktor ergibt sich zu
Pr 1
— = As.
Py a1t
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6.1. Freiraumausbreitung

2. Antenne 2 mit dem Gewinn G5 wird als Sendeantenne und Antenne 1 mit
der Wirkfliche A; wird als Empfangsantenne genutzt. Der Ubertragungs-
faktor ergibt sich zu

Pr 1

B WGQAL
Aus der Gleichheit der beiden Ausdriicke folgt

A Ay

G Gy

Das Verhéltnis aus Gewinn G und Wirkfliche A ist fiir alle Antennen gleich.
Die Wirkfliche einer groien rechteckférmigen verlustfreien Aperturantenne mit
konstanter Strombelegung entspricht der geometrischen Querschnittsflache

A = ab.

Einsetzen des in (5.37) berechneten Richtfaktors D, der wegen der hier ange-
nommenen Verlustfreiheit n = 1 dem Gewinn G entspricht, ergibt die fiir alle

Antennen giiltige Beziehung
A A2 6.5
G Arx (6.5)
zwischen Gewinn und Wirkfliche. Ublicherweise wird in Datenbldttern nur der
Gewinn G einer Antenne angegeben. Die Wirkfliche A lésst sich dann einfach
berechnen.
Man kann nun die Wirkfliche Ag als Funktion des Gewinns G in (6.3) ein-

setzen und erhélt die Friis-Ubertragungsgleichung | ]

2
Py = Pr <i> GrGr. (6.6)
Ay

Die Empfangsleistung nimmt mit wachsender Kreisfrequenz w, das heifit sin-
kender Wellenldnge A quadratisch ab. Dies gilt jedoch nur, falls man Antennen
konstanten Gewinns verwendet und nicht die Moglichkeit ausnutzt, bei hoheren
Kreisfrequenzen w und damit kleineren Wellenléngen A in einem gegebenen Bau-

volumen Antennen gréfleren Gewinns zu realisieren.

Aufgabe 6.1 Im Fernfeld einer Sendeantenne im Abstand r = 1000m befinde
sich eine Empfangsantenne. Die Sendeleistung sei Pr = 100 W. Es werde ange-
nommen, dass die Sendeantenne omnidirektional ist. Die Empfangsantenne sei
auf die Sendeantenne optimal ausgerichtet, polarisationsangepasst und an den
Empfingereingang leistungsangepasst. Die Wirkfliche der Empfangsantenne sei
Ar = 1m?. Der Gewinn der Empfangsantenne sei Gr = 10. Bestimmen Sie die
Wellenlange X\, die Strahlungsleistungsdichte S am Ort der Empfangsantenne und
die Empfangsleistung Pgr!
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6.1.4. Polarimetrische Analyse der Freiraumausbreitung

Nun werden beliebig ausgerichtete Antennen beliebiger Polarisationseigenschaften
betrachtet. Die senderseitigen und empfiangerseitigen lokalen Koordinatensysteme
seien im Raum parallel ausgerichtet, sieche Abbildung 6.2.

<R

Empfanger

Sender
Abbildung 6.2.: Senderseitiges und empféngerseitiges lokales Koordinatensystem

Beim Berechnen der Empfangsleistung sind die vektoriellen komplexen Richt-
charakteristiken der Sendeantenne Cy (g, ¢gr) in Ausfallsrichtung Jr, ¢r und
der Empfangsantenne Cg(Vr, ¢r) in Einfallsrichtung ¥r, pr zu berticksichtigen.
GeméB der Definition (5.11) der vektoriellen komplexen Richtcharakteristik der
Sendeantenne ergibt sich die ¥- oder ¢-Komponente der elektrischen Feldstéarke
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6.1. Freiraumausbreitung

am im Fernfeld befindlichen Ort der Empfangsantenne zu
Ly, = HEHmaX Qm@(ﬁ‘T, or) eI

Der Beitrag der einzelnen Polarisationskomponenten zur Strahlungsleistungsdich-
te am Empfangsort ergibt sich mit (4.52) und (6.2) zu

B —jpr|?

L H QTw('ﬁT, or)e

- §Z_F max
—_—————

Smax
_ PrGr

42

2

Corgy (97, 1) €737

Die aus dem Empfang einer einzigen Polarisationskomponente resultierende Emp-
fangsleistung ergibt sich mit (6.1) und (6.5) unter Berticksichtigen der Richtwir-
kung und der Polarisationseigenschaften der Empfangsantenne gemafl (5.11) zu

2 A2
Proy =S, }Qm@(ﬂm @R)‘ GRE
——
AR
2\ 2
=Pr <m> GrGRr ’QR&@(0R> or)e " Crryp(V, <PT)’ -

Uberlagern der Empfangssignale der beiden Polarisationskomponenten ergibt die
gesamte Empfangsleistung

Pr =Pry + PRy
by 2
=Pr <—> GrGr
A
—jBr o—iBr 2
|QT19(?9T>S0T) , Cro(Ur, or) — Cop (U1, ¢1) , Cry(Ur; or) (6.7)
2
A\’ e (1 0
=Pr (E) GrGr |Cgr(Vr; ¢r) - - (O _1> Cr(dr, 1)
T

Man beachte, dass die senderseitigen und empfangerseitigen Einheitsvektoren in
p-Richtung entgegengesetzt gerichtet sind, siche Abbildung 6.2. Die Transferma-
trix T beschreibt die Amplitudenabnahmen und die Phasendrehungen der Po-
larisationskomponenten auf dem Ausbreitungspfad. Da der Polarisationszustand
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einer elektromagnetischen Welle bei Freiraumausbreitung unverédndert bleibt und
die Koordinatensysteme parallel ausgerichtet sind, sind die Nichtdiagonalelemente
der Transfermatrix T hier Null.

Fiir das Skalarprodukt in (6.7) gilt geméf der Schwarzschen Ungleichung

1

CEeon)- (5 ) Colonon)| < ICan )l IC:n o)l (69

Gleichheit gilt bei Polarisationsanpassung

Cultno) ~ (g 5y) - Calonony (6.9)

Wenn die Antennen weiterhin optimal ausgerichtet sind
ICr (VR pr) || = |Cr (D, )| = 1,
gilt fir das Skalarprodukt in (6.7)

1 0

QE("&R, @R) : _ 'QT(ﬁTaSOT) = HQR<19R790R>H HQT<79T790T)|’
0 1

=1

(6.10)

und die polarimetrische Berechnungsformel (6.7) geht in die konventionelle skalare
Berechnungsformel (6.6) iiber.

6.2. Reflexion und Transmission an Grenzflachen

6.2.1. Schrager Einfall einer ebenen homogenen Welle

Zunéchst wird eine einzige, schrag auf eine ebene Grenzflache zwischen zwei Di-
elektrika einfallende, ebene homogene Welle betrachtet. Das Koordinatensystem
wird vereinfachend so gewéhlt, dass sich die Grenzfliache bei z = 0 befindet und die
Einfallsebene der x-z-Ebene entspricht, siehe Abbildung 6.3. Die Einfallsrichtung
wird durch den Poldistanzwinkel ¥/ beschrieben.

Der in die Ausbreitungsrichtung zeigende Phasenvektor geméfl (2.13) hat die
r-Komponente

By = Bsin() = wy/eusin(v) (6.11)

und die z-Komponente

B, = pcos(¥) = wy/epcos(V) .
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b Br
a1 = 191 QR = T — ﬁR
€1, M1
(e > T
€2, M2 Yy
aT = ’L9T
\/
G

Abbildung 6.3.: Einfallende, reflektierte und transmittierte elektromagnetische
Welle

Es wurde jeweils die Phasenkonstante § geméf (2.24) eingesetzt.
Mit (2.14) und (2.15) folgt fur die Feldstérken

—

E = H, e—i(éﬂ — EO e~ iBxT o =iBsz (6.12)

und B
E=E, e IBT) — E, e~ iBxT o =iBuz (6.13)

Das Erfiillen der Grenzflichenbedingungen erfordert neben der einfallenden
ebenen homogenen Welle im Allgemeinen auch die Existenz einer reflektierten
und einer transmittierten ebenen homogenen Welle.

Die Grenzflaichenbedingungen konnen nur dann gleichzeitig in allen Punkten
z = 0 der Grenzfliache erfiillt sein, wenn die xz-Komponenten der Phasenvektoren,
das heifit die Komponenten in Richtung der Grenzfliche, fiir alle drei ebenen
homogenen Wellen gleich sind. Beim Betrachten von elektromagnetischen Wellen
an Grenzflachen ist es weiterhin iiblich, die Einfallswinkel und die Ausfallswinkel
beztiglich der Grenzflichennormalen zu messen, siehe Abbildung 6.3. Mit (6.11)

folgt
Ve sin(ar) = /e sin(ar) = /Eapiz sin(ar) .
Das heifit der Einfallswinkel oy ist gleich dem Ausfallswinkel ag der reflektierten

ebenen homogenen Welle und fiir den Ausfallswinkel der transmittierten ebenen
homogenen Welle gilt das Snelliussche Brechungsgesetz

sin(ay) _ [eapte (6.14)
sin(ar) el )
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Es folgt
. . €101
sin(ar) = sin(ay) .
Fir
sin(ay) S 1,
Eot2
das heifit

ar > oag = arcsin<1 / 52N2> : (6.15)
€1t

hat diese Gleichung keine Losung. Es tritt Totalreflexion auf. Den Winkel ag
bezeichnet man als Grenzwinkel der Totalreflexion.

Jede beliebig polarisierte ebene homogene Welle lésst sich in eine linear senk-
recht zur Einfallsebene und eine linear parallel zur Einfallsebene polarisierte ebene
homogene Welle zerlegen. Im Folgenden werden die beiden beschriebenen linearen
Polarisationszustande getrennt betrachtet, siehe Abbildung 6.4 und Abbildung
6.5.

6.2.2. Fresnelsche Formeln
6.2.2.1. Senkrechte Polarisation

Die Fresnelschen Formeln dienen dem Berechnen der Reflexionsfaktoren und der
Transmissionsfaktoren. Im Folgenden sei der Fall der Totalreflexion ausgeschlos-
sen. Die Tangentialkomponenten der elektrischen Feldstéarken entsprechen im hier
betrachteten Fall der zur Einfallsebene senkrechten Polarisation den y-Komponen-
ten, die auch die einzigen vorhandenen Komponenten der elektrischen Feldstér-
ken sind. Die Tangentialkomponenten der magnetischen Feldstarken entsprechen
den z-Komponenten. Die magnetischen Feldstdrken kann man mit den Feldwel-
lenwiderstdnden aus den elektrischen Feldstarken berechnen, siehe (2.28). Durch
Projektion erhélt man die z-Komponenten der magnetischen Feldstarken:

cos( oy
HIOX EIOy Zi‘l ) )
cos(ay)
Hyox =E :
RO ROy ZFI
cos(ar)
H TOox — — ETOy Zro

Das Verhéltnis der Tangentialkomponenten, das heiffit der zur z-Richtung senk-
rechten Komponenten, von zueinander gehérenden elektrischen Feldstarken und
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by Ly
H; Qg . Hy
aRr = Qg
€1, M1
\ > T
€2, W2 Yy
%y
Ly
A\
p -
Hy

Abbildung 6.4.: Elektrische Feldstarken senkrecht zur Einfallsebene

Hy
H, .
g E
arR=oa; "
€1, U1

\ > T
€2, U2 Y

T

Er

\4

z Hr

Abbildung 6.5.: Elektrische Feldstarken parallel zur Einfallsebene
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magnetischen Feldstarken wird durch die Feldwellenwiderstande in z-Richtung

Zy1 Ly Ero
Ly, = == = Y 6.16
o cos(an) Hy  Hpox ( )
und P B
Do, = F2__ =Ty 6.17
i COS(QT) ﬂTox ( )
beschrieben.
Der Reflexionsfaktor fiir senkrechte Polarisation wird als
' = EROy _ HROX
| =2y o RK
EIOy EIOX

definiert. An der Grenzfliche miissen die resultierenden Tangentialkomponenten
der Feldstarken gemafl (1.62) und (1.64) stetig sein. Daraus folgt, dass auch die
Wellenimpedanzen

g o Loyt Eroy By (1+T4) _ 1+T
Ly = — = - R ra—
' Hiox + Hrox Hy (1-T1) 1-T
und r
49 HTOX F2z
an der Grenzflidche stetig sein miissen. Gleichsetzen der Wellenimpedanzen ergibt
141,
Lpoy = Lp1y———
F2 Flal T,

und schliellich erhélt man den Reflexionsfaktor

ZFZZ - ZFlz
r =———- 6.18
* Zr2, + Zr1, ( )
_ Zpgcos(ar) — Zp; cos(ar) (6.19)

 Zpy cos(ag) 4+ Zpy cos(ar)

fiir senkrechte Polarisation. Der in die Gleichung einzusetzende Ausfallswinkel arp
der transmittierten ebenen homogenen Welle ergibt sich aus dem Snelliusschen
Brechungsgesetz (6.14). Abbildung 6.6 zeigt den Reflexionsfaktor I'; fiir senk-
rechte Polarisation als Funktion des Einfallswinkels o fiir einige exemplarische
Grenzflachen. Fiir e5/e; = 1/2 tritt ab einem Einfallswinkel von ag = /4 Total-
reflexion auf, siehe (6.15).
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1 T T
*62/61 = 1/2
062/61 =2
0,5 .
3
] S S B——
¢
0,5
-1 | | | »
s T T s
0 & 1 3 5

a1

Abbildung 6.6.: Reflexionsfaktor I' ) fiir senkrechte Polarisation. p; = s

Mit (1.62) folgt aus (6.19) der Transmissionsfaktor

T _Eqoy  Eygy + ERey

| = = 6.20
EIOy EIOy ( )
2ZFQZ
=1+ =—-—
* ZFQZ + ZFIZ
2 7o cos(ay) (6.21)

- Zpg cos(aq) + Zpy cos(ar)

fiir senkrechte Polarisation. Abbildung 6.7 zeigt den Transmissionsfaktor 7' fir
senkrechte Polarisation als Funktion des Einfallswinkels o fiir einige exemplari-
sche Grenzfléachen.

Man beachte, dass Reflexionsfaktoren und Transmissionsfaktoren stets beziig-
lich der elektrischen Feldstdrken definiert sind. Der Transmissionsfaktor 7', fur
senkrechte Polarisation kann daher auch einen Betrag grofler als eins annehmen,
ohne dass dies im Widerspruch zur Energieerhaltung stiinde. Es ist die durch die
Grenzfliche transportierte Energie zu betrachten, das heifit es sind die Normal-
komponenten der komplexen Poynting-Vektoren zu vergleichen.

Aufgabe 6.2 Fine ebene homogene Welle falle schrdg auf eine ebene Grenzfld-
che zwischen zwei Dielektrika ein, so dass eine transmittierte und eine reflek-
tierte ebene homogene Welle entstehen. Die einfallende ebene homogene Welle
sei senkrecht polarisiert. Zeigen Sie, dass die Normalkomponenten der komplexen
Poynting-Vektoren auf beiden Seiten der Grenzfliche gleich sind!
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_{
&~
—1F |
*62/61 = 1/2
062/61 =2
-2 | |
s s s
0 5 3 3

(€3]

Abbildung 6.7.: Transmissionsfaktor 7', fiir senkrechte Polarisation. p; = po

6.2.2.2. Parallele Polarisation

Die Tangentialkomponenten der magnetischen Feldstarken entsprechen im hier
betrachteten Fall der zur Einfallsebene parallelen Polarisation den y-Komponenten,
die auch die einzigen vorhandenen Komponenten der magnetischen Feldstarken
sind. Die Tangentialkomponenten der elektrischen Feldstdarken entsprechen den
r-Komponenten. Die elektrischen Feldstiarken kann man mit den Feldwellenwi-
derstdnden aus den magnetischen Feldstarken berechnen, siehe (2.27). Durch Pro-
jektion erhalt man die xz-Komponenten der elektrischen Feldstarken:

EIOX :ﬂIOyZFl COS(OZI) )
EROX = - ﬂROyZFl COS(O&I) )

Erox =H 1oy Zr2 cos(ar) .

Das Verhéltnis der Tangentialkomponenten, das heifit der zur z-Richtung senk-
rechten Komponenten, von zueinander gehorenden elektrischen Feldstarken und
magnetischen Feldstarken wird durch die Feldwellenwiderstande in z-Richtung

EIOX E ROx

1, = Ly cos(agp) = = —= 6.22
F1 1 cos(ar) Hoy Hroy ( )
und
. _ ETOX
Lo, = Zypg cos(ar) = T (6.23)
2L TOy
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beschrieben. Man beachte, dass sich die Feldwellenwiderstande in z-Richtung fiir
den Fall senkrechter und paralleler Polarisation unterscheiden, vergleiche (6.16)
und (6.17).

Der Reflexionsfaktor fiir parallele Polarisation wird als

EROX ERO
L) = = -

Eyox Higy

definiert. An der Grenzfliche miissen die Tangentialkomponenten der Feldstéarken
gemdf (1.62) und (1.64) stetig sein. Daraus folgt, dass auch die Wellenimpedanzen

_ Eny + Egoe  Erox (1 + T||) _, 14T
- - = ZF1y
Hiy + Hroy  Hyoy (1-Ty) 1-Ty

und

an der Grenzflache stetig sein miissen. Durch Gleichsetzen der Wellenimpedanzen
Z, und Z, erhalt man den Reflexionsfaktor

ZFQZ - ZFlz

 Zrou + Zry
 Zpg cos(ar) — Zpi cos(an)

T (6.24)

(6.25)

" Zpgcos(ar) + Zpy cos(ag)
fiir parallele Polarisation. Man beachte, dass sich als Funktionen der Feldwellenwi-
derstdnde in z-Richtung formal gleiche Ergebnisse fiir beide Polarisationszusténde
ergeben, vergleiche (6.18) und (6.24). Abbildung 6.8 zeigt den Reflexionsfaktor I'
fiir parallele Polarisation als Funktion des Einfallswinkels oy fiir einige exemplari-
sche Grenzflichen. Den Einfallswinkel ag, bei dem der Reflexionsfaktor Null wird,

bezeichnet man als Brewster-Winkel ag.
Mit (1.64) folgt aus (6.25) der Transmissionsfaktor

Eroy _ ZraH 1oy _ A <ﬂ10y +ﬂR0y> _ A (1 T )
Loy  ZeiHg, Zei \ Hy, Zpy |
B 279 cos(ay)

 Zpo cos(ar) + Zpy cos(ay)

1) =

(6.26)

fir parallele Polarisation. Abbildung 6.9 zeigt den Transmissionsfaktor 7} fiir
parallele Polarisation als Funktion des Einfallswinkels ag fiir einige exemplarische
Grenzflachen.
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Abbildung 6.8.: Reflexionsfaktor I'| fiir parallele Polarisation. pi; = o
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Abbildung 6.9.: Transmissionsfaktor T fiir parallele Polarisation. p; = pis
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Aufgabe 6.3 Berechnen Sie den Brewster-Winkel ag abhdngig von den Eigen-
schaften der Dielektrika! Unterscheiden Sie hierbei die Fille senkrechter und par-
alleler Polarisation. Betrachten Sie auch die Spezialfille €1 = €9 bei senkrechter
Polarisation und j1; = po bei paralleler Polarisation.

6.2.3. Reflexion am idealen elektrischen Leiter

Da im idealen elektrischen Leiter kein elektromagnetisches Feld existieren kann,
existiert neben der einfallenden nur die reflektierte ebene homogene Welle. Der
Transmissionsfaktor ist unabhingig von der Polarisation der einfallenden ebenen
homogenen Welle

T =0. (6.27)

An der Grenzfliche muss die Tangentialkomponente der elektrischen Feldstéarke
verschwinden, das heiffit an der Grenzfliche miissen sich die Tangentialkompo-
nenten der elektrischen Feldstéirken der einfallenden und der reflektierten ebenen
homogenen Welle gegenseitig aufheben. Der Reflexionsfaktor an der Oberflache ei-
nes idealen elektrischen Leiters ergibt sich somit unabhéngig von der Polarisation
der einfallenden ebenen homogenen Welle zu

I=-1. (6.28)

6.2.4. Reflexion am idealen magnetischen Leiter

Da im idealen magnetischen Leiter ebenfalls kein elektromagnetisches Feld exis-
tieren kann, existiert auch hier neben der einfallenden nur die reflektierte ebene
homogene Welle. Der Transmissionsfaktor ist unabhéngig von der Polarisation
der einfallenden ebenen homogenen Welle

T =0. (6.29)

An der Grenzfliche muss die Tangentialkomponente der magnetischen Feldstérke
verschwinden, das heifit an der Grenzfliche miissen sich die Tangentialkomponen-
ten der magnetischen Feldstédrken der einfallenden und der reflektierten ebenen
homogenen Welle gegenseitig autheben. Der beziiglich der elektrischen Feldstér-
ken definierte Reflexionsfaktor an der Oberflache eines idealen magnetischen Lei-
ters ergibt sich somit unabhéngig von der Polarisation der einfallenden ebenen
homogenen Welle zu

r=1. (6.30)
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6.3. Streuung

6.3.1. Streuquerschnitt

Wenn eine elektromagnetische Welle auf einen als Streuer bezeichneten Korper
trifft, so wird die elektromagnetische Welle an diesem gestreut, siche Abbildung
6.10. Der Streuer selbst strahlt wieder eine elektromagnetische Welle ab. Im Ge-
gensatz zur Reflexion an unendlich ausgedehnten ebenen Grenzflichen breitet
sich die gestreute elektromagnetische Welle in alle Richtungen aus. Der Streuer
befinde sich im Fernfeld des Senders und der Empfanger befinde sich im Fernfeld
des Streuers. Die Antennen seien beziiglich der Raumrichtung optimal auf den
Streuer ausgerichtet und beziiglich der Polarisation optimal angepasst.

A XA

Sender Empfinger

Abbildung 6.10.: Streuung

Mit der Sendeleistung Pr ist die auf den Streuer einfallende Strahlungsleis-
tungsdichte
Pr

- 2
dmry

St

T,

siehe (6.2). Fir den Empfénger erscheint der Streuer wie eine omnidirektionale
Sendeantenne am Ort des Streuers mit der zur einfallenden Strahlungsleistungs-
dichte proportionalen Sendeleistung

PS = SIO' = —O'GT. (631)
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Der Proportionalititsfaktor ¢ hat die Einheit einer Flache und wird als Streu-
querschnitt bezeichnet. Die so berechnete dquivalente Sendeleistung Ps einer om-
nidirektionalen Sendeantenne in (6.6) eingesetzt ergibt die Empfangsleistung

)\ 2
Pr =Ps (4 ) Gr

TTrr

Pr)\?
:T72O'GTGR.

(47T)3 T%TR

(6.32)

Der Streuquerschnitt ¢ hangt neben den Eigenschaften des Streuers von der
Raumrichtung, aus der die elektromagnetische Welle einfallt, der Polarisation
der einfallenden elektromagnetischen Welle und der betrachteten Ausfallsrich-
tung der gestreuten elektromagnetischen Welle ab. Im betrachteten Fernfeld ist
der Streuquerschnitt o jedoch von den Entfernungen rt und rg unabhéngig. Mit
der Strahlungsleistungsdichte S im Fernfeld geméfl (4.53), den Feldstérken EI und
E 1 der einfallenden elektromagnetischen Welle und den Feldstarken ES und E S
der gestreuten elektromagnetischen Welle erhalt man die zu (6.31) dquivalente
Definition

(6.33)

Ss
o=dmrg— = lim 4mrrii—
St TR—>00 HEIH TR—>00

des Streuquerschnitts.

Streueffekte beeinflussen mafigeblich die Wellenausbreitung in terrestrischen
Mobilfunksystemen, in denen in der Regel keine direkte Sichtverbindung zwischen
Sender und Empfanger besteht. In der Radartechnik wird der oben eingefiihrte
Streuquerschnitt o, bei dem sich Sender und Empfinger im Allgemeinen an un-
terschiedlichen Orten befinden, auch als bistatischer Streuquerschnitt bezeichnet.
Von besonderer Bedeutung ist in der Radartechnik jedoch der Spezialfall, dass
sich Sender und Empfanger am selben Ort befinden und die selbe Antenne ver-
wenden, siehe Abbildung 6.11. In diesem Fall spricht man vom monostatischen
Streuquerschnitt. Im hier betrachteten Fall von Polarisationsanpassung und op-
timaler Ausrichtung der Antenne folgt aus (6.32) die Empfangsleistung

Pr=—"0 4
& (47)%

(6.34)

Diese Gleichung ist auch unter dem Namen Radargleichung bekannt.
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Abbildung 6.11.: Radar

6.3.2. Polarimetrische Streumatrix

Im Allgemeinen sind die Antennen weder beziiglich der Raumrichtung optimal auf
den Streuer ausgerichtet noch beziiglich der Polarisation optimal angepasst. Zur
Analyse dieses allgemeinen Szenarios miissen die Polarisationskomponenten der
einfallenden elektromagnetischen Welle und der gestreuten elektromagnetischen
Welle zunichst getrennt betrachtet werden und auch die Phasenlagen miissen
berticksichtigt werden. Die senderseitigen, streuerseitigen und empféangerseitigen
Koordinatensysteme seien auch hier wieder im Raum parallel ausgerichtet, siehe
Abbildung 6.12.

Die Komponenten der elektrischen Feldstarke der einfallenden elektromagneti-
schen Welle am Ort des Streuers ergeben sich gemé8 (5.11) zu

Lyy = HEHmM Cry(Vr, 1) e I

und B
Ehp = — HEHmaX QTgp(ﬁT, QPT) e iprT

Man beachte die entgegengesetzt gerichteten Basisvektoren in ¢-Richtung der
lokalen Koordinatensysteme von Sender und Streuer. In Anlehnung an (6.33) de-
finiert man zum vollstandigen Charakterisieren der Streueigenschaften die kom-
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6.3. Streuung

Togueyduwry

Iopuog

Abbildung 6.12.: Koordinatensysteme zum Beschreiben eines Streuers
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plexen polarimetrischen Streuparameter

Sy = Jim re 2 e, (6.5
wobei p und ¢ jeweils fiir ¥ oder ¢ stehen. Da die Feldstdarken der gestreuten
elektromagnetischen Welle im Fernfeld proportional zu e 7™ /rg sind, vergleiche
(4.48), ergibt sich ein definierter Grenzwert. Damit ergeben sich die Beitrége zu
den Komponenten der elektrischen Feldstérke der gestreuten elektromagnetischen
Welle am Ort des Empfangers in dessen lokalem Koordinatensystem zu

e_jﬁT'R
ESﬁ - Sﬂ,q—
TR
und .
ef.]BTR
ES%? = _ﬁw,qﬁlq ,
R

Man beachte auch hier wieder die entgegengesetzt gerichteten Basisvektoren in
p-Richtung der lokalen Koordinatensysteme von Streuer und Empfanger. Der
Beitrag der einfallenden Polarisationskomponente ¢ zur Strahlungsleistungsdich-
te der Polarisationskomponente p der gestreuten elektromagnetischen Welle am
Empfangsort ergibt sich mit (4.52) und (6.2) zu

11 2
SSp.q =27, ‘Egp’
1 1 2 e JBrr
:§Z_F ‘EIq‘ ~p.q TR
—jBrg |2
*JﬁTT e—
2ZF HE’max _quTq(ﬁT7§0T) .
e
PTGT e iBrT o—iBTR 2
S, Cr. (U
47T “p, q—Tq( T, @T) " '

Der Beitrag der einfallenden Polarisationskomponente ¢ zur aus dem Empfang
einer einzigen Polarisationskomponente p resultierenden Empfangsleistung ergibt
sich mit (6.1) und (6.5) unter Bertcksichtigen der Richtwirkung der Empfangs-
antenne geméf (5.11) zu

)\2
Pprq :SSpvq ’QRpra SOR) _GR
H,_/

AR
2
=Pr <i> GrGr
4

e_jﬁT‘T e_jﬁT'R 2

ip,qQRpOng QOR) QTq (79T, SOT)

TR
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6.4. Mehrwegeausbreitung

Zum Darstellen der gesamten Empfangsleistung definiert man die komplexe po-
larimetrische Streumatrix
S — (ﬁw 519,@) . (6.36)
5%19 5%@

Mit den in Abbildung 6.12 eingefiihrten parallel ausgerichteten lokalen Koordina-
tensystemen ergibt sich die gesamte Empfangsleistung unter Berticksichtigen der
jeweils entgegengesetzt gerichteten Basisvektoren in ¢-Richtung zu

L\ 2
Pr=PFPr (—) GrGRr
47

(6.37)

e PR 1 0 e—iBrT 1 0
Chonen (5 0) 850 (5 1) Catinen

TR rT

T

Die Amplitudenabnahmen, Phasendrehungen und Kopplungen der Polarisations-
komponenten auf dem Ausbreitungspfad kénnen auch hier wieder mit einer Trans-
fermatrix T beschrieben werden.

Fiir den Spezialfall des monostatischen Radars ist die polarimetrische Streu-
matrix wegen der Reziprozitit gemé$ (9.9) symmetrisch

Sye = Sp9-
Fir die Empfangsleistung eines monostatischen Radarsystems folgt

=) @5 )5 (5 0) o

2

42

=PT< A )202 (6.38)

4rpr?

30, 9) S = 2Co (0, ) Co(9,0) Spp + CoD,0) Sy

2

I

vergleiche (6.34).

6.4. Mehrwegeausbreitung

Insbesondere in terrestrischen Funkkommunikationssystemen befinden sich typi-
scherweise viele Hindernisse in der Funkstrecke zwischen Sender und Empfanger.
Die elektromagnetischen Wellen breiten sich dann auf P Pfaden mit Reflexionen,

151



Kapitel 6. Ausbreitung elektromagnetischer Wellen

Streuungen und Beugungen an Hindernissen vom Sender zum Empfanger aus,
was man als Mehrwegeausbreitung bezeichnet. Jeder einzelne Ausbreitungspfad
kann durch die Parameter

)

Ausfallsrichtung: 19%’), cp(Tp am Sender,

Transfermatrix: I(p) und
Einfallsrichtung: 195{7), gog) am Empfanger

charakterisiert werden.
Das Empfangssignal ergibt sich durch lineares Uberlagern der Empfangssignale
aller P Pfade. Damit folgt fiir die Empfangsleistung

2

P

p=1

A 2
PR:PT(E) GTGR

vergleiche (6.37). Man beachte, dass diese Gleichung nur fir ein schmalbandi-
ges Signal der Wellenldange A gilt. Die entfernungsbedingten relativen Phasen-
verschiebungen auf den Ausbreitungspfaden sind jedoch aufgrund der typischer-
weise groflen Pfadlangenunterschiede stark frequenzabhédngig. Damit ist auch die
Amplitude des Empfangssignals nach Uberlagerung der Pfade stark frequenzab-
héangig. Je nach relativer Phasenlage konnen sich Empfangssignalanteile verschie-
dener Pfade eher destruktiv ausloschen oder auch konstruktiv verstarken. Das
Studium der Eigenschaften derartiger frequenzselektiver Mehrwegefunkkanéle ist
ein wichtiges Thema in der Mobilkommunikation | ; |. Umfangreiche
Programmpakete zur Analyse der Ausbreitung elektromagnetischer Wellen in un-
terschiedlichsten Szenarien und zum Berechnen der zu erwartenden Empfangs-
leistung geméaf (6.39) sind verfiigbar.

Aufgabe 6.4 In dem betrachteten Szenario befinden sich ein Sender und ein
Empfinger iiber einer ideal elektrisch leitenden Ebene, siehe Abbildung 6.15. Die
Funkwellen konnen sich dann ber einen direkten Pfad und tber einen an der
ideal elektrisch leitenden Ebene reflektierten Pfad vom Sender zum Empfinger
ausbreiten. Die Hohe des Senders tuber der ideal elektrisch leitenden Ebene sei ht
und die Hohe des Empfingers tiber der ideal elektrisch leitenden Ebene sei hg. Der
horizontale Abstand von Sender und Empfinger sei r. Sie konnen vereinfachend
annehmen, dass der horizontale Abstand viel gréfer als die Héohen ist:

r > hT, hR.
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6.4. Mehrwegeausbreitung

Es werden der Fall vertikaler und horizontaler linearer Polarisation unterschie-
den. Wenn man weiterhin omnidirektionale Antennen

annimmt, entspricht dies den vektoriellen komplexen Richtcharakteristiken

1
QT:QR: (0)
0

Berechnen Sie jeweils die Empfangsleistung Pr als Funktion der Sendeleistung
Pr, der Wellenldnge X\, des horizontalen Abstands r und der Hohen ht und hg
der Antennen!

beziehungsweise

Sender

7r?

direkter Pfad

ht Empfanger

reflektierter Pfad

idealer elektrischer Leiter

r

Abbildung 6.13.: Zweiwegeausbreitung
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Kapitel 7.

Leitungstheorie

7.1. Komplexe Wellenamplitude

Bisher wurden Wellen je nach Typ durch die elektrische Feldstarke E, die ma-
gnetische Feldstarke H , die Spannung U oder den Strom [ auf dem Wellenleiter
beschrieben. Das Ziel der folgenden Betrachtungen ist es, Wellenph&nomene unab-
hangig vom Typ des Wellenleiters zu untersuchen. Hierzu wird zunachst der auch
in vielen technischen Anwendungen relevante Fall betrachtet, dass sich auf dem
Wellenleiter nur ein einziger Mode ausbreiten kann. Dies ist beispielsweise der
transversalelektromagnetische Mode auf Zweileitersystemen und der TE; o-Mode
auf Rechteckhohlleitern bei Kreisfrequenzen w unterhalb der kritischen Kreisfre-
quenz w, des jeweils nachsthoheren Modes. Es gibt dann im Allgemeinen neben
einer sich in positive z-Richtung ausbreitenden Welle, die im Folgenden als hin-
laufende Welle bezeichnet wird, eine sich in negative z-Richtung ausbreitende
riicklaufende Welle. Die riicklaufende Welle kann beispielsweise durch Reflexion
der hinlaufenden Welle an einem fehlangepassten Abschluss am Wellenleiterende
entstehen.

Falls sich auf dem Wellenleiter nur ein einziger Mode ausbreiten kann, haben
die elektromagnetischen Felder aller denkbaren hinlaufenden Wellen die gleiche
Struktur. Die (vektorielle) komplexe Amplitude einer eine hinlaufende Welle be-
schreibenden physikalischen Grofie kann man in der Form

AH(:E7 Y, Z) = QOAH(:Ea Y, Z)
darstellen. Hierbei sind

e a, die komplexe Wellenamplitude der hinlaufenden Welle bei z = 0, welche
die Amplitude und die Nullphase beschreibt, und

o Ay(z,y,2) die (vektorielle) komplexe Amplitude der hinlaufenden Bezugs-
welle, welche die prinzipielle Feldstruktur beschreibt.
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Mit der bekannten Ortsabhéngigkeit (2.7) und (2.8) von elektromagnetischen Fel-
dern auf zylindrischen Wellenleitern gilt fiir die sich in positive z-Richtung aus-
breitende hinlaufende Welle

AH(xvyvz) :Qoe_jBZAO($7y)' (71)
az)

Die ortsabhéngige komplexe Wellenamplitude der hinlaufenden Welle ergibt sich

Al
a(z) = age 7. (7.2)

Die Bezugswelle wird so gewéhlt, dass der Betrag der von ihr transportierten Leis-
tung 1/2 ist. Der Betrag der von der hinlaufenden Welle transportierten Leistung

ergibt sich dann zu

1 1
P = < la(=) = = lao . (7.3)
2 2

Die komplexe Wellenamplitude g, hat die Einheit VW,

Die durch Ay(x,y) beschriebene Feldstruktur der Bezugswelle in der Quer-
schnittsebene z = 0 ist unabhéngig von der Ausbreitungsrichtung der Welle. Fiir
eine sich in negative z-Richtung ausbreitende riicklaufende Welle gilt folglich

AR(ZE,?/,Z) = QO e+jBZ AO(xay) . (74)
Yz)

Die ortsabhéngige komplexe Wellenamplitude der riicklaufenden Welle ergibt sich
zu

b(z) = by e (7.5)

Der Betrag der von der riicklaufenden Welle transportierten Leistung ergibt sich
zu

1
Bl = 5 |b(=)| = 3 [bo* (7.6)

1
2
7.2. Reflexionsfaktor

Der Reflexionsfaktor b2)
z

I'(z) = =% 7.7

D) = 25 (r.1)

ist als Verhaltnis der komplexen Wellenamplitude a(z) der hinlaufenden Welle
und der komplexen Wellenamplitude b(z) der riicklaufenden Welle definiert. Bei
z = 0 ist der Reflexionsfaktor "

Do

£0 =
Qg

(7.8)
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7.3. Resultierende komplexe Wellenamplitude

Mit (7.2) und (7.5) folgt

b etiBz 5
L) = @Z pril et (7.9)

fir den ortsabhéngigen Reflexionsfaktor I'(z). Der Wellenleiter transformiert den
Reflexionsfaktor. Der Betrag des Reflexionsfaktors

IL(2)[ = [Lo|

ist bei den hier betrachteten verlustfreien Wellenleitern ortsunabhangig. Falls die
riicklaufende Welle durch Reflexion der hinlaufenden Welle an einem nicht ver-
starkendem Abschluss entsteht, ist der Betrag | P, | der Leistung der riicklaufenden
Welle nie grofler als der Betrag |P,| der Leistung der hinlaufenden Welle. Dann
gilt

und folglich
IC(2)| < 1. (7.10)

Bei perfekter Anpassung gilt |I'(2)| = 0 und |['(z)| = 1 entspricht einer Totalre-
flexion.

7.3. Resultierende komplexe Wellenamplitude

Die Zeiger a(z) und b(z) in der komplexen Ebene drehen sich gemaf (7.2) und (7.5)
mit wachsendem z gegen den beziehungsweise im Uhrzeigersinn, siehe Abbildung
7.1. Die aus der Uberlagerung resultierende komplexe Wellenamplitude ist

c(2) = a(2) + b(2) = a(2) (1 + L(2)) = age 7% (1+ Ly ). (7.11)

Der ortsabhdngige Betrag der resultierenden komplexen Wellenamplitude ¢(z)
ergibt sich zu

e(2)] = lap| |1 + Ly &

Es gibt Orte z minimalen und maximalen Betrags |c(z)| der resultierenden kom-
plexen Wellenamplitude, die sich abwechselnd im Abstand von

Az =

A
28 4
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befinden, siehe auch (2.38). Man spricht von einer stehenden Welle, siehe Abbil-
dung 7.2. Die absolute Lage der Minima und Maxima héangt vom Argument des
Reflexionsfaktors ['; ab. Die Minimalwerte sind

€l in = l20| (1 = [L(2)]) (7.12)
und die Maximalwerte sind
1€l max = 2ol (1 +[L(2)]) . (7.13)
Im
A o)
z \\b(z)
\
mslal)
> Re
arg(b(z))
b(z)

Abbildung 7.1.: Resultierende komplexe Wellenamplitude ¢(z)

Der Anpassungsfaktor

|Clinin _ 1= [C(2)]

= 15100 (7.14)

m =

|| max

ist als Verhéltnis von Minimalwert |c| . und Maximalwert |c| . des Betrags
lc(z)| der resultierenden komplexen Wellenamplitude ¢(z) definiert. Fir den An-
passungsfaktor gilt

0<m<1.
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7.3. Resultierende komplexe Wellenamplitude

c(2)] / la|

(arg(c(2)) — arg(cy)) /m

2=
1,54
1¢
0,5
0 b 1 4
—1 —0,75 —0,5 —0,25 0
zZ/A
(a) Betragsverlauf
0 | | B
—1 —0,75 —0,5 —0,25 0
zZ/A

(b) Phasenverlauf

Abbildung 7.2.: Stehende Welle
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m = 1 entspricht der perfekten Anpassung und m = 0 einer Totalreflexion. Den
Kehrwert 1/m des Anpassungsfaktors m bezeichnet man als Stehwellenverhalt-
nis (Standing Wave Ratio, SWR). Aus dem Anpassungsfaktor m kann man den
Betrag

IL(z)| = —— (7.15)
des Reflexionsfaktors I'(z) berechnen.

Aufgabe 7.1 Durch Uberlagern einer hinlaufenden und einer ricklaufenden Wel-
le entsteht eine stehende Welle mit der resultierenden komplexen Wellenamplitude
c(z). Der Reflexionsfaktor bei z = 0 sei I'y. Berechnen Sie den auf sein Maximum
|c|,.... normierten Betrag |c(z)| der resultierenden komplexen Wellenamplitude

lc(2)]

||

max

I (2)] =

max

abhdingig von Anpassungsfaktor m, Reflexionsfaktorargument arg(L,) und Pha-
senkonstante B!

7.4. Spannung und Strom

Fiir eine transversalelektromagnetische Welle auf einem Zweileitersystem, das im
Folgenden auch kurz als Leitung bezeichnet wird, lasst sich auf einfache allgemein-
giiltige Art und Weise eine Beziehung zwischen der komplexen Wellenamplitude
und der Spannung und dem Strom herstellen. Spannung Uy (2) und Strom Ij;(z)
einer sich in positive z-Richtung ausbreitenden hinlaufenden Welle sind iiber den
Wellenwiderstand

_ Uyl(z)

- Iy(2)
miteinander verkniipft, siehe (3.20). Der Betrag der von einer hinlaufenden Welle
transportierten Leistung (7.3) berechnet sich mit dem Wellenwiderstand Z;, zu

2,

la(2)[* = %Re(QH(z)ﬁ{(z)) _ Ul _ 1

= 7y, |Ig(2)|?
7 5 2L In(2)",

|P a| = %
siehe (3.30). Wenn man weiterhin wie allgemein iiblich das Argument der kom-
plexen Wellenamplitude a(z) der hinlaufenden Welle gleich dem Argument der
Spannung Uy(z) der hinlaufenden Welle wihlt, so folgt fiir die komplexe Wellen-
amplitude der hinlaufenden Welle

Un(z)
= VZIu(2) . (7.16)

a(z) =
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7.4. Spannung und Strom

Spannung Up (z) und Strom I (2) einer sich in negative z-Richtung ausbreitenden
rucklaufenden Welle sind ebenfalls tiber den Wellenwiderstand

_QR(Z)
Ig(2)

miteinander verkntipft, siehe (3.20). Fiir die komplexe Wellenamplitude einer sich
in negative z-Richtung ausbreitenden riicklaufenden Welle gilt folglich

1) = S — (). (7.17)

Man beachte das Minuszeichen im letzten Term.
Die hinlaufende und die riicklaufende Welle iiberlagern sich. Man erhélt die aus
der Uberlagerung resultierende Spannung

7, =

U(2) = Un(2) + Ur(2) = /70 (a(2) + b(2)) (7.18)

—_———
q2)

und den aus der Uberlagerung resultierenden Strom

1

1(z) = In(2) + Ir(2) = N (a(z) = b(2)) .

(7.19)

Aufgelost nach den komplexen Wellenamplituden erhélt man

a(z) = % (\Q/(Ziz + ZL1<z)> (7.20)

und

o) = 5 (\Q/(Ziz - ZL1<2)> | (7.21)

Transversalelektromagnetische Wellen, das heifit Signale auf einem Zweileiter-
system, kann man konventionell durch die resultierende Spannung U(z) und den
resultierenden Strom I(z) oder dquivalent durch die komplexen Wellenamplitu-
den a(z) und b(z) beschreiben. Letztere nicht auf transversalelektromagnetische
Wellen auf Zweileitersystemen beschrinkte Variante ist wegen der einfacheren
Ortsabhéngigkeiten (7.2) und (7.5) die in der Hochfrequenztechnik zu bevorzu-
gende.
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7.5. Impedanz

Die Impedanz

Z(z) = (7.22)

ist als Verhéltnis aus der resultierender Spannung U(z) und dem resultierendem
Strom I(z) definiert. Einsetzen von (7.18) und (7.19) ergibt mit (7.7) und (7.9)

Z(z)  a(z)+b(z) 1+4L(z) 14Lyeti?s= 723
Zi a(z)—bz) 1-T(:)  1-Tyet® -
Auflésen nach dem Reflexionsfaktor ergibt
L)1 zz)-z
D)= =282 (7.24)

ZZﬁJrl Z(z) + Zy,
L

Diese Gleichung entspricht formal nicht nur zuféllig den Gleichungen (6.18) und
(6.24) zum Berechnen der Reflexionsfaktoren fiir auf eine ebene Grenzfliache ein-
fallende ebene homogene Wellen.

Bei Kenntnis der normierten Impedanz

ZO o 1+£0

Zi,  1-1,

bei z = 0 lasst sich der Reflexionsfaktor

aus (7.23) eliminieren:

(7.25)

Z,

21,

%—E (e Bz eJBZ) (e Bz eJBZ)

Lo cos(2) — jsin(Bs) 2 —jtan(B2)
Z—“ in(Bz) + Cos(ﬂz) 1-— j%—g tan(fz)
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7.5. Impedanz

Die normierte Impedanz Z,/Zy, bei z = 0 wird durch die Leitung in die normierte
Impedanz Z(z) /Z;, am Ort z transformiert. Eine Leitung der Lange [ transfor-
miert die normierte Abschlussimpedanz Z,/7;, in die normierte Eingangsimpe-
danz

Z, Z(z=-1) Z+jtan(l)

= = , 7.26
Z, A9 1 +j§—i tan (/1) (7.26)
siehe Abbildung 7.3.
¢ C
Z1—> Zy, Zy
¢ C
le s|
N “

[
Abbildung 7.3.: Transformation der Abschlussimpedanz Z, in die Eingangsimpe-
danz Z;
Falls der Reflexionsfaktor [, bei z = 0 reell und negativ ist, gilt

m—1
£o:—|£0|:m>

siehe (7.15). Dies in (7.23) eingesetzt ergibt die normierte Impedanz

Z(:)  m—jtan(82)
Zy,  1—jmtan(3z)

(7.27)

am Ort z, vergleiche auch (7.25).

Das Zweileitersystem mit dem Abschluss am Wellenleiterende kann konventio-
nell durch die Impedanz Z(z) oder aquivalent durch den Reflexionsfaktor I'(z)
beschrieben werden. Letztere nicht auf transversalelektromagnetische Wellen auf
Zweileitersystemen beschrinkte Variante ist wegen der wesentlich einfacheren
Transformationsgleichung, vergleiche (7.9) und (7.25), die in der Hochfrequenz-
technik zu bevorzugende.

Aufgabe 7.2 Es wird der im Abbildung 7./ gezeigte Hohlleiter betrachtet. Der
Hohlleiter ist im Bereich z < 0 leer und im Bereich z > 0 wvollstindig mit einem
verlustfreien Dielektrikum mit der relativen Permittivitit e, = 4 und der relativen
Permeabilitat p, ausgefillt. Im Hohlleiter breite sich eine transversalelektrische
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Welle in positive z-Richtung aus. Die Kreisfrequenz w sei doppelt so grofS wie die
kritische Kreisfrequenz w. des sich ausbreitenden Wellentyps im leeren Hohlleiter.
Wie muss die relative Permeabilitdt u, des Dielektrikums gewdhlt werden, damit
die Stofistelle von gefiilltem und leerem Hohlleiterbereich reflexionsfrei ist? Be-
trachten Sie hierzu die Grenzflichenbedingungen der Tangentialkomponenten der
Feldstarken bei z = 0.

S 7 ——

/ €0, Mo / €0&r, Mol

z=0

Abbildung 7.4.: Teilweise gefiillter Hohlleiter

Aufgabe 7.3 Berechnen Sie fiir den Fall reeller Impedanzen Z = R den Anpas-
sungsfaktor m als Funktion des Widerstands R!

7.6. Leistung

Fiir den Energietransport in Richtung der Langsachse des Wellenleiters, die der z-
Richtung entspricht, ist nur die z-Komponente des komplexen Poynting-Vektors S
gemaf (1.79) relevant, die man aus den Transversalkomponenten der Feldstarken
der hinlaufenden und der riicklaufenden Welle wie folgt berechnet:

S, =5 (E.H; ~ E,IT;)
—5 (Bt En) (Hiy + Hiy) = (Eny + Eny) (i + H)
:% ( By iy, + EncHyy + Ercyyy, + ErHy,

- EHyﬂEX - EHyﬂl*%x - ERyﬂik{X - ER}’EEX> :

166



7.7. Messen des Reflexionsfaktors mit einer Messleitung

Mit dem Feldwellenwiderstand Zy folgt weiterhin'

ZF * * * *
S :7 (ﬂHyﬂHy + ﬂHyﬂRy - ER}’EHY o ﬂRyﬂRy

=7z

+ Hige My + HusH, — HolTi — HolI3, )

:% ( ‘HHX|2 + ‘ﬂHy‘z

- ‘ERXF - ‘ﬂRy‘z
+ 2j Tm(Hyy Hiy) + 2 Im(Hygy H, ) )

siehe (2.27), (2.28), (2.32) und (2.34). Die transportierte Leistung ergibt sich aus
dem Realteil

Re(iz) = % (‘HHX|2 + ‘ﬂHy‘Q) - % (‘ERX‘Q + ‘ﬂRy‘Q)

der z-Komponente S, des komplexen Poynting-Vektors S. Die in positive z-
Richtung transportierte Leistung ist folglich der Betrag |P,| der von der hin-
laufenden Welle transportierte Leistung weniger dem Betrag |P,| der von der
riicklaufenden Welle transportierten Leistung. Mit (7.3) und (7.6) erhélt man die
transportierte Leistung

b(2)]”. (7.28)

7.7. Messen des Reflexionsfaktors mit einer
Messleitung

Eine Messleitung besteht aus einem Wellenleiter und einer verschiebbaren Sonde
mit Detektor. Die Sonde ragt in das Feld des Wellenleiters und am Detektor ergibt
sich eine zum Betrag |c(z)| der resultierenden komplexen Wellenamplitude ¢(z)
proportionale Gleichspannung.

Mit der Messleitung konnen die Orte z der scharfen Minima sehr genau be-
stimmt werden. Weiterhin konnen die minimalen und maximalen Betréige |c(z)]
der resultierenden komplexen Wellenamplitude ¢(z), bis auf einen unbekannten
gemeinsamen Proportionalitatsfaktor, genau gemessen werden. In Abbildung 7.5
sind typische Verldufe dargestellt.

Zunéchst erfolgt eine Referenzmessung bei Abschluss des Wellenleiters mit ei-
nem Kurzschluss. Der Abstand zweier Minima entspricht A/2, es kann also die

! Der Imaginirteil einer komplexen GroBe berechnet sich zu Im(z) = 2% (x —z").
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Zs E
< 0}

N\

_Kurzschluss

A2

Abbildung 7.5.: Messleitung

Wellenlange A bestimmt werden. Weiterhin wird der Ort eines Minimums be-
stimmt. Dort liegt stets der gleiche Reflexionsfaktor wie am Wellenleiterende vor,
da der Abstand vom Wellenleiterende ein ganzzahliges Vielfaches von \/2 ist,
siehe (7.9) und (2.38).

Im néchsten Schritt werden bei Abschluss des Wellenleiters mit dem zu be-
stimmenden Reflexionsfaktor I, der Abstand Az des Minimums in Richtung des
Messobjekts vom zuvor bestimmten Ort des Minimums bei Abschluss mit ei-
nem Kurzschluss und durch Amplitudenmessung der Anpassungsfaktor m gemafl
(7.14) gemessen. Fir den Betrag des Reflexionsfaktors folgt mit (7.15)

|l e — €l
‘FO‘ — max mln. (729>
‘Q| Q|min

Beim Fortsetzen der Amplitudenverldufe iiber das Wellenleiterende hinaus be-
fande sich im Abstand Az hinter dem Ende des Wellenleiters das nachste Mi-
nimum, das heiffit hier wire das Argument des Reflexionsfaktors m. Den Refle-
xionsfaktor [, am Ende des Wellenleiters erhalt man durch Transformation des
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negativen reellen Reflexionsfaktors — |I'y| im Abstand Az hinter dem Ende des
Wellenleiters mit einer Leitung der Lange Az. Fiir das Argument des Reflexions-

faktors folgt

A
arg(Ly) =71 —20Az =7 — 47?72, (7.30)

siehe (7.9) und (2.38).

7.8. Leitungen als Blindelemente

7.8.1. Kurzgeschlossene Leitung

Die Eingangsimpedanz der kurzgeschlossenen Leitung aus Abbildung 7.6 ergibt
sich mit (7.26) zu

Z, = jZy tan(pl) (7.31)
siche Abbildung 7.7.
C C
Zl = .]Xl — ZL ZQ =0
¢ C
le s|
N “

[
Abbildung 7.6.: Kurzgeschlossene Leitung

_/

1 1
1 1
1 1
1 1
1 1
1 1
T s
1 1
1 1
1 1
1 1
1 1

X1/00 = Re(Z,) /2

ind.

Bl

oy

kap. ind.

Abbildung 7.7.: Blindwiderstand der kurzgeschlossenen Leitung
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7.8.2. Leerlaufende Leitung

Die Eingangsimpedanz der leerlaufenden Leitung aus Abbildung 7.8 ergibt sich
mit (7.26) zu

1
Z, =2, ——— = —jZy cot(fl 7.32
siehe Abbildung 7.9.
¢ D
Zl = .]Xl_> ZL ZQ = 00
( D
le N|
N “1

[
Abbildung 7.8.: Leerlaufende Leitung

X1/9 = Re(Z,) /9

ol

/ 'W/ w
1 2
kap. ' ind. T ka :

P.

Abbildung 7.9.: Blindwiderstand der leerlaufenden Leitung

7.9. Autotransformation

Eine Leitung der Lénge [ = A\/2 transformiert die Abschlussimpedanz Z, in die
Eingangsimpedanz

Zo + jZy, tan(m)
Z1 = 41, A

Z1,+ jZ, tan(m)
siehe (7.26), (2.38) und Abbildung 7.10. Die Abschlussimpedanz Z, wird in sich
selbst transformiert. Man bezeichnet dies als Autotransformation.

- ZQ, (7.33)
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(¢ [
Ly =Zy—> Zn, Ly
(¢ [
le N|
< 2 )

2
Abbildung 7.10.: A/2-Transformator

Aufgabe 7.4 FEs wird der in Abbildung 7.11 gezeigte, aus einem an beiden Enden
kurzgeschlossenen Hohlleiter der Breite a, der Hohe b und der Lange | bestehen-
de Hohlraumresonator betrachtet. Bei welchen Kreisfrequenzen treten Resonanzen
auf, das heifit bei welchen Kreisfrequenzen kann in dem Hohlraumresonator ein
nichtverschwindendes elektromagnetisches Feld existieren?

Y

A

Abbildung 7.11.: Hohlraumresonator

7.10. Dualtransformation

Eine Leitung der Lénge [ = A\/4 transformiert die Abschlussimpedanz Z, in die
Eingangsimpedanz
Lo+ jZytan(Z 72
Z, =2, . (2) =k (7.34)
Z1, +jZQtan(g) Zy
siehe (7.26), (2.38) und Abbildung 7.12. Man bezeichnet diese Transformation als
Dualtransformation. Insbesondere kann man jede reelle Abschlussimpedanz Z, in
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( C
R1—> ZL = v/ RlRQ R2
( C
le N|
[~ ] A 7

Abbildung 7.12.: A/4-Transformator

jede beliebige andere reelle Eingangsimpedanz Z; transformieren, man muss nur
den Wellenwiderstand Z;, der Leitung passend wéhlen.

7.11. Symmetrische Dreileitersysteme

Auf einem symmetrischen Dreileitersystem konnen sich zwei orthogonale transver-
salelektromagnetische Wellenmoden, der Gegentaktmode und der Glelchtaktmo—
de ausbreiten. Man definiert komplexe Wellenamplituden a(~)(z) und b7 (z) der
hinlaufenden und der riicklaufenden Gegentaktwelle sowie komplexe Wellenampli-
tuden a*)(z) und b (2) der hinlaufenden und der riicklaufenden Gleichtaktwelle
analog zu Abschnitt 7.1. Die Bezugswellen sind wieder so normiert, dass der Be-
trag der transportierten Leistungen 1/2 ist. Fiir die hinlaufenden Wellen erhélt
man unter Ausnutzen der Orthogonalitit der Moden den Betrag der transportier-
ten Leistung

P = Re(U(2) I () + Re (UL (2) 11" (2))|
=5 [0 + 5 e

I

sieche (3.82). Analog erhélt man fir die riicklaufenden Wellen den Betrag der
transportierten Leistung

Py =\Re(a§;’<z>1§> (2)) + Re(UR" () I (2))
1 2
= |p=) ZpH)
) ’b (z)‘ + 2 ‘b (Z)’ ’
Analog zu (7.28) erhélt man die transportierte Leistung
P = |Pa| - |Pb|

7.35
:% ’g(_)(z) (7.35)

REC O O
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7.11. Symmetrische Dreileitersysteme

Unter Verwenden der Wellenwiderstédnde (3.72) und (3.73) von Gegentaktmode
und Gleichtaktmode lassen sich die komplexen Wellenamplituden aus den zugeho-
rigen Spannungen und Stromen analog zu (7.16) und (7.17) wie folgt berechnen:

4O = | UG = V22010,
L

B = | =5 ) = 22010,
L

4D =\ |5 U ) = V22 L),
L

B9E) = | Z5 U ) = V22010 )
L

(7.36)

(7.37)

(7.38)

(7.39)

Die Spannungen und Stréme der hinlaufenden und der riicklaufenden Wellen
iiberlagern sich. Man erhélt analog zu (7.18) und (7.19) die aus der Uberlagerung

resultierende Gegentaktspannung

4

UD(2) =U (2) + UR(2) = a7 (2) +07(2))

die aus der Uberlagerung resultierende Gleichtaktspannung

Z(+)
UM (2) = Uy (2) + Uy (2) =\ 5= (aP(2) +0(2))

den aus der Uberlagerung resultierenden Gegentaktstrom

196) = 17 + 1D6) = || — (17 1),

und den aus der Uberlagerung resultierenden Gleichtaktstrom

IPE) =177 () + 17)(2) = ﬁ (aP(2) =) .

(7.40)

(7.41)

(7.42)

(7.43)

Die komplexen Wellenamplituden lassen sich aus den resultierenden Spannungen
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und resultierenden Stromen analog zu (7.20) und (7.21) wie folgt berechnen:

() e z7

a(z) = %Q (2) + 4| =5 17(2), (7.44)
L

=) L Z o

b (2) = %Q (2) — 5 I'7(2), (7.45)
L
1 A
L

¥ 1 z{"

b9(=) =\ ml (@) =\ L) (7.47)
L

Zunéchst sollen nur symmetrische Abschliisse betrachtet werden, siehe Abbil-
dung 7.13. An symmetrischen Abschliissen wird jeder Mode nur in sich selbst
reflektiert. An asymmetrischen Abschliissen kann hingegen auch eine Modenkon-
version auftreten, siehe Abschnitt 9.6. Wegen der im Allgemeinen unterschied-
lichen Wellenwiderstéinde von Gegentaktmode und Gleichtaktmode und der un-
terschiedlichen fiir die verschiedenen Moden sichtbaren Impedanzen sind die Re-
flexionsfaktoren an ein und dem selben symmetrischen Abschluss fir die beiden
Moden im Allgemeinen unterschiedlich.

Die fiir den Gegentaktmode wirksame Abschlussimpedanz ergibt sich aus der
Zs12.
2212 .
z
7 7 4312
—;12 = =202 (7.48)
Zyro+ =5

Parallelschaltung von Zs,, und

Zg ) = Z5 10|

Aus (7.24) ergibt sich unter Verwenden des Wellenwiderstands Z(L_) des Gegen-
taktmodes gemé$ (3.72) der Reflexionsfaktor

z5)

o 7!
£2 - Z(_) (749)
_Z—E_) +1

des Gegentaktmodes. Die Abschlussimpedanz Z éf) wird durch die Leitung in die
fiir den Gegentaktmode sichtbare normierte Eingangsimpedanz

. z Z)
Zg ) B Zl,lo||_;12 70 + jtan(B1)

-\ _ - (=) (750)
z0 oz 1+ %5 tan(Bl)
L
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- - Kurzschluss
12,12/ 2
————— Leerlauf
| 2z 212/2
[(+) —_ . — — — — —_
- le N|
< g

Abbildung 7.13.: Impedanztransformation durch ein symmetrisches Dreileitersys-
tem
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transformiert, siehe (7.26).
Fir den Gleichtaktmode ist die Abschlussimpedanz

z5" = Z3 10 (7.51)

wirksam, so dass sich aus (7.24) unter Verwenden des Wellenwiderstands Zy (+)
des Gleichtaktmodes geméa$ (3.73) der Reflexionsfaktor

Zéﬂ 1
) _ 49
r{ — e (7.52)
7t

des Gleichtaktmodes ergibt. Die Abschlussimpedanz Z §+) wird durch die Leitung
in die fiir den Gleichtaktmode sichtbare normierte Eingangsimpedanz

A
AR =25 + jtan(pl)
£ _ 2110 4 (7.53)

TS s +)
27 47 14 wan(al)
L

transformiert, siehe (7.26).

7.12. Rein massegekoppelte symmetrische
Dreileitersysteme

Fiir rein massegekoppelte symmetrische Dreileitersysteme sind geméfl (3.84) die
Wellenwiderstande der beiden Moden gleich. Damit sind auch die Reflexionsfak-
toren an einem symmetrischen rein massegekoppelten Abschluss fiir beide Moden
gleich. Der Abschluss in Abbildung 7.13 wére beispielsweise dann ein rein mas-
segekoppelter Abschluss, wenn Z, ;5 = 0o nicht vorhanden wére und damit auch
Zg_) = Zgﬂ gelte.

Die hier primér interessierende Besonderheit eines rein massegekoppelten sym-
metrischen Dreileitersystems besteht jedoch darin, dass man es auch als ein Paar
gleichartiger Zweileitersysteme ansehen kann. Die komplexen Wellenamplituden
auf diesen Zweileitersystemen kann man aus den zugehorigen Spannungen und
Stromen auf den Zweileitersystemen berechnen, siehe (7.16) und (7.17). Die Span-
nungen und Strome auf den Zweileitersystemen kann man durch die Spannungen
und Strome der Gegentaktwellen und Gleichtaktwellen ausdriicken, siehe (3.74),
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(3.75) (3.78) und (3.79), und diese kann man schliefilich aus den komplexen Wel-
lenamplituden der Gegentaktwellen und Gleichtaktwellen berechnen, siehe (7.36),
(7.37), (7.38) und (7.39):

0y 2Lm) _ U () + U (2)

a; 7 7

=
_I_

_ = , (7.54)
b _Um() _ Ux(2) + UR(2)
bi(z) = N N
=V ZLn(z) = 7 (I0() + 10(2))
_07(z) \2 b9(z) (7.55)
_Umil(s) _ -UR () +UP(2)
a5(2) = N N
=\ 2L (2) = 2 (1 (2) + 1P(2))
_ —@(‘)(z)f—g a'(z) (7.56)
b _Um(x)  —UDGE) + U ()
by(2) N N
= L (2) = V7 (-1 (2) + 1)
_ b 7() + 0 () (7.57)

Durch Auflésen nach den komplexen Wellenamplituden der Gegentaktwellen und
Gleichtaktwellen erhalt man:

a(z) z—a—1<z)\;;2<z), (7.58)
b (2) zw, (7.59)
a(2) :@1(2)\2@2(2)’ (7.60)
B (2) @1(2)\2122(%) (7.61)
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Kapitel 8.

Kreisdiagramme

8.1. Inversionsdiagramm

8.1.1. Herleitung des Inversionsdiagramms

Das Ziel der folgenden Uberlegungen ist es, graphische Hilfsmittel zur Analyse
und Synthese von Transformationsschaltungen zu schaffen.
Die Inversion
1 1 G B

Z=R+jX= = — -] 8.1
TSy TerB T erp ‘erm (8.1)

beschreibt eine konforme Abbildung der Admittanzebene auf die Impedanzebene,
siche Abbildung 8.1. Da es sich um einen Sonderfall der M6bius-Transformation
handelt, werden Kreise auf Kreise abgebildet, wobei Geraden als Sonderfélle
von Kreisen mit unendlichem Radius anzusehen sind. Die senkrechten Geraden
G = const. konstanten Wirkleitwerts der Admittanzebene werden auf Kreise kon-
stanten Wirkleitwerts G mit Mittelpunkt % und Radius % in der Impedanzebene
abgebildet. Die horizontalen Geraden B = const. konstanten Blindleitwerts der
Admittanzebene werden auf Kreise konstanten Blindleitwerts B mit Mittelpunkt
—j% und Radius % in der Impedanzebene abgebildet.
Die Umkehrabbildung

Y = (8.2)

N~

der Impedanzebene auf die Admittanzebene ist vollig dual. Die senkrechten Ge-
raden R = const. konstanten Wirkwiderstands der Impedanzebene werden auf
Kreise konstanten Wirkwiderstands R mit Mittelpunkt % und Radius ﬁ in der
Admittanzebene abgebildet. Die horizontalen Geraden X = const. konstanten
Blindwiderstands der Impedanzebene werden auf Kreise konstanten Blindwider-
stands X mit Mittelpunkt —j% und Radius ﬁ in der Admittanzebene abgebil-
det.
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jBS)
A
24—
Z: 1/K h N
A \
\
jl — 00—
- ~
/ AN
/L / \
/- ~ \
/ 7\ \
> R/Q < §" > GQ
\\ \\\ Y, /2
\ N
N 7
AN /
7/ _
_jl_A/ \‘A‘/
/
~ —y //
Y=1/Z b
—j2-——

Abbildung 8.1.: Inversionsdiagramm

Ein universell einsetzbares Inversionsdiagramm erhélt man, wenn man die Im-
pedanzen und Admittanzen normiert. Mit dem Bezugswiderstand

Ry = — (8.3)
folgen die normierte Impedanz
= ——+j5 (8.4)

und die normierte Admittanz
Y

G B
= —YRn= — 4 — = i BRx. .
N Y Ry N +JGN GRx + jBRy (8.5)

Wegen der Dualitat kann man das gleiche Inversionsdiagramm als Impedanzebene
oder als Admittanzebene nutzen.

Aufgabe 8.1 Zeigen Sie, dass die Orte konstanten Wirkleitwerts G und die Orte
konstanten Blindleitwerts B Kreise in der Impedanzebene sind!
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8.1.2. Transformation mit konzentrierten Bauelementen
8.1.2.1. Serienschaltung im Inversionsdiagramm

Zunéchst wird die Serienschaltung konzentrierter Bauelemente betrachtet, siehe
Abbildung 8.2.

Rg Lg Cs
o o—l
Z, Ly Zy
X/ jBQ
A R Rs+ R A
i2] 2 }2 S pd
Xy = wlTS
il ket Xy +wlg i1
Lg |
R
,,,,,,,,,, " i,s,,,,,,,,, X2
Ay = Ro + JXQ
i é > R/
Cs )
””” ¥ Xy — wCs
i XQ + | L
4 T
—ij2] | | —j2d

Abbildung 8.2.: Serienschaltung im Inversionsdiagramm

o Die Serienschaltung eines Wirkwiderstands ist eine verlustbehaftete Trans-
formation, mit der sich in der Impedanzebene Punkte rechts von Z, und
in der Admittanzebene Punkte auf dem Segment des Kreises konstanten
Blindwiderstands X, durch Y, in Richtung Ursprung erreichen lassen.
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« Die Serienschaltung eines Blindwiderstands ist eine verlustfreie Transforma-
tion, mit der sich in der Impedanzebene Punkte oberhalb oder unterhalb
von Z, und in der Admittanzebene Punkte auf dem Kreis konstanten Wirk-
widerstands Ry durch Y, erreichen lassen.

8.1.2.2. Parallelschaltung im Inversionsdiagramm

Nun wird die Parallelschaltung konzentrierter Bauelemente betrachtet, siche Ab-
bildung 8.3.

O—
Rp Zy Ly Zy Cp Zy
O—¢
jX/Q jBQ)
\ A Gy G+ G
jg_‘,\ Jg_k 2 32 P
B o
il il gt B, + wCp
Cp |
Rp !
—————————— o - Bo
Yo =0+ B,
> R/ , = GO
1 2
Lp .
,,,,,, v By — o
By +¢Cp
il —jl-
= Ry + J X
By
2 —j2-]

Abbildung 8.3.: Parallelschaltung im Inversionsdiagramm

« Die Parallelschaltung eines Wirkleitwerts ist eine verlustbehaftete Transfor-
mation, mit der sich in der Impedanzebene Punkte auf dem Segment des
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Kreises konstanten Blindleitwerts By durch Z, in Richtung Ursprung und
in der Admittanzebene Punkte rechts von Y, erreichen lassen.

o Die Parallelschaltung eines Blindleitwerts ist eine verlustfreie Transforma-
tion, mit der sich in der Impedanzebene Punkte auf dem Kreis konstanten
Wirkleitwerts Gy durch Z, und in der Admittanzebene Punkte oberhalb

oder unterhalb von Y, erreichen lassen.

Mit nur einem Blindelement sind nur bestimmte Transformationen mdoglich.
Zum Loésen beliebiger Transformationsaufgaben werden im Allgemeinen Trans-
formationsschaltungen mit mehreren Blindelementen benotigt.

8.1.2.3. Transformation mit mehreren Blindelementen

Wenn mehr als ein Blindelement verwendet wird, kénnen ausgehend von Z, fla-
chige Bereiche in der Impedanzebene oder in der Admittanzebene erreicht werden,
siehe Abbildung 8.4.

iX/Q

A

Ls

Zl —> CP ——

> R/Q oO—O0—

einfach erreichbar

doppelt erreichbar

Abbildung 8.4.: Transformation mit mehreren Blindelementen

Man kann prinzipiell jede Transformationsaufgabe mit einer verlustfreien Trans-
formationsschaltung aus maximal zwei Blindelementen l6sen, man muss hier je-
doch neben den Bauelementewerten auch die Schaltungsstruktur geeignet wah-
len. Es gibt verlustfreie Transformationsschaltungen aus drei Blindelementen, mit
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denen man bei vorgegebener Schaltungsstruktur allein durch passende Wahl der
Bauelementewerte jede Transformationsaufgabe losen kann. Die II-Schaltung, sie-
he Abbildung 8.5, ist eine derartige universelle Transformationsschaltung. Eine
bestimmte Eingangsimpedanz Z; ist hier ausgehend von der Ausgangsimpedanz
Z, auf unendlich vielen Transformationswegen erreichbar.

jiX/Q
A
Cpy 2y
: Z1—> == Op Cp == Ly
> R/C) O—e—O0—O—¢

Abbildung 8.5.: TI-Schaltung

Aufgabe 8.2 Die in Abbildung 8.6 dargestellte Schaltung aus der Induktivitdit
L =20pH und den Kapazititen C; = 1,25nF und Cy = 500 pF transformiert den
Widerstand Ry = 100 in die Eingangsimpedanz Z,. Die Schaltung werde bei der
Kreisfrequenz w = 107 s™! betrieben. Bestimmen Sie die Fingangsimpedanz Z, mit
Hilfe des Inversionsdiagramms!

Abbildung 8.6.: Transformationsschaltung mit konzentrierten Bauelementen
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8.2. Leitungsdiagramm

8.2.1. Herleitung des Leitungsdiagramms
8.2.1.1. Negativer reeller Reflexionsfaktor

Es werden Leitungstransformationen in der Impedanzebene betrachtet, siehe Ab-
bildung 8.7. Zunéchst wird der Spezialfall der Transformation eines negativen
reellen Reflexionsfaktors I'; = — |[y| betrachtet. Die Impedanz Z, ist dann re-
ell und kleiner als der Wellenwiderstand Zy,, siehe (7.23). Mit (7.14) folgt der
Anpassungsfaktor
i
1+ Dy

Die auf den Wellenwiderstand Zp, normierte Eingangsimpedanz einer mit dem
negativem reellem Reflexionsfaktor [, abgeschlossenen Leitung der normierten
Lange [/\ ist

Z, _m +jtan(27r§)
Zn 1 +jmtan<27r§) ’

(8.6)

siehe (7.27) und (2.38).

C C
Z—> 1, Zy
C C
le N
< . g
B

Abbildung 8.7.: Leitungstransformation

Die Eingangsimpedanz Z; kann als Funktion des Anpassungsfaktors m oder
als Funktion von tan 27T§ betrachtet werden. Es handelt sich um Sonderfal-
le der Mobius-Transformation. Bei den Orten konstanten Anpassungsfaktors m
oder den Orten konstanter normierter Leitungslange [/)\, was einem konstanten
tan(27r§) entspricht, handelt es sich folglich um Kreise in der Impedanzebene,
siehe Abbildung 8.8.

Einen Kreis konstanten Anpassungsfaktors m erhélt man bei einem konstantem
negativen reellen Reflexionsfaktor I'y, = — |[',| und Variation der normierten Lei-
tungslidnge [/ . Der Kreis konstanten Anpassungsfaktors m hat den Mittelpunkt

% (% + m) und den Radius % (% — m)7
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8.2. Leitungsdiagramm

Abbildung 8.8.: Kreis konstanten Anpassungsfaktors m und Kreise konstanter
normierter Leitungslinge [/A in der auf den Wellenwiderstand
71, normierten Impedanzebene

Einen Kreis konstanter normierter Leitungsldnge [/ erhdlt man bei Variation
des Anpassungsfaktors m, das heifit bei Variation des negativen reellen Reflexi-
onsfaktors I'y = — |[5|. Der Kreis konstanter normierter Leitungslange [/A hat

den Mittelpunkt —jZy, cot (47r§) und den Radius |—2L

sin(47 £ )
~(ats)
sin(47r§)

. Die Kreisgleichung ist

l
‘Zl + jZ1, cot (47TX>
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Einsetzen von Z; = Zy, ergibt

2 =7t + 7} <cot (47%))2
_p (sin(4r1))" + (cos2(47r§))2
fin(i )

(wten)

das heifit alle Kreise konstanter normierter Leitungslange [/ gehen durch den
Punkt Z;. Beim Durchlaufen des Punktes Z;, auf einem der Kreise dndert sich
der Parameter [/\ um 1/4, sieche Abbildung 8.8.

In der Admittanzebene erhélt man durch Bilden des Kehrwerts von (8.6)

[
ZL + JZL cot <47TX>

v Z, 1+jmtan<27r§) B #—i—jtan(%rﬁ) .
! L_Z_ m+jtan(27r§) a 1+j%tan(2ﬂ§). ®.7)

Bis auf die Ersetzung von m durch 1/m ist dies die gleiche Formel wie in der
Impedanzebene, siehe (8.6). Fir die Orte konstanten Anpassungsfaktors m oder
die Orte konstanter normierter Leitungslange [ /A ergeben sich deshalb die formal
gleichen Kreisgleichungen wie in der Impedanzebene, wobei die beiden Aste /)
und [/\+4 der Kreise konstanter normierter Leitungslange [/ jedoch vertauscht
sind. Insbesondere befinden sich die Orte negativen reellen Reflexionsfaktors 'y =
— || jetzt rechts vom Ort perfekter Anpassung.

Aufgabe 8.3 Zeigen Sie, dass die Orte konstanten Anpassungsfaktors m und die
Orte konstanter normierter Leitungslinge [/ Kreise in der Impedanzebene sind!

8.2.1.2. Komplexer Reflexionsfaktor

Der komplexe Reflexionsfaktor ', kann geméfl (7.9) als Ergebnis der Transfor-
mation eines negativen reellen Reflexionsfaktors — |I'y| mit einer Leitung der nor-

mierten Lange
|7 —arg(Dy)

A Am
aufgefasst werden, siehe auch (2.38). Diese virtuelle normierte Leitungslénge [/\
ist zur normierten Lange der realen Leitung hinzu zu addieren, um die Ein-

gangsimpedanz Z,; als Ergebnis der Transformation eines negativen reellen Refle-
xionsfaktors — |['5| zu erhalten, siehe Abbildung 8.9.
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X/ 2y

A

J2-

1=

—il-

—j2-

Abbildung 8.9.: Transformation einer beliebigen Impedanz Z,. Beispiel Z,/Z;, =
1,843j0,5 und [/ = 0,13

8.3. Smith-Diagramm

8.3.1. Herleitung des Smith-Diagramms

Das Smith-Diagramm stellt das Innere des Einheitskreises der Reflexionsfaktor-
ebene dar, siche Abbildung 8.10. Man kann es auch als konforme Abbildung der
rechten Halbebene der auf den Wellenwiderstand Z;, normierten Impedanzebene
mittels der Abbildungsvorschrift

A
r = 4 8.8
T £ 41 (88)
L

auffassen, siehe (7.24). Alternativ kann man das Smith-Diagramm auch als kon-
forme Abbildung der rechten Halbebene der auf den Kehrwert 1/7;, des Wellen-
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8.3. Smith-Diagramm

widerstands normierten Admittanzebene mittels der Abbildungsvorschrift

po =X (8.9)
1+Y7,

auffassen, siehe (8.2). Die beiden konformen Abbildungen unterscheiden sich ma-
thematisch nur im Vorzeichen, das heifit in einer Spiegelung am Ursprung. Da es
sich um Sonderfille der Mobius-Transformation handelt, werden Kreise auf Kreise
abgebildet, wobei Geraden wieder als Sonderfalle von Kreisen mit unendlichem

Radius anzusehen sind.
Im Smith-Diagramm sind die Kreise konstanten normierten Wirkwiderstands
R/Z;, und die Kreise konstanten normierten Blindwiderstands X/Z;, eingezeich-
net. Die Kreise konstanten normierten Wirkwiderstands R/Zp, sind Kreise mit

R
Mittelpunkt - Li und Radius Hl 7. Die Kreise konstanten normierten Blindwi-

Tz 2y,
derstands X /7, sind Kreise mit Mittelpunkt 1+ j—& X und Radius T )
71

Die Kreise konstanten normierten Wirkleitwerts GZL und den KreLlse konstan-
ten normierten Blindleitwerts BZ;, fehlen meistens. Da sich die Abbildungsvor-
schriften (8.8) und (8.9) nur im Vorzeichen unterscheiden, entstehen diese Kreis-
systeme aus den Kreisen konstanten normierten Wirkwiderstands R/Z;, und den
Kreisen konstanten normierten Blindwiderstands X/Z;, durch Spiegeln am Ur-
sprung. Man behilft sich, indem man die zu betrachtenden Punkte und Transfor-
mationswege am Ursprung gespiegelt eintragt.

Die Kreise konstanten Anpassungsfaktors m sind Kreise konstanten Reflexions-
faktorbetrags |I'| und damit konzentrische Kreise um den Ursprung mit Radius
i—z, siehe (7.15). Die Orte konstanter normierter Leitungslédnge /A sind Geraden
durch den Ursprung in der Reflexionsfaktorebene, siehe (7.9) und (2.38).

Aufgabe 8.4 Zeigen Sie, dass die Orte konstanten normierten Wirkwiderstands
R/Zy, und die Orte konstanten normierten Blindwiderstands X/Zy, Kreise in der
Reflexionsfaktorebene sind!

8.3.2. Transformation mit konzentrierten Bauelementen
8.3.2.1. Serienschaltung im Smith-Diagramm

Zunéchst wird die Serienschaltung konzentrierter Bauelemente betrachtet, siehe
Abbildung 8.11.

« Bei Serienschaltung eines Wirkwiderstands erfolgt die Reflexionsfaktoran-
derung entlang eines Kreises konstanten Blindwiderstands X5 in Richtung
des Punktes I' = 1.
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>~

= const.

= const.

= const.

= const.

= const.

= const.

Z-Ebene I'-Ebene

/7 \

-

Abbildung 8.10.: Konforme Abbildung der Impedanzebene und der Admittanze-

192

bene auf die Reflexionsfaktorebene






Kapitel 8. Kreisdiagramme

Rg Lg Cs

RCER S

Abbildung 8.11.: Serienschaltung im Smith-Diagramm

» Bei Serienschaltung eines Blindwiderstands erfolgt die Reflexionsfaktoran-
derung entlang eines Kreises konstanten Wirkwiderstands Rs.
8.3.2.2. Parallelschaltung im Smith-Diagramm

Nun wird die Parallelschaltung konzentrierter Bauelemente betrachtet, siche Ab-
bildung 8.12.

o Bei Parallelschaltung eines Wirkleitwerts erfolgt die Reflexionsfaktorande-
rung entlang eines Kreises konstanten Blindleitwerts By in Richtung des
Punktes I' = —1.

« Bei Parallelschaltung eines Blindleitwerts erfolgt die Reflexionsfaktorédnde-
rung entlang eines Kreises konstanten Wirkleitwerts Gb.

Rechts unten in Abbildung 8.12 ist am Beispiel der Transformation durch Par-
allelschaltung einer Induktivitat die Konstruktion des am Ursprung gespiegelten

194



8.3. Smith-Diagramm

O—

Rp

Abbildung 8.12.: Parallelschaltung im Smith-Diagramm

Transformationsweges dargestellt. Diese Konstruktion verwendet man, falls die
Kreise konstanten Wirkleitwerts und die Kreise konstanten Blindleitwerts im ver-
wendeten Smith-Diagramm nicht enthalten sind.

8.3.3. Leitungstransformation im Smith-Diagramm

Eine Leitung bewirkt eine Reflexionsfaktoranderung entlang eines Kreises kon-
stanten Anpassungsfaktors m im Uhrzeigersinn, sieche Abbildung 8.13. Der Winkel
der Drehung ist proportional zur normierten Leitungslange /.

Aufgabe 8.5 Der Widerstand Ry = 508 soll in den FEingangsimpedanz Z, =
2002 transformiert werden. Dazu wird die in Abbildung 8.1/ dargestellte Trans-
formationsschaltung verwendet. Die Wellenwiderstinde beider Leitungen seien
Zy, = 50Q. Bestimmen Sie die kiirzestmdglichen normierten Leitungslangen 1y /)

und loy/\!
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C C
ZL

C C

" N

N ; (
X

Abbildung 8.13.: Leitungstransformation im Smith-Diagramm

ly
e A N
< >
C q
Z1—> 1, Ry
C C

>

Abbildung 8.14.: Transformationsschaltung mit Leitungen
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Kapitel 9.

Mehrtore

0.1. Streumatrix

In den letzen beiden Kapitel wurden komplexe Wellenamplituden an Eintoren be-
trachtet. Jetzt sollen komplexe Wellenamplituden an Mehrtoren betrachtet wer-
den, siche Abbildung 9.1.

Bezugsebenen

I

—>aq

# Tor 1
b1<_|

° °

° e N-Tor

° °

I_>a

ay

# Tor N

l_7N<—I

Abbildung 9.1.: Mehrtor

An jedem Tor n definiert man eine komplexe Wellenamplitude a,, der zulau-
fenden Welle und eine komplexe Wellenamplitude b, der ablaufenden Welle. Die
Bezugswellen sind wieder so gewéhlt, dass sich der Betrag der auf das Tor n

zulaufende Leistung zu
1

2
ergibt und dass sich der Betrag der von dem Tor n ablaufende Leistung zu

|Pan| = |Qn|2

1
Ponl = 5 b
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ergibt, vergleiche (7.3) und (7.6). Die komplexen Wellenamplituden sind in den
Bezugsebenen beziiglich der Bezugswellen auf den verwendeten Wellenleitersyste-
men definiert. Speziell bei Zweileitersystemen sind die komplexen Wellenamplitu-
den beziiglich eines Bezugswiderstands Ry definiert, der dem Wellenwiderstand
71, der Wellenleiter entspricht.

Fiir die vom Mehrtor aufgenommene Leistung folgt mit (7.28)

P

N
1, 1.
Sl =51 P).
3 (5l -5
Mit dem Vektor

a=|: (9.1)

der komplexen Wellenamplituden a,,, n = 1...N, der zulaufenden Wellen und
dem Vektor

b—| : (9.2)
by

der komplexen Wellenamplituden b,,, n = 1... N, der ablaufenden Wellen schreibt
man kompakter
Ly Lo 1 g L r
P=Zlal” -3 [bl" =52 -a-5b™ -b. (9.3)
Eine auf ein Tor n zulaufende Welle der komplexen Wellenamplitude a,, wird
durch das lineare Mehrtor gestreut, so dass im Allgemeinen an allen Toren m =
1...N ablaufende Wellen entstehen, deren komplexe Wellenamplituden b,, pro-
portional zur komplexen Wellenamplitude a,, der zulaufenden Welle an Tor n
sind. Laufen gleichzeitig auf mehrere Tore des linearen Mehrtors Wellen zu, so
iiberlagern sich die gestreuten Wellen additiv. Der Zusammenhang zwischen den
komplexen Wellenamplituden der zulaufenden und der ablaufenden Wellen an
einem linearen Mehrtor ergibt sich zu

by §1,1 51,N a

o
I
I
I
w2
[

(9.4)

by Syi1 -+ Sy ay

S

Die Elemente ﬁmm der Streumatrix S bezeichnet man als Streuparameter.
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9.2. Signalflussgraph

Der Signalflussgraph dient dem Veranschaulichen der Funktionsweise von Mehr-
toren. Die komplexen Wellenamplituden a,,, n = 1...N, und b,,, n = 1... N,
entsprechen den Knoten im Signalflussgraphen und die Streuparameter S, ,,,
m,n = 1... N, entsprechen den Kanten im Signalflussgraphen, sieche Abbildung
9.2.

Ss1
| | a; > by
—a, Gy <—|
O S O Sia Soo
b1<—| |_>l_)2
| | b, S < as
Tor 1 Tor 2 =12

Abbildung 9.2.: Signalflussgraph

Bei komplizierten, aus mehreren Komponenten zusammengesetzten Netzwer-
ken erhélt man den resultierenden Signalflussgraphen durch Verkniipfen der Si-
gnalflussgraphen der einzelnen Komponenten. Abbildung 9.3 zeigt einige einfache
Regeln zum Vereinfachen der entstehenden komplexen Signalflussgraphen. Die
Mason-Regeln sind Verallgemeinerungen dieser Regeln | ; ].

Zum Herleiten der Schleifenregel liest man aus dem Signalflussgraphen

d=c
—S.pb
=Sn (g + ﬁbvcg)
=Sep (@ + Sped)

ab. Aufgelost nach d erhélt man

ﬁc,b

d=—""—aq.
B 1- ﬁc,bﬁb,cg
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§b,a b §C,b
a O—>» Oo—> O ¢
ﬁb,aﬁc,b
c
: a
ﬁb,aﬁc,b d
ao > oc Sp,add b
(a) Serienschaltung (b) Verzweigung
!
2ba
a b
1"
h,a
g _Sen
=b.a + Eb.a 1_§c,b§b,c
aO0—>—0b a0 > Od
(c) Parallelschaltung (d) Schleife

Abbildung 9.3.: Vereinfachen von Signalflussgraphen
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9.3. Eigenschaften von Mehrtoren

9.3.1. Eigenreflexionsfreiheit

Man bezeichnet ein Mehrtor als eigenreflexionsfrei, falls alle n = 1... N Diago-
nalelemente der Streumatrix S Null sind:

S

Hnn

= 0. (9.5)

0.3.2. Passivitat und Verlustfreiheit

Man bezeichnet ein Mehrtor als passiv, falls die aufgenommene Leistung P stets
grofer oder gleich Null ist. Aus (9.3) folgt mit (9.4) und der Einheitsmatrix E:

a’- (E-87"-8)-a>0 (9.6)

Diese Ungleichung ist nur dann fiir alle Vektoren a erfiillt, wenn die Matrix E —
S*T . S positiv semidefinit ist, das heifit keine negativen Eigenwerte hat [ ).t

Man bezeichnet ein Mehrtor als verlustfrei, wenn die aufgenommene Leistung
P stets Null ist, das heifit wenn stets

Q*T‘<E_§*T‘S) ‘QZO
gilt. Diese Gleichung ist nur dann fiir alle Vektoren a erfiillt, wenn
S*T . S — E PEN S_l — S*T PEN S X S*T — E (97)

gilt, das heiit wenn die Streumatrix S unitér ist.

9.3.3. Reziprozitat

Zum Herleiten des Reziprozitédtstheorems wird ohne Beschrénkung der Allgemein-
heit ein Zweitor betrachtet. Das Zweitor selbst enthalte keine Quellen und bestehe
aus reziproken, das heifit linearen und isotropen Materialien. Die Feldstarken E
und H beschreiben die Feldkonfiguration wenn sich eine Quelle an Tor 1 befindet
und Tor 2 reflexionsfrei abgeschlossen ist. Dual dazu beschreiben die Feldstéirken
El und E I die Feldkonfiguration wenn sich eine Quelle an Tor 2 befindet und Tor
1 reflexionsfrei abgeschlossen ist.

! Die Eigenwerte der hermiteschen Matrix E — §*T - S sind stets reell.
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Eine Hiille umschliee das Zweitor und verlaufe durch die Bezugsebenen der
Tore. Nicht verschwindende Feldstiarken treten dann nur in den Bereichen der

Tore auf. Mit dem Reziprozitdtstheorem (4.61) folgt
H (B x ,dA) + [ (E x f,dA).

ff(Exﬁ dA) +jj (E x H  dA)

Tor 1 Tor 2

Vereinfachend wird angenommen, dass an belden Toren gleichartige Wellenlei-
ter verwendet werden. Mit den Feldstarken E und H der Bezugswellen folgt mit

(7.1) und (7.4) fur die Feldstérken an Tor 1:

= =
I I

| &
IS =
.
-
R
@ —
R (s ]
tn *
=

Il
|
[\~]
eI
+
o~
W]
e
I
|
[\&]
VS
—_
+
[<n
[\]
)
N———

H

= oy

QQE - QQE = Qo (1 - §2,2) ]
Einsetzen in das Reziprozitatstheorem ergibt:
- J:f (@, (1 + 51,1) E x Q2§1,QEa d/_D

Tor 1

+jj anglEXQQ(l—SQQ)ﬂd )
Tor 2

= J:[ <Q2§1,2E: X ay (1 - §1,1) ﬁ, d/f)

Tor 1
- JI (as (1 + 52,2) E X Q1§271ﬂ?, d[f),
Tor 2
“5.) [[ E x 0

(Q1 (1 + §1,1) 587 9 + Q2§1,2a1

Tor 1

Tor 2

= <Q1§2,1Q2 (1 - 52,2) + ay (1 + §272) Q1§2,1) J:[ <E: X f[

51,2 :§2,1-
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9.4. Impedanzmatrix und Admittanzmatrix

Man bezeichnet ein Mehrtor als reziprok (umkehrbar), falls S,,, = S, fir
alle m,n=1...N gilt, das heifit falls die Streumatrix S symmetrisch ist:

s=S8T. (9.9)

Falls ein Mehrtor keine nichtreziproken Materialien (zum Beispiel Ferrite) enthélt,
ist es gemafl dem Reziprozitatstheorem immer reziprok. Reziprozitat bedeutet
nicht, dass die Tore vertauschbar sind, da immer noch S,, ,, # S,,, fir n # m
gelten kann.

9.4. Impedanzmatrix und Admittanzmatrix

Es werden Mehrtore mit Zweileitersystemen an den Toren betrachtet, siehe Ab-
bildung 9.4. Man definiert den Spannungsvektor

U,
U=|: |=yRx(a+b) (9.10)
Un
und den Stromvektor
I b
a—
I=|: | =——, 9.11
R v o4y
4N
siehe (7.18) und (7.19).
;al 61/2&|
blH B o l—>b2
| 1, I, I
I € —<
RN Qll SJ Z7 X lQQ RN
:Q— —EP:

Tor 1 Tor 2

Abbildung 9.4.: Vierpol mit Spannungen und Strémen an den Toren

In der Elektronik hat sich das Verwenden der Impedanzmatrix Z und der Ad-
mittanzmatrix Y zum Beschreiben der Zusammenhange zwischen Spannungsvek-
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tor U und Stromvektor I an Mehrtoren etabliert. Es gelten

Zyy - Zin
U=| : : 1 (9.12)
Zny - ZNN
Z
und
Y, Y, n
1= : : -U. (9.13)
Yna Yy
Y
Es folgt der Zusammenhang
Y=27"' (9.14)

zwischen Impedanzmatrix und Admittanzmatrix.
Wenn man den Spannungsvektor U und den Stromvektor I durch die komplexen
Wellenamplituden a und b ausdriickt, erhédlt man mit der Einheitsmatrix E:

a—b
\/RiN(aij) Z.\/R_N’
RyE-(a+b)=Z-(a—Db),
(Z+RNE) h (Z—RNE) a,
b =(Z+ RyE) " - (Z— RxE)-a. (9.15)

Man erhélt die Streumatrix (9.4) als Funktion der Impedanzmatrix zu
S=(Z+RyE)™" - (Z—- R\E) (9.16)

Auflosen nach der Impedanzmatrix ergibt:

(Z+ RxE)-S =(Z — RyE),
Z-(E-8S)=Rx(E+8),
Z=Ry(E+8)- (E-8)". (9.17)

Da die Admittanzmatrix die Inverse der Impedanzmatrix ist, gilt

X:z—lzRi(E—g)-(lug)l. (9.18)
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Auflésen nach der Streumatrix ergibt:
RNY=(E-S)-(E+8)",
RyY (E+8)=(E—8),
(E+RNY)-S =E - R\Y,
S=(E+RyY) " (E- RyY). (9.19)

Man kann jeder Streumatrix S formal eine Impedanzmatrix Z und eine Ad-
mittanzmatrix Y zuordnen auch wenn dies physikalisch nicht sinnvoll ist, da sich
die Streumatrix S beispielsweise auf ein Mehrtor in Hohlleitertechnik bezog, bei
dem keine sinnvollen Definitionen fiir Spannungen U und Stréme I an den Toren
existieren.

Aufgabe 9.1 Massefreie Netzwerke sind dadurch charakterisiert, dass es keiner-
lei elektrische Verbindung zwischen Masse und den tibrigen Anschlissen gibt, sie-
he Abbildung 9.5. Die Summe der in die Tore hineinflieffenden Strome I,, = 0,
m = 1...N muss daher stets Null sein. Betrachten Sie weiterhin den speziellen
Betriebszustand, bei dem die Spannungen U,, n=1...N, an allen Toren gleich
sind. Dann missen alle Strome I,,, m = 1... N, Null sein. Welche Eigenschaften
hat die Admittanzmatriz Y eines massefreien Mehrtors?

A | massefreies | Dol

Netzwerk
RN Ql Qz RN
N € ©
| |
Tor 1 Tor 2

Abbildung 9.5.: Massefreier Vierpol

Aufgabe 9.2 Zeigen Sie, dass die Impedanzmatriz Z und die Admittanzmatriz
Y cines reziproken Mehrtors symmetrisch sind! Welche Eigenschaften miissen

die Impedanzmatriz Z und die Admittanzmatriz Y eines reziproken verlustfreien
Mehrtors haben?

9.5. Transmissionsmatrix

Héaufig werden Kaskaden von Zweitoren gebildet. Die Aufgabe besteht nun darin,
die Eigenschaften des aus einer Kaskade mehrerer Zweitore bestehenden Zwei-
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tors zu berechnen. Diese Aufgabe lasst sich mit Hilfe von Transmissionsmatrizen
einfach 16sen.

Wenn man die komplexen Wellenamplituden a; und b; an Tor 1 als die abhén-
gigen Groflen wéhlt, erhdlt man mit der Transmissionsmatrix

Ql Iab Iaa l_)2
— (Lar Laa) () 9.20
<l—71> (Ibvb Ib,a> <@2> (5:20)
T

sieche Abbildung 9.6. Die Elemente der Transmissionsmatrix T bezeichnet man
als Transmissionsparameter.

F—a; Gy e—|
O Zweitor O
by <— >0,
| |
Tor 1 Tor 2

Abbildung 9.6.: Zweitor

Transmissionsmatrizen T und Streumatrizen S lassen sich ineinander umrech-
nen. Ausgehend von dem Streuparametermodell

by =5, 1a; + 5, 209,
by =S51a; + S350,

des Zweitors gemaf (9.4) erhédlt man durch Auflésen nach @, und b;:

a _ib %a
- 52,1_2 Sy 1_2’
_51,1

Si118
by — _171_272Q2 + 512@2-

b, —
! So4

Hieraus liest man die Transmissionsmatrix
T = =3, =aa) B 921
o (Ib,b Ib,a) Sa1 <§1,1 —det(S) (9.21)

ab, wobei det(-) die Determinante der Matrix ist.”

? Die Determinante der Matrix S ist det(S) = S} ;.85 5 — S5 555 ;.
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9.5. Transmissionsmatrix

Ausgehend von dem Transmissionsparametermodell

a; :Ia7bb2 + Ia,ag%
by =Ty, pby + 11y, 400,

des Zweitors erhélt man durch Auflésen nach b; und b,:

b ]‘ Ia,a
= a1 — —/—a
- —Ta,b - —Ta,b o
T T..T
é _—b,ba . —b,b—a,ag2 + Ib@QQ-

1= =1
Ia,b Ia,b

Hieraus liest man die Streumatrix

_ 51,1 5172 _L Ib,b det(l)
§_<§2,1 Sys) Ty \ 1 -T (9.22)

£ a,a

ab, siehe (9.4).

Die Determinante der Transmissionsmatrix ergibt sich zu

1 S
det(T) = o5 (= det(S) + 51, 85,) = 52

2o1 52,1

(9.23)

Insbesondere ist die Determinante der Transmissionsmatrix reziproker Zweitore
eins, siehe (9.9).

Im Folgenden bezeichnen die tiefgestellten Indizes die Tornummer und die hoch-
gestellten Indizes das Zweitor. Aus Abbildung 9.7 liest man

&) W 2) )
@) _ (@) _ o (&) _ o (9 pope (82 pope). (L
by R o A o AV ) A

ab. Die Transmissionsmatrix einer Kaskade von Zweitoren ergibt sich daher zu

T=1".T®, (9.24)

Nun wird die Kaskade eines allgemeine Zweitors mit der Transmissionsmatrix
I(l) und eines reziproken Zweitors mit der Transmissionsmatrix 1(2) betrachtet.
Die Determinante der resultierenden Transmissionsmatrix ist

det(T) = det (T - T®) = det(TV) det(T?) = det (T™). (9.25)
N———’
=1

Die Determinante der Transmissionsmatrix von Zweitoren andert sich beim An-
fiigen weiterer reziproker Zweitore nicht.
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e e
O T O T® O
I I I
b =bVe— oV =P o = a,<—
—a, b,
I I
O T O
I I
bi<— Ar€e—|

Abbildung 9.7.: Kaskade von Zweitoren

Aufgabe 9.3 FEin zur hier eingefiihrten Transmissionsmatrix T analoges, in der
FElektronik verwendetes Modell von Vierpolen ist die Kettenmatriz (im Englischen
ABCD-Matriz). Mit den in Abbildung 9./ eingefiihrten Zihlpfeilen gilt

(%1 ) B (é ﬁ) | (—%) | (9.26)

Ublicherweise wird I, mit entgegengesetzter Zihlpfeilrichtung definiert, so dass
hier aus Konsistenzgrinden das Minuszeichen vor I, erforderlich ist. Berechnen
Sie die Kettenparameter A, B, C und D als Funktionen der Transmissionspara-
meter und der Streuparameter und umgekehrt die Transmissionsparameter und
die Streuparameter als Funktionen der Kettenparameter A, B, C' und D!

0.6. Modale Streumatrix

Ein Paar an Toren mit gleichartigen Zweileitersystemen kann man auch als ein
symmetrisches Torpaar mit einem symmetrischen rein massegekoppelten Dreilei-
tersystem ansehen, sieche Abbildung 9.8. Fiir die Umrechnung der Wellengréfien
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9.6. Modale Streumatrix

gilt, siehe Abschnitt 7.12:

a™) _L 1 —1 (@ a _L I 1
d®) 2\t 1) e a) V2 \-1 1
%fr_/\,_/ N—— T
U a a
BN L (1 1) (b by_ L (11
b(+) _\/§ 1 1 by by _\/§ -1 1
uT b b

) (49).
) i)

Die hier auftretende orthogonale Transformationsmatrix U entspricht der 2 x 2-

Hadamard-Matrix.

a, —sq0)
L L
\Il TOI" 1 \Il
b «— p) e—
o N |
——————— s @
I—>Q2 I Q
é Tor 2 é
b2<_| <_|
|

Abbildung 9.8.: Symmetrisches Torpaar

Gegentakttor

M

Gleichtakttor

Das Zweitor kann durch seine Streumatrix S beschrieben werden, siehe (9.4).
Durch Einsetzen ergibt sich fiir die Gegentaktwellen und die Gleichtaktwellen

p-)
<b<+)> =U

dO\ (MO M
Ul g ) =y yon

MED (o)
o)

Es folgt die modale Streumatrix

M

M=UT.Ss.U.

Mit (9.4) erhélt man die modalen Streuparameter:

., 1
M ):—(51,1—§21 Si2+852),

1

M= +)_5(511 Soq+ 810 —
1

M(+>_5 (S + Sy, — S15— Sss
1

M) 5(SM+521+512+522

I

)
S52)
$22)
).

(9.27)

(9.28)
(9.29)
(9.30)

(9.31)
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Die konventionellen Streuparameter S, ;, Sy, S5 2 und Sy 5 bezeichnet man auch
als nodale Streuparameter. Neben den Eigenparametern M) und M) gibt
es die Konversionsparameter M =) und M (+’), welche eine eventuell auftretende
Modenkonversion beschreiben. Eine solche Modenkonversion kann auftreten, da
das betrachtete Zweitor selbst nicht zwingend symmetrisch aufgebaut ist. Nur
das angeschlossene Dreileitersystem, beziiglich dessen die Wellengrolen definiert
sind, muss symmetrisch sein. Aufgelost nach den nodalen Streuparametern erhélt
man:

Sia :% (M + MED 4 MO 4 MO (9.32)
Sa1 % (—M =MD+ MO 4 M) (9.33)
Si2 :% (—MC 4 M = MO 4 M), (9.34)
Soa =% (M7 = MO — MO 4 M) (9.35)

Die Ergebnisse lassen sich einfach auf Mehrtore mit einer geraden Anzahl 2N an
Toren erweitern. Wenn man jeweils die Tore n und n+ N zu einem symmetrischen
Torpaar zusammenfasst, erhalt man mit der N x N-Einheitsmatrix E und der in
vier N x N-Blocke zerlegten Streumatrix S

(_)Y) (=)

a;
BN _ (8| L (B -E) (S, S,) 1 (E E) oy
b)) | T V2\E E ) \Sy Sy5) V2\-E EJ [a{Y
: uT s U :
by a\y)

M) M) al™)

“\MED MED ) a®

M

Die Matrix U ist eine orthogonale Transformationsmatrix. Es folgt die modale
Streumatrix

M=U"Ss. U (9.36)

Die Systembeschreibung mit modalen Streuparametern ist eine gleichwertige Be-
schreibung des Systems beziiglich eines anderen Satzes an Basisvektoren. Fiir die
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modalen Streuparameter gilt:

.y 1
M) =5 (51 1= 551 — 815+ 85, 2) ; (9.37)
_ 1
M- =5 (51 1= 851 +81, -5, 2) ; (9.38)
1
M) =5 (§1 1+ 821 =81, 8, 2) ; (9.39)
1
M(++) :é (§1,1 + 5271 + 51,2 + SQ’Q) . (940)
Aufgelost nach den nodalen Streuparametern erhalt man:
1
Sy =5 (M) 4+ MOD 4 MU MED), (9.41)
1
Sp1 =5 (~M) - MOD MU M), (9.42)
1
Sip =g (~MC7 + M - M MED) (9.43)
1
Spo =5 (M) —MOH - MO 4 MUH). (9.44)

Aufgabe 9.4 Welche Eigenschaft hat die modale Streumatrizx M eines passiven
Mehrtors? Welche Figenschaft hat die modale Streumatriz M eines reziproken
Mehrtors?

09.7. Mehrtore mit Quellen
9.7.1. Wellenquellen

Es wird ein lineares Mehrtor betrachtet, das in seinem Inneren eine beliebige
Anzahl an Quellen enthélt. Der Antwort S -a auf die zulaufenden Wellen mit den
komplexen Wellenamplituden a sind dann noch die durch die Quellen verursachten
Urwellen mit den komplexen Wellenamplituden

boy
b= : (9.45)
bQN
gemaf
by Sii - Sin ) bay
b=|:|=] : : | +| : |=S-a+by  (9.46)
by Sy SN,N ay QQN

211



Kapitel 9. Mehrtore

zu iberlagern, vergleiche (9.4). Unabhéngig von der Anzahl der physikalischen
Quellen im Inneren des Mehrtors ist im Modell im Allgemeinen an jedem Tor n
genau eine Urwelle mit der komplexen Wellenamplitude b, zu beriicksichtigen.
Fiir ein quellenhaltiges Zweitor erhalt man beispielsweise den in Abbildung 9.9
dargestellten Signalflussgraphen.

bo
o
Y 1
52,1
a; O > O b2

bl O < O Q9
21,2
1 A
O
bos

Abbildung 9.9.: Modell eines Zweitors mit Quellen

9.7.2. Spannungsquellen

Das Beriicksichtigen von Quellen durch Spannungsquellen an den Toren geméfl
U=2-1+1, (9.47)

ist eine natiirliche Erweiterung des Impedanzmatrixmodells (9.12) von Mehrtoren,
siehe Abbildung 9.10.

Es wird ein spezieller Betriebszustand mit a = 0 betrachtet. Dann ist b = bg,
und es folgt mit (7.18) und (7.19) unter Verwenden der Einheitsmatrix E:

—b
boVRy =Z- —=* +Uj,
N——

VRy
= I
Z + RyE
Uy, =——— by, 9.48
by =(Z+ RxE)™' - VRyUy,. (9.49)
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9.7. Mehrtore mit Quellen

ba bq2
] KR
by —b,
ﬁ@l QQﬁ
| U Ug |
| 1 _>C <—< > I EP:|
Rx Q1l Z, S lgg Ry
I I
Tor 1 Tor 2

Abbildung 9.10.: Vierpol mit durch Spannungsquellen an den Toren beriicksich-
tigten Quellen

Im Betriebszustand I = 0 ist U = U, und man erhalt mit (7.20) und (7.21):

U, U,
—=__g§. bo,
e © 2R @
b a
1
by, =———(E—S)-U 9.50
2qQ 2\/R_N< —) Q> ( )
U, =2/Rx (E—8)™" - by, (9.51)

9.7.3. Stromquellen

Das Beriicksichtigen von Quellen durch Stromquellen an den Toren geméf3
IZX‘H+1Q (9.52)

ist eine natiirliche Erweiterung des Admittanzmatrixmodells (9.13) von Mehrto-
ren, sieche Abbildung 9.11.
Es wird ein spezieller Betriebszustand mit a = 0 betrachtet. Dann ist b = bQ
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b by
| |
| |

bl | b?

|_>Q1 QZﬁ
| ll lQl lQ? 12 |

RN Q1 l ~ X, § ~ le RN
T T

:ﬁ) ® ® (P:
| |
Tor 1 Tor 2

Abbildung 9.11.: Vierpol mit durch Stromquellen an den Toren beriicksichtigten
Quellen

und es folgt mit (7.18) und (7.19):

—% =Y - boVRy 1o,
N——

vV Ry
Y v
RNY +E
I, = — ———— b, 9.53
- VRy (9:53)
by =— (RxY + E) - VRy1,. (9.54)

Im Betriebszustand U = 0 ist I = I und man erhélt mit (7.20) und (7.21):

— VQRN I,=S- —VQRNIQ +hq,
T N——
Vv Ry
bg =~ 5~ (B+8) Lo, (9.55)
2 1
I, =— E+S -bg. 9.56
=Q \/R_N( +—) 2Q ( )

9.8. Analyse komplexer Netzwerke mit Quellen

Es werden aus K Mehrtoren mit Quellen zusammengesetzte Netzwerke betrachtet.
Abbildung 9.12 zeigt ein Beispiel. Das k-te Mehrtor habe N®) Tore und sein
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9.8. Analyse komplexer Netzwerke mit Quellen

S(l)
Tor 1 Tor 2 Tor 3
2 1 2 1 3
le) _ b( ) o Qé) _ bé) . ag) _ bg) "
b b b
2Q1 2Q2 =Q3
+«— 0O — }—()— }—()—
p2) ie) (3)
o MG CMOY < 3 _ (1)
a;” = b ay = by —Q|3 o = p® ay = by
Tor 1 Tor 2 | Tor 1
S® Tor 3 O Tor 2
| 5(3)
@ _ o I
@ =b
bgi

Abbildung 9.12.: Komplexes Netzwerk mit Quellen

Verhalten wird durch die Streumatrix S* und die komplexen Wellenamplituden
bg ) der Urwellen beschrieben.

Fiir die folgenden Betrachtungen ist es sinnvoll, dass Streumatrixmodell (9.46)
eines Mehrtors mit Quellen unter Verwenden der Einheitsmatrix E geméafl

b k
(B -s®) <§(k>> = by

etwas umzuformulieren. Der Zustand an den N®) Toren wird durch die 2N®
in den Vektoren a® und b zusammengefassten komplexen Wellenamplituden
beschrieben. Das Mehrtor erzwingt das Einhalten von N® inhomogenen linearen
Gleichungen, so dass nur noch N*) Freiheitsgrade verbleiben. Mehrtore ohne
Quellen sind als Spezialfall mit enthalten. Hier ist der Vektor hg ) der komplexen
Wellenamplituden der Urwellen gleich dem Nullvektor und es resultieren N®)
homogene Gleichungen.
In dem Netzwerk gibt es insgesamt

K
N=>Y N®W

k=1
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Tore. Man definiert den N-dimensionalen Vektor
a= : (9.57)

der komplexen Wellenamplituden aller zulaufenden Wellen und den N-dimensionalen
Vektor
h(l)
b=| : (9.58)
b

der komplexen Wellenamplituden aller ablaufenden Wellen. Weiterhin definiert
man den N-dimensionalen Vektor

(1)
bq
bg = : (9.59)
(K)
bg
der komplexen Wellenamplituden aller Urwellen.

Jedes Tor sei mit genau einem anderen Tor verbunden. Dann entspricht jede
komplexe Wellenamplitude [a], einer zulaufenden Welle genau einer komplexen
Wellenamplitude [b],, einer ablaufenden Welle und umgekehrt. Die Verbindungs-
struktur des Netzwerks kann durch eine N x N Konnektivitatsmatrix K mit den
Elementen

1 falls [b], =
K], = = { alls b, =lal. . 1 W (9.60)
’ 0 sonst

beschrieben werden. [],, = bezeichnet hierbei das Element in der m-ten Zeile und
n-ten Spalte der Matrix und [-], bezeichnet das n-te Element des Vektors. Es gilt

b=K a. (9.61)

Die Konnektivitdtsmatrix K ist eine Permutationsmatrix. Da Permutationsma-
trizen stets orthogonal sind, gilt

K' - K=E. (9.62)

Beim Verbinden zweier Tore sind immer zwei Paare von komplexen Wellenampli-
tuden gleichzusetzen, das heifit aus
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9.8. Analyse komplexer Netzwerke mit Quellen

folgt auch

Die Konnektivitatsmatrix ist folglich symmetrisch:
K' =K. (9.63)

Weiterhin folgt mit der Orthogonalitat der Konnektivitdtsmatrix, dass die Kon-
nektivitatsmatrix selbstinvers ist:

K K=E. (9.64)

Zusammengefasst erhdlt man mit
S = - (9.65)

folgendes aus 2N Gleichungen bestehendes, das Netzwerk beschreibende inhomo-
gene lineare Gleichungssystem:

(& ) )= (5) 020

Dieses Gleichungssystem ist die Grundlage von Programmen zur Simulation von
Schaltungen | ].

Es gibt insgesamt 2N zu bestimmende komplexe Wellenamplituden in den Vek-
toren a und b, das heifit es gibt genau so viele Gleichungen wie Unbekannte.
Normalerweise hat das lineare Gleichungssystem (9.66) daher genau eine Losung

b\ _(E -8\ (bq
a/] \E —-K 0/’
Die spezielle Struktur der Matrix ausnutzend, erhélt man
a=(K-8)" bq (9.67)

und

b=K- - (K-8)'-by=(E-S-K) b, (9.68)

was man durch Einsetzen leicht iiberpriift.
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Kapitel 10.

Komponenten hochfrequenztechnischer
Systeme

10.1. Eintore

10.1.1. Quellenfreies Eintor

Der einzige Streuparameter des Eintors aus Abbildung 10.1 entspricht dem be-
kannten Reflexionsfaktor

Z — Ry
== 10.1
ﬁl,l Z—'— RN’ ( )
siehe (7.24).
|
—>a
b<— a
|
F—a
Ry 1z O Sia Sia
| b
|
| b
Abbildung 10.1.: Eintor
10.1.2. Eintorquelle
Der Reflexionsfaktor der Eintorquelle aus Abbildung 10.2 ist
Zo — Rx
Si1=—r 10.2
211 ZQ + RN’ ( )
siehe (7.24). Mit (9.49) ergibt sich die komplexe Wellenamplitude der Urwelle zu
_ Lo/T 03
- Zqg+ Rx
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|
Uq l I Ry

IS

Abbildung 10.2.: Eintorquelle

10.2. Zweitore

10.2.1. Symmetrisch aufgebaute Zweitore

Aufgrund des symmetrischen Aufbaus des Zweitors muss fiir die nodalen Streu-
parameter

§1,1 = §2,2 (10-4)

und
§1,2 = §2,1 (10-5)

gelten, siche Abbildung 10.3. Insbesondere sind symmetrisch aufgebaute Zweitore
immer reziprok, siche (9.9).

Interessante weitere Eigenschaften erkennt man, wenn man die beiden Tore
als ein einziges symmetrisches Torpaar auffasst und die modalen Streuparameter
betrachtet. Aus (9.28) bis (9.31) erhélt man:

M) =511 — S, (10.6)
M =0, (10.7)
M) =0, (10.8)
MY =8, + 5, (10.9)
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10.2. Zweitore

i >0 i—»ﬁﬂ

P Tor 1 Q Gegentakttor
l_)1<— b(—)<_

I_>Q2 I_>a(+)

é Tor 2 é Gleichtakttor
b2<—| b(+)<—:

Abbildung 10.3.: Symmetrisch aufgebautes Zweitor

Insbesondere tritt in symmetrisch aufgebauten Zweitoren niemals Modenkonver-
sion auf, das heifit der Gegentaktmode und der Gleichtaktmode sind Eigenmoden
des symmetrisch aufgebauten Zweitors. Mit der fiir den Gegentaktmode sichtba-
ren Impedanz Z-) gilt

=) _
R A
— Z(*) + Ry
und mit der fiir den Gleichtaktmode sichtbaren Impedanz Z™) gilt
porn = Z5 = By
- Z(‘H + RN

siehe (7.49), (7.52) und (3.84).

Speziell fiir symmetrisch aufgebaute, eigenreflexionsfreie Zweitore gilt

Sy = —MET) = M),
siehe (9.5). Daraus folgt

1-9

Z5) =R =12 10.10

Z N F 51 (10.10)
1+8

24 = gyt 212 (10.11)
1 -5,

und schliefSlich

ARVARESD N (10.12)

Wenn man zuséatzlich auch noch Verlustfreiheit fordert, miissen die Streuma-
trizen S und M geméf (9.7) und Aufgabe 9.4 unitér sein. Daraus folgt

(M| = |MED] =8| = 1. (10.13)

Symmetrisch aufgebaute, eigenreflexionsfreie und verlustfreie Zweitore sind Pha-
senschieber.
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10.2.2. Serienimpedanz
Aus Abbildung 10.4 liest man die Admittanzmatrix

i _1
A z

b, % Q2<_I—>b2
Z
Rx : : Ry
| |
Tof 1 Tof 2

Abbildung 10.4.: Serienimpedanz Z

10.2.3. Paralleladmittanz

Aus Abbildung 10.5 liest man die Impedanzmatrix

1
z=<%
Y

[<=I=<l=
~—
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der Paralleladmittanz Y ab. Mit (9.16) erhédlt man hieraus die Streumatrix

N SRS
U ) U o
_ L [zt v (yofv oy (10.15)
28 4+ R -3  ¢+BRx ¥ v — Bx
1 YRy 2
24+ YRy 2 —Y Ry
|%CLI QQQ
by«<— - b,
Re ' v ' Ry

— ¢ b——

Tor 1 Tor 2
Abbildung 10.5.: Paralleladmittanz Y

Aufgabe 10.1 Der in Abbildung 10.6 gezeigte RC-Tiefpass kann als Kaskade
eines Serienwiderstands R und einer Parallelkapazitit C' aufgefasst werden. Be-
rechnen Sie die Ubertragungsfunktion, das heifit den Streuparameter S, des RC-
Tiefpasses, als Funktion der Kreisfrequenz w, des Widerstands R, der Kapazitdt
C und des Bezugswiderstands Ry/!

I r |
— o +HFO—e—«
| | |
R | | C o | Ry
| | |
—
| s | 8s®&
Tor 1 Tor 2

Abbildung 10.6.: RC-Tiefpass
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10.2.4. Dampfungsglied

Abbildung 10.7 zeigt ein in II-Schaltung realisiertes Dampfungsglied. Damit das
Déampfungsglied eigenreflexionsfrei (9.5) ist, miissen die an einem Tor bei refle-
xionsfreiem Abschluss des jeweils anderen Tors mit dem Bezugswiderstand Ry
sichtbaren Impedanzen gemafl (7.23) gleich dem Bezugswiderstand Ry sein:

1
RN:L_i_%’
Ry Ro+———
7y RN

h RiRx  RiRy
"R, —Rx R, + Ry

Tor 1 I Tor 2

Abbildung 10.7.: Dampfungsglied. Rechts spezieller Betriebszustand a, = 0

Wegen der geforderten Eigenreflexionsfreiheit gilt bei reflexionsfreiem Abschluss
von Tor 2 mit dem Bezugswiderstand Ry fiir die komplexen Wellenamplituden
by =0 und ay, = 0. Aus (9.4) folgt mit (7.19) fiir den Gewinn G des Dampfungs-
glieds in diesem Betriebszustand

1 —1—
VG = |5y = ] = | L] - R TR _ Ry Ry
“21 aq ll Ry R_lN Ry (R1 + RN) + RlRN’

woraus durch Einsetzen von Rs
R —R
VO = & N
Ry + Rn
folgt. Man erhalt schliellich die Widerstande

1+VG

Ry =R
1 Nl—\/@

(10.16)
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und

(10.17)

10.2.5. Leitungsstiick

Zunéchst wird der Sonderfall, dass der Wellenwiderstand Zp, des Leitungsstiicks
dem Bezugswiderstand Ry entspricht betrachtet. Bei reflexionsfreiem Abschluss
von Tor 2 mit dem Bezugswiderstand Ry, siehe (7.23), ist der an Tor 1 sichtbare
Reflexionsfaktor geméaf (7.9)

51,1 =0.

Weiterhin gilt wegen (7.5) in diesem Betriebszustand
by = eiBl a;.

Mit (9.4) folgt .
Sy1 = eI

Aufgrund des symmetrischen Aufbaus des Zweitors ergibt sich mit (10.4) und
(10.5) die Streumatrix
0 e B

Wie man leicht tiberpriift, ist die Streumatrix S unitdr und das Leitungsstiick
somit wie erwartet verlustfrei, siehe (9.7).

Nun soll der allgemeine Fall eines vom Bezugswiderstand Ry abweichenden
Wellenwiderstands Zp, betrachtet werden, siehe Abbildung 10.8. Hierzu fithrt man
eine Renormalisierung der Streumatrix durch.

| |
b, <_|—>Q1 as <_i—> by
1 1
— T
RN | 4 L | RN
| |
> T
| I [
Tor 1 Tor 2

Abbildung 10.8.: Leitung
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Aus der Streumatrix beziiglich dem Wellenwiderstand Z;, geméf (10.18) be-
rechnet man zunéchst mit (9.17) die Impedanzmatrix

1 e 1 —ei\ !
Z=27y (e—jﬁl 1 ) ' <_ eif 1
1 e 1 1 e 8
=21, e Bl "] ezl \e B

CZy (e 2 Nz feos(Bl) 1
~ oiBl _ ol 2 elBl 4 e—iBL | — Jsin(ﬁl) 1 cos(pl) )

Aus dieser Impedanzmatrix Z ergibt sich mit (9.16) die Streumatrix beziiglich
des Bezugswiderstands Ry zu

S cos(pl1) —i—JRN sin(1) 1 -
= ( 1 cos(p1) —i—JRN sm(ﬁl))
cos(Bl) — jix % sin(1) 1
. < 1 cos(fl) — jg—f sin(ﬁl))
1
_COSQ(BZ) j2@ cos(B1) sin(pl) — (%)2 sin?(B1) —
(cos(ﬁl) —i—JRN sin(1) -1 ) (10.19)
-1 cos(fl) +J— sin (1)
cos(Bl) — jg—g sin(pl) 1
. ( 1 cos(pl) — J— sm(ﬁl))
1
" 2RnZy cos(Bl) +j (R% + Z32) sin(B1)
—j (R} — Z7)sin(Bl) 2R 71,

Fir den A/4-Transformator erhélt man mit Sl = /2, sieche (2.38), die Streu-
matrix
g__ 1 (Z-R 2z
S 2R+ Ry \-2BNZL ZR - RY )

Fiir den A/2-Transformator erhélt man mit 3l = m, siehe (2.38), die Streumatrix

S = (_01 _01> : (10.21)

Aufgabe 10.2 Berechnen Sie die Admittanzmatriz Y eines \/4-Transformators
mit dem vom Bezugswiderstand Ry abweichenden Wellenwiderstand Zy,!

(10.20)
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10.3. Dreitore

10.3. Dreitore
10.3.1. Zirkulator

Die Streumatrix eines eigenreflexionsfreien Dreitors hat die Struktur

0 §1,2 51,3
S = §2,1 0 52,3 )
§3,1 §3,2 0

siehe (9.5). Die Streumatrix S eines verlustfreien Dreitors ist gemaf (9.7) unitér.
Hieraus folgt fiir eigenreflexionsfreie, verlustfreie Dreitore:

§§,1§372 =0,
§§,1§2,3 =0,
5{,251,3 =0,
‘§2,1‘2 + ‘53,1‘2 =1,
‘§1,2‘2 + ’53,2’2 =1,
s+ .

Dieses Gleichungssystem kann auf zweierlei Art und Weise entweder durch

51,2 = 52,3 = §3,1 =0

und
500 = ] = [515] =
oder durch
§2,1 = 52,3 - §1,3 =0
und

‘§1,2‘ = ‘52,1‘ = ‘53,1‘ =1

erfilllt werden. Ein an einem Tor eingespeistes Signal wird zum jeweils néchsten
Tor weitergeleitet, wobei sich die beiden Losungen nur in der Nummerierung der
Tore unterscheiden. Derartige Dreitore bezeichnet man als Zirkulatoren. Abbil-
dung 10.9 zeigt das Symbol und den Signalflussgraphen eines Zirkulators mit der
Streumatrix

S = (10.22)

O = O
_ o O
o O
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V’_\

Tor 2 b, a O

O b,
\_-~7

Abbildung 10.9.: Zirkulator

Zirkulatoren sind offensichtlich nicht reziprok, sieche (9.9).
Wenn man einen Zirkulator am dritten Tor reflexionsfrei abschliefit, erhédlt man
eine Einwegleitung, siche Abbildung 10.10. Die Streumatrix der Einwegleitung ist

S - (? 8) (10.23)

Die Einwegleitung ist wie der Zirkulator nicht reziprok, siehe (9.9).

|
|
I
C >

r@l QQ < !

e

A\

by <— >0,
| |
Tor 1 Tor 2
1
a; O > O bQ
I'=0

bl (@) O 4y

Abbildung 10.10.: Einwegleitung
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10.3.2. Verzweigung

Bei reflexionsfreiem Abschluss von Tor 2 und Tor 3 der in Abbildung 10.11 gezeig-
ten Verzweigung mit dem Bezugswiderstand Ry sieht man an Tor 1 eine Impedanz
von Rn/2, so dass sich mit (7.24)

g IRy 1
TG Ry 3

ergibt. Da weiterhin die Spannungen an allen Toren gleich sind, folgt mit (7.18)
und (9.4):

(a1 + by) \/ Rx =bsy/ Ry,
—_— ——
Ul Q2

(1 +_§1,1) a; =by

2
Soyp=1+58,1= 3

Tor 2
o |
42 = 0<_i—>b2
|
bl <_|—>Ql QQ Ry
|
|
Ry U, |
|
: U
Tor 1 _31 Rx
a,3 — Oﬁl—>b3
Tor 3

Abbildung 10.11.: Verzweigung. Rechts spezieller Betriebszustand a, = a3 = 0

229



Kapitel 10. Komponenten hochfrequenztechnischer Systeme

Unter Berticksichtigen des symmetrischen Aufbaus der Verzweigung erhélt man
schlieBlich die Streumatrix

5:% 2 -1 2|, (10.24)

Die Verzweigung ist verlustfrei und reziprok, aber keines der Tore ist eigenrefle-
xionsfrei, siehe (9.7), (9.9) und (9.5). Die Verzweigung hat daher in der Hochfre-
quenztechnik keine praktische Bedeutung.

10.3.3. Aliseitig angepasster Teiler

Es wird der in Abbildung 10.12 gezeigte allseitig angepasste Teiler betrachtet.
Um Eigenreflexionsfreiheit (9.5) zu erreichen, muss die bei reflexionsfreiem Ab-
schluss von Tor 2 und Tor 3 mit dem Bezugswiderstand Ry die an Tor 1 sichtbare
Impedanz geméf (7.23) gleich dem Bezugswiderstand Ry sein:

1
R+ B (R + Rx) =R,
Ry

R=—.
3

Dann gilt
§1,1 =0.

Aus Symmetriegriinden teilt sich der in Tor 1 hineinflieBende Strom gleichmaBig
auf Tor 2 und Tor 3 auf. Mit (7.19) und (9.4) folgt:

a 9 —by
v/ Rx VRN’
11 12
1
b, —=

92 2Q17
1
Soq1 ==.
221 75

Unter Berticksichtigen des symmetrischen Aufbaus des allseitig angepassten
Teilers erhalt man schliellich die Streumatrix

01

1
S= 0 1]. (10.25)
10

1
2 1
1
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Tor 2 Tor 2

Abbildung 10.12.: Allseitig angepasster Teiler. Rechts spezieller Betriebszustand
ay = a3 =0

Der allseitig angepasste Teiler ist eigenreflexionsfrei und reziprok aber nicht ver-
lustfrei, siehe (9.5), (9.9) und (9.7).

Aufgabe 10.3 Es wird der in Abbildung 10.13 gezeigte eingangsseitig angepasste
Teiler betrachtet. Wie muss der Widerstand R gewdhlt werden, damit S;; = 0
gilt? Berechnen Sie die Streumatrixz S des bei dieser speziellen Wahl des Wider-
stands R erhaltenen eingangsseitig angepassten Teilers!
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Tor 2

2 <_|I—> by

as <—]l_> b?’

Tor 3

Abbildung 10.13.: Eingangsseitig angepasster Teiler

10.4. Viertore

10.4.1. Symmetrisch aufgebaute Viertore

Aufgrund des symmetrischen Aufbaus des Viertors gilt fiir die nodalen Streupa-
rameter

51 1 :§3 3
52 2 :§4,47
51,3 :§3,1,
52,4 :§4,27
51 2 :§3 4>
52 1 :§4 35
51,4 :§3,27
54,1 :SQ 35

siehe Abbildung 10.14.
Man kann wieder symmetrische Torpaare bilden und die modalen Streupara-
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I
I al” gé_)<—l
% Gegentakttore ?
B ] C
b G
Ly ol ]
é Gleichtakttore é
B+ <_: L5y

Abbildung 10.14.: Einfach symmetrisch aufgebautes Viertor

meter betrachten. Aus (9.37) bis (9.40) erhilt man:

(__) _ [ &11 21,3 21,2 Sy
M a <§271 - 5273 §272 — 5274) ) (1026)
Sii+815 Sip+S
(++) _ [£211 Si13 Sip S
. B (5271 +895 Syo+ 52,4) , (10.27)
MM (8 8) ' (10.28)

Insbesondere tritt in einem symmetrisch aufgebauten Viertor niemals Modenkon-
version auf.

In einem néachsten Schritt sollen doppelt symmetrisch aufgebaute Viertore be-
trachtet werden, siche Abbildung 10.15. Fur die nodalen Streuparameter folgen
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weitere Ubereinstimmungen:

51,1 = 53,3 :§2,2 = §4,47
51,3 = 53,1 :§2,4 = §4,27
51,2 = 53,4 :§2,1 = §4,3a
51,4 = 53,2 :§4,1 = §2,3-

Insbesondere sind doppelt symmetrisch aufgebaute Viertore immer reziprok, siehe
(9.9). Fir die modalen Streuparameter folgt:

ay

&

b, <—T
I—>Q3

S

Sio— 8, 4>
4 i I 10.29
Si1— S0y (10.29)

Sio+ 5 4)
’ i 10.30
Siq+ 813 ( )
(10.31)

Abbildung 10.15.: Doppelt symmetrisch aufgebautes Viertor

Aufgabe 10.4 FEs wird der in Abbildung 10.16 gezeigte allseitig angepasste Teiler
mat vier Toren betrachtet. Wie muss der Widerstand R gewdhlt werden, damit der
Teiler eigenreflexionsfrei ist? Berechnen Sie die sich bei dieser speziellen Wahl des
Widerstands R ergebende Streumatriz S!
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—  Tor 2

Abbildung 10.16.: Allseitig angepasster Teiler mit vier Toren

10.4.2. Richtkoppler

Die Streumatrix eines doppelt symmetrisch aufgebauten, eigenreflexionsfreien Vier-
tors hat die Struktur

0 §1,2 51,3 §1,4
S 12 0 51,4 §1,3
S 1,3 §1,4 0 §1,2
S 1,4 §1,3 §1,2 0

2
I
|

siehe (9.5) Die Streumatrix S eines verlustfreien Viertors ist gemaf (9.7) unitér.
Hieraus folgt fiir doppelt symmetrisch aufgebaute, eigenreflexionsfreie, verlustfreie
Viertore:
2 2 2

}§1,2} + }51,3‘ + §1,4} =0,
S7 3814 + 87481 5 =0,
5’1&,251,4 + Sf,4£1,2 =0,
575813+ 87 3912 =0.
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Aus der letzten Gleichung folgt:!
Re(ﬁhﬁm) =0,
arg(ﬁm) - arg(ﬁl,?,) =+ g
Analoges gilt auch fiir die beiden anderen Paare von Streuparametern:
arg(ﬁm) - arg(ﬁm) =x ga
arg(ﬁl,s) - arg(ﬁm) ==+ g

Alle drei Streuparameter S, 5, S; 3 und S; 4 miissen in der komplexen Ebene paar-
weise senkrecht zueinander sein. Dies erfordert, dass einer der drei Streuparameter
Si9, 813 und S; 4 Null ist. Willkiirlich wird die Variante

§1,4 =0
weiter betrachtet. Es folgen
arg(S, ) — arg(S5) = ig (10.32)
und ) )
[S12| +[S1a| =1. (10.33)

Die resultierende Streumatrix hat die Gestalt

0 Sy, Si3 0
Sis 0 0 Si3

Sis 0 0 S|
0 S5 Sip 0

[Un
I

(10.34)

das heifit doppelt symmetrisch aufgebaute, eigenreflexionsfreie, verlustfreie Vier-
tore sind stets Richtkoppler. Abbildung 10.17 zeigt Symbol und Signalflussgraph
eines Richtkopplers.

10.4.3. Parallelleitungskoppler

Der Parallelleitungskoppler ist ein doppelt symmetrisches Dreileitersystem mit
Koppelfaktor k, siche Abbildung 10.18. Der Wellenwiderstand Z£_) des Gegen-
taktmodes und der Wellenwiderstand Zfr) des Gleichtaktmodes weichen im All-
gemeinen vom Bezugswiderstand Ry ab. Mit (10.19) erhdlt man die modalen

! Der Realteil einer komplexen Gréfie berechnet sich zu Re(z) = 1 (z + z*).
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I
Tor4 — + O + —
ay,
| a a |
a; \ (0]
O O
<« F—
b N b
Tor 1 as Tor 2
Tor 3 ——+ O I —
b3

Abbildung 10.17.: Richtkoppler
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Streuparameter:

o 2 (=) :
My = i <RN L > i (10.35)
2RNZ) cos(Bl) + ] (RN + 7 ) sin(B1)

~i (B& = 207 ) sin(a)

MY = S (o)

2RNZL+) cos(Bl) + < Z£+) >sin(ﬂl)

_ 2 Z

My, = i (10.37)

2RNZL cos(ﬁl) +j (RN + Z( ) sm(ﬁl)

2RN 2T

M = Rx (10.38)

2RNZLT cos(ﬁl) +j <RN + 7z > sm(ﬁl)

Wegen des symmetrischen Aufbaus gilt fiir den Eigenreflexionsfaktor

_ M+ M (10.39)

211 2 )

siehe (10.29) und (10.30). Der Parallelleitungskoppler ist gemafl (9.5) eigenrefle-
xionsfrei, falls die Bedingung

0=25, =M\ + M
- (R{@ - Z()Q) sin(31)
R 2 cos(BD) + (RN + 7z ) sin(81)
- (RN 7 ) sin(51)

2RNZH) cos(Bl) + | (R%\I + 7 ) sin(51)

+

erfiillt ist. Diese Bedingung ist erfiillt, falls die Leitungslange [ ein ganzzahliges
Vielfaches von A\/2 ist, siche (2.38), oder

0= (RN 74 ) (QRNzﬁ cos(Bl) + | (RN + 7t )sm(ﬁl))
(RN 7L ) (2RNZ cos(Bl) + | (RfV +Z£)2) sin(ﬁl)),

=2Rycos(Bl) (21 + Z(V) (R% — 27 ’Z(+>)+J2s1n(5z)( _Z£—>2Z£+>z)
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b, — a a, =0 <—||_> by
e T
To:r 1 Z1,, k Tolf 2 | | Rx
!
=SS EESESS S e _
Tor 3 Tolkr 4 | |Rn
!
q €
b3<—!—>@3 a4—0<—!_>b4
|
=) ) P QA p— )
by “ - |_>b2
e T
To:r 1 Zﬁ_) Tolr 2 | |Rx
!
=SS EESESS S e _
Tor 3 Tollr 4 1 | Ry
ettt o
| l L
+
B <_|‘—> ai” ast = 0<—:_> B
q T
Top 1 AR To'F 2 | | Rx
!
T e _
To{r 3 Tollr 4 | RN
e =
| l L

Abbildung 10.18.: Parallelleitungskoppler. Spezieller Betriebszustand a, = a4, = 0
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gilt. Dies ist der Fall, falls
Ry =\ 25zt (10.40)

gilt. Im Folgenden wird nur dieser spezielle Wert des Bezugswiderstands Ry weiter
betrachtet. Mit (3.71), (3.72) und (3.73) folgen die modalen Streuparameter:

—jk sin(pBl)

a0 - , 10.41
=t V1 — k2 cos(fl) + jsin(Bl) ( )
M =0, (10.42)
M =0, (10.43)
jk sin(pl1)
MU = ) , 10.44
=t V1 —k2cos(fl) + jsin(pl) ( )
- V1—k?
M, = — (10.45)
’ V1 — k2 cos(fl) + jsin(Bl)
M, =0, (10.46)
M =0, (10.47)
V1—k?
M = — . (10.48)
’ V1 —k?cos(fl) + jsin(pl)
Die nodalen Streuparameter ergeben sich mit (9.41) bis (9.44) zu:
M(**) M(++)
Sy == ;_1’1 =0, (10.49)
C MG+ MY VI— R
Si2 = = — ; (10.50)
’ 2 V1 — k2 cos(fl) + jsin(Bl)
213 = 2 V1= k2 cos(Bl) + jsin(Bl)’ .
_M(**) M(++)
D14 = —= ;_ —2 = 0. (10.52)

Die restlichen nodalen Streuparameter sind aus Symmetriegriinden gleich zu den
berechneten.

Es folgen
2 1— k2
pu— ]. .
‘ﬁm‘ 1 — k2 cos?(pBl) (10.53)
und ) )
2 k= sin(51
‘§173‘ = ( ) (10.54)

1 — k2 cos?(pl)
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Das Nahnebensprechen

o jk sin(51) B k
213 = mCOS(BZ) + jsin(pl) 1 _jmcot(ﬁl)

wird fir [ = A\/4 maximal, siehe (2.38). Der bei dieser Leitungslinge erzielte
Maximalwert des Nahnebensprechens ist S; 3 = k. Das Fernnebensprechen S, 4
ist unabhéngig von der Leitungslange [ immer Null.

Zum Veranschaulichen der Ergebnisse wird der in Abbildung 10.18 gezeigte
spezielle Betriebszustand mit reflexionsfreiem Abschluss an Tor 2 und Tor 4 be-
trachtet. Man beachte, dass der Abschluss beztiglich der an den Toren angeschlos-
senen Zweileitersysteme, nicht aber beziiglich des gekoppelten Dreileitersystems
im Inneren des Viertors reflexionsfrei ist. Nur an Tor 1 liege eine zulaufende Welle
an, das heiit an Tor 1 {iberlagern sich zulaufende Gegentaktwelle und zulaufende
Gleichtaktwelle konstruktiv und an Tor 3 16schen sich zulaufende Gegentaktwelle
und zulaufende Gleichtaktwelle destruktiv aus. Fiir Gegentaktmode und Gleicht-
aktmode ist die gleiche Abschlussimpedanz Ry sichtbar. Diese Abschlussimpedanz
Ry wird jedoch aufgrund der unterschiedlichen Wellenwiderstinde von Gegen-
taktmode und Gleichtaktmode in unterschiedliche Eingangsimpedanzen transfor-
miert, so dass auch die eingangsseitigen Reflexionsfaktoren fiir Gegentaktmode
und Gleichtaktmode unterschiedlich sind. Die ablaufende Gegentaktwelle und die
ablaufende Gleichtaktwelle 16schen sich daher an Tor 3 nicht mehr vollstdandig aus.
Es kommt zu Nahnebensprechen. Nur wenn die Leitungslange ein ganzzahliges
Vielfaches von \/2 ist, wird unabhéngig vom Wellenwiderstand die Abschlussim-
pedanz Ry stets in sich selbst transformiert und es treten keine Reflexionen und
insbesondere kein Nahnebensprechen auf. Speziell fiir

(10.55)

Ry =\ 2570 (10.56)

unterscheiden sich die Reflexionsfaktoren von Gegentaktmode und Gleichtaktmo-
de nur im Vorzeichen. Dann 16schen sich die ablaufende Gegentaktwelle und die
ablaufende Gleichtaktwelle an Tor 1, nicht aber an Tor 3 gegenseitig aus.
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Kapitel 11.

Vektorielle Netzwerkanalyse

11.1. Reflektometer

11.1.1. Aufbau eines Reflektometers

Das Reflektometer dient dem Messen des Reflexionsfaktors ['pyr eines Messob-
jekts (Device under Test, DUT). Da nicht nur der Betrag des Reflexionsfaktors
I'pur, sondern auch das Argument gemessen wird, spricht man von einer vekto-
riellen Messung. Wenn es geliange, die komplexe Wellenamplitude a der auf das
Messobjekt zulaufenden Welle und die komplexe Wellenamplitude b der ablaufen-
den Welle getrennt zu erfassen, so konnte man den Reflexionsfaktor mit

SRSy

Ipyr = (11-1)
direkt berechnen, siche (7.7).

Fiir eine praktische Realisierung des Reflektometers sind direktive Elemente
wie Richtkoppler verfiigbar, die im Idealfall zu den gesuchten Wellen proportio-
nale Wellen an getrennten Toren auskoppeln. Zum Messen der komplexen Wellen-
amplituden kann man beispielsweise Quadraturdemodulatoren verwenden, siehe
Anhang A.6.5. Die resultierenden Gleichspannungen in den Inphasekanélen und
Quadraturkanélen entsprechen den Realteilen beziehungsweise den Imaginartei-
len der zu messenden komplexen Wellenamplituden. Zum Unterdriicken von Rau-
schen fithrt man eine Mittelung tiber eine gewisse Integrationsdauer durch, was im
Frequenzbereich einer Filterung mit einer zur Integrationsdauer umgekehrt pro-
portionalen Auflésebandbreite (Resolution Bandwidth, RBW) entspricht. Wegen
der unbekannten Nullphase des Oszillatorsignals geht die absolute Phaseninfor-
mation zundchst verloren. Wenn man in beiden Messkanalempféangern das selbe
Ostzillatorsignal verwendet, bleibt die hier relevante relative Phaseninformation
jedoch erhalten. Man erhalt im Idealfall zu den komplexen Wellenamplituden
proportionale Messgrofien

a ~a
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und
b ~b.

Die Proportionalitatsfaktoren des direktiven Elements und die Verstarkungen und
Phasenverschiebungen der Messkanalempfénger sind im Idealfall fiir beide Mess-
grofien gleich, so dass man den Reflexionsfaktor des Messobjekts direkt als Ver-
héltnis der Messgroflen berechnen kann:

Ipyr = (11.2)

ISHISA

In der Realitét treten signifikante Fehler auf. Neben Imperfektionen des direk-
tiven Elements sind dies insbesondere Phasenverschiebungen und Dampfungen
der Verbindungsleitungen zwischen Messgerat und Messobjekt. Man modelliert
dieses reale Reflektometer durch ein Viertor an dessen vier Toren

1. das Messobjekt mit Reflexionsfaktor I'pyr,
2. die Testsignalquelle,

3. die Messstelle fur die komplexe Wellenamplitude @’ der hinlaufenden Welle
mit Reflexionsfaktor [, und

4. die Messstelle fiir die komplexe Wellenamplitude b’ der riicklaufenden Welle
mit Reflexionsfaktor [y

angeschlossen sind, sieche Abbildung 11.1.
Mit den Reflexionsfaktoren der Messstellen folgen

ay =TL,d (11.3)

und
asz = £bb/7 (11-4)

siehe (7.7). Das Viertor kann geméf (9.4) durch seine Streuparameter beschrieben
werden:

a =981 1b+ 8205 + 8 303 + S 404, ( )
by =851b+ S5 0a9 + Sy 3a3 + S5 404, (11.6)
b’ =S31b+ S32a5 + S33a3 + S 404, (11.7)
a' =841b+ 84005 + Sy 303 + S4 404 (11.8)

Diese Gleichungen stellen ein lineares Gleichungssystem mit sechs Gleichungen
und den sechs Unbekannten a, V', ay, a3, a4 und b, dar, das heilt man kann a
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L

by =a

Tor 4 — I O I —

Messtor &
st I
Tpur O O -
R b
Tor 1 as Tor 2

Tor 3 ——+0O 1+ —

by =1V

Abbildung 11.1.: Reflektometer

und b’ als Funktionen von b und &’ berechnen. Unter Verwenden von (11.3) und
(11.4) erhélt man aus (11.8)
@ — 1 o — §4,1b B §4,3a _ §4,4a
- Sao Sio Sio - §4,2_4
(v Saaln 0 San, Susly
~ (e - o — Sy ity
Sy o Sy 2 Sy o Sy 2

Mit (11.3), (11.4) und (11.9) eliminiert man a,, az und a4 in (11.5) und (11.7)
und erhalt schliefllich @ und b’ als lineare Funktionen von b und @’ geméf

ay _ EO,O EOJ ) b
<@'> B (EI,O Fio.) \d) (11.10)
S———

F

(11.9)

Abbildung 11.2 zeigt das so erhaltene Modell des imperfekten Reflektometers.
Die Fehler werden durch ein zwischen virtuelles ideales Reflektometer und Mes-
sobjekt geschaltetes Fehlerzweitor mit der Streumatrix F beriicksichtigt. Dieses
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Fehlerzweitor entspricht keinem direkt physikalisch vorhandenem Zweitor und ist
daher im Allgemeinen auch nicht reziprok. Das hier geschilderte Vorgehen wird
als Viertor-Zweitor-Reduktion bezeichnet | l.

_——— N, —————— ————
( | " 5
| b Fio | gl
| < ' >
< | S
| = | hvy
< b / b @
| '$Lour = ¢ Foo Eiy | IEDUTZQ%I
1< | |
n
| < =1
I a EO,l Ia’| 3
| I Fehlerzweitor | EI
B — } N - [____J

Abbildung 11.2.: Modell des imperfekten Reflektometers

Aufgabe 11.1 Berechnen Sie die Streuparameter Fy,, Foq, Fyo und Fy; des
Fehlerzweitors als Funktionen der Streuparameter des Viertors und der Refle-
zionsfaktoren der Messstellen! Wie vereinfachen sich die Ergebnisse, wenn das
Viertor ein Richtkoppler ist, siehe Abschnitt 10.4.272 Wie vereinfachen sich die
Ergebnisse im Falle reflexionsfreier Messstellen I'y = 0 und 'y =07

11.1.2. Reflektometerfehlerkorrektur

Mit der Transmissionsmatrix (9.21) des Fehlerzweitors mit den Streuparametern
gemafl (11.10), sieche Abbildung 11.2, kann man die am Messobjekt anliegenden
komplexen Wellenamplituden aus den vom virtuellen idealen Reflektometer ge-
messenen komplexen Wellenamplituden berechnen:

a\ 1 [—det(E) FEoo\ (<&
<b> B ELO < _E1,1 1 . Ql . (11'11)
Man beachte, dass die Vektorelemente und entsprechend auch die Matrixelemente
gegeniiber der Definition der Transmissionsmatrix in (9.20) vertauscht sind, was

sich spater in (11.24) als vorteilhaft erweisen wird.
Fiir den Reflexionsfaktor (11.1) des Messobjekts folgt

_ @I - E171Q, _ Ei)UT - E171
Eoob —det(E)a’  FooLpyr — det(E)’

(11.12)

£DUT =

ISERS
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das heiit bei Kenntnis der drei Fehlerterme det(F), 'y, und £ ; kann man den
Reflexionsfaktor I'pyp des Messobjekts aus den gemessenen komplexen Wellen-
amplituden ¢’ und b’ oder dem gemessenen Reflexionsfaktor Iy gemaf (11.2)
berechnen. Man spricht daher auch vom 3-Term-Fehlermodell. In der Literatur
[ | wird der Anschauung wegen tiblicherweise statt det(F) der unter Verwen-
den der tibrigen Fehlerterme F, und F'; ; daraus berechenbare Fehlerterm

Fo1Fyg=FEookFy 1 — det(F)
verwendet. Die Fehlerterme werden dann wie folgt bezeichnet:
Reflexionsgleichlauf: [, [ ,

Direktivitat: I,
Messtoranpassung: F

Bemerkenswert ist, dass nur das Produkt Fy,F' ;, nicht aber Fy, und F, fur
die Korrekturrechnung (11.12) benotigt werden.

Die drei Fehlerterme bestimmt man durch Messungen an drei Kalibrierstan-
dards exakt bekannten Reflexionsfaktors. Beim OSM-Verfahren verwendet man
folgende Kalibrierstandards:

Leerlauf (OPEN): wahrer Reflexionsfaktor ', gemessener Reflexionsfaktor DO

Kurzschluss (SHORT): wahrer Reflexionsfaktor Iy, gemessener Reflexionsfak-
tor g

Abschluss (MATCH): wahrer Reflexionsfaktor I'y;, gemessener Reflexionsfaktor
Ly

Reale Kalibrierstandards haben in nicht vernachlassighbarer Weise von den Re-
flexionsfaktoren eines idealen Leerlaufs, Kurzschlusses beziehungsweise Abschlus-
ses abweichende Reflexionsfaktoren. Neben einer gewissen Leitungsliange zwischen
der Referenzebene im Steckverbinder und dem eigentlichen Kalibrierstandard sind
insbesondere Streukapazititen des offenen Leitungsendes im Leerlauf signifikant.
Hersteller von Kalibrierstandards legen daher fiir jeden Kalibrierstandard indivi-
duell mit geeichten Messgerédten bei verschiedenen Kreisfrequenzen w gemessene
Kalibrierdaten bei. Das im Folgenden beschriebene Verfahren zum Ermitteln der
Fehlerterme ist von den konkreten Kalibrierstandards unabhéngig und kann somit
Imperfektionen der Kalibrierstandards berticksichtigen.
Aus (11.12) folgt
I'TFyy—Ldet(F) =T"— F, ;. (11.13)
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Dies ist eine lineare Gleichung fiir die drei Fehlerterme det(F), Fyo und F 4,
in welcher der wahre Reflexionsfaktor I und der zugehorige gemessene Reflexi-
onsfaktor I’ vorkommen. Durch Einsetzen der drei Paare wahrer und gemessener
Reflexionsfaktoren der drei Kalibrierstandards erhélt man ein eindeutig losbares
lineares Gleichungssystem

Ty 1 I'btly -TLo Fy
Lg| =11 LLs —Ls|-| Eoo
Ly 1 Iyl —Dy det(F)

Die Losung ist

-1

Fy, 1 Iolo —Lo Ly
Foo | =11 IsLs —Ls| -|Lg|- (11.14)
det(F) 1 H\/{EM L'y Ei\/[

Falls mehr als die minimal erforderlichen drei Kalibrierstandards verwendet wer-
den, kann man die zusatzlichen Messwerte im Rahmen einer Ausgleichsrechnung
zur Messfehlerreduktion nutzen | ; .

Aufgabe 11.2 Wie vereinfachen sich die Gleichungen (11.14) zum Berechnen
der drei Fehlerterme det(F), Fyo und I, falls ideale Kalibrierstandards ' =1,
I's = —1 und 'y = 0 verwendet werden?

11.2. Vektornetzwerkanalysator

11.2.1. Aufbau eines Vektornetzwerkanalysators

Ein Vektornetzwerkanalysator zum Messen der Streuparameter eines Zweitors be-
steht im Wesentlichen aus zwei Reflektometern mit insgesamt vier Messstellen,
siehe Abbildung 11.3. Man spricht von einem vollwertigen Vektornetzwerkanaly-
sator. Es gibt auch vereinfachte Vektornetzwerkanalysatoren mit weniger Mess-
stellen | |. Hier ergeben sich jedoch Einschrankungen bei den Fehlerkorrek-
turmoglichkeiten. Zunéchst wird nur der vollwertige Vektornetzwerkanalysator
mit zwei Messtoren betrachtet. Heutige Vektornetzwerkanalysatoren enthalten
dariiber hinaus einen Rechner, der die Messwerte verarbeitet. Aufler einer gra-
phischen Darstellung der Messergebnisse wird insbesondere die Fehlerkorrektur
vollautomatisch durchgefiihrt. Auch weiterfithrende Messwertverarbeitungen wie
Berechnen der modalen Streuparameter und Berechnen der Impedanzmatrizen
und der Admittanzmatrizen, siehe Kapitel 9, sind heute Standard.
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11.2. Vektornetzwerkanalysator

o_mH £<M
m\mH mmmH HH m/&H
— L O+ — ¢d 10T, — 40O +—— ¢V I0],
¢d 10T, ¥D 1q 10, IV 10L YD gy 1oL,
cag | tp o L 5 Vg _ avg
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vy G 10ISSOIN [ 109SS9]N YVp
IHQ — ¥4 1oL, IHQ — ¥V 10L
tp = 7dg . 5 = 7Vq

%
S

Abbildung 11.3.: Vollwertiger Vektornetzwerkanalysator mit zwei Messtoren und

vier Messstellen
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Der Umschalter in Abbildung 11.3 dient dazu, zwei verschiedene Testsignale
zu erzeugen. Im Idealfall wiirde in der gezeigten Schalterstellung I nur an Mess-
tor 1 ein Testsignal anliegen und nach Umschalten in Stellung II wiirde nur an
Messtor 2 ein Testsignal anliegen. Das heifit man wiirde das Messobjekt einmal
in Vorwartsrichtung und einmal in Rickwéartsrichtung messen. Waren neben dem
Umschalter auch die direktiven Elemente perfekt, so konnte man aus den Ergeb-
nissen der Messung in Vorwértsrichtung

/
S _ l—)Il
21,17 T
an
und ,
O19
So1=—~
an

berechnen, siehe (9.4). Dual erhielte man aus den Ergebnissen der Messung in

Rickwartsrichtung
/

Y
Spo =~
(€5}
und .
Y
51,2 =
[¢5p)

In der Realitit gibt es ein Ubersprechen am Umschalter, so dass immer an
beiden Messtoren Testsignale anliegen. Fiir das im Folgenden beschriebene Mess-
verfahren ist dies kein Problem, da keine speziellen Annahmen iiber die Art der
Testsignale gemacht werden. Weiterhin sind die direktiven Elemente nicht per-
fekt. Fiir jedes Reflektometer kann man wieder wie in Abschnitt 11.1.1 beschrie-
ben eine Viertor-Zweitor-Reduktion durchfithren. Man erhélt als Ergebnis das in
Abbildung 11.4 dargestellte Modell des imperfekten Vektornetzwerkanalysators.
Zwischen die beiden Messtore eines virtuellen idealen Vektornetzwerkanalysators
und die Tore des Messobjekts ist jeweils ein Fehlerzweitor geschaltet.

Die Determinanten der Streumatrizen der Fehlerzweitore sind

det(F,) = Fool'y 1 — Fo1F

und
det(Fp) = E2,2E3,3 - E2,3E3,2-

Mit den Transmissionsmatrizen der Fehlerzweitore erhélt man

ay L [—det(F,) Fyp ay
_ o). 11.1
(l_n) Fi, < k1) (1L15)

A
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Fo,
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|
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| | . .
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Abbildung 11.4.: Modell des imperfekten Vektornetzwerkanalysators

by 1 1 —F33 b
_ L : . 11.16
<Q2> E3,2 <E2,2 - det<EB) QIQ ’ ( )

B

und

vergleiche (11.11). Die Fehlerzweitore entsprechen wieder keinen direkt physika-
lisch vorhandenen Zweitoren und sind daher im Allgemeinen auch nicht reziprok.
Das Verhalten des Messobjekts wird geméf (9.4) durch seine Streumatrix be-

schrieben:
l_)l §11 51 2) <Q1>
—\s,, S,/ - 11.17
<b2> <§2,1 S (3 ( )
—
§DUT

11.2.2. Vektornetzwerkanalysatorfehlerkorrektur

Mit Hilfe der Transmissionsmatrizen kann man die am Messobjekt anliegenden
komplexen Wellenamplituden aus den vom virtuellen idealen Vektornetzwerkana-
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lysator gemessenen komplexen Wellenamplituden berechnen. Nach Multiplikation
aller Gleichungen in (11.15) und (11.16) mit F; ; erhélt man:

F\pa; = — det(F) a; + Fy b}, (11.18)

Fyoby = — Fy 14 + by, (11.19)
Fip oL

Eyoby =70y — ———a: 11.20

471,002 E372_2 Egg Q, ( )
Fy F F, o det(F

ELOQQ :—1]:3—2,252 _ _1,0Fe (—B)Q/Q. (11.21)

132 L3

Beim Messen in Schalterstellung I erhilt man die Messwerte a},, b}, a4, und by,
und beim Messen in Schalterstellung IT erhilt man die Messwerte afj;, bipy, Qo
und bf;,. Aus diesen Messwerten berechnet man die zugehérigen, am Messobjekt
anliegenden und mit F'; , skalierten komplexen Wellenamplituden F'; yar;, F'; obyy,
Fyoar, Fyoby, F ot £ b, £ ot und Fy gby,. Durch Kombination der
Ergebnisse aus beiden Messungen erhélt man mit (11.17)

Iy obn Fyobimn Fyoan  Fypam
’ ’ =S . ’ ’ 11.22
(El,o@m Ly oo =PuT Iy oare  Fypans ( )

und schliefilich

-1
EFiobn Eipb Fioan Fipa
S _ (L1082 £9092m1 ) | (L£109n £,0%m i 11.23
SpuT (El,obm Iy obiy Fyparn Fpans ( )

Zum Berechnen der Streumatrix Sy des Messobjekts aus den Messergebnissen
werden die sieben Fehlerterme det(F ), Fo o, F'y 1, Fy g det(Fg) /F3 o, F'y 0F55/F3,,
F)0F;33/F35und Fy o/ F3, bendtigt. Man spricht auch vom 7-Term-Fehlermodell.
In der Literatur | | werden der Anschauung wegen die folgenden sieben dqui-
valenten Fehlerterme verwendet:

Reflexionsgleichlauf: F,F' , und Fy3F5,
Transmissionsgleichlauf: I, F';,
Direktivitat: [/, ; und F,
Messtoranpassung: F, und F

Sofern die Transmissionsmatrix Tpyp des Messobjekts geméafl (9.21) existiert,
das heifit Sy, nicht Null ist, sind die Messwerte an Messtor 1 und an Messtor 2

durch . /
/
(%1) = =MA Ty B <I—72> (11.24)
b))~ Fs,

/
Qs

/
IDUT
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11.2. Vektornetzwerkanalysator

miteinander verkniipft, siche (11.15), (11.16) und (9.20). Kombinieren der Ergeb-
nisse beider Messungen ergibt

/ / / /
an 4\ _ v ) by, by

/ / = dpur / N
O b ayy Ao

Hieraus kann man die gemessene Transmissionsmatrix

-1
T op = (Q/h Q/in) . <_i2 412) (11.25)
=DbU 1_711 le QiQ QiIZ

berechnen. Bei Kenntnis der Fehlerterme kann man die korrigierte Messung mit-
tels Deembedding berechnen:

F
Tpyr = _F—‘Z”ZA - Thyr B (11.26)
Die Fehlerterme sind durch Messungen an bekannten Kalibrierstandards zu be-
stimmen. Eine Messung an einem Zweitor bekannter Streumatrix S ergibt gemafl
(11.22) vier lineare Gleichungen

/ / / /
—Fy ay + 0, —Fy a + by
Fioq0 - Fyo0Fs3 4 Fyoq0 _ Fio0Fs3 4
F,, 2 F,, [¢45) F,,M2 " TF. (€5}
’ ’ ' ’ (11.27)
/ / ! / .
—det(E) agy + Fo by —det(Fy) ay + Fo by
=2 | B oFy, W o det(EB) a £y oFs5 b E, det(EB) a
E&Q ZI2 E&Q =12 E&Q ZI12 E3’2 212

fiir die unbekannten Fehlerterme. Eine Messung an einem Eintor bekannten Re-
flexionsfaktors I an Messtor 1 oder Messtor 2 ergibt eine lineare Gleichung

—Fyap +by =L (_ det(Es) apy + Eopl—?h) (11.28)
beziehungsweise
Fio,, FioFss , <E1 0fos, F,odet(Eg) )
b — —5——ap, =L = —"0pg — — a 11.29
E372 112 E32 112 E372 112 E372 112 ( )

)

fir die unbekannten Fehlerterme. Man beachte, dass (11.28) exakt der Grund-
gleichung (11.13) der Reflektometerkalibrierung entspricht. Durch Messungen an
hinreichend vielen bekannten Kalibrierstandards sind sieben linear unabhangi-
ge Gleichungen zu gewinnen. Aus dem so erhaltenen linearen Gleichungssystem
konnen dann die Fehlerterme berechnet werden. Falls mehr als die minimal er-
forderliche Anzahl an Gleichungen gewonnen wird, kann man die zusétzlichen
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Messwerte im Rahmen einer Ausgleichsrechnung zur Messfehlerreduktion nutzen
[ ; |. Je nach der Art der verwendeten Kalibrierstandards erhélt man so
eine Vielfalt unterschiedlicher Kalibrierverfahren. Ein bekanntes Beispiel ist das
TOSM-Verfahren. Hier werden zunéchst durch OSM-Messungen an beiden Toren
insgesamt sechs Gleichungen gewonnen. Durch Messungen in Vorwartsrichtung
und in Riickwartsrichtung an einem bekannten

Verbindungsstiick (THROUGH): mit der wahren Streumatrix St

konnen vier weitere Gleichungen gewonnen werden.

11.2.3. Verwenden teilweise unbekannter Kalibrierstandards

Unter dem Schlagwort Selbstkalibrierung sind in der Literatur Verfahren mit teil-
weise unbekannten Kalibrierstandards bekannt. Vorteilhafterweise setzt man nur
die zuverléssig reproduzierbaren Eigenschaften der Kalibrierstandards als bekannt
voraus.

Ein bekanntes Verfahren mit teilweise unbekannten Kalibrierstandards ist das
UOSM-Verfahren | |. Zunéchst bestimmt man mit einer Reflektometerkali-
brierung an Messtor 1 die in (11.15) eingefiihrte Matrix A. Als nichstes bestimmt
man mit einer Reflektometerkalibrierung an Messtor 2 die in (11.16) eingefiihrte
Matrix B. Zum Berechnen der korrigierten Messung mit (11.26) fehlt jetzt nur
noch die Kenntnis des Fehlerterms F'; /F3 5. Zum Bestimmen dieses Fehlerterms
I /F3 5 fihrt man eine Kalibriermessung mit einem weiteren, teilweise unbe-
kannten aber reziproken Kalibrierstandard durch:

Unbekanntes Verbindungsstiick (UNKNOWN THROUGH): Fir die wahre Trans-
missionsmatrix gilt aufgrund der Reziprozitat det(Ty) = 1, siehe (9.23). Die
gemessene Transmissionsmatrix ist I’U.

Mit (11.26) folgt!

F
1 =det(Ty) :det<;—3’2A Ty 'B_1>

Ly

_ (%)2 det(A) det(T};) det (B )

£9.0
[ Esy)\? det(A) det(TY)
B ELO det(B)

! Fiir quadratische Matrize A und B gilt det(A - B) = det(A) det(B).
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und schliefllich der Fehlerterm

h . det(A) det(Ty)
E3,2 det(B)

Damit folgt fiir die korrigierte Messung des Kalibrierstandards

det(A) det(Ty) , v o
Ty, ==+ A- T, -B . 11.

Das Vorzeichen des Fehlerterms F'; 5/ F3 , kann man anhand einer groben Kennt-
nis des fiir die Kalibriermessung verwendeten Verbindungsstiicks ermitteln. Aus
(9.21) folgt

o 1 det(B) 1
Qo1 = T.o det(A) det(Ty,) {A Ty B

(11.31)

1,1

Wenn man nun weif}, dass das Verbindungsstiick kurz ist und die Phasenverschie-
bung somit gering sein sollte, so muss das Vorzeichen so gewahlt werden, dass der
Realteil von S, ; positiv ist.

11.2.4. Vereinfachter Vektornetzwerkanalysator

Abbildung 11.5 zeigt eine haufig eingesetzte vereinfachte Vektornetzwerkanaly-
satorarchitektur mit zwei Messtoren und drei Messstellen. Dem reduzierten Auf-
wand durch Entfall einer Messstelle, des Umschalters und des zweiten direktiven
Elements steht der Nachteil gegentiber, dass das Messobjekt zwischen Messung in
Vorwértsrichtung und Messung in Riickwartsrichtung manuell umgedreht werden
muss. Ohne eine Messung in Vorwartsrichtung und eine Messung in Riickwarts-
richtung konnen nicht alle Streuparameter bestimmt werden und insbesondere ist
keine vollstdndige Fehlerkorrektur moglich. Das heifit, selbst wenn man sich nur
fir die Streuparameter S;; und S, in Vorwartsrichtung interessiert, ist fiir die
vollsténdige Fehlerkorrektur trotzdem auch eine Messung in Riickwértsrichtung
erforderlich.

Mit der Viertor-Zweitor-Reduktion erhdlt man die in Abbildung 11.6 gezeigten
Modelle. In der Abbildung ist sowohl das Modell fir die Messung in Vorwérts-
richtung als auch das Modell fiir die Messung in Riickwartsrichtung gezeigt. Man
beachte, dass die Modelle bei der Messung in Vorwartsrichtung und bei der Mes-
sung in Rickwértsrichtung die selben sind.
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Abbildung 11.5.: Vereinfachter Vektornetzwerkanalysator mit zwei Messtoren
und drei Messstellen
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Abbildung 11.6.: Modell des imperfekten vereinfachten Vektornetzwerkanalysa-
tors
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Aus (11.18), (11.19), (11.20) und (11.21) erhalt man durch Nullsetzen von @,
die am Messobjekt anliegenden komplexen Wellenamplituden fiir die Messung in
Vorwartsrichtung:

Fypan =— det(F ) ay; + Eopbh,
Fy by = — EFyqay + by,

F
El,oblz :#@127

Dual dazu erhéilt man fiir die Messung in Riickwértsrichtung:

F\oays = — det(Fy) agp, + Fo b,
ELOQHQ = - El,ﬂim + Qima

Fiy
Iy obim :F—7bhl’

439
E1,0E2,2

—— Tl
ZII1-
kP

ELOQIH =

Bei Kenntnis der fiinf Fehlerterme det(E ), Fo o, F'y 1, Fy 0F 95/ F34, und Fy o/ F5 5
kann man die Streumatrix Spyr des Messobjekts wieder mit (11.23) berechnen.
Man spricht vom 5-Term-Fehlermodell. In der Literatur | | werden abwei-
chend die folgenden fiinf Fehlerterme verwendet:

Reflexionsgleichlauf: I [ ,
Transmissionsgleichlauf: I, (I’ ,
Direktivitat: [
Quelltoranpassung: F
Lasttoranpassung: I,

Es gibt auch hier nicht weiter betrachtete Vektornetzwerkanalysatoren mit drei
Messstellen und einem internen Messrichtungsumschalter, bei denen in Vorwarts-
richtung und in Rickwértsrichtung unterschiedliche Fehlermodelle zu beriicksich-
tigen sind. Dies fiihrt zu einem 10-Term-Fehlermodell | ].

258



11.2. Vektornetzwerkanalysator

Die Fehlerterme sind wieder durch Messungen an bekannten Kalibrierstandards
zu bestimmen. Eine Messung in Vorwartsrichtung an einem Zweitor bekannter
Streumatrix S ergibt nach (11.27) zwei lineare Gleichungen

—F,,d}; + by —det(Fy) dby + Foobh
( By ) =§-( <E¢2E;;b, R (11.32)

ES,Q =12 Egyg =12

fiir die unbekannten Fehlerterme, wobei a) wieder zu Null gesetzt wurde. Eine
Messung in Riickwértsrichtung entspricht hier einem Umdrehen des Zweitors und
ergibt nur bei nicht vertauschbaren Toren neue Gleichungen, die formal den Glei-
chungen der Messung in Riickwartsrichtung entsprechen. Eine Messung an einem
Eintor bekannten Reflexionsfaktors I an Messtor 1 ergibt eine lineare Gleichung

— Iy ap + by =T (_ det(E) ap; + Eopl—)h) (11.33)

fir die unbekannten Fehlerterme, siche (11.28). Die Messung eines Eintors an
Messtor 2 ist wegen des fehlenden Testsignals sinnlos. Durch Messungen an hinrei-
chend vielen bekannten Kalibrierstandards sind fiinf linear unabhangige Gleichun-
gen zu gewinnen. Beim TOSM-Verfahren werden der Zweitorstandard Durchver-
bindung und die Eintorstandards Leerlauf, Kurzschluss und Abschluss verwendet.
Man erhélt so exakt fiinf linear unabhéngige Gleichungen.

Aufgabe 11.3 Berechnen Sie mit (11.52) und (11.33) die fiinf Fehlerterme det(E,),
Foo, F11, F10F25/F3,5, und Fyo/F3, fir den Fall, dass ideale Kalibrierstan-

dards
01
Sr = (1 0)’

I'o=1TIg=—1 und I'y; = 0 verwendet werden!
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Kapitel 12.

Hochfrequenzverstarker

12.1. Aufbau von Hochfrequenzverstarkern

Hochfrequenzverstérker werden heute iiberwiegend mit Transistoren realisiert |

|. Es stehen eine Vielzahl von Transistortypen in verschiedenen Grund-
schaltungen zu Verfiigung. Es gibt viele hier nicht diskutierte Moglichkeiten der
Arbeitspunkteinstellung und Arbeitspunktstabilisierung.

Der in Abbildung 12.1 dargestellte Signalpfad eines Hochfrequenzverstarkers
besteht aus dem Transistor und den eingangsseitigen und ausgangsseitigen An-
passnetzwerken. Im hier betrachteten Kleinsignalbetrieb konnen die Eigenschaften
des dann ndherungsweise linearen Transistors durch eine Streumatrix S beschrie-
ben werden. Die Streumatrix S eines Transistors hédngt unter anderem von dem
Transistortyp, der gewahlten Grundschaltung, dem Arbeitspunkt und der Kreis-
frequenz w ab.

I |—>Q1 ay «— I

| | | |

| Eingangs- | | Ausgangs- |
——Q— anpass- anpass- [—QO—

| netzwerk | | netzwerk |

| | | |
| bi<— Transistor by |
Tor 1 Tor 2

Abbildung 12.1.: Signalpfad eines Hochfrequenzverstérkers

Idealerweise ware ein Hochfrequenzverstarker eigenreflexionsfrei S;, = Sy4 =
0, siehe (9.5), und ricckwirkungsfrei S, , = 0. Die Streumatrix S eines Transistors
weicht tiblicherweise von diesem Idealfall ab. Die Aufgabe der Anpassnetzwerke
ist es, die Reflexionsfaktoren derart zu transformieren, dass das Gesamtsystem
ein glinstigeres Verhalten aufweist. Neben der moglichst guten eingangsseitigen
und ausgangsseitigen Anpassung, das heiffit dem Minimieren der an den Toren
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des Gesamtsystems sichtbaren Reflexionsfaktoren, ist die Stabilitdt ein wichtiger
Aspekt. Im Gegensatz zur Anpassung, die nur bei der Kreisfrequenz w des zu ver-
starkenden Signals von Interesse ist, muss die Stabilitat bei allen Kreisfrequenzen
w gewahrleistet sein. Die Anpassung hat einen Einfluss auf den Leistungsgewinn.
Abhéngig davon, wie Fehlanpassungen berticksichtigt werden, ergeben sich unter-
schiedliche Definitionen des Leistungsgewinns.

Aufgabe 12.1 Finen Transistor kann man zundchst als Dreitor modellieren, sie-
he Abbildung 12.2. Durch Kurzschlieflen eines der Tore, zum Beispiel Tor 3, erhdlt
man eine der drei moglichen Grundschaltungen. Ermitteln Sie die Admittanzma-
triz des so erhaltenen Zweitors als Funktion der Admittanzmatriz Y des Dreitors!
Kann man aus der Admittanzmatriz des Zweitors wieder die Admittanzmatriz Y
des Dreitors berechnen, wenn man bericksichtigt, dass der als Dreitor betrachtete
Transistor ein massefreies Netzwerk ist?

Tor 2

Abbildung 12.2.: Transistor als Dreitor

12.2. Leistungsabgabe von Eintorquellen

Als Vorbereitung fiir die Betrachtung von Zweitoren soll hier die Leistungsab-
gabe einer Quelle mit dem Quellenreflexionsfaktor I' an eine passive Last mit
dem Lastreflexionsfaktor I'; analysiert werden. Wegen der Passivitat gilt fiir den
Betrag des Lastreflexionsfaktors |['}| < 1.
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Aus dem Signalflussgraphen in Abbildung 12.3 liest man mit der Schleifenregel

p— o
N e Y I

ab, sieche Abbildung 9.3d. Weiterhin gilt
a = EL(_)-
Die von der Quelle an die Last abgegebene Leistung berechnet sich mit (7.28) zu

P:l\z_)Q

21— |0, )
5 ]ﬂ (12.1)

‘1_£Q£L‘2.

IS

Abbildung 12.3.: Zusammenschalten von Quelle und Last

Fiir eine reflexionsfreie Last I';, = 0 ist die von der Quelle abgegebene Leistung
P gleich der Leistung der Urwelle

Py = % ba| - (12.2)

Die abgegebene Leistung P wird unendlich, wenn der Nenner ‘1 - Lol ’ Null
wird. In diesem Fall ist das aus Quelle und Last bestehende System instabil. Man
bezeichnet die Quelle als stabil, wenn das System fiir keine passive Last [I'j| < 1
instabil wird. Dies ist genau dann der Fall, wenn fiir den Quellenreflexionsfaktor

Ll <1 (12.3)

gilt. Die Stabilitat einer Quelle sollte fiir alle Kreisfrequenzen w gewahrleistet sein
und wird im Folgenden vorausgesetzt.
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Im Folgenden sollen die Orte konstanter Leistungsabgabe P in der Ebene des
Lastreflexionsfaktors [}, bestimmt werden. Aus (12.1) erhdlt man durch quadra-
tische Erganzung:

2(1-Tqly) (1-Toly) P =|bo| (1 - IuT}).

DL (2PLgl + [bo[”) — La2PLq — Li2PLG = oo — 2P,

2

- 2PT, _ APl
B QPEQEZQ + ‘QQ‘Q <2P£Q£*Q+ ‘QQ‘2>2
2
L |kl —2P 5
2PLLY, + [bg
2
2 2 2
2PTY, oo (\@Q‘ +2p (‘EQ‘ _1))
EL— 2 2| T 2 2\ 2 '
2P L[ + [bq| <2P‘LQ’ +’le)
M
M R2

Dies ist die Gleichung eines Kreises mit Mittelpunkt

u=—2Pa (12.4)
2P Lo + |ba|
und Radius
ol el + 2 (ol - 1)
R= (12.5)

2 2
2P |Lo| + [ko|

in der Ebene des Lastreflexionsfaktors [}, sieche Abbildung 12.4. Der Mittelpunkt
M liegt auf der Geraden durch I' und den Ursprung, da die Argumente aller
Mittelpunkte gleich sind:

arg(M) = arg(Ea) )

Die abgegebene Leistung P wird fiir genau einen optimalen Lastreflexionsfaktor
I'1opt maximal. Durch Nullsetzen des Radius R erhélt man die dann abgegebene
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g
L7 A
il
L7 [/
ST
0.5

SS==-==
——

Re(Ly)
Abbildung 12.4.: Ausnutzungsfaktor als Funktion des Lastreflexionsfaktors L},.

Der Quellenreflexionsfaktor ist I'q = 0,5 + j0,5. Die Hohenlinien
sind Kreise konstanter Leistungsabgabe

verfiighare Leistung:

2 2
0=bo| + 2P (\QQ) - 1) ,
P =g tal’ — \ler' (12.6)

Der Mittelpunkt M des zur verfiigharen Leistung P gehorenden Kreises ent-
spricht dem optimalen Lastreflexionsfaktor

2PA2£5 > =I5 (12.7)
2Px ||+ [tg

Dieses Ergebnis ist als Leistungsanpassung bekannt. Die bei einem beliebigen

Lastreflexionsfaktor I'; abgegebene, als Ausnutzungsfaktor bezeichnete, normierte
Leistung ergibt sich mit (12.1) zu

£Lopt =

o () (- fef)

oA . £q£L]2 . (12.8)
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12.3. Stabilitat von Zweitoren

12.3.1. Stabilitatskreise

In Anlehnung an (12.3) bezeichnet man ein Zweitor als an seinem Eingang stabil,
wenn fiir den am Eingang sichtbaren Reflexionsfaktor

Ly <1 (12.9)

gilt. Weiterhin bezeichnet man ein Zweitor als an seinem Ausgang stabil, wenn
fiir den am Ausgang sichtbaren Reflexionsfaktor

Dy < 1 (12.10)

gilt. Man bezeichnet das Zweitor als stabil, wenn es sowohl am Eingang als auch
am Ausgang stabil ist.

Die Analyse ist fiir beide Tore formal gleich. Hier wird zunéchst die Trans-
formation des Lastreflexionsfaktors I';, durch das Zweitor in den eingangsseitig
sichtbaren Reflexionsfaktor I'; betrachtet. Aus dem Signalflussgraphen in Abbil-
dung 12.5 liest man unter Verwenden der Vereinfachungsregeln aus Abbildung
9.3
52,1£1,2£L o 51,1 —det(S) L[y,
1= 55,0 1 SEPIES

ab. Dual erhilt man fiir die Transformation des Quellenreflexionsfaktors I, in
den ausgangsseitig sichtbaren Reflexionsfaktor

£1 = §1,1 +

(12.11)

51,2£2,1£Q _ 52,2 — det(S) £Q

I,=5 12.12
Ly =099+ - 5,0, - 5,0, ( )
a; ay
5,18, L 5518, L
I |j1> SuY Yl |j1> 1+ Sials
by Si2 a by b

Abbildung 12.5.: Transformation des Lastreflexionsfaktors '}, durch das Zweitor

Es stellt sich nun die Frage, in welchen Bereichen der Quellenreflexionsfaktor
Tq und der Lastreflexionsfaktor ['; liegen diirfen, so dass das Zweitor stabil ist.
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Es handelt sich wieder um zwei mathematisch gleichartige Probleme. Zunéchst
wird der Lastreflexionsfaktor ['; betrachtet. An den Orten der Stabilitdtsgrenze

)

811 —det(S) I,
1 =S5y,

(814 — det(8)Ly) (1 —det(S)Iy)" = (1 = Saal) (1—Sy0l)
LLL7 (852855, — det(S) det(S"))
+I, (51‘,1 det(S) — §2,2) + Iy, (51,1 det(S") — 53,2) =5,87, — L.

Durch quadratische Erganzung erhalt man

2

r. — 55,2 - §1,1 det(S”) _ §1,1§>1k,1 —1
T 85,83, —det(S) det(8%)| T S,555, — det(S) det(S”)
M

(53,2 —Sia det(ﬁ*)) (ﬁ;z —S14 det(ﬁ*))*
(85255, — det(S) det(S7))’
89195151297 9
(85283, — det(S) det(S"))’

R

Man erkennt, dass die Orte der Stabilitdtsgrenze ;| = 1 auf einem Stabilitats-

kreis mit Mittelpunkt
- 55,2 - 51,1 det(S*)

T[S0 — det(s)P

(12.13)

und Radius
52,1§1,2

[Saf = act(s)”

Ry, (12.14)

in der Ebene des Lastreflexionsfaktors I';, liegen. Abbildung 12.6 zeigt einen ex-
emplarischen Stabilitatskreis in der Ebene des Lastreflexionsfaktors I';. Ob das
Innere oder das AuBere des Stabilititskreises der stabile Bereich ist, iiberpriift
man am einfachsten anhand eines markanten Punktes. Aus [';, = 0 folgt fiir den
eingangsseitig sichtbaren Reflexionsfaktor I'y = S, ;. Das heif3t fiir ’ §1,1T < 1 liegt
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der Ursprung der Ebene des Lastreflexionsfaktors '}, im stabilen Bereich und fiir
EM‘ > 1 liegt der Ursprung der Ebene des Lastreflexionsfaktors ['; im instabilen

ereich. Da die Streuparameter im Allgemeinen frequenzabhéngig sind, ist auch
der Stabilitatskreis frequenzabhéngig.

Abbildung 12.6.: Exemplarischer Stabilitatskreis mit eingefirbten instabilen Be-
reich in der Ebene des Lastreflexionsfaktors I'y,. ‘ S 171‘ <1
Dual erhalt man den Mittelpunkt
Sf,l - 52,2 det(S*)
= 2
‘5171‘ - |det(§)|2

M, (12.15)

und den Radius
§172§271

sl = Jaet(s)P

Rq (12.16)

des Stabilitdtskreises in der Ebene des Quellenreflexionsfaktors I'gy. Fiir ’ §272’ <1
liegt der Ursprung der Ebene des Quellenreflexionsfaktors I' im stabilen Bereich
und fiir ‘ 52,2‘ > 1 liegt der Ursprung der Ebene des Quellenreflexionsfaktors I'g
im instabilen Bereich.

Sowohl der Quellenreflexionsfaktor Lq als auch der Lastreflexionsfaktor 'y sol-
len im jeweils stabilen Bereich liegen. Da der Quellenreflexionsfaktor I'q und der
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Lastreflexionsfaktor ['; auf jeden Fall innerhalb des Einheitskreises liegen, inter-
essieren primar die Schnittmengen der instabilen Bereiche mit dem Inneren des
Einheitskreises, siehe Abbildung 12.6.

12.3.2. Unbedingte Stabilitat

Wiinschenswert ist es, dass ein Zweitor fiir alle passiven Abschliisse stabil ist.
Diese Eigenschaft bezeichnet man als unbedingte Stabilitat. Im Folgenden sollen
einfach tiberpriifbare Kriterien fiir die unbedingte Stabilitat hergeleitet werden.
Zunachst wird wieder der eingangsseitig sichtbare Reflexionsfaktor I'; als Funk-
tion des Lastreflexionsfaktors I';, betrachtet. Auflésen von (12.11) nach dem Las-

treflexionsfaktor ergibt
S -0

I, = .
- det(S) — 52,221
Der Einheitskreis |I';| = 1 ist der Rand des Bereichs passiver Lasten. Dort gilt:

S — L
det(S) — SsoI

(51,1 - £1) (51,1 - £1)* = (det(ﬁ) - §2,2£1) (det(ﬁ) - ﬁ2,2£1)* )
LI (1 - §2,2§§,2) + I <§2,2 det(S") — Sf@)
+I (§§,2 det(S) — §1,1) = det(8) det(S") - §1,1§T,1-

Durch quadratische Erganzung erhalt man
2

=1,

Sy — Spodet(8)|  det(S)det(S") — S, 57,
T 155,55, 1— 585,55,

M,

(811 = S52det(8)) (1,1 — S5, det(S))”

" (1—55583,)
_ 59155191257
(1 — §2,2§;,2)2 -
e

Es handelt sich offensichtlich um einen Kreis mit Mittelpunkt
Si1— 85, det(S
Ml _ 21,1 =22 5 (—) (1217)
s
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und Radius

8518
R, = |—2=L2 (12.18)

s

in der I';-Ebene. Ob das Innere oder das Auflere des Kreises das Bild des Bereichs
der passiven Lasten |I';| < 1 ist, Gberpriift man wieder am einfachsten anhand
eines markanten Punktes. Aus [}, = 0 folgt fiir den eingangsseitig sichtbaren
Reflexionsfaktor Iy = Sy ;. Es stellt sich nun die Frage, ob S, ; innerhalb oder
auBerhalb des Kreises liegt. Fiir den Abstand zum Mittelpunkt gilt

‘EM —M1‘ _ —Si1 ’52,2’2 +§§2,2 det(S) _ S5 252 191 2 ‘522‘
s s

Offensichtlich ist genau dann das Innere des Kreises das Bild des Bereichs der
passiven Lasten |[}| < 1, wenn ‘§272‘ < 1 gilt.

Damit nicht zwingend Teile des Bildes des Bereichs passiver Lasten |I'j| < 1
auBerhalb des Einheitskreises in der [';-Ebene liegen, muss das Innere des Kreises
in der [';-Ebene das Bild des Bereichs der passiven Lasten |[}| < 1 sein und der
Kreis muss vollstandig im Inneren des Einheitskreises liegen, das heifit es miissen
‘ §272‘ < 1 und

M|+ R <1

gelten. Einsetzen von Mittelpunkt M, und Radius R; ergibt
’511 S§2det ’ ‘521512‘
<1
s

Man erhalt die unter dem Namen pu-Test bekannte Bedingung

2
1—|8
jy = : 52 > 1 (12.19)
‘51,1 S50 det(S ‘ ‘52 1‘ ‘Sl 2‘
fir unbedingte Stabilitat [ |. Ausgehend von der Betrachtung des ausgangs-

seitig sichtbaren Reflexionsfaktors ['s als Funktion des Quellenreflexionsfaktors
Iy erhilt man dual die Bedingung

fo = 1- [ > 1 (12.20)
§2,2 Sndet ‘ ‘Sl 2‘ ‘52 1‘
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fiir unbedingte Stabilitét.
Ein alternatives Stabilitatskriterium erhélt man durch Umformen des Stabili-
tatsfaktors p;. Ausgehend von (12.19) erhélt man zunéchst

Sy~ 835 det(S)] < 1 - |8y — |85 [S1]-

Diese Ungleichung kann nur dann erfiillt sein, wenn die rechte Seite grofier Null

ist. Man erhélt die Nebenbedingung
‘52,1‘ ‘51,2‘ <1- ‘§272‘2 (12.21)

Durch Quadrieren der Ungleichung erhélt man weiterhin:

510~ S320e®)] < (1= [Saaf ~[52][512])
‘51,1 ‘2 - §1,1§2,2 det(S”)

811852 de(S) + |Soaf laet®)P < (1 S ~[5][512])
1] = ldet(S) +[Sau] ]S
~[eaf |80+ [Saaf” et < (1= [aaf') (1= [ = 2] I8
2

2
+’§2,1’ ’51,2 ;

(1= 1822 ) (181 = 1det®)1) < (1[S00 ) (1= |2~ 2[Sa[$12]).

‘ 2

’ 2

S]" — det(8) < 1~ |Sy] —2[Su1][S1]-

Eine Bedingung fiir unbedingte Stabilitit ist somit, dass die Nebenbedingung
(12.21) erfiillt ist und der nach Rollett benannte Stabilitatsfaktor groBer als eins
ist [ |:

2 2 9
B 1 - ‘52,2‘ - ‘51,1‘ + [det(8)]

K =
2|82 [$1a

> 1. (12.22)

Ausgehend vom Stabilitatsfaktor uo hitte man auf dualem Weg die Nebendingung

’51,2’ ’52,1’ <1l- ‘§1,1

I (12.23)

und den gleichen Ausdruck fiir den Stabilitdtsfaktor K gefunden. Aus diesen Ne-
benbedingungen folgt fiir den Betrag der Determinante der Streumatrix S eines
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unbedingt stabilen Zweitors unter Verwenden der Dreiecksungleichung;:
[det(8)] = |S1,1S22 — 81,251 | < [S1.182s| + |S1,252,|

<1 [S1a] [Saaly1 — |S12] S| + |18 = 1

(12.24)

Ein verlustfreies Eingangsanpassnetzwerk oder Ausgangsanpassnetzwerk bildet
das Innere des Einheitskreises in der Reflexionsfaktorebene auf das vollstandi-
ge Innere des Einheitskreises ab. Verlustfreie Anpassnetzwerke beeinflussen die
Eigenschaft der unbedingten Stabilitédt daher nicht.

12.4. Gewinn von Zweitoren

12.4.1. Klemmenleistungsgewinn
Der Klemmenleistungsgewinn (Power Gain)

G_PQ

(12.25)

ist als das Verhaltnis aus der an die Last abgegebenen Leistung P, und der von
der Quelle an das Zweitor abgegebenen Leistung P definiert. Der Klemmenleis-
tungsgewinn G hingt vom Lastreflexionsfaktor I';, nicht aber vom Quellenrefle-
xionsfaktor I' ab.

Aus dem Signalflussgraphen in Abbildung 12.7 folgt analog zu (12.1) fiir die
von der Quelle an das Zweitor abgegebene Leistung

(12.26)

1 ‘ ‘2 ‘1 - §2,2£L’2 - ‘ﬁl,l — det(8) £L’2

2 T
‘1 — S50l — 8110 + det(S) EQEL‘
wobei in der letzten Zeile (12.11) eingesetzt wurde.
Aus dem Signalflussgraphen in Abbildung 12.8 liest man mit der Schleifenregel
by, =0 S !
02 = 07— ol 2217 S

ab, siche Abbildung 9.3d. Weiterhin gilt

a9 = ELQQ-
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Abbildung 12.7.: Betrachtung des Zweitoreingangs

Die an die Last abgegebene Leistung berechnet sich mit (7.28) und (12.11) zu

ot )
Lo ‘1 —EQEIF ‘1 _§272£L‘2
) 2 (12.27)
S S (1= |00 ?)
9 |7Q ’1 — Sy, — S11Lq + det(S) £Q£L‘2.

by O :1 %‘1 5;2’1 S
£Q QSM SZ?DFL

bl ﬁiQ a

bg O '1 %\1 ﬁgl s
EQ r, §2,2 Ly,

b, “

Abbildung 12.8.: Betrachtung des Zweitorausgangs
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Durch Einsetzen von (12.26) und (12.27) in (12.25) erhdlt man den Klemmen-
leistungsgewinn

[Soa|" (1 L)

G = ; . (12.28)
‘1 - §2,2£L‘ - ‘§1,1 — det(S) EL‘
12.4.2. Einfiigungsgewinn
Der Einfiigungsgewinn (Insertion Power Gain)
Iz
Gy = FL (12.29)

ist als das Verhéltnis aus der an die Last abgegebenen Leistung P, und der von
der Quelle bei direkter Verbindung an die Last abgegebenen Leistung P definiert.
Der Einfiigungsgewinn G7 hingt vom Lastreflexionsfaktor I';, und vom Quellen-
reflexionsfaktor Tq ab.

Durch Einsetzen von (12.27) und (12.1) in (12.29) erhélt man den Einfiigungs-
gewinn

2 2
S 1 —-LQl
Gy = [Sau] |1~ Eol . (12.30)
’1 — 890l — 8110 + det(S) EQEL‘
12.4.3. Ubertragungsgewinn
Der Ubertragungsgewinn (Transducer Power Gain)
by
Gp=—. 12.31
r= (12:31)

ist als das Verhéltnis aus der an die Last abgegebenen Leistung P, und der von
der Quelle verfiigharen Leistung Pqa definiert. Der Ubertragungsgewinn Gt hiangt
vom Lastreflexionsfaktor I't, und vom Quellenreflexionsfaktor ', ab.

Durch Einsetzen von (12.27) und (12.6) in (12.31) erhilt man den Ubertra-

gungsgewinn
(1= Ieaf) el (1 - I2P)

Gr =
‘1 — 8500, — 8110 + det(S) oLy,

‘2. (12.32)
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12.4.4. Verfiigbarer Leistungsgewinn
Der verfiigbare Leistungsgewinn (Available Power Gain)

Ga = fia (12.33)
ist als das Verhaltnis aus der vom Zweitor verflighbaren Leistung Ppx und der von
der Quelle verfiigbaren Leistung Pqga definiert. Der verfiighare Leistungsgewinn
G hingt vom Quellenreflexionsfaktor L', nicht aber vom Lastreflexionsfaktor
I';, ab.

Bei Leistungsanpassung [}, = [';, vergleiche (12.7), folgt aus (12.27)

S| (1 L)

1 2
o 2 ’QQ‘ ‘1 — §272£; - 5171£Q +det(S) EQEZ 2
1, g Soa| (1 - ILaP7)
=3 lbal

\(1 - §171£Q) - (52,2 — det(S) LQ) r; ’

Einsetzen von (12.12) ergibt

2 ‘ﬁzgf <’1 —51,1£Q’ ‘522 det(S PQ‘ >

“1 - 51,1£Q}2 - }§2,2 - det(ﬁ)_

Pix =3 [tg]

(12.34)

e 5]
\1—511%\ |8 — det(S FQ\

Durch Einsetzen von (12.6) und (12.34) in (12.33) erhdlt man den verfiigharen
Leistungsgewinn
2 2
soa (1~ Ira)

]1—511FQ] —\522 det(S PQ\

Ga = (12.35)

Der verfiigbare Leistungsgewinn einer Kaskade aus zwei Zweitoren, siehe Ab-
bildung 12.9, ergibt sich zu
Pr3  Ppo Pas

— = = GAr1GAro. 12.36
Ga P Pai P A1GA2 (12.36)
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Pay Pas Pas
| | |
| | |
O Gar O Gaz O
| | |
| | |
Tor 1 Tor 2 Tor 3

Abbildung 12.9.: Leistungsgewinn einer Kaskade von Zweitoren

12.4.5. Vergleich der Gewinndefinitionen

Durch sinngeméfles Anwenden von (12.8) erhédlt man den Ausnutzungsfaktor an

Tor 1 ,
2
ﬁ:_PL&:PQ:<1_‘£Q‘>(1_|L|) (12.37)
G Paoa B, Poa ‘1—£Q£1’2 . .
Auf gleichem Wege erhalt man Ausnutzungsfaktor an Tor 2
2 2
Gr _ P Por _ A _ (1-ILf) (1-I0P) 1235

Gan  Poa oA Pia 11—,

Fiir den Fall, dass sowohl die Quelle an den Eingang angepasst ist I'q = L
als auch die Last an den Ausgang angepasst ist ['; = L, vergleiche (12.7),
sind die drei hier definierten Gewinne Klemmenleistungsgewinn G, Ubertragungs-
gewinn G und verfiigharer Leistungsgewinn G, gleich. Wenn zusatzlich auch
noch der Quellenreflexionsfaktor konjugiert komplex zum Lastreflexionsfaktor ist
Ly = I'l =I'{ =L, sind alle vier hier definierten Gewinne Klemmenleistungs-
gewinn G, Einfligungsgewinn Gp, Ubertragungsgewinn G und verfiigbarer Leis-
tungsgewinn Gz gleich.

12.4.6. Maximaler verfiigbarer Leistungsgewinn

Der verfiighbare Leistungsgewinn G hangt vom Quellenreflexionsfaktor I ab.
Nun soll der bei einem optimalen Quellenreflexionsfaktor I'q erzielbare maxima-
le verfugbare Leistungsgewinn (Maximum Available Power Gain, MAG) Guac
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ermittelt werden. Aus (12.35) folgt
R 2 2
G (1 - S1aTq = 14T + [Su[” |Lq)
_ ‘§272’2 + S5 5 det(S™) L'y + S5 5 det(S) L — |det(S ’FQ’ )

s (1 Iaf).

Fiir die Orte konstanten verfiighbaren Leistungsgewinns G 5 in der Ebene des Quel-
lenreflexionsfaktors Lq gilt

o (|80 + 0 (|s01[ ~ laet(s)F))
+LoGa (S5, det(S) — 81 ) + LhGa (S, det(SY) — S5 )
:‘5271‘ +Ga <‘§272‘ —1>.
Mittels quadratischer Erginzung erhilt man
G (Sy det(87) - 57, 2_ G |8, det(8) - 55,
el v en (5l 0 ®F)| (5 + G (J8] - )P
S+ G (|82 - 1)

‘52 1‘ +Ga (‘51 1‘ — |det(S)| >

+

Dies ist die Gleichung eines Kreises in der Ebene des Quellenreflexionsfaktors I'g.
Beim maximalen verfiigharen Leistungsgewinn Gyag wird der Radius des Krei-
ses Null:

0 =CRinc |52 det(8%) — 51|
(’52 1’ + Gmac (‘522 1)) (‘§2 1’2 + Gmac (‘51,1‘2 - \det(§)|2)>
Giunc (|224et(8") = 81, + (|82 — 1) (|80af — 1aet(®)?))

+GMAG‘§21‘ (‘Sll‘ _|det §)| +‘522’ —1>+‘§271‘4-
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Mit
‘522 det(S") — ST 1

([l =1) (g1 - tto)F)

= |S5.] 1det(S) [ — S5, det(S7) Sy, — S5, det(S) S, + [ S|
180, 801 = [Sa] det(S)P — |81 [ + Idet(8)?
—|Sua] [Saa| + 8118257583,
— 85 5 det(8*)S;
80| [Saa| + 51185281281 + S [S1a|”
83 , det(8)S]

2 2 2 2
* * * *
+ ’§2,2‘ ‘ﬁm‘ — 811899957 9951 — 587195951 29,51 + ‘51,2’ ’52,1’

|det(S)[”
=[] [eaf
und
S1] = 1det(S) + |5 =1 = =2[8, 5] [ S| K.

wobei der K der Stabilitatsfaktor gemaf (12.22) ist, vereinfacht sich die quadra-
tische Gleichung fiir den maximalen verfiigharen Leistungsgewinn Gyag zu

‘51,2‘2 ‘ﬁzlf GRiac — 251725371KGMAG T ‘5271‘4 =0

Diese quadratische Gleichung hat die Losungen

Ss1
Griag = (Ki VE?=1). (12.39)
Fiir die hier betrachteten unbedingt stabilen Zweitore ist der Term unter Wurzel
geméa$ (12.22) immer positiv. Beztiglich des Vorzeichens vor der Wurzel betrachtet
man den Grenzfall des riickwirkungsfreien Zweitors S; o — 0. Aus (12.22) folgt
im Grenzfall eines riickwirkungsfreien Zweitors S, , — 0 fiir den Stabilitétsfaktor

. (1804 = 1) (|82 - 1)
%

2551512 ’

das heifit der Stabilitatsfaktor K wird unendlich grofl. Ein physikalisch sinnvoller
endlich grofler maximaler verfiigharer Leistungsgewinn Gyag kann sich nur dann
ergeben, wenn in (12.39) das negative Vorzeichen gilt.

(12.40)
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Aufgabe 12.2 FEs wird ein Leitungsstick der Linge | mit der Phasenkonstante 3
betrachtet. Der Wellenwiderstand sei gleich dem Bezugswiderstand Z;, = Ry, so
dass sich die Streumatriz S gemdf (10.18) ergibt. Berechnen Sie den Klemmen-
leistungsgewinn G, den Einfiigungsgewinn Gy, den Ubertragungsgewinn Gr, den
verfligbaren Leistungsgewinn G o und den mazimalen verfiigbaren Leistungsgewinn
Gumac des Leitungsstiicks jeweils als Funktion der Ldnge |, der Phasenkonstante
B, des Quellenreflexionsfaktors I'q und des Lastreflexionsfaktors Iy, athrmL!

12.4.7. Maximaler stabiler Leistungsgewinn

Ein nicht unbedingt stabiles Zweitor kann man zum Beispiel durch Serienschalten
oder Parallelschalten von Wirkwiderstdnden an Eingang oder Ausgang unbedingt
stabil machen. Wie aus (9.25) ersichtlich ist, andert sich das Verhéltnis Sy ;/S 5
durch Anfiigen eines derartigen reziproken Zweitors nicht. Man kann die Wirk-
widerstdnde nun so grof§ wahlen, dass der Stabilitatsfaktor gerade eins wird. In
diesem Grenzfall erhédlt man durch Einsetzen von K = 1in (12.39) den maximalen
stabilen Leistungsgewinn (Maximum Stable Power Gain, MSG)

(12.41)

Der maximale stabile Leistungsgewinn Gysq ist fiir nicht unbedingt stabile Zwei-
tore definiert.

12.4.8. Unilateraler Ubertragungsgewinn

Bei Hochfrequenzverstarkern ist die Riickwirkung S, 5 héufig relativ klein. Wenn
man die Riickwirkung S, , vernachlassigt, vereinfachen sich die Gewinnberech-
nungen betrachtlich. Aus (12.32) erhélt man mit S; , = 0 den unilateralen Uber-
tragungsgewinn

oo ()il (-

o 2
‘1 — Sl — SoolL + 51,1§2,2£Q£L’

- ‘EQ‘Q ’ ‘2 - |£L|2 (12.42)
1 -8l S [1-8,n
Gq GL

der sich offensichtlich als ein Produkt aus
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o Gewinn )
I g 1Y
Q= ——3 (12.43)
1= 81l
der Eingangsanpassung,
o unilateralen Zweitorgewinn
2
GO = ‘ﬁzg‘ (12.44)
und
o Gewinn )
1—|L
¢, = -l (12.45)
’1 - iQ,ZEL‘

der Ausgangsanpassung

darstellen lasst.

Zunéchst werde der Gewinn Gq der Eingangsanpassung genauer untersucht.
Fiir die Orte konstanten Gewinns G der Eingangsanpassung gilt:
2

GQ ’1 —§1,1£Q‘2 =1- ’EQ ’
Lol (GoSinSis +1)

—TGaSy; — TGS, = 1— Gq,
2

GQﬁi,l 1-— GQ G(QQ ’§171’2
o~ 3| T 2 T 2\ 2
1+ Gq ’51,1’ 1+Gq ‘5171’ (1 +Gq ‘51’1‘ )
A

1— GQ + GQ ‘51,1
N 2
(1 + GQ ‘ﬁm} )

2
UE)

‘ 2

Die Orte konstanten Gewinns G der Eingangsanpassung bilden einen Kreis mit
Mittelpunkt

GaoS;
Mg = —22L (12.46)
1 + GQ ’§171’
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und Radius

1-Ga+ ol
14 Go|s[

Rq (12.47)

in der Ebene des Quellenreflexionsfaktors I'y.
Beim maximalen Gewinn Ggmax der Eingangsanpassung wird der Radius R
Null. Es folgt:

‘ 2

\/1 - GQmax + GQmax

51,1

(12.48)

GQmax = ! ’2.

1— |5y,

Dieser maximale Gewinn Gqmax der Eingangsanpassung wird fiir den dem zuge-
hérigen Mittelpunkt M entsprechenden optimalen Quellenreflexionsfaktor

CTYQmax§>k "
Lomax = s =857, (12.49)

1+ GQmax ﬁl,l‘

das heifit bei Leistungsanpassung erreicht, vergleiche (12.7).

Abbildung 12.10 zeigt einen exemplarischen Kreis konstanten Gewinns der Ein-
gangsanpassung Gq. Der Mittelpunkt M, liegt auf der Geraden durch g, und
den Ursprung, da die Argumente aller Mittelpunkte gleich sind:

arg(MQ) = arg(EQmaX) = arg(ﬁ’il) .

Dual erhdlt man den Kreis konstanten Gewinns G, der Ausgangsanpassung
mit Mittelpunkt

GLS5
My = ——=22 (12.50)
1+ Gy ’ﬁzg‘
und Radius
2
Y1 Got Cu|Ss)
Ry, = 3 (12.51)
1+ Gy ‘52,2‘
in der Ebene des Lastreflexionsfaktors [';,. Bei Leistungsanpassung
£Lmax = 5;72 (1252)
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Abbildung 12.10.: Exemplarischer Kreis konstanten Gewinns der Eingangsanpas-
sung G = 0,5. S, = 0,5 —j0,5

erhalt man den maximalen erzielbaren Gewinn

1
GLmax - 7‘2 (1253)

1—|Ss5

der Ausgangsanpassung.
Der sich bei eingangsseitiger und ausgangsseitiger Anpassung ergebende maxi-
male unilaterale Ubertragungsgewinn ist

1
GTUmax = ‘2 ’52,1

i L (12.54)
L= |81 |

1—|Ss,

Aufgabe 12.3 Berechnen Sie den Ubertragungsgewinn G, den Klemmenleis-
tungsgewinn G, den verfigbaren Leistungsgewinn G und den Finfiigungsgewinn
Gy der Einwegleitung mit der Streumatriz S gemdfS (10.23) jeweils als Funktion
des Quellenreflexionsfaktors I'q und des Lastreflexionsfaktors I'y,athrmL!

Aufgabe 12.4 Zeigen Sie, dass fiir den Grenzfall eines riickwirkungsfreien Zwei-

tors S1 5 — 0 der mazimale verfigbare Leistungsgewinn Gyiac gegen den maxi-
malen unilateralen Ubertragungsgewinn Grumax konvergiert!
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Rauschen

13.1. Rauschende Eintore

13.1.1. Modellierung rauschender Eintore

Es wird ein rauschendes Eintor mit dem Reflexionsfaktor I' betrachtet, sieche Ab-
bildung 13.1. Im Folgenden wird stets das Rauschen innerhalb einer sehr kleinen
vorgegebenen Bandbreite B betrachtet.! Bei sehr kleiner Bandbreite B ist das
Rauschen naherungsweise sinusformig mit zufélliger Amplitude und Nullphase,
das heifit die komplexe Wellenamplitude by der Rauschurwelle ist eine Zufallsva-
riable. Mit (12.6) ergibt sich die verfiigbare Rauschleistung zu

1 ) 1
Pra = —Eq|b —. 13.1
ha = {|_R|}1_|£|2 (13.1)

E{-} bezeichnet den Erwartungswert.

a
ae—]
|
N O r
|
b br
Ly

Abbildung 13.1.: Modell eines rauschenden Eintors

Rauschsignale mit grofleren Bandbreiten B, wie sie beispielsweise in der Nach-
richtentechnik vorkommen, kénnen im Sinne einer Frequenzbereichsmodellierung
durch ihr Leistungsdichtespektrum beschrieben werden | ]

L Ublicherweise interessiert von dem an sich breitbandigen Rauschen nur der Anteil innerhalb
der kleinen Bandbreite B des Nutzsignals.
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13.1.2. Thermisches Rauschen von Widerstanden

Eine haufige Quelle von Rauschen im Bereich der Hochfrequenztechnik ist das
thermische Rauschen von Widerstanden, siehe Abbildung 13.2. Mit der Boltzmann-

Konstante
k=138-1002WsK™* (13.2)

ergibt sich die innerhalb der Bandbreite B verfiighare Rauschleistung bei einer

Temperatur 7' zu
Pra =KTB|. (13.3)

Insbesondere ist das thermische Rauschen innerhalb der in der Hochfrequenztech-
nik interessierenden Frequenzbereiche weifl. Die verfiighare Rauschleistung Pga
hangt nicht vom Widerstand R ab. Bei der tiblicherweise verwendeten Bezugstem-

peratur
To =290K (13.4)

ergibt sich die verfiighbare Rauschleistungsdichte

P
%A = kTy =4-10"2'WHz . (13.5)

]

Abbildung 13.2.: Thermisch rauschender Widerstand R

13.1.3. Thermisch rauschende Eintore homogener Temperatur

Ein thermisch rauschender Widerstand R der Temperatur 7' ist mit einer ther-
misch rauschenden Impedanz Z gleicher Temperatur T verbunden, siehe Abbil-
dung 13.3. Fir die komplexen Wellenamplituden gilt

a=10by+I'b

und
b= QR +la
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Aufgelost nach den komplexen Wellenamplituden erhélt man

o= bﬁ —|—£I(_)R
- 1-rI'
und )
) bn + Tl
R N A

ae—|

F—b
|
O
|
|
|
?
I

Jzr

Abbildung 13.3.: Verbinden eines thermisch rauschenden Widerstands R mit einer
thermisch rauschenden Impedanz Z gleicher Temperatur T’

Im hier betrachteten thermodynamischen Gleichgewicht muss die Leistungsbi-
lanz, vergleiche (9.3), ausgeglichen sein:

S B{laP} = B{1?)
"

2 1
b+ ba[ } =5 B{lbn + Tt}
Da es sich um raumlich getrennte unabhéngige Rauschquellen handelt, sind die
komplexen Wellenamplituden der Rauschurwellen unkorreliert und es gilt

1 1
S EB{bali} = 5 BBk} = 0.

Mit (13.1) folgt:

SE{R ) + 0" 5 B{be} =5 B{ b} + 0P 5 B{ i}
1 1 1 1
B E{ |br|*} T2 E{ |bf |} A
Pra
PRa
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SchlieBlich erhdlt man mit (13.3) die innerhalb der Bandbreite B verfiighare
Rauschleistung

1 2 1

Die verfiigbare Rauschleistung Py, aller thermisch rauschenden Eintore homoge-
ner Temperatur 7" und nicht nur die von Wirkwiderstdnden R ist daher £T'B.

Auch andere Rauschquellen modelliert man in der Hochfrequenztechnik héufig
als thermisch rauschende Impedanzen Z, wobei die Rauschtemperatur 1" entspre-
chend der jeweils verfigbaren Rauschleistung P}, zu wéhlen ist.

13.2. Rauschende Mehrtore

13.2.1. Modellierung rauschender Mehrtore

Im Modell eines rauschenden Mehrtors ist an jedem Tor n eine Rauschurwelle mit
der komplexen Wellenamplitude bg,, zu beriicksichtigen, siehe Abbildung 13.4.

bro
@)
\ &1
4 5271 by
[ ay<— O > O
| |
O S ——0— YSia Sso A
| |
by <— b, o - O
Tor 1 Tor 2 by 212 a
1 A
@)
bra
Abbildung 13.4.: Modell eines rauschenden Zweitors
Mit dem Vektor
bra
br =1 : (13.7)
b
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der komplexen Wellenamplituden der Rauschurwellen und der Streumatrix S er-
hélt man den Zusammenhang

b=S-a+by (13.8)

zwischen den komplexen Wellenamplituden, vergleiche (9.46).

Die komplexen Wellenamplituden by,, der Rauschurwellen sind im Allgemeinen
korreliert, da sie zumindest teilweise auf gemeinsame physikalische Rauschquellen
im Inneren des Mehrtors zurtickgehen. Man definiert die Rauschwellenkorrelati-
onsmatrix !

R=_ E{bg - by} (13.9)
Die Korrelationen sind bei Rauschleistungsberechnungen zu beriicksichtigen, da
man die Beitrige der einzelnen Rauschurwellen zur Gesamtleistung nicht einfach
aufaddieren darf.

13.2.2. Analyse komplexer rauschender Netzwerke

Die Analyse komplexer rauschender Netzwerke beruht auf dem in Abschnitt 9.8
geschilderten Ansatz. An Stelle des Vektors bg der komplexen Wellenamplitu-
den der Urwellen tritt nun der Vektor by der komplexen Wellenamplituden der
Rauschurwellen mit der Rauschwellenkorrelationsmatrix R.

Einsetzen der komplexen Wellenamplituden by der Rauschurwellen in (9.67)
ergibt die komplexen Wellenamplituden der zulaufenden Wellen

a=(K-8)" bg.

Die zulaufenden Rauschleistungen entsprechen den Diagonalelementen der Kor-
relationsmatrix
1 *T | __ -1 «T\ 1
5}3{@@ f=K-8)"R-(K-87) (13.10)
wobei (9.63) und (13.9) verwendet wurde. Analog erhélt man aus (9.68) die kom-
plexen Wellenamplituden der ablaufenden Wellen
b=(E-S K) by

und als Diagonalelemente der Korrelationsmatrix

1

%E{h-h*T}:(E—S-K)I-E- (BE-K-87) (13.11)

die ablaufenden Rauschleistungen.
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13.2.3. Thermisch rauschende Mehrtore homogener
Temperatur

Die Tore eines thermisch rauschenden Mehrtors homogener Temperatur 7' seien

mit thermisch rauschenden Abschliissen gleicher Temperatur 7' abgeschlossen,

siehe Abbildung 13.5. Im betrachteten thermodynamischen Gleichgewicht muss an

jedem Tor n die zulaufende Rauschleistung gleich der ablaufenden Rauschleistung
sein, das heifit unabhingig von den Reflexionsfaktoren I'; der Abschliisse an den

Toren gilt an jedem Tor n
3 B{lanl’} = S E(In)

vergleiche (9.3).

bro
@]
\ &
1 a 52’1 Q2
bry O > O > C
I TS Saa | I
> < O « O by,
b, §1,2 o) 1
LA
@)
b,

Abbildung 13.5.: Rauschendes Zweitor mit rauschenden Abschliissen
Die Leistung der Rauschurwelle eines reflexionsfreien Abschlusses £; =0 ist
1 2
siehe (13.6). Bei reflexionsfreiem Abschluss I/, = 0 an Tor n gilt weiterhin

/
Qp = l—)Rn'

Fiir die von Tor n ablaufende Rauschleistung folgt

S (.} = 5 B{la} = S B{bha [} = KTB.
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Zunichst wird der Betriebszustand mit reflexionsfreien Abschliissen I, = 0 an
allen Toren [ = 1... N betrachtet. An Tor n gilt dann

l—)n = bRn + Zﬁn,lgl = bRn + Z ﬁn,ll—)i{l'
l l

Die Rauschquellen der Abschliisse sind untereinander und mit den Rauschquellen
des Mehrtors unkorreliert. Fiir ein beliebiges Paar verschiedener Tore n # m gilt

1 1

und fiir beliebige Tore n und m gilt

1 1

Es folgt die von Tor n ablaufende Rauschleistung

SB{b.P} = 5 B{ b} + 0[S0 3 B{Ibh '}
—_— l —_——
kTB kTB

SchliefSlich erhélt man im thermodynamischen Gleichgewicht die Leistung der
Rauschurwelle an Tor n

%E{‘bRn\Q} = kTB <1 _ zl: ‘ﬁn,lf) _TB (1 _ [S _ S*T}mn) . (13.12)

Damit ist ein Zusammenhang zwischen den Leistungen der Rauschurwellen und
den Streuparametern thermisch rauschender Mehrtore homogener Temperatur 7'
hergestellt.

Das Ziel der folgenden Betrachtungen ist es, Zusammenhénge zwischen den
Kreuzleistungen der Rauschurwellen und den Streuparametern thermisch rau-
schender Mehrtore homogener Temperatur 7" zu finden. Bei reflexionsfreiem Ab-
schluss ['; = 0 an den Toren [ # m erhélt man

a = by
und mit den Vereinfachungsregeln aus Abbildung 9.3
L, 1 / L,

/

I#m Emm=m Emma=m Emm=m

289



Kapitel 13. Rauschen

An Tor n # m gilt dann allgemein

l—)n = Z ﬁn,lgl + ﬁn,ngm + l—)Rn

l#m
1—1/
- S b S, S b
l;n—n,l—m + l;—n,ml 5. 2, 10R;
/
S,y Spm———b bR
+ —n,ml _ ﬁm,mEIm_Rm + En,m 1 — §m7m£m—Rm + ZRn

Zunéchst wird der Reflexionsfaktor E;n des Abschlusses an Tor m so gewéhlt,
dass v
S __—m
mp_s TV

Em,m=m

=1

gilt.? Der erforderliche Reflexionsfaktor ergibt sich zu

; 1
e in,m =+ ﬁm,m .

Mit (13.6) ergibt sich die Leistung der Rauschurwelle des Abschlusses zu

1
S+ S| )

%E{\@gmf} —kTB|1—

Da die Rauschquellen der Abschliisse untereinander und mit den Rauschquellen
des Mehrtors unkorreliert sind, folgt fiir die von Tor n ablaufende Rauschleistung

LB} = 3 (S + S S B} S S| 2 E{ i)
2 - im 2 2 - 2

[ —
KTB KTB
krBl1-————
|0+ S|
1 2 1 2 1 . 1 .
T3 E{|@Rm‘ } T 3 E{‘bRn| } T3 E{brmbr,} + 5 E{bRnbrn} -
— ——

kTB (1_2‘57”71 ‘2) kTB (1—Z|§n,z |2)
1 i

2Dies ist abhiingig von den Streuparametern nicht immer mit einem passiven Abschluss }ﬂn| <
1 moglich, was aber fiir die folgenden Berechnungen irrelevant ist.

290



13.2. Rauschende Mehrtore

SchlieBlich erhdlt man mit (13.12) im thermodynamischen Gleichgewicht
1 * 1 *
5 E{l—)le—)Rn} + 5 E{mebRn}
2 2 2
=—kTB Z }ﬁn,l _'_ﬁm,l} - Z ‘imJ‘ - Z }ﬁn,l}
I I 1
L] DIENCAED SEAE
I 1

— _kTB ([g-g*T}ner [§~§*T}mn) .

(13.13)

Nun wird der Reflexionsfaktor En des Abschlusses an Tor m so gewéhlt, dass

F/
S —=m
—n,ml _ S F/ J

gilt. Der erforderliche Reflexionsfaktor ergibt sich zu
o 1
- Jin,m _'_ §m7m .

Mit (13.6) ergibt sich die Leistung der Rauschurwelle des Abschlusses zu

1
1S+ S| )

%E{|b§\2} —kTB|1-

Da die Rauschquellen der Abschliisse untereinander und mit den Rauschquellen
des Mehrtors unkorreliert sind, folgt fiir die von Tor n ablaufende Rauschleistung

S B0} = 3 [Ss — i8] 5 Bk} S+ S| 5 B{ )
—_—  l#m

—_—— ———

kTB kTB
kTB(1-—-r =L ——
|78 ,m+Sm,m|
1 9 1 2 1 . I
— ———

kTB (1—Z|§m,z |2> kTB (1—2\57%1 ‘2)
7 [
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SchlieBlich erhdlt man mit (13.12) im thermodynamischen Gleichgewicht
1 A
5 E{mel—)Rn} - 5 E{mebRn}
' ' 2 2 2
= JkTB Z }ﬁn,l - Jﬁm,l} - Z ‘im,l‘ - Z }ﬁn,l}
1 I I
=—kTB <_ Zﬁn,lﬁrn,l + Zﬁz,l§m71>
] I

— _kTB (— 8.8+ [g-g*T}mn) .

(13.14)

Durch Addition von (13.13) und (13.14) erhélt man

1

5 Elbrabiv,} = —kTB S -8
Die in (13.9) eingefiihrte Rauschwellenkorrelationsmatrix ergibt sich schlieflich

zu

R=#+B(E-S-87). (13.15)

Die durch die Streumatrix S beschriebene Féahigkeit eines Mehrtors Leistung auf-
zunehmen und die durch die Rauschwellenkorrelationsmatrix R beschriebene Fa-
higkeit eines Mehrtors Rauschleistung abzugeben sind fiir thermisch rauschende
Mehrtore homogener Temperatur 7' eng miteinander verkntipft.

Die Streumatrix S eines entkoppelten Mehrtors ist eine Diagonalmatrix. Die
Rauschquellen entkoppelter thermisch rauschender Mehrtore homogener Tempe-
ratur T sind somit unkorreliert. Bei eigenreflexionsfreien thermisch rauschenden
Zweitoren homogener Temperatur T, das heifit bei S;; = Sy, = 0 geméaf (9.5),
sind die Rauschquellen ebenfalls unkorreliert. Verlustfreie thermisch rauschende
Mehrtore homogener Temperatur 7' sind rauschfrei, da ihre Streumatrix S unitar
ist, siehe (9.7).

Aufgabe 13.1 FEs wird die in Abbildung 15.6 gezeigte thermisch rauschende Par-
alleladmittanz homogener Temperaturl betrachtet. Berechnen Sie den normierten
Korrelationskoeffizienten

5 E{bribio }

VaE{ e} Bl

C =

der Rauschurwellen!
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—C * 'O E—
Rx : Y : Rx
e umm W— S
Tolr 1 Tolr 2

Abbildung 13.6.: Thermisch rauschende Paralleladmittanz

13.3. Rauschende Zweitore

13.3.1. Effektive Rauschtemperatur und Rauschzahl

Zweitore sind von besonderer Bedeutung beim Verarbeiten nachrichtentechnischer
Signale. Eine intensivere Beschéftigung mit den Rauscheigenschaften von Zwei-
toren ist somit angebracht. Hierzu wird der in Abbildung 13.7 gezeigte Signal-
flussgraph eines eingangsseitig an Tor 1 mit einer rauschfreien Quelle mit dem
Quellenreflexionsfaktor I'q abgeschlossenen und ausgangsseitig an Tor 2 mit ei-
ner reflexionsfreien Last abgeschlossenen rauschenden Zweitors betrachtet.

bra
(@)
Y 1
4 §271 b2
bRErsatz o-—>>—— J > O
Ly "§1,1 §2,2 A
) «—o0
b, Sio as =0
1 A
(@)
bri

Abbildung 13.7.: Modell eines an eine rauschfreie Quelle und eine reflexionsfreie
Last angeschlossenen rauschenden Zweitors

Die komplexe Wellenamplitude der ausgangsseitig von Tor 2 ablaufenden Welle
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bei reflexionsfreier Last erhélt man unter Verwenden der Vereinfachungsregeln
aus Abbildung 9.3 zu

I'yS S 1-IaS
by = bm#(jﬁlm + bro = % (@mEQ + %bm) )

das heifit die Rauschquellen im Zweitor wirken wie eine Ersatzrauschquelle mit
der komplexen Wellenamplitude der Rauschurwelle

1-I6S S 1
brErsatz = brillq + Mém =TLq | br1 — —lbgy | + ——bro
Ssy Ss4 So1

am Zweitoreingang. Die verfiighare Eingangsrauschleistung der Ersatzrauschquel-
le an Tor 1 ist

1 1
APRAl =-EB |l_)RErsatz| 2
2 { } 1_Ir 2

siehe (13.1).
Ein thermisch rauschendes Eintor miisste geméf (13.6) die effektive Rauschtem-

peratur
AP L 2 =Q | ¥R1 52’1_R2 S YR2

kB kB <1—\£Q\)

haben, um diese verfiighare Eingangsrauschleistung A Pga; zu erzeugen. Mit den

Teﬁ =

Rauschparametern
1 S 2
Rll_5 {bm S;bm } (13.16)
. 1 S 1 i
o= e - 0 (o)} e
2
1 1
R22_— {‘S bro } (13.18)
2.1

folgt fiir die effektive Rauschtemperatur

2 * *
‘EQ‘ Ry +LoRy 5+ EQELQ + R

2
kB (1 ~ || )

T = (13.19)
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13.3. Rauschende Zweitore

Die effektive Rauschtemperatur T,g ist offensichtlich eine Funktion des Quellen-
reflexionsfaktors Ly

Mit dem verfiigharen Leistungsgewinn G des Zweitors ergibt sich die vom
Zweitor erzeugte verfliighbare Ausgangsrauschleistung

APRA2 - GAAPRAl (1320)

an Tor 2, siehe (12.33). Es folgt

_ APgras

Tig =
B GAkB

(13.21)

fir die effektive Rauschtemperatur. Mit der Bezugstemperatur 7 definiert man
weiterhin die zusatzliche Rauschzahl
Teff

Iy = .
Z T,

(13.22)

In der Realitét ist die am Zweitoreingang angeschlossene Quelle nicht rausch-
frei. Das Rauschen des Zweitors wirkt wie eine Erhohung der Rauschtemperatur
der Quelle um die effektive Rauschtemperatur 7T.g. Falls die Rauschtemperatur
der Quelle der Bezugstemperatur Ty entspricht, ergibt sich die Systemrauschtem-
peratur

Ts =Ty + Tig. (13.23)
Man definiert die Rauschzahl
Ts Tem
F=—=1 =1+ Fy. 13.24
T + T + 'y ( )

Die Rauschzahl F' ist ebenso wie die effektive Rauschtemperatur T, und die zu-
sitzliche Rauschzahl F7z vom Quellenreflexionsfaktor I'q abhéngig. Man beachte,
dass die Rauschzahl F' immer beziiglich einer Bezugstemperatur Ty definiert ist.
Fiir die Rauschzahl F’ bei einer anderen Bezugstemperatur 7§ ergibt sich

T,
F = (F - 1)?0,+1. (13.25)
0

Man kann die Rauschzahl auch als Verhéltnis der verfiigharen Ausgangsrausch-
leistung
Prao = GAkTsB = Gk (To + Teg) B (13.26)

an Tor 2 und der verstiarkten von der thermisch rauschenden Quelle der Bezug-
stemperatur Ty stammenden verfiigbaren Eingangsrauschleistung

Paar = kTyB (13.27)
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geméB (13.6) darstellen | ]:

B RA2

F=—
GaPras

(13.28)

Falls die Rauschtemperatur der Quelle der Bezugstemperatur 7 entspricht,
ergibt sich das Signal-Rausch-Abstand am Zweitoreingang mit der verfligbaren
Nutzsignalleistung Psa zu

_ Psa _ Psa
N Poas KB

Am Zweitorausgang erhilt man mit dem verfiigharen Leistungsgewinn G5 des
Zweitors das Signal-Rausch-Abstand
_ GaPsa  GaPsa  Psa
2T TPuns GakTsB _ KIsB'

Das Verhéltnis dieser Signal-Rausch-Absténde entspricht der Rauschzahl

n_Is

=_—=F. 13.29

Y2 1o ( )
Die Rauschzahl F' ist somit ein Maf fiir die Verschlechterung des Signal-Rausch-
Abstands infolge des Rauschens des Zweitors.

Aufgabe 13.2 Es wird eine an eine Quelle mit dem Quellenreflexionsfaktor L'
angeschlossene thermisch rauschende Finwegleitung homogener Temperatur T be-
trachtet, siehe Abbildung 153.8. Berechnen Sie die Rauschzahl F' der Finwegleitung
als Funktion des Quellenreflexionsfaktors L', der Temperatur T' der Einweglei-
tung und der Bezugstemperatur Ty!!

I I
I I
L f—0—r —> —0
I I

I I
Tor 1 Tor 2

Abbildung 13.8.: An eine Quelle mit Quellenreflexionsfaktor ', angeschlossene
thermisch rauschende Einwegleitung
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13.3. Rauschende Zweitore

13.3.2. Thermisch rauschende Zweitore homogener
Temperatur
Es werden thermisch rauschende Zweitore homogener Temperatur T° wie zum

Beispiel Dampfungsglieder betrachtet, siche Abbildung 13.9. Die Temperatur T
entspreche der Bezugstemperatur Tj.

Prar Praz
| |
| |
Ty O T ="1Ty O
| |
| |
Tor 1 Tor 2

Abbildung 13.9.: An eine thermisch rauschende Quelle der Bezugstemperatur 7j
angeschlossenes thermisch rauschendes Zweitor homogener Tem-
peratur T' = Tj

Die von der thermisch rauschenden Quelle der Temperatur Ty stammende ver-
fiigbare Eingangsrauschleistung ergibt sich mit (13.6) zu

PRAl - l{}ToB

Vom Ausgang her gesehen entspricht das thermisch rauschende Zweitor homoge-
ner Temperatur Ty mit dem eingangsseitigen thermisch rauschenden Abschluss der
gleichen Temperatur 7T einem thermisch rauschendem Eintor homogener Tempe-
ratur Ty. Die verfiighare Ausgangsrauschleistung ist geméfl (13.6)

PRA2 - l{}ToB
Mit (13.28) folgt die Rauschzahl

Pras 1

F == = =,
GaPra1r Ga

(13.30)

die dem Kehrwert des verfiigbaren Leistungsgewinns G o entspricht, siehe (12.33).

13.3.3. Kaskade rauschender Zweitore

Bei einer rauschfreien Quelle am Eingang der beiden in Serie geschalteten Zweitore
ergébe sich die verfiighbare Rauschleistung am Ausgang der Kaskade als Summe
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der vom ersten Zweitor erzeugten und anschliefend vom zweiten Zweitor ver-
starkten Rauschleistung und der vom zweiten Zweitor erzeugten Rauschleistung,
sieche Abbildung 13.10. Mit (13.21) folgt fiir die effektive Rauschtemperatur der

Kaskade
_ GaoGa1kTem1 B + GaskTega B Tesro

GAkD — et ey
Wichtig hierbei ist, dass jeweils die bei dem fiir den Eingang sichtbaren Reflexi-

onsfaktor giiltige effektive Rauschtemperatur des Zweitors verwendet wird. Die
zusatzliche Rauschzahl der Kaskade ergibt sich gemafl (13.22) zu

Teff

(13.31)

T. T. F
il B P+ 22 (13.32)

V=
S PRNENGT Gai

und die Rauschzahl der Kaskade ergibt sich schlieBlich mit (13.24) zu

Fyy Fy—1
F=1+F —— =F .
N ZI+GA1 ' G

(13.33)

Die effektive Rauschtemperatur T,g, die zusatzliche Rauschzahl Fy und die
Rauschzahl F' einer Hochfrequenzverstarkerkaskade werden typischerweise im We-
sentlichen durch die effektive Rauschtemperatur T4, die zuséatzliche Rauschzahl
F71 beziehungsweise die Rauschzahl F; des ersten Hochfrequenzverstérkers in der
Kaskade bestimmt.

13.3.4. Messen der Rauschzahl mit der Y-Faktor-Methode

Ziel ist es, zundchst die vom Messobjekt erzeugte verfiigbare Ausgangsrauschleis-
tung A Prao und den verfiighbaren Leistungsgewinn Gapyr zu bestimmen. Daraus

lasst sich die Rauschzahl
APras

GADUTkTOB

prinzipiell berechnen, siehe (13.21) und (13.24). Beim Durchfithren der Messung
treten zwei Probleme auf, siche Abbildung 13.11:

F=1+

o Zum direkten Messen der vom Messobjekt erzeugten verfiigharen Ausgangs-
rauschleistung A Pras wére es erforderlich, das Messobjekt eingangsseitig
rauschfrei abzuschlieen, was praktisch nicht moglich ist. Statt dessen fiihrt

3 Zum frequenzselektiven Messen von Rauschleistungen verwendet man iiblicherweise einen
Spektralanalysator, siehe Anhang B.2.2.
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/7 G aokTeso B
/______// _
it : kTogoB : et
// B g Ga1GakTe B
“oans T | Gwtaen |
| KB |- | GGk T B
. © - A1GA2R Leff
| kToB | _____ GAlkTOB _____
I I I
| Gl | Ga2 |
C Teffl C Teff2 C
I Fl I F2 I
I I I
/
/
/
/
/
//
)/ GpakTgB
//
/
/
/
I _____ _(
| kLeB
:// GAkT)B
KlvB |
I I
I Ga I
To O Tog O
I F I
I I

Abbildung 13.10.: Kaskade rauschender Zweitore
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Pras
A
Steigung GADUT

Proon +—————— — — —

Prask
APras

> Prai

k'Tx B kTyB
Abbildung 13.11.: Messen der Rauschzahl

man zwei Messungen mit eingangsseitigen Abschliissen mit unterschiedli-
chen bekannten Rauschtemperaturen durch. Man kann hierzu eine Rausch-
diode verwenden, die durch eine Steuerspannung zwischen einem kalten Zu-
stand mit der Rauschtemperatur Tk und einem heiflen Zustand mit der
Rauschtemperatur Ty umgeschaltet werden kann. Fiir die verfiigharen Aus-
gangsrauschleistungen des Messobjekts gilt geméfl (13.26):

Prazx =Gapurk (Tk + Ter) B,
Praon =Gapurk (Tu + Teg) B.

Fir die Differenz der verflighbaren Ausgangsrauschleistungen gilt
Praom — Prasx = Gapurk (Ta — Tk) B. (13.34)

Aus dem als Y-Faktor bezeichneten Verhéltnis der gemessenen verfiigbaren
Ausgangsrauschleistungen

P Ty + T,
y — IRA2 H T Leff

= = 13.35
Praox Tk +Tem ( )
lasst sich nun einfach die effektive Rauschtemperatur
Ty — YTk
Tg=———
Ty -1
berechnen. Mit (13.24) folgt die Rauschzahl
Tu/To — 1+ Y (1 — Tk /T,
po D/l =1+ Y- Ti/To) (13.36)
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13.3. Rauschende Zweitore

Speziell wenn die Rauschtemperatur Tk im kalten Zustand gleich der Be-
zugstemperatur Tj ist, gilt vereinfachend

Tu—To

=0
Y -1

Die als bekannt vorausgesetzten relevanten Eigenschaften der Rauschdiode
werden hier durch das als Ubertemperaturverhiltnis (Excess Noise Ratio,
Ty—To

ENR) bezeichnete Verhéltnis o vollstandig spezifiziert.

Man misst zunéchst nur die Rauschzahl F' der Kaskade aus Messobjekt und
Leistungsmessgerit, sieche Abbildung 13.12. Zur Elimination des Einflus-
ses des Leistungsmessgerits ist eine Fehlerkorrektur erforderlich. Zur Ka-
libriermessung wird die Rauschquelle direkt mit dem Leistungsmessgerét
verbunden. Man misst die verfigbaren Ausgangsrauschleistungen Praonm
und Prasxy im heiflen beziehungsweise kalten Zustand der Rauschquelle.
Man erhalt das Verhaltnis

_ Praonv T+ Tesm

Vir — _
M Praskn Tk + Tom

(13.37)

der gemessenen verfligharen Rauschleistungen und schliefllich die Rausch-
zahl

B Yar— 1

des Leistungsmessgerats. Wichtig hierbei ist, dass die Rauschquelle den glei-
chen Reflexionsfaktor hat wie der Ausgang des Messobjekts, da die Rausch-
zahl des Leistungsmessgeréts vom Reflexionsfaktor abhingt. Aus der Diffe-
renz der am Ausgang der Rauschquelle gemessenen verfiigharen Rauschleis-
tungen

Fu

(13.38)

Praon — Prask =k (Tu —Tx) B

kann man unter Verwenden von (13.34) den verfiigbaren Leistungsgewinn
des Messobjekts

P — A
Gapur = RA2H RA2K (13.39)

PRAQHM - PRAZKM

berechnen. Auch hierbei ist es wieder wichtig, dass die Rauschquelle den glei-
chen Reflexionsfaktor hat wie der Ausgang des Messobjekts, da sonst unter-
schiedliche Fehlanpassungen des Leistungsmessgeréts resultieren. Schliellich
fithrt man basierend auf (13.33) die Korrekturrechnung durch und erhalt die
Rauschzahl

Fy—1

Four = F —
puT GADUT

(13.40)
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des Messobjekts. Diese theoretisch mogliche Fehlerkorrektur gelingt prak-
tisch nur unvollkommen. Um den Fehler von vornherein klein zu halten
ist es daher wichtig, ein Leistungsmessgerdt mit kleiner Rauschzahl Fy; zu
verwenden. Praktisch erreicht man dies durch Einsatz eines rauscharmen
Vorverstérkers, siehe (13.33).

| . |
Tk _(\c | MeSSObJ okt | Leistungsmessgerat
O - O Teny
| |
| |

TegpUT I
Tw —O Fpur M

Abbildung 13.12.: System zum Messen der Rauschzahl Fpyr

13.3.5. Rauschanpassung

Die vom Quellenreflexionsfaktor ' abhangige effektive Rauschtemperatur Teg
eines Zweitors wurde in (13.19) berechnet. Fiir die Orte konstanter effektiver
Rauschtemperatur T.g folgt

kTex B (1 - EQEa) =Ll i1 + LRy + LRy 5 + Roo,
2

. _ _ﬂh _ k1w B — Ra o n 31,2ET,2
Q" Ry +kTwB|  Riy+kTwB ' (Ryy + kTugB)?
Mq R},

Es handelt sich offensichtlich um einen Kreis mit Mittelpunkt

MQ = _E—T’Q (13‘41)
o R+ kTgB
und Radius
R k1w B — Ra o n R LR,
Rl,l + k?TeffB (R1,1 + kTegB)z
(13.42)

RT3 — RyokTuB + KT BRyy — RogRuy + By
B Rl,l + kTeffB
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in der Ebene des Quellenreflexionsfaktors I'y.
Bei der minimalen effektiven Rauschtemperatur Togn;, wird der Radius Null:

= 0.

2
kQTlefmmBQ — Ry ok Tooimin B + kT ogmin BR1,1 — Ra o Ry q + ‘ELQ’

Da es nur positive effektive Rauschtemperaturen gibt, hat diese quadratische Glei-
chung eine einzige physikalisch sinnvolle Losung

1 2
T efmin :% Rys— Rix+ |(Ro2— R171)2 +4R 1Ry — 4 ‘ELQ‘
> (13.43)
_ ! (R,—r +\/(R +Ri)® 4Ry
e 2,2 1,1 2,2 1,1 Lo |-

Der zur minimalen effektiven Rauschtemperatur T,gn.i, gehorende Kreismittel-
punkt entspricht dem optimalen Quellenreflexionsfaktor

2R,
Roo+ Riy + \/(Rz,2 + R1,1)2 —4 (ELQ

(13.44)

£Qopt = - ’2 .

Unter Verwenden der minimalen effektiven Rauschtemperatur Ti,gni,, des op-
timalen Quellenreflexionsfaktors ', und der sich bei reflexionsfreier Quelle
Lq = 0 aus (13.19) ergebenden effektiven Rauschtemperatur

Ry
Togio = —= 13.45
o=~ (13.45)
kann man die Korrelationskoeffizienten
R2,2 - /{?TeffoB (1346)
2 2 2
(Roo + Ri1)” — ((RQ,Q + Ryp)” —4 131,2’ )
R, =
=2 4ET,2
2
Roo+ Ri1 — \/(R2,2 + RLl)Z —4 ’3172‘ (13.47)

481,

2
R2’2+R1,1+\/(R2,2+R1,1)2*4|E172|

Te min — Te
k? 1T HOB

£Qopt
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und

Ryo+ Riy + \/(Rz,2 + Rl,l)2 —4 ‘ELQ

:

Ry = 5
2
Ryo— Ryq + \/(RQ,Q + R1,1)2 —4 (BL?‘
) 2 (13.48)
R Te - Te min '
= — I:Lz — kTeﬁminB = k—ﬂo f; B - kTeﬁminB
=Qopt ‘EQOpt
2
TeffO - Teffmin (}EQopt + 1)
—k 2 B
}EQopt
aus obigen Gleichungen eliminieren. Aus (13.41) folgt der Mittelpunkt
EIQ Teffmi*nf eff0
MQ —_ kB - _ LQOpt
- % + Teff TeFfO*Teffmin( LQopt|2+1) + T
Coope|” of (13.49)
o (TeffO - Teffmin) £Qopt
- 2
TeﬁO - Teﬁmin + (Teﬁ - Teﬁmin) £Qopt
und aus (13.42) folgt der Radius
2
R
. VT (T — 22) 4+ (Tog — 22 a1 [20]
Q= R
T + T
Teto—Teffmin |£ o |2+1 L 2
Teff (Teff - TeffO) + (Teff - Telch) ( (3 . ) + (Tefimin e2ff0)
_ |£Q0pt | |£Q0pt |
TeffO*TeFfmin <|£Qopt |2+1) +Teff |£Qopt |2
|£Qopt|2
2
\/(Teﬁ - Teffmin) (Teﬁo - Teﬁmin + (Teff - TeﬁO) }EQopt )
- ‘£Q0pt 2 :
TeffO — Teffmin + (Teff - Teffmin) EQopt
(13.50)
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Die effektive Rauschtemperatur berechnet man mit (13.19) zu

2 *
Ria R, 4 « B o R 2
T _‘EQ s T La7p +£Q w5 T B
eff — 2
1= ||
2 TeHO_TeHmin(‘EQoptF—"l) T _— *x T PR
’EQ‘ - h + £Q eFfrIrjnn eff0 _'_EQ efﬁfil*“ effQ _'_ TeﬁO
) o
- 2
1- ’EQ‘

(13.51)
‘EQ - (EQEZ)OM + £zzzQOpt) + ‘EQopt‘2

‘EQopt‘Q <1 - ‘%‘2)
Lq - £Q0pt‘2

2 2\ °
Loan|” (1-[q[")

Abbildung 13.13 zeigt einige exemplarische Kreise konstanter effektiver Rauschtem-
peratur Teg. Die Mittelpunkte M, aller Kreise liegen auf einer Geraden durch den
optimalen Quellenreflexionsfaktor I, und den Ursprung, da die Argumente al-
ler Mittelpunkte gleich sind:

arg(MQ) = arg(EQopt) .

Fiir sehr grofle effektive Rauschtemperaturen T, konvergieren die Kreise gegen
den Einheitskreis. Beim Entwurf eines Hochfrequenzverstarkers gilt es einen von
der Anwendung abhéngigen giinstigen Kompromiss zwischen Leistungsanpassung
und Rauschanpassung, das heifit zwischen Gewinn und effektiver Rauschtempe-
ratur Tog¢ des Hochfrequenzverstéirkers zu finden.

Wenn man alternativ von der minimalen Rauschzahl

=1 effmin T (TeffO - Teffmin)

=1 effmin T (TeffO - Teffmin)

Teffmin
Fom=1+—— 13.52
| (1352)
und der Rauschzahl T
Fy=1+-0 (13.53)
Ty

bei Abschluss mit einer reflexionsfreien Quelle ausgeht, erhédlt man fiir den Kreis
konstanter Rauschzahl F' den Mittelpunkt

(FO - len) £Qopt

MQ:
FO_Fmin+(F_Fmin)

- (13.54)
£Qopt‘
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10

Teff / TO

NN
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" SLULLLLLAANNN

N
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t(g) Re(L,)
Abbildung 13.13.: Effektive Rauschtemperatur T,g als Funktion des Quellenrefle-
xionsfaktors [ mit L, = 0,5 —j0,5, Tegmin = 0,575 und
Tero = 210.

und den Radius

2
\/(F_len) (FO_Fmin+(F_FO)’£QOpt’)

Rq = }EQOPJ 5 , (13.55)
FO - Fmin + (F - Fmin) EQopt‘
siehe (13.24). Fiir die Rauschzahl folgt
Lq - £Qopt}2
F = Fyin + (Fo — Fin) (13.56)

2 2\ °
Loan|” (1-[q[")

Aufgabe 13.3 Es werden thermisch rauschende Zweitore homogener Temperatur
T betrachtet. Vereinfachend entspreche die Temperatur T der Bezugstemperatur
Ty. Berechnen Sie die bei Rauschanpassung erzielbare minimale Rauschzahl F,
als Funktion der Streuparameter und des Stabilititsfaktors K/
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13.3.6. Messen der Rauschparameter

Zum vollstandigen Charakterisieren des Rauschverhaltens eines Zweitors ist es
nicht ausreichend, nur die effektive Rauschtemperatur T.g an einer einzigen Quel-
le mit Quellenreflexionsfaktor I'q zu kennen. Man muss vielmehr die Rausch-
parameter minimale effektive Rauschtemperatur T.gnin, optimaler Quellenrefle-
xionsfaktor L', und effektive Rauschtemperatur Tego bei Abschluss mit einer
reflexionsfreien Quelle kennen, zu deren messtechnischem Bestimmen Rauschzahl-
messungen bei verschiedenen Quellenreflexionsfaktoren erforderlich sind. Intuitiv
wiirde man

o zunachst experimentell den optimalen Quellenreflexionsfaktor I, bestim-
men,

o dann die minimale effektive Rauschtemperatur Togni, an einer Quelle mit
dem optimalen Quellenreflexionsfaktor I'q,,; messen und

o schlieflich die effektive Rauschtemperatur T.go bei Abschluss mit einer re-
flexionsfreien Quelle L'y = 0 messen.

Eleganter ist es von (13.19) auszugehen. Man erhélt eine in den vier reellen
Rauschparametern R; i, Re (3172), Im (ELQ) und Ry 9 lineare Gleichung

KT B (1 - \LQf) — [Lq|" Rus +2Re(Lq) Re(Ry5) —21m(Ig) Im (R, ) + Ra.

Durch Messen der Rauschtemperaturen Togi, Toge, Tegz und Tegq an vier ver-
schiedenen Quellenreflexionsfaktoren L'y, Lgq, L'gs und Ly, gewinnt man vier
Gleichungen fiir diese vier Unbekannten

2

kKlemB (1 — Lo

KTursB (1 — Lo/’

KTugsB (1 — |Tos

KB (1 - Loy

L (13.57)
Loi| 2Re(Lqy) —2Im(Lq) 1 Ry
| [Le| 2Re(Lqn) —2Im(Dgn) 1| |Re(Ris
| [Las| 2Re(Lqy) —2Im(Lgy) 1| |Im(Bio) |’
Lo 2Re(lqs) —2Im(Lqy) 1 fa2
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aus denen sich die Rauschparameter leicht berechnen lassen. Falls mehr als die
minimal erforderliche Anzahl an Messungen durchgefithrt wird, kann man die
zusitzlichen Messwerte im Rahmen einer Ausgleichsrechnung zur Messfehlerre-
duktion nutzen | ; ]. Mit (13.43), (13.44) und (13.45) kann man dann
auch die Rauschparameter minimale effektive Rauschtemperatur T, g, optimaler
Quellenreflexionsfaktor ', und effektive Rauschtemperatur Tego bei Abschluss
mit einer reflexionsfreien Quelle berechnen.
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Anhang A.

Nichtlineare Systeme

A.1. Potenzreihenansatz

Schwerpunkt des vorliegenden Buchs ist die Theorie der linearen Systeme. Reale
Systeme wie beispielsweise Verstarker sind aber typischerweise zumindest leicht
nichtlinear. Im Ausgangssignal nichtlinearer Systeme konnen Signalanteile bei
Kreisfrequenzen auftreten, die im Eingangssignal nicht vorhanden waren. Derar-
tige nichtlineare Effekte sind haufig stérend und ihre Minimierung motiviert viele
der teilweise komplexen Architekturen hochfrequenztechnischer Systeme. Ande-
rerseits konnen nichtlineare Systeme gewinnbringend zur Signaldetektion und zum
Umsetzen von Signalen in andere Frequenzbereiche genutzt werden. Im Folgenden
sollen die Grundziige der Theorie nichtlinearer Systeme vorgestellt werden. Die
Notation weicht zwangslaufig von der zum Beschreiben linearer Systeme verwen-
deten Notation ab. Auch aus diesem Grund wurde die Behandlung nichtlinearer
Systeme in den Anhang ausgegliedert.

Im Folgenden sollen nur statische nichtlineare Systeme mit einem einzigen Ein-
gang und einem einzigen Ausgang betrachtet werden. Statische nichtlineare Syste-
me haben kein Gedéchtnis, so dass das Ausgangssignal y(t) zu einem bestimmten
Zeitpunkt t eine nichtlineare Funktion des Eingangssignals z(¢) zum selben Zeit-
punkt ¢ ist:

y(t) = f(z(t)). (A.1)
Diese Kennlinie kann graphisch dargestellt werden, siche Abbildung A.1.

Fir die Analyse statischer nichtlinearer Systeme entwickelt man die Kennlinie
in eine Taylor-Reihe und erhélt so die Potenzreihe

y(t) = i)cnx"(t) . (A.2)

Wenn man vereinfachend den Nullpunkt z(¢) = 0 als Entwicklungspunkt verwen-
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Abbildung A.1.: Nichtlineare Kennlinie

det, ergeben sich die Koeffizienten zu

f(0) firn=0
=91 0" f(x) firn>1" (A.3)
nl Oz | _, -

A.2. Eintonanregung

A.2.1. Analyse der Eintonanregung

Zunichst werde der Fall harmonischer, das heifit sinusférmiger Anregung der
Kreisfrequenz wy und der Eingangsamplitude X betrachtet. Die Nullphase ist
keine physikalische Eigenschaft, sondern ergibt sich im Rahmen der Modellbil-
dung durch Wahl des Nullpunktes der Zeitmessung. Es geniigt daher, nur eine
einzige willkiirliche Nullphase zu betrachten. Es wird das Eingangssignal

2(t) = X cos(wot) = X% (¥t 4 e7It) (A.4)

betrachtet. Die Grundwelle der Kreisfrequenz wy wird auch als erste Harmonische
bezeichnet.
Fiir die zweite Potenz folgt

:L’z(t) :X2i (ejwot_'_efjww)? _ XQi (ej2wot 49+ efj%ot)
1

1
:X2§ + X2§ cos(2wot) .
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Neben einem Gleichanteil entsteht eine erste Oberwelle der Kreisfrequenz 2wy, die
auch als zweite Harmonische bezeichnet wird.
Allgemein gilt fiir die n-te Potenz!

1 . . n 1 2 n\ . )

nE) = X" jwot —jwot — n ejmwot —j(n—m)wot

z"(t) =X on (e +e ) X on mgzo <m> i(Qe —
el(2m—n)wq

1 & (n\1 /. .
_yn_ - (2m—n)wot —j(2m—n)wot
(e )
1 n
:Xn% mz::O <:z> cos((2m — n) wot) .
Die hochste entstehende Oberwelle ist die (n — 1)-te Oberwelle, die auch als n-te
Harmonische bezeichnet wird.

Einsetzen der Potenzen in die Potenzreihe (A.2) ergibt das Ausgangssignal

00 1
y(t) = e X"=— Y (n) cos((2m — n) wot)
n=0 2n m=0 m
-1
o 1 2m —{
=3 Y g XM 122m_l ( . ) cos(lwot)
l=—00 m=0
o 1 [2m
mX2m_
« S ()
X X 1 2m — [
+ CQm—lXQm_l 22m_l ( - ) COS(lWOt)
=1 m=l
00 oo a1 (2mt
= Z Z CQm-HXQ -HW( m ) COS(—ZWQt)
=1 ZLOZO ) ) (A5)
m
mX2m_
« S ()
00 o a1 (2mt
+ Z Z Comi X HW( . ) cos(lwot)
=1 m=0
= i Co XQmL 2m
= m 22m \ m
Gleichanteil
00 o 1 [2m+l
-+ Z Z 62m+lX2 +1 ST < m ) COS(ZWot) .
=1 m=0

I-te Harmonische

! Fiir den Binomialkoeffizienten gilt () = (,,"

" )
m n—m/"
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A.2.2. Kompressionspunkt
Mit der aus (A.5) abgelesenen Amplitude

i 1 2m+1
2m+1
mzzo Com it 22—m< m )‘

Y, =

der Grundwelle ergibt sich der Amplitudengewinn zu

Y;
X

> 1 2m+1
Z 02m+1X2m22—m < ) | : (A.6)

m=0 m

Der Amplitudengewinn ist im Allgemeinen von der Eingangsamplitude X abhéan-
gig, das heifit aussteuerungsabhéngig. Nur bei linearen Systemen wére der Am-
plitudengewinn von der Eingangsamplitude X unabhéngig. Bei realen Systemen
ergibt sich bei hinreichend grofien Eingangsamplituden X aufgrund von Begren-
zungseffekten eine Reduktion des Amplitudengewinns. Abbildung A.2 zeigt einen
typischen Verlauf des von der Eingangsamplitude X abhéngigen Amplitudenge-
winns.

20log(%) /dB

1dB

20log(X)

20 log(XKp)

Abbildung A.2.: Amplitudengewinn als Funktion der Eingangsamplitude X an
einem Beispiel

Bei kleinen Eingangsamplituden X ist der Amplitudengewinn |c;|. Beim 1dB-
Kompressionspunkt ist der Amplitudengewinn um —1dB=0,891 abgefallen. Die
Eingangsamplitude, bei der diese Amplitudengewinnreduktion eintritt, bezeichnet
man als Eingangskompressionspunkt Xkp. Die zugehorige Ausgangsamplitude

YKP = 0,891 ‘Cl| XKP (A?)

314



A.2. Eintonanregung

bezeichnet man als Ausgangskompressionspunkt.
Fiir nichtlineare Systeme dritter Ordnung, das heif3t fiir

¢, furn<3
Cp = )
0 fuirn>4

ergibt sich der Amplitudengewinn zu

Y;

X

3
c1 + ZCng

. (A.8)
cs hat normalerweise entgegengesetztes Vorzeichen wie ¢, so dass der Amplitu-

dengewinn bei steigenden Eingangsamplituden X zunéchst abnimmt. Fir den
Eingangskompressionspunkt erhalt man:

3
0789101 =C1 + ZC3X12<P,

4(0,891 — 1
Xicp :\/ (©, Jor _ o145, (A.9)
303 C3

A.2.3. Harmonischenabstand

Bei kleinen Eingangsamplituden X sind die hoheren Potenzen von X vernachlés-
sighar und das Ausgangssignal (A.5) kann durch die Kleinsignalndherung

c > ¢,
yt) ~ o+ =X+ > — X" cos(nwot) (A.10)
# n=1 2
Gleichanteil n-te Harmonische

approximiert werden.
Im Giiltigkeitsbereich der Kleinsignalndherung ist die Amplitude

‘Cn| n
2n71X

Y, = (A.11)
der n-ten Harmonischen proportional zur n-ten Potenz der Eingangsamplitude
X. Bei kleinen Eingangsamplituden X haben die Oberwellen relativ kleine Am-
plituden Y,,, n > 2. Die Amplituden Y,,, n > 2, der Oberwellen nehmen jedoch bei
steigender Eingangsamplitude X starker zu als die Amplitude Y; der Grundwel-
le und wiirden bei hinreichend groflen Eingangsamplituden X, wenn die Klein-
signalnédherung bei derartig groflen Eingangsamplituden X noch gelten wiirde,
sogar grofler als die Amplitude Y; der Grundwelle werden.
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Der n-te Harmonischenabstand wird als das Verhéltnis der Amplitude Y7 der
Grundwelle zur Amplitude Y,, der n-ten Harmonischen definiert:

Y;
H,=—. A2
- (A12)
Im Giiltigkeitsbereich der Kleinsignalndherung ist der n-te Harmonischenabstand
X 2n71
H, = ||f1| g e ety (A.13)
gt X el X

Der erste Harmonischenabstand H; ist definitionsgeméaf eins, das heifit 0 dB. Die
Harmonischenabsténde H,, nehmen mit steigender Eingangsamplitude X ab, siche
Abbildung A.3. In doppellogarithmischer Darstellung ist der Graph des n-ten
Harmonischenabstands H,, eine Gerade mit der Steigung —n.

20log(H,) /dB
—o— H,, Steigung —1
—=— H3, Steigung —2
0 | | 20log(X)
20 log(XIPH,S) 20 log(XIPH,Q)

Abbildung A.3.: Harmonischenabstinde H,, als Funktionen der Eingangsamplitu-
de X an einem Beispiel

Am Interceptpunkt der Harmonischen wird der unter Verwenden der Klein-
signalndherung berechnete Harmonischenabstand H,, eins, das heifit 0dB. Der
eingangsseitige Interceptpunkt der n-ten Harmonischen ergibt sich zu

XIPH,n =2 2 . <A14)
V Icn

Aus dem n-ten Harmonischenabstand H,, bei einer Eingangsamplitude X kann
man den eingangsseitigen Interceptpunkt der n-ten Harmonischen geméaf

X = "\ Ho X (A.15)
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berechnen. Der ausgangsseitige Interceptpunkt der n-ten Harmonischen ergibt

sich zu
lle
Yiern = |a1]| Xipnn = 2 |c1| ™ C—l . (A.16)

Die bei Eintonanregung eines nichtlinearen Systems auftretenden Effekte wer-
den in der Hochfrequenztechnik unter anderem in Signaldetektoren und Frequenz-
vervielfachern genutzt. Unerwiinschte auftretende Oberwellen kdnnen in der Regel
einfach durch Filter unterdriickt werden, da die Bandbreiten der Nutzsignale ty-
pischerweise wesentlich kleiner als eine Oktave sind.

A.3. Zweitonanregung

A.3.1. Analyse der Zweitonanregung

Im Allgemeinen wird das Eingangssignal Signalanteile bei vielen verschiedenen
Kreisfrequenzen enthalten. Zum Studium der grundséatzlichen Effekte wird der
einfachste Fall, dass das Eingangssignal aus der Uberlagerung zweier harmoni-
scher Signale gleicher Amplitude X aber unterschiedlicher Kreisfrequenzen be-
steht, studiert. Die Nullphasen sind auch hier keine physikalische Eigenschaft,
sondern ergeben sich im Rahmen der Modellbildung durch Wahl des Nullpunktes
der Zeitmessung. Mit den Kreisfrequenzen w; und w, der beiden Anteile gelte fiir
das Eingangssignal:

(1) = X (cos(int) + cos(int)) = X 5 (40 4 0 st et} (A1)
Fiir die zweite Potenz folgt
22 (t) :Xzi (ejwlt 4 et o giwat 4 e’j‘”“t)2
_x21 (4+ et oellrtent g gilur-walt 4 gitnt
+ j_jzwlt 2 e dWitw)l 49 gmiwi—wa)t 4 o=i2wat )
=X%+ Xzé cos(2wit) + X% cos((wy + wy) )
+ X? cos((wy — wa)t) + XQ% cos(2wat) .

Es entstehen Intermodulationsprodukte zweiter Ordnung.
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Allgemein gilt fiir die n-te Potenz®
n nl jwit jwat —jwat —jwit\™
" (t) =X 2—n(ejl+632+ej2+831)

1 . . | | |
:Xn% Z e.]mw.)lt e_]mgwgt e jmawat e jmawit .
mi+ma+ma+ma=n \1T01, 1102, 1103, 114

Es entstehen Intermodulationsprodukte n-ter Ordnung.

Einsetzen der Potenzen in die Potenzreihe (A.2) ergibt unter Verwenden der
Kleinsignalndherung die Approximation

n

y(t) ~cy + 02X2 + Z CanQ_n Z <TL> (e]mwlt e](nfm)wgt
n=1 m—o \M

+ ejmwlt efj(nfm)wgt + efjmwlt ej(nfm)wgt + efjmwlt efj(nfm)ougt)

=co+ X+ >

=1 m=0 (Z) X" ((cos((mewr + (n—m)ws) 1)

+ cos((mwy — (n —m)ws) t) )

(A.18)

Cn
2n—1

des Ausgangssignals. Die Intermodulationsprodukte haben im Giiltigkeitsbereich
der Kleinsignalndherung die Amplituden

Yy = €| (”)X" (A.19)

2n=1\m

A.3.2. Intermodulationsabstand

Der Intermodulationsabstand wird als Verhéltnis der Amplitude Y; der Grund-
welle zur Amplitude Y, ,,, des Intermodulationsproduktes definiert:

Y
"=y (4.20)
Im Giltigkeitsbereich der Kleinsignalndherung ist der Intermodulationsabstand
X 2n71
Imm = lc ||Cl|n - lcnl |sl| = ﬂ TN o 1" (A21)
B()x B el G
Es besteht der Zusammenhang
H, = <”>Inm (A.22)
m
K
2 Der Multinomialkoeffizient ist als (mlf"' ) = — 1 definiert, wobei 3 my, = n gilt.
ERRRERLLD 5} myie MK Ee1
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20log(1,,,m) /dB

+-72,0 = ]2,2 = Hy

| —— ]2’1
+1370 = [373 = H3

54dB =131 = I3
,02dB
20log(X)
4,77dB 6,02dB

Abbildung A.4.: Intermodulationsabstande I, ,, als Funktionen der Eingangsam-
plitude X an einem Beispiel

zwischen den Harmonischenabstianden H,, geméfl (A.13) und den Intermodulati-
onsabstanden I, ,,, siche Abbildung A .4.

In vielen Anwendungen sind die Intermodulationsprodukte dritter Ordnung be-
sonders kritisch. Beispielsweise erzeugen Storsignale der sich bei kleinem Aw nur
geringfiigig von der Kreisfrequenz wqy eines Nutzsignals unterscheidenden Kreis-
frequenzen w; = wp+ Aw und wy = wp+2Aw ein Intermodulationsprodukt dritter
Ordnung der gleichen Kreisfrequenz 2w; — wy = wy wie das Nutzsignal. Der hier
relevante Intermodulationsabstand dritter Ordnung ist

1
I30 =13, = 3 Hs.

N~
Z-9,54dB

Am Interceptpunkt wird der unter Verwenden der Kleinsignalndherung berech-
nete Intermodulationsabstand 1, ,, eins, das heift 0dB. Der eingangsseitige In-
terceptpunkt ergibt sich zu

1
Speziell fir den in der Praxis haufig zum quantitativen Beurteilen der Nichtlinea-
ritat verwendeten eingangsseitigen Interceptpunkt dritter Ordnung gilt

C1

XIP,n,m =2n-1
Cn

(A.23)

. (A.24)

Xip31 =
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Aus dem Intermodulationsabstand 1, ,,, bei einer Eingangsamplitude X kann man
den eingangsseitigen Interceptpunkt geméaf

XIP,n,m = " [n,mX <A25)

berechnen.
Es besteht der Zusammenhang

1 (n
Xipapn = " ( )XIP,n,m (A.26)
m

zwischen den eingangsseitigen Interceptpunkten der Harmonischen Xipy,, geméas
(A.14) und den eingangsseitigen Interceptpunkten Xip , ,, siche Abbildung A .4.
Der ausgangsseitige Interceptpunkt ergibt sich zu

c 1
Yipnm = |c1] Xippm = 2 |c1| n- C—l m (A.27)

Speziell fiir den in der Praxis haufig zum quantitativen Beurteilen der Nichtlinea-
ritdt verwendeten ausgangsseitigen Interceptpunkt dritter Ordnung gilt

3
4ey

. A2
3es (A.28)

Yips1 =

Fiir nichtlineare Systeme dritter Ordnung folgt aus (A.9) der Zusammenhang

Xgp = /0,1087 Xip s, (A.29)
——

Z-9,64dB

zwischen dem Eingangskompressionspunkt Xkp und dem eingangsseitigen Inter-
ceptpunkt dritter Ordnung Xip 3 1.

A.4. Dynamikbereich

Ziel ist es, ein Eingangssignal in einem System moglichst storungsfrei, das heif3t
linear zu verarbeiten. Neben den durch das nichtlineare Verhalten des Systems er-
zeugten Storungen in Form von Intermodulationsprodukten gibt es in der Praxis
auch noch Storungen in Form von additivem Rauschen. Die storende Wirkung der
Intermodulationsprodukte wird durch die Intermodulationsabstande I, , quanti-
fiziert. Die Amplitude Yg des dem Ausgangssignal iiberlagerten Rauschsignals ist
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eine Zufallsvariable. Da die storende Wirkung auf der zum Quadrat der Amplitu-
de YR proportionalen Leistung des Rauschsignals beruht, ist es sinnvoll die Wurzel
des zweiten Moments der Rauschamplitude Yy als mittlere Rauschamplitude in
der quantitativen Bewertung zu verwenden. Man definiert den Rauschabstand

Y,
R=—— (A.30)

VEORY
Der Rauschabstand nimmt mit wachsender Eingangsamplitude X zu, siche Ab-
bildung A.5.

20log(1,,m) /dB R

——Ilho=1o=H,
—— 1y,

- [30= 133 = Hj
—& 131 =139

—S

[/
20408 (Smax)
/

v

20 log(Xmin)

20log(X)

201og(D) 2010g(Xmax)

Abbildung A.5.: Rauschabstand R und Intermodulationsabstande I,, ,, als Funk-
tionen der Eingangsamplitude X an einem Beispiel

Die storende Wirkung resultiert im Wesentlichen aus dem starksten Storsignal.
Es ist daher sinnvoll, den Stérabstand als das Minimum von Rauschabstand R
und allen Intermodulationsabsténden I,, ,, zu definieren:

S = min{R, [2707 [271, [2727 [370, [3717 [373, .. } . (Agl)

Da der Rauschabstand R und die Intermodulationsabsténde I,, ,,, von der Eingang-
samplitude X abhangen, hingt der Storabstand S auch von der Eingangsampli-
tude X ab. Bei einer bestimmten Eingangsamplitude X, wird der maximale
Storabstand Sp,., erzielt. Fir Eingangsamplituden X die grofler als die maximale
Eingangsamplitude X,,., sind, gibt es Intermodulationsprodukte die starker als
das Rauschen sind. Die maximale Eingangsamplitude X, ist daher die grofit-
mogliche Eingangsamplitude X, bei der das System noch in guter Naherung linear
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ist. Bei der Eingangsamplitude X,,;, wird der Rauschabstand R eins, das heift
0dB. Fiir Eingangsamplituden X, die kleiner als die minimale Eingangsamplitu-
de Xy, sind, ist das Rauschen stérker als das Ausgangssignal. Fir die minimale
Eingangsamplitude gilt ¥

Smax ’
siche Abbildung A.5. Man definiert den Dynamikbereich?

Xmax
Xmin

Xmin =

D=

= S (A.32)

Wenn das Rauschen im Wesentlichen im nichtlinearen System selbst erzeugt
wird und nicht bereits im Eingangssignal enthalten war, dndert sich die mittle-
re Rauschamplitude bei Vorschalten eines linearen Dampfungsglieds nicht. Man
kann nun eine Eingangsamplitude X, die in einer konkreten Anwendung grofer als
die maximale Eingangsamplitude X, des nichtlinearen Systems ist, durch das
Vorschalten eines Dampfungsglieds auf die maximale Eingangsamplitude Xi,.«
reduzieren und so einen maximalen Storabstand S,.. erzielen.

A.5. Kaskade nichtlinearer Systeme

Einsetzen der Kennlinie des ersten Systems
YO = 7O 00 = S (200) (A.33)
1=0
in die Kennlinie des zweiten Systems
YA = FO (D) = 3 (2O(1)" (A.34)
m=0

ergibt die Kennlinie der Kaskade

y(t) = fla(t) = fP(FD(x(1) = f: ena™ (1), (A.35)

siehe Abbildung A.6. Falls die Systeme wie in der Hochfrequenztechnik tblich
wechselspannungsgekoppelt sind, sind die Koeffizienten der konstanten Terme

c(()Z) = c(()l) =0.

3 Genauer handelt es sich bei dieser Definition um den sogenannten Spurious Free Dynamic
Range (SFDR).
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Dann ergeben sich die Koeffizienten der Kaskade wie folgt:

Co =0
N

2
o =) 4 PV

3
C3 :c§2)c§1) + c§2)c§1) + 26%2)651)051),

w() =00 | T [y =a@m| T00 | 420 =y

1 2
> XI(P??),I XI(P?B,l >
1 2
Yibh1 Vi1
x(t) 76) y(t)
> XIP,3 1 >
Yip 31

Abbildung A.6.: Kaskade nichtlinearer Systeme

Im Folgenden soll als wichtiges Mafl zum quantitativen Beurteilen der Nichtli-
nearitat der Interceptpunkt dritter Ordnung der Kaskade bestimmt werden. Der
eingangsseitige Interceptpunkt dritter Ordnung der Kaskade ist

4c§2) cgl)

3 b
3 <c§2)c§1) + c;(f)cgl) + 26&2)68)69))
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siehe (A.24). Es folgt

2
r 30:(),1) 3c§2)c§1) +23c§2)c§1)
Xip 31 4051) 40&2) 40&2)
2
N 30&1) 30&2)051)
4c§1) 4052)
1 2
B 1 cg )
o 1 2 2) %
XI(P?B,l XI(P?B,l

Diese Approximation entspricht der Vorstellung, dass keine weiteren Intermodula-
tionsprodukte durch Wechselwirkungen zwischen den vom ersten System erzeug-
ten Intermodulationsprodukten im zweiten System entstehen. Aufgelost nach dem
eingangsseitigen Interceptpunkt dritter Ordnung der Kaskade erhalt man

1 051)2
Xip31 R~ o 2 2 2 (A.36)
Xipz1  Xipaa

Fiir den ausgangsseitigen Interceptpunkt dritter Ordnung der Kaskade folgt mit
(A.28)

Yies1 =lci| Xipg1 = ‘ng)‘ ‘an‘ Xip 31
—1
2
N 1 1 Y
@2 (12 1) 2 2) 2
Cg ) Cg ) XI(P?3,1 XI(P?3,1
1
2 2 ()2 (A.37)
B 1 cgl) c§2) cgl)
B 2)2 (1)2 1) 2 2) 2
Cg ) Cg ) }/153,)3,1 Yi(P,)B,l
B L -
o 2)2.,(1) 2 2) 2
Cg ) YI(P,):S,l YI(P,)?,,l

In einer Hochfrequenzverstérkerkaskade dominiert im allgemeinen der Intercept-
punkt des letzten Hochfrequenzverstarkers der Kaskade. Die Anforderungen an
die Grofisignalfestigkeit steigen zum Ende der Hochfrequenzverstéirkerkaskade hin
an. Im Gegensatz dazu steigen die Anforderungen beziiglich der Rauscharmut
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zum Anfang der Hochfrequenzverstérkerkaskade hin an, siehe (13.33). Weiterhin
erkennt man, dass man den eingangsseitigen Interceptpunkt durch Vorschalten ei-
nes linearen Dampfungsgliedes erhohen kann. Der ausgangsseitige Interceptpunkt
bleibt dabei jedoch unveréndert.

A.6. Mischer
A.6.1. Idealer Mischer

Aufgabe eines Mischers ist es, ein Eingangssignal in einen anderen Frequenzbe-
reich umzusetzen. Mischer werden beispielsweise in Sendern und in Empféngern
eingesetzt. Ein idealer Mischer entspricht einem Multiplizierer, den man als nicht-
lineares Dreitor modellieren kann, siche Abbildung A.7. Das Ausgangssignal

y(t) = zg(t) zo(t) (A.38)

ist das Produkt aus Eingangssignal zg(t) und Oszillatorsignal zo(t).

rg(t) y(t)

zo(t)
Abbildung A.7.: Idealer Mischer

Die Wirkungsweise eines idealen Mischers soll anhand eines harmonischen Ein-
gangssignals

1, )
l’E(t) =X COS(wEt) = X§ (e]wEt + e*JwEt)
und eines harmonischen Oszillatorsignals
rolt) = 2cos(wiot) = 0t 4 ¢ho!

untersucht werden. Das Ausgangssignal ergibt sich in diesem Fall zu
_ 1 jwrt —jwgt jwot —jwot
y(t)—Xa(e]E—l—e E)(elo—l—e O)

:Xl (ei(wEero)t + elws—wo)t | g—ilwptwo)t | e*j(wE*WO)t)
2

=X cos((wg + wo) t) + X cos((wp —wo) t).

Es entstehen Signalanteile bei der Summe wg 4+ wo und bei der Differenz wg —
wo der Kreisfrequenzen. Ublicherweise wird nur einer der beiden entstehenden
Signalanteile weiter genutzt und der andere durch Filter unterdriickt.
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A.6.2. Additiver Mischer

Analoge Multiplizierer fiir hochfrequente Signale lassen sich nur schwer realisieren.
Man behilft sich mit Mischern, die neben weiteren durch Filter zu unterdriicken-
den storenden Signalanteilen auch den gewtiinschten Signalanteil erzeugen. Der
in Abbildung A.8 gezeigte additive Mischer ist ein solcher Mischer. Er besteht
aus der Kaskade eines Addierers und eines nichtlinearen Systems mit quadrati-
scher Kennlinie. Als nichtlineare Bauelemente zum ndherungsweisen Realisieren
eines nichtlinearen Systems mit quadratischer Kennlinie kann man beispielsweise
Dioden verwenden.

ze(t) () > y(®)

o (t)
Abbildung A.8.: Additiver Mischer

Das Ausgangssignal ergibt sich zu

y(t) = (zs(t) + z0(1))” = ai(t) + 2up(t) wo(t) + 23 (1)

und enthélt offensichtlich auch den gewtinschten Signalanteil zg(t) xo(t). Falls das
nichtlineare System keine perfekt quadratische Kennlinie hat, entstehen weitere
Signalanteile.

A.6.3. Multiplikativer Mischer

Die Idee des multiplikativen Mischers besteht darin, dass eine Multiplikation mit
einer Rechteckschwingung einem periodischen Umpolen des Signals entspricht und
dies lasst sich relativ einfach mit Schaltern realisieren, siehe Abbildung A.9. Auf-
grund der charakteristischen Schaltungsstruktur wird der multiplikative Mischer
auch als Ringmischer bezeichnet. In der Hochfrequenztechnik konnen Schalter mit
Dioden realisiert werden.

Die Rechteckschwingung kann man als Fourier-Reihe darstellen:

1 1
zo(t) = g (Cos(wot) —3 cos(3wot) + = cos(bwot) — .. ) .
Das Eingangssignal xg(t) wird nicht nur mit einem harmonischen Oszillatorsignal

der gewtinschten Kreisfrequenz wo multipliziert, sondern es entstehen auch noch
Mischprodukte mit allen ungeraden Oberwellen des Oszillatorsignals.

326



A.6. Mischer

zo(t)
Abbildung A.9.: Multiplikativer Mischer

A.6.4. Quadraturmodulator

Ein Quadraturmodulator dient dem Erzeugen eines Bandpasssignals a(t) aus dem

aquivalenten komplexwertigen Tiefpasssignal u(t) | ; |. Fiir die Tiefpass-
Bandpass-Transformation gilt
a(t) = Re(u(t) &) = Re(u(t)) cos(wot) — Tm(u(t)) sin(wpt) . (A.39)

Den Realteil Re(u(t)) des dquivalenten komplexwertigen Tiefpasssignals bezeich-
net man auch als Inphasekomponente und den Imaginérteil Im(u(t)) als Quadra-
turkomponente. Die Bezugskreisfrequenz wy der Tiefpass-Bandpass-Transforma-
tion entspricht in der Regel der Mittenkreisfrequenz des Bandpasssignals.

Die Realisierung eines Quadraturmodulators erfordert zwei Mischer, siche Ab-
bildung A.10. Die beiden um 7/2 gegeneinander phasenverschobenen Oszillator-
signale kann man aus einem einzigen Oszillatorsignal unter Verwenden eines Pha-
senschiebers erzeugen. Der Phasenschieber besteht im einfachsten Fall aus einem
Leitungsstiick passender Lénge.

Re(u(t))

cos(wot)

— sin(wot)

Im(u(t))
Abbildung A.10.: Quadraturmodulator

Moderne nach dem sogenannten direktumsetzenden Prinzip arbeitende Sen-
der bestehen im Wesentlichen aus einem Quadraturmodulator. Das dquivalente
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komplexwertige Tiefpasssignal u(t) wird digital erzeugt.

A.6.5. Quadraturdemodulator

Ein Quadraturdemodulator dient dem Erzeugen des zu einem Bandpasssignal a(t)
dquivalenten komplexwertigen Tiefpasssignals wu(t). Das Bandpasssignal geméaf
(A.39) kann man umformen in*

. 1 .
Q(t) e]wot —F—Q*(t) e*JUJOt )

a(t) = 5

DO | —

Multiplizieren des Bandpasssignals a(t) mit
2 cos(wot) — j2sin(wpt) = 2 o~ Jwot

ergibt
1 . 1 . . .
(éu(t) e o (1) emt) 2e710 = w(t) +u'(t) eI
Nach Unterdriicken der Signalanteile u*(t) e 72! bei der doppelten Kreisfrequenz
2w mit einem Tiefpass verbleibt das gesuchte dquivalente komplexwertige Tief-
passsignal u(¢). Man erhélt den in Abbildung A.11 gezeigten Quadraturdemodu-

lator.

%

— Re(u(t))

2 cos(wot)

—2sin(wot)

Abbildung A.11.: Quadraturdemodulator

Moderne nach dem sogenannten direktumsetzenden Prinzip arbeitende Emp-
fénger bestehen im Wesentlichen aus einem Quadraturdemodulator. Das dquiva-
lente komplexwertige Tiefpasssignal u(t) wird digital weiterverarbeitet.

* Der Realteil einer komplexen Grofie berechnet sich zu Re(z) = 3 (z + z*).
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Anhang B.

Fourier-Analyse

B.1. Zeitbereichsanalyse

B.1.1. Anwendungsbeispiel der Zeitbereichsanalyse

Die Fourier-Analyse ist ein wichtiger Bestandteil vieler Messverfahren in der
Hochfrequenztechnik. Im Folgenden sollen einige diesbeziigliche Signalverarbei-
tungsaspekte diskutiert werden, die neben hochfrequenztechnischen Aspekten beim
Konzipieren von Messsystemen und beim Interpretieren von Messergebnissen zu
berticksichtigen sind.

Als Beispiel eines linearen zeitinvarianten Systems wird eine Leitung betrach-
tet, sieche Abbildung B.1. Es wird angenommen, dass die Leitung dispersionsfrei
ist. Die Phasengeschwindigkeit v, ist dann frequenzunabhangig und gleich der
Lichtgeschwindigkeit ¢, siche (2.44). Die dem Streuparameter S,; geméaf (10.18)
entsprechende Ubertragungsfunktion der Leitung ergibt sich mit (2.43) und (1.1)
zZu

H(f) = eIt

|
[ <_l—>b2

b, <—||_>Q1 2
e e
| |
Rx | Rx | Rx
| |
C C
| |
| l |
Tor 1 Tor 2

Abbildung B.1.: Leitung mit Verzogerung ¢ty =1/c

Durch inverse Fourier-Transformation der Ubertragungsfunktion H(f) erhilt
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Anhang B. Fourier-Analyse

man die Impulsantwort [ ]

o0

h(t) = FUH(f) = [ H(f) ™ df. (B.1)

—00

Im obigen Beispiel erhilt man die Impulsantwort!

) Zionfl iox T 27 f(t—< j%f(ti%) )
h) :_£e jorfl 2 ftdf:_L G2 f(t=1) qf = L;T(t—i)]foo
I et sn(ang (1= )
froe jom (t 1) e (b= )

l
-
c
der Leitung. Insbesondere ist die Fourier-Transformierte des Dirac-Impulses
F(6(t)) = 1. (B.2)

Die Impulsantwort h(t) der Leitung beschreibt die Verzogerung
l

C

to =

eines Signals, das sich mit der Lichtgeschwindigkeit ¢ iiber die Leitung der Lange [
ausbreitet. Auch in vielen anderen Beispielen besteht ein direkter Zusammenhang
zwischen der Impulsantwort h(t) und der Geometrie des Systems. Es ist daher von
Interesse, aus der messtechnisch einfacher zu ermittelnden Ubertragungsfunkti-
on H(f) die Impulsantwort h(t) zu berechnen. Die praktische Umsetzung dieser
Zeitbereichsanalyse wird in den folgenden Abschnitten diskutiert.

Die Fourier-Transformation

H(f)=F(h(t)) = [ h(t)e 7 dt (B.3)

ist die Umkehrtransformation der inversen Fourier-Transformation. Mit der Aus-

1 Es gilt §(t) = lim sin2mft)

f—o0 it
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blendeigenschaft des Dirac-Impulses gilt

FFHEG)) = | | B dpe

- T H(p) Teﬂ“(vf)t dtde

= [ H(¢)d(p — f)dy

=H(f).
Die Fourier-Transformation ist eine lineare Transformation. Es gelten das Pro-
portionalitatsprinzip

F(h(t) = T ch(t)e ™t dt = ¢ T h(t) e 2t dt = cF(h(t)) (B.4)

—00

und das Superpositionsprinzip

oo

Flgt)+h(t) = [ (g(t) +ht)) e 24t

—00
oo

= | g(t) e 127t qt + j h(t) e 12t ¢

—00

(B.5)

=F(g(t)) + F(h(t)).

Weiterhin gilt der Ahnlichkeitssatz

F(h(et)) = _z h(ct) e 27 df — %_z h(r) e 2t dr — iH(f> . (B6)

e[\ e

wobei von der Substitution 7 = ¢t Gebrauch gemacht wurde.
Aus der Symmetrie der Formeln (B.1) und (B.3) folgt die Dualitit der Fourier-
Transformation:

FAh() = [ hperaf = [ h(f)e B E0Af = H-t).  (B)

F(1) = 8(f). (B3)
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Mit der Fourier-Transformation

[e.e]

S(f)=Fls0) = | sty

—00

von s(t) folgt das Faltungstheorem

oo

F(s(tyh(t) = [ s(t) h(t)e >/ dt
= T s(t) T H(p)d*™t dpe ™t dt

= f f s(t) e i2n(f—e)t dt H(p) dy

—00 —O0

S(f—¢)
=S(f) = H(f) = F(s(t)) = F(h(t)).

Die Multiplikation im Zeitbereich entspricht einer Faltung im Frequenzbereich.
Wegen der Dualitét der Fourier-Transformation gilt weiterhin

FUS(HH(f) =FHS() = FHHS)) - (B.10)

Die inverse Fourier-Transformierte der konjugiert komplexen Ubertragungs-
funktion H*(f) ist

FAH() = [ H(fyerdf = ( [ m(pyermrco df) = h*(~t). (B11)

Die Impulsantwort h(t) eines physikalischen Systems ist stets reell, das heifit
es gilt

h(t) = h*(t) .
Daraus folgt mit (B.6) und (B.11) die Symmetrie
H(f)=H"(-f). (B.12)

der Ubertragungsfunktion H(f). Der Realteil Re(H(f)) der Ubertragungsfunkti-
on H(f) ist eine gerade Funktion der Frequenz f und der Imaginarteil Im(H(f))
der Ubertragungsfunktion H(f) ist eine ungerade Funktion der Frequenz f.
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B.1.2. Kausalitat

Die Impulsantwort h(t) eines physikalischen Systems ist stets kausal. Mit der

Vorzeichenfunktion
1 t>0

-1 t<O0

sign(t) = {

gilt daher im Zeitbereich
h(t) = sign(t) h(t).

Die Fourier-Transformierte (B.3) der Vorzeichenfunktion ergibt sich zu

o0 0 00
Fsign(t)) = [ sign(t)e 1 dt = — | oM dt 4 [Tt
b J J
s [ cos(2mft)]” (B.13)
=—2j | sin(27ft) dt = —2j [—7] .
Joj (27 f1) .
)
Tf

Mit dem Faltungstheorem (B.9) folgt bei kausaler Impulsantwort A(t) fur die
Ubertragungsfunktion”

H(f) = F(h(t)) = F(sign(t) h(t)) = (‘#) ey =L A9 g,

Nach Realteil und Imaginarteil getrennt gilt:

m f—

== | TP

Man kann den Realteil Re(H(f)) der Ubertragungsfunktion H(f) aus dem Ima-
ginérteil Im(H (f)) der Ubertragungsfunktion H(f) berechnen und umgekehrt.
Unter Ausnutzen der Symmetrie der Ubertragungsfunktion H(f) bei reeller

dep,

Im(

=

2 Die Hilbert-Transformierte von h(t) ist F~1(—jsign(f) H(f)) = = * h(t).

Tt

333



Anhang B. Fourier-Analyse

Impulsantwort h(t) gemafl (B.12) folgt

) | 1 m)

oo f+o d(p+7roj f—o de (B.14)
_2 (plm(H(p))

— [ TR

Analog erhélt man

Im(H(f)) = — o, oo o
_ 1 TRe(H(p) , 1 TRe(H(p)
== dy ﬂojif—s@ dy (B.15)
2 ([Re(l(p)) ,
™) f2— 2

Dies sind die Kramers-Kronig-Beziehungen | ; .

B.1.3. Bandbegrenzung

In der Praxis wird man die Messung der Ubertragungsfunktion H(f) nur in ei-
nem begrenzten Frequenzbereich mit einer Bandbreite B, das heifit fiir Frequen-
zen —B/2 < f < B/2 durchfithren kénnen. Mathematisch entspricht dies einer
Multiplikation

G(f)=H(f)W(f) (B.16)
mit der Fensterfunktion
egoell)ff 2T o

im Frequenzbereich, siche Abbildung B.2.
GeméB dem Faltungstheorem (B.10) ergibt sich die Impulsantwort ¢(¢) durch
Faltung mit der Impulsantwort w(t) des Fensters zu

g(t) = FH(H() W(f)) = h(t) = w(t). (B.18)
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Ubertragungsfunktion Impulsantwort
0f @O T o 1
[ (f)|
arg(H(f))
I I | | |
_g 0 % 0 to
t
f
° *
Fensterfunktion Impulsantwort des Fensters
[ [ [ T
1 [ -
B —
e @O T o
— (/)]
-~ arg(W(f))
I I | ||
_B 0 B 0L
2 2 B
f t
Ubertragungsfunktion Impulsantwort
[ [ [ [
0 RS @O < «NW\Afv
—|G(f)] o
--- arg(G(/f))
I I | | |
_B 0 B 0
2 2
f

Lo

Abbildung B.2.: Bandbegrenzung am Beispiel der Ubertragungsfunktion G(f)
und der Impulsantwort g(¢) einer Leitung
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Die Impulsantwort des Rechteckfensters W ( f) ergibt sich mit der inversen Fourier-
Transformation (B.1) zu

w(t) = FHW(f) = | W(f)e* " df
= j %rect<f> Tt Af = f %eﬂ”ﬂdf
- 3 (B.19)
- £ %cos@w fdf = [;m(;;ft)] 2_§
sin(m B
:% = si(rBt) .

Diese unter dem Namen Spaltfunktion bekannte Impulsantwort w(¢) hat grofle
Nebenmaxima, was in manchen Anwendungen stérend ist. Man verwendet dann
andere optimierte Fensterfunktionen W (f) [ ; ; ]. Die Fensterfunk-
tion W (f), siehe (B.17), wurde so normiert, dass das Maximum der Impulsantwort
w(t) des Fensters eins ist:

1=w(0) = | W(f)df (B.20)

Falls die Impulsantwort h(t) aus einem einzigen Dirac-Impuls besteht, kann man
das Gewicht des Dirac-Impulses bei derartiger Normierung der Fensterfunktion
W(f) direkt am Maximalwert der einer Spaltfunktion entsprechenden Impuls-
antwort g(t) ablesen.

B.1.4. Tiefpassmodus

Messungen der Ubertragungsfunktion H(f) erfolgen typischerweise beginnend bei
einer Startfrequenz fsiare bis zu einer Stopfrequenz fsiop, das heifit mit einer Mit-

tenfrequenz
o fStop + fStart
fo = 2 T Joan

und einer Bandbreite
B = fStop - fStart-

Bei bekannter Ubertragungsfunktion H (f) bei positiven Frequenzen f kann die
Ubertragungsfunktion H(— f) bei negativen Frequenzen — f wegen der Symmetrie
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der Ubertragungsfunktion H(f) bei reellen Impulsantworten h(t) gemif (B.12)
durch konjugiert komplexe Spiegelung leicht ergénzt werden:

_JH) f>0
H(f) = {ﬂ*(_f) r <0 (B.21)

Es bleibt die Bandbegrenzung auf fsiat < |f| < fstop- Diese in einer Bandpass-
tibertragungsfunktion Ggp(f) resultierende Vorgehensweise wird als Tiefpassmo-
dus bezeichnet.

Die Bandpasstibertragungsfunktion

QBP(f) = ﬂ(f) EBP(f) (B-QQ)
kann man sich als durch Verwenden einer speziellen Fensterfunktion
11 J+ fo 1 S —Jo
Wep(f) = 5 Brect( B >+2 BT ( 5 (B.23)
W(f+fo) W(f—fo)

entstanden denken, siehe (B.17) und Abbildung B.3. Diese Fensterfunktion Wgp(f)
ist entsprechend (B.20) normiert.
Durch inverse Fourier-Transformation (B.1) erhdlt man

WA - fo) = [ WS- fo) et f

= j W (p) el2m (et /o)t dop (B.24)

_ j W () 27t dp 2T fot

—w(t) ¥t

wobei von der Substitution ¢ = f — fy Gebrauch gemacht wurde. Die Frequenz-
verschiebung W (f — fy) im Frequenzbereich entspricht einer Multiplikation mit
el?mfot im Zeitbereich.

SchlieBlich folgt mit (B.4), (B.5) und (B.19) die Impulsantwort

wpp (t) =F ' (Wgp(f))
=F (G + fo) + 0T~ o))
—w t) ~j2n o —|—%w(t) 2ot

(
w(t) cos(2m fot)
si(m Bt) cos(27 fot)

(f
W

(B.25)
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des Fensters. Insbesondere bei im Vergleich zur Bandbreite B grofler Mittenfre-
quenz fy ergibt sich eine stark oszillierende Impulsantwort wgp(t) des Fensters,
siehe Abbildung B.3. Die gepunktet gezeichnete Hiillkurve der Impulsantwort
wpp(t) des Fensters entspricht der Impulsantwort w(t) des Rechteckfensters ge-
méaf (B.19).

Fensterfunktion
B | B
O _I: ______________________ ]_
- |EBP(]C )|
T arg(wBP‘(f))

I |
_fStop _fO _fStart fStart fO fStop

:

Impulsantwort des Fensters

Abbildung B.3.: Fensterfunktion Ggp(f) und Impulsantwort wgp(t) des Fensters
im Tiefpassmodus am Beispiel fy = 1,758

B.1.5. Bandpassmodus

Beim Bandpassmodus verschiebt man die im Frequenzbereich fsiart < f < fstop
mit einer Mittenfrequenz fy gemessene Ubertragungsfunktion H(f) um fy zu
kleineren Frequenzen f hin, ohne den konjugiert komplex gespiegelten Anteil
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der Ubertragungsfunktion H(f) bei negativen Frequenzen f zu verwenden. Un-
ter Berticksichtigen der Fensterfunktion W(f) geméB (B.17) erhélt man die auf
—B/2 < f < B/2 bandbegrenzte Tiefpassiibertragungsfunktion

Grp(f) = H(f + fo) WS + fo).- (B.26)

Diese Tiefpasstibertragungsfunktion Grp(f) erfiillt im Allgemeinen nicht die Sym-
metrieeigenschaften geméf (B.12). Die aus der Tiefpassiibertragungsfunktion Grp( f)
durch inverse Fourier-Transformation (B.1) berechnete Tiefpassimpulsantwort

Grp(t) = FHGro(£) = [ Gro(f) ™ df (B.27)

ist daher im Allgemeinen komplex.
Mit (B.21), (B.22) und (B.23) ergibt sich die Bandpasstubertragungsfunktion
als Funktion der Tiefpassiibertragungsfunktion zu

Gpp(f) = %QTP(JC — fo) + %Q}M_ (f + fo))-

Durch inverse Fourier-Transformation (B.1) erhdlt man mit (B.4), (B.5), (B.6)
und (B.11) die reelle Bandpassimpulsantwort®

gep(t) :F_l(QBP(f))

—F (3Gl = fo) + 3Gl (f + 1)
. . (B.28)
— e (1) T4 gy (1) o

=Re (QTP(t) ej%f“t) .

Das Verschieben um f; im Frequenzbereich entspricht der Multiplikation mit
el?27fot im Zeitbereich und das Ergénzen des konjugiert komplex gespiegelten An-
teils der Ubertragungsfunktion Ggp(f) bei negativen Frequenzen f im Frequenz-
bereich entspricht dem Bilden des Realteils im Zeitbereich. Die komplexe Tief-
passimpulsantwort g, (¢) und die reelle Bandpassimpulsantwort ggp(t), siche Ab-
bildung B.4, sind iiber die Tiefpass-Bandpass-Transformation miteinander ver-
kntipft, vergleiche (A.39).

3 Der Realteil einer komplexen GréBe berechnet sich zu Re(z) = 1 (z + z*).
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Tiefpassmodus Bandpassmodus
[ [ [
: s 0
= =l
| | | |
0 to 0 to

Abbildung B.4.: Vergleich von Tiefpassmodus und Bandpassmodus am Beispiel
der Impulsantworten einer Leitung. fo = 1,758

B.1.6. Abtastung

In der Praxis wird man die Messung der Ubertragungsfunktion G(f) nur bei
einigen diskreten Frequenzen f durchfiithren kénnen, das heifit die Ubertragungs-
funktion G(f) wird im Frequenzbereich abgetastet. Mit der Dirac-Impulsfolge

m(f)= S 6 —n) (B.29)

n=—oo

erhilt man die dquidistant mit der Abtastperiode F abgetastete Ubertragungs-
funktion*

S GF)Fo(f —nF)= Y Q(nF)FcS(F (%—n))

e _ :i: G(nF)s @ _ n) (B.30)

—c(f) m(%) -

Mit der Ausblendeigenschaft des Dirac-Impulses ergibt sich die inverse Fourier-

4 Fiir den Dirac-Impuls gilt 6(F f) = ﬁ o(f)-
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Transformierte (B.1) der Dirac-Impulsfolge zu

]-"‘1<Hl (%)) =F! <niooF5(f - nF)>

3 TFa(f—nF)eﬂ”ftdf

n=—00_xg

n=—oo

Diese Funktion ist periodisch mit der Periode 1/F. Mit (B.2), dem Faltungstheo-
rem (B.9) und (B.19) gilt

5(t) =F~'(1) :]—"—1< > rect(f_FnF>>

n=—oo

7 xeet(£) ¢ 3 o7 =)
)
o (o))

Fiir die inverse Fourier-Transformierte der Dirac-Impulsfolge gilt daher

f i(t) t=0

1

F (HI(F>>: 7 t==£4, %2,
0 sonst

Zusammen mit der 1/F-Periodizitat der inversen Fourier-Transformierten der
Dirac-Impulsfolge erhélt man

#(m(g)) = Z (- F) = Es(pe-n)

—F Z §(Ft —n) = FII(Ft),

n=—oo

(B.31)

das heif}t die inverse Fourier-Transformierte der Dirac-Impulsfolge ist wieder eine
Dirac-Impulsfolge.
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Entsprechend dem Faltungstheorem (B.10) entspricht die als Multiplikation mit
der Dirac-Impulsfolge HI(%) beschriebene Abtastung im Frequenzbereich einer
Faltung mit der Dirac-Impulsfolge FIII(F't) im Zeitbereich:

o) = g(t) % FIII(Ft) = Z 5<t - —) Z g< ) . (B.32)
Die Faltung mit der Dirac-Impulsfolge FIII(Ft) im Zeitbereich entspricht einer
periodischen Wiederholung mit der Periodendauer

1
D=—. B.33
= (B.33)
Falls die Impulsantwort g¢,(t) auf das Intervall —D/2 < t < D/2 zeitbegrenzt
ware, das heifit falls das Abtasttheorem erfiillt ware, wéire eine perfekte Rekon-
struktion der Impulsantwort g(¢) durch Multiplikation mit einem Rechteckfenster

moglich:
g(t) = gp(t) rect<%> = gp(t) rect(Ft). (B.34)

Da die Ubertragungsfunktion G(f) bandbegrenzt ist, kann die Impulsantwort
gp(t) allerdings nur naherungsweise zeitbegrenzt sein, so dass bei geschickter Pa-
rametrisierung bestenfalls eine ndherungsweise Rekonstruktion moglich ist.

Die Impulsantwort berechnet sich durch inverse Fourier-Transformation (B.1)
aus den Abtastwerten der Ubertragungsfunktion G(f) unter Verwenden der Aus-
blendeigenschaft des Dirac-Impulses zu

0a(0) =f-1( S GnF) Fo(f - nF>)

_f Z G(nF)F§(f —nF)e*tdf (B.35)

—F Z TLF e]27rnFt

n=—oo

Dies ist eine Fourier-Reihe.
Die Ubertragungsfunktion G(f) ist aufgrund des Anwendens der Fensterfunk-
tion W (f) bandbegrenzt. Im Folgenden wird vereinfachend nur der Fall einer

ungeraden Anzahl
M =2N +1 (B.36)

an nichtverschwindenden Abtastwerten

G,=G(nF), n=—-N...+ N, (B.37)
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weiter betrachtet. Es ergibt sich die Impulsantwort

N
gGpt)=F > G,e” ™. (B.38)

n=—N
Mit (B.18) ergibt sich die Impulsantwort zu
gp(t) = h(t) * w(t) » FUI(Ft).
Mit dem Faltungstheorem (B.10) und (B.31) gilt

(e« (FI(P) = 7 ) Frmero) = 7 (winm( 7).

Falls ein Rechteckfenster (B.17) verwendet wird, folgt analog zu (B.30) mit
B = MF, (B.39)

der inversen Fourier-Transformation (B.1) und der Ausblendeigenschaft des Dirac-
Impulses®

Fi(winm(£)) =5 (Grea(L) 3 o -ar)

1 N
=F ' = Z Fo(f —nF)
B,
1 X
— X F( — nF))
n=—N
=— -n
M n=—N —o
1 Y 2mnF 1 2rNF ANE 2mnF
:_Zejwnt:_efjw t Z ejﬂnt
M n=—N M n=0
B 1 e*J27TNFt 1— ej27rMFt B iefjﬂMFt _ejﬂ'MFt
M 1 — ei2nFt )N e—imFt _ ojnFt
sin(mM F't)
=diy (27 Ft
M sin(mwF't) v (2w EY)
M—1 "
5 Die Summenformel der geometrischen Reihe lautet > ¢™ = 11_fq .
m=0
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Anhang B. Fourier-Analyse

Das heifit die Bandbegrenzung und die Abtastung zusammen bewirken eine Fal-
tung der Impulsantwort h(¢) mit dem Dirichlet-Kern diy, (27 F't).
Fir die Abtastwerte der mit der Abtastperiode

D 1
T=_"_"_=_"_ B.41
abgetasteten Impulsantwort g,(t) folgt aus (B.38)
1 oy mn
Gon = gp(mT) = —— > G, e*™ ¥, m=-N...+N. (B.42)
’ MT —

Dies ist eine inverse diskrete Fourier-Transformation, siche Abbildung B.5.° Eine
Periode der Impulsantwort g,(t) enthélt M Abtastwerte.

Frequenzbereich Zeitbereich
N 1 PP SRR 4 WA
° |Qn| ° Gpm
> arg(G,) —9(0)
7 0 7 -7 0 7
fIF t/T

Abbildung B.5.: Abtastung im Frequenzbereich und im Zeitbereich. Die am linken
Bildrand deutlich sichtbare Abweichung der Abtastwerte g,
von der Impulsantwort g(t) resultiert aus der periodischen Wie-
derholung

Mit der schnellen Fourier-Transformation existiert ein aufwandsgiinstiger Algo-
rithmus zum Berechnen der inversen diskreten Fourier-Transformation | ;
|. Die tiblichen Implementierungen der inversen diskreten Fourier-Transfor-
mation erwarten abweichend, dass der erste Abtastwert der zur Frequenz f = 0
beziehungsweise der zum Zeitpunkt ¢ = 0 gehorende ist. Mit dem die Abtastwerte
G,, der Ubertragungsfunktion G(f) enthaltenden Vektor G und der Abtastperiode
T im Zeitbereich ergibt sich der Matlab-Code

6 Bei der allgemein iiblichen Definition der inversen diskreten Fourier-Transformation ist der
Vorfaktor nicht ﬁ sondern ﬁ Bei Verwenden eines Rechteckfensters (B.17) kiirzt sich der
zusatzliche Vorfaktor 1/T der inversen diskreten Fourier-Transformation mit dem Vorfaktor

1/B =T der Fensterfunktion weg.
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B.1. Zeitbereichsanalyse

gp = fftshift(ifft(ifftshift(G))) / T;

zum Berechnen des Vektors gp mit den Abtastwerten g, ,, der Impulsantwort

gp(t)."

Hinsichtlich der Parametrisierung gilt:

« Die Bandbreite B ist hinreichend grofl zu wéhlen, so dass eine ausreichende
zeitliche Auflosung 7' der Impulsantwort h(t) erzielt wird.

o Die Abtastperiode F' im Frequenzbereich ist hinreichend klein zu wahlen,
so dass die Periodendauer D im Zeitbereich deutlich grofier als die Dauer
der Impulsantwort h(t) ist.

o Bei Kombination der Abtastung mit dem Tiefpassmodus ist besonders dar-
auf zu achten, dass die Ubertragungsfunktion H(f) bei ganzzahligen Viel-
fachen der Abtastperiode F' abgetastet wird. Insbesondere muss die Start-
frequenz fsiare €in ganzzahliges Vielfaches der Abtastperiode F' sein.

Anwenden der diskreten Fourier-Transformation auf die Abtastwerte g, ,,, m =
—N ...+ N, der Impulsantwort g,(t) ergibt unter Ausnutzen der Periodizitiat der
komplexen Exponentialfunktion®’

T Z Gpm © J27rM =T Z Z Gle]27rMe J27T
m=—N

1 N M—-1 .
B -n
= — E Ql E eJ27rm M
M l=—N m=0

N M l=n
G 1_ej27rm(l—n)
20

1 — ej27rml;—1"

(B.43)

Die diskrete Fourier-Transformation ist die exakte Umkehrtransformation der in-
versen diskreten Fourier-Transformation. Die M Abtastwerte g, m, m = =N ...+

" Der angegebene Matlab-Code beriicksichtigt neben dem Fall der ungeraden Anzahl M an
Abtastwerten auch den Fall der geraden Anzahl an Abtastwerten. In beiden Féllen gibt es
einen Abtastwert der Ubertragungsfunktion G(f) exakt bei der Frequenz f = 0. Per Konven-
tion gibt es dann bei einer geraden Anzahl an Abtastwerten einen zusétzlichen Abtastwert
der Ubertragungsfunktion G(f) bei negativen Frequenzen f.

8 Bei der allgemein iiblichen Definition der diskreten Fourier-Transformation fehlt der Vorfak-

tor 7.
M—1
9 Die Summenformel der geometrischen Reihe lautet . ¢™ =
m=0

1—gM

1—q °
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Anhang B. Fourier-Analyse

N, der Impulsantwort g, () im Zeitbereich enthalten exakt die selbe Information
wie die M Abtastwerte G,,, n = —N ...+ N, der Ubertragungsfunktion G(f) im
Frequenzbereich.

B.1.7. Uberabtastung im Zeitbereich

Zur besseren graphischen Darstellung der Impulsantwort g,(¢f) mochte man die
Verlaufe zwischen den Abtastwerten g, ,,, m = —N ...+ N, der Impulsantwort
gp(t) mit der Abtastperiode T interpolieren, das heifit man mochte viele Zwischen-
werte bestimmen. Das Resultat ist eine Uberabtastung um einen ganzzahligen,
vereinfachend wieder ungeraden Faktor M,/M im Zeitbereich. Die Abtastperiode

im Zeitbereich ist dann D .
T, = = , (B.44)
M, M,F

vergleiche (B.41).
Das korrekte Interpolationsverfahren zum Berechnen der

M, = 2N, +1 (B.45)

Abtastwerte
Gom = gp(MT,), m=—N,...+ N, (B.46)

der Impulsantwort g,(¢) resultiert aus dem Auswerten der Fourier-Reihe (B.38):

N N,
Dies ist wieder eine inverse diskrete Fourier-Transformation. Im Vergleich zu
(B.42) wurden jetzt M, statt M Abtastwerte berechnet. Das Reduzieren der
Abtastperiode T, im Zeitbereich entspricht einem Erhéhen der Bandbreite im
Frequenzbereich, wobei allerdings die zusétzlichen berticksichtigten Abtastwerte
G,, der Ubertragungsfunktion G(f) auBlerhalb des Fensters liegen, das heifit alle
Null sind und somit keine zusétzliche Information verwendet wurde. Man spricht
auch von Zero-Padding, sieche Abbildung B.6. Die mit der Periodendauer D im
Zeitbereich verkniipfte Abtastperiode F' im Frequenzbereich bleibt unverdndert.
Mit dem die M Abtastwerte G,, der Ubertragungsfunktion G(f) enthaltenden
Vektor G, der Anzahl N der Abtastwerte G,, der Ubertragungsfunktion G(f) bei
negativen Frequenzen f < 0 und der Abtastperiode Tz im Zeitbereich bei Uber-
abtastung ergibt sich der Matlab-Code

gp = fftshift(ifft([G(N+1:M); zeros(Mz - M); G(1:N)1)) / Tz;

346



B.2. Spektralanalyse

Frequenzbereich Zeitbereich

N, 1) PRSI R: 9

° |G,
o arg(G,,)

-7 0 7 =7 0
fIF t/T

Abbildung B.6.: Zero Padding im Frequenzbereich und Uberabtastung im Zeit-
bereich. Dreifache Uberabtastung M,/M = 3. M = 15

zum Berechnen des Vektors gp mit den Mz Abtastwerten gy, ,, der iberabgetasteten
Impulsantwort g, (¢)."”

Wollte man ausgehend von den M Abtastwerten gy, m = —N ...+ N, der
Impulsantwort g,(t) die Zwischenwerte durch Interpolation bestimmen, misste
man zunéchst mit einer diskreten Fourier-Transformation (B.43) die Abtastwerte
G,,n=—N...+ N, der Ubertragungsfunktion G(f) berechnen.

B.2. Spektralanalyse

B.2.1. Spektralanalyse deterministischer Signale

Die Spektralanalyse deterministischer Signale ist dual zur Zeitbereichsanalyse,
siche Anhang B.1. Die Gleichungen folgen mit der Dualitdt der Fourier-Transfor-
mation (B.7) auf einfache Weise aus den entsprechenden Gleichungen der Zeitbe-
reichsanalyse und werden daher im Folgenden nicht nochmals hergeleitet.

Ziel der Spektralanalyse ist das Bestimmen des Spektrums

X(f) = F(=z(1)) (B.48)

eines Signals z(t) mit im Allgemeinen unbegrenzter Dauer. Der endlichen zur
Verfligung stehenden Messdauer D entspricht die Multiplikation

y(t) = 2(t) w(t) (B.49)

10 Der angegebene Matlab-Code beriicksichtigt beliebige ganzzahlige Faktoren M, /M der Uber-
abtastung und somit neben dem Fall der ungeraden Anzahl M an Abtastwerten auch den
Fall der geraden Anzahl an Abtastwerten.

347



Anhang B. Fourier-Analyse

mit einer Fensterfunktion w(t) im Zeitbereich. Im Frequenzbereich entspricht dies
einer Faltung

Y(f)=X(f) = W(f) (B.50)
mit
W(f) = F(w(t)). (B.51)
Der Abtastung
S y(nT) T5(t - nT) = (1) m(%) (B.52)

n=—oo

des Signals y(¢) mit der Abtastperiode T" entspricht eine periodische Wiederholung
des Spektrums Y (f) mit der Periode

B = T (B.53)
Falls das Spektrum Y (f) auf —B/2 < f < B/2 bandbegrenzt wére, wiirden sich
die periodischen Wiederholungen nicht iiberlappen und das Abtasttheorem wére
erfullt. Da das Signal y(t) zeitbegrenzt ist, kann das Spektrum Y (f) allerdings
nur ndherungsweise bandbegrenzt sein, so dass bei geschickter Parametrisierung
bestenfalls eine ndherungsweise Rekonstruktion moglich ist. Im Folgenden sei die
Anzahl
M =2N +1 (B.54)

der Abtastwerte vereinfachend wieder ungerade. Mit der Abtastperiode

T- (B.55)

werden M Abtastwerte
yo =y(nT), n=-N...+N, (B.56)

des Signals y(t) wiahrend der Messdauer D gewonnen.
Anwenden der Fensterfunktion und Abtasten im Zeitbereich zusammen ent-
sprechen bei Verwenden eines Rechteckfensters

w(t) = %rect(%) (B.57)
einer Faltun
) Y, (f) = X(f) # dias(27f7) (B.58)
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mit dem Dirichlet-Kern

sin(mfMT)

dip (27 fT) = M sin(w fT)

(B.59)
im Frequenzbereich. Die gesamte Information ist in den M mit einer Abtastperi-

ode B .
F=—=— B.60
V=D (B.60)
gewonnenen Abtastwerten
Y m:Zp(mF), m=—N...+ N, (B.61)

P

des Spektrums Y, (f) enthalten. Die Abtastperiode F wird auch als Aufléseband-
breite (Resolution Bandwidth, RBW) bezeichnet. Die Messdauer D ist umgekehrt
proportional zur Auflésebandbreite F'.

Als Beispiel soll ein harmonisches, das heifit sinusféormiges Signal

z(t) = Acos(2m fot + ) (B.62)

betrachtet werden. Das Spektrum dieses Signals z(¢) ergibt sich mit (B.4), (B.5)
und (B.24) zu

X(f) =F(Acos(2m fot + ))
:]:<é j@m fot+e) é ej(27rfot+50)>
2 2
:}“(é —j2m fot o—i¢ +A ei2m fot e”’) (B.63)
2
A » .
D) 6(f + fo)e W"‘g 6(f = fo)e¥
Mit der Ausblendeigenschaft des Dirac-Impulses folgt das Spektrum
A A . _
Yolf) = (580 + o) e +5 01 = fo) &%)+ dias (2 T)
2 2 (B.64)

=g (27 (f + Jo) T) e +5 vy (2 (] — fo) T)

des bandbegrenzten abgetasteten Signals, dessen Betragsquadrat in Abbildung
Yoml ,m=—-N...+N,
m=—-N...+ N,
und die Betragsquadrate ‘Kp ‘ der durch Uberabtastung berechneten Zwi-
schenwerte Y (f). Wegen F' < f < B iiberlappen sich die Beitrdge der beiden

B.7 dargestellt ist. Dargestellt sind die Betragsquadrate ‘Y
der mit der Abtastperiode F gewonnenen Abtastwerte Y

=p,m>
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i — : i
. gpm( .
2 | o Sample Detector :
~ 4 T o Peak Detector ‘ﬁ‘ a
Q ::ll :-
N :
=l Ay !
0 o N " : “ N - | - g : L
—fo 0 1
/ FIFR R
Abbildung B.7.: Spektralanalyse eines harmonischen Signals z(t). Da das Be-
tragsquadrat ‘Y ‘ des Spektrums Y, (f) symmetrisch ist,
wird tblicherweise nur der Anteil bei positiven Frequenzen f
dargestellt

gegeneinander verschobenen Dirichlet-Kerne praktisch nicht, und man kann die

Leistung des Signals z(t) direkt am Maximum des Betragsquadrates ‘Zp( f )‘2 des
Spektrums Y (f) ablesen.

Ein praktisches Problem der Spektralanalyse besteht darin, dass man haufig
eine grofie Bandbreite B mit einer kleinen Abtastperiode F' abtastet, was eine

2
sehr grofle Anzahl M an Abtastwerten ‘Xpm ,m=—N...+ N, zur Folge hat.
Es ist dann nicht mehr moglich, zusétzlich auch eine noch grofiere Anzahl an

2
Zwischenwerten ‘Xp( f )‘ darzustellen. Man 16st dieses Problem, indem man mit
einem Detektor einen einzigen Représentanten je Abtastintervall m auswahlt:

Sample Detector: Im einfachsten Fall ist dieser Représentant das Betragsqua-

drat ‘Y des Abtastwertes Y, ,,. Diese mit einer vom Signal z(t) un-

Yo
abhangigen konstanten Abtastperlode F' gewonnen Reprasentanten ’Yp m’

eigenen sich als Grundlage fiir eine weitere Signalverarbeitung, siehe zum
Beispiel Anhang B.2.2.

Peak Detector: Wenn das Ziel jedoch das Bestimmen der Leistung eines har-
monischen Signals x(t) ist, dessen Frequenz f in der Regel kein ganzzahli-
ges Vielfaches der Abtastperiode F ist, sollte man als Reprasentanten das

Maximum max {’Y ’ } des Betragsquadrates ‘Kp( f)‘Q des
(m—3)F<f<(m+})F
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Spektrums Y (f) innerhalb des m-ten Abtastintervalls wéhlen.

Ubliche Spektralanalysatoren stellen die Représentanten des Spektrums Y (f)
logarithmisch dar und beschriften die Achse mit der Leistung, die ein entspre-
chendes harmonisches Signal z(¢) hétte.

B.2.2. Spektralanalyse stochastischer Signale

Es werden zuféllige Signale z(t) betrachtet, aus denen durch Anwenden einer Fens-
terfunktion und Abtasten zufillige Abtastwerte des Signals v, resultieren. Der
m-te Abtastwert Yom des Spektrums Xp( f) ist eine, durch die diskrete Fourier-
Transformation (B.43) beschriebene, lineare Funktion der mittelwertfreien Ab-
tastwerte y,, n = —N ...+ N. Die Aufgabe besteht nun darin, die der Leistung
entsprechende Varianz

o2 = E{\xmf} = E{\Xp(f = mF)f} (B.65)

des mittelwertfreien Abtastwertes Y ,, des Spektrums Y ,(f) zu schétzen.

.. =—p,m
Falls die Uberlappung der periodisch wiederholten Spektren infolge der Abtas-
tung im Zeitbereich vernachlassigbar ist, folgt mit (B.10), (B.11) und (B.49) die
Naherung

:E{f( j (T +t)w(r +t) x* (1) w* (1) dT) }

:]-"< [ Bla(r+ 0z (M} w(r + ) w(7) dr)

— 00

Die Autokorrelationsfunktion stationédrer Signale x(t) ist von 7 unabhéngig:
Ry (t) = E{z(r +t)x(1)}. (B.66)

Mit (B.9), (B.10) und (B.11) folgt schlieflich die auf die Auflésebandbreite F
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normierte Varianz

={r, ("} =5 B{ [}

ol
z%]—"(L E{a(r + ) 2" ()} w(r + 1) w(r) dT)
I%f(_lo Ree(t) w(r + ) w(7) dT) (B.67)
(e« 020
S N A

Leistungsdichtespektrum

Die Faltung mit |F(w(t))]* /F bewirkt eine Glittung des Leistungsdichtespek-
trums F(Rx(t)). Die Frequenzauflosung ist aufgrund der endlichen Messdauer

begrenzt. Die auf die Auflosebandbreite normierte Varianz E{’KP( f)’Q} /F ent-

spricht Naherungsweise der Leistungsdichte.
Realteil Re(Kpm) und Imaginarteil Im(Kpm) des Abtastwertes Yo haben

jeweils die Varianz o2, /2. Wenn man die Messung K-mal wiederholt, stehen K
Realisationen Xl(f,)n, k=1...K, dieser Zufallsvariablen zum Schétzen der Varianz
o2 zur Verfiigung. Wenn die Abtastwerte y,, n = —N ...+ N, des Signals mit-
telwertfrei normalverteilt sind, dann ist auch der Abtastwert Y, ,, des Spektrums
Xp( f) mittelwertfrei normalverteilt. Da die K Messungen Xg‘%, k=1...K, sto-
chastisch unabhéngig sind, ergibt sich die Verbundwahrscheinlichkeitsdichte als
Produkt der Wahrscheinlichkeitsdichten der Randverteilungen:

Man kann die Verbundwahrscheinlichkeitsdichte p(ngn, e ,Zg(n)b) als Funkti-
on des zu schitzenden Parameters

o2 =6
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auffassen und erhalt so die Likelihood-Funktion

K 2
R S A
1 K). . k=1
p(Xéﬂ)n)aXém?me) - (71'9)[(6 0
Die Maximum-Likelihood-Schatzung
D)= (1) (K).
o2 =0 = arg;nax{p(xpm, LY 0)}
ist derjenige Wert des Parameters 6, fir den die Likelihood-Funktion maximal
wird [ ]. Zum Bestimmen der Maximum-Likelihood-Schétzung 6 setzt man
die Ableitung der Likelihood-Funktion gleich Null:
a p m? * 7X(1§2L; é\
( b _ b, ) :0’
00
K 2 K 2 K 2
Y (k y®
K 71@2::1| 1 kgl ‘Xpm‘ 71@2::1| _
— 6 ~ e [ :07
TKQK+1 TK QK 02
K 2
> [y ® |
.= —0
0
5 _p LS lyw
2 =0=23 \Ypm\ . (B.68)

b
Il
—

Die im Sinne des Maximum-Likelihood-Kriteriums optimale Schétzung der Van—

anz 02 erhélt man durch Mitteln (Averagmg) iiber die Betragsquadrate |Y
k=1...K der K Messungen Y¥) 'k =1...K. Diese Vorgehensweise ist auch

pm’

als Bartlett Methode bekannt | ]
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B.3. Fourier-Korrespondenzen

Als weiteres Ergebnis der Herleitungen in diesem Kapitel erhélt man die in Tabelle

B.1 zusammengestellten Fourier-Korrespondenzen.

Tabelle B.1.: Zusammenstellung der wichtigsten Fourier-Korrespondenzen

Gleichung | Zeitbereich Frequenzbereich
(B.1) J X(f)e?rtdf | X(f)

(B.3) x(t) [ a(t)e 2t d¢
Ba | @@ X(f)

(B5) | alt)+y(t) X(f) +Y(f)
(B.6) z(ct) ﬁi(%

(B.7) X(=t) z(f)

(B.9) z(t) y(t) X(f) = Y(f)
(B10) | (t) xy(t) X(HY(f)
(B11) | (=) X(f)

(B12) | e(®)=a"(®) | X(f)=X"(~f)
(B.24) x(t) it X(f = fo)

(B.2) d(t) 1

(B.8) 1 5(f)

(B.13) sign(t) —7

(B.19) si(mBt) = % %rect(%)
(B.31) FII(Ft) i (£)

(B.63) Acos(2mfot +¢) | 20(f + fo)e P +26(f — fo) &%
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Anhang C.
Losungen der Aufgaben

Aufgabe 1.1 Fir das infinitesimale Fliachenelement dA, gilt

rechts oben links oben
95 (D, i) ds = f (D, i) ds + f (D, i) ds
0dA, rechts unten rechts oben
links unten rechts unten
- [ Dagyds- [ (Da)ds
links oben links unten
o Dx(x(] + %an()a ZO) - DX(xO - %7y07z0)
N dz
D Zo, Y +%,Z - D xuy_ng
i y( 0, Y0 D) 0) y( 0, Y0 D) 0) dxdy
dzx
oD, 9D,
= dAz7
< ox + dy )
siche Abbildung C.1.
Yy

Abbildung C.1.: Infinitesimales Flachenelement dA, = dz dy
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Da sich nicht infinitesimale Flachen A in unendlich viele infinitesimale Fla-
chenelemente zerlegen lassen und sich die Linienintegrale entlang der inneren
Begrenzungen wegkiirzen, folgt

I (2 22 )aa- g
Aufgabe 1.2 Unter Verwenden von (1.14) und (1.31) erhélt man
. 7 . a]'{z 8Hy — 8Hx aHZ N 8Hy aHX .
dlv(rot(H)) :d1V<< a9y 7 )uXJr (W ~ ) Uy + ( 9 3y ) Z)

_ 0 (0H, 0OH, +g OH. 0H, +g 0H, OHx
oz \ Oy 0z dy \ 0z Ox 0z \ Oz y

=0.

Aufgabe 1.3 Fiir die Differenz der Normalkomponenten der elektrischen Fluss-
dichten erhélt man mit der z-Komponente (1.20) des Durchflutungsgesetzes und
(1.31)

<Dl - éQa ﬁz> :le - QQz

1 [0 0 1
:jz <3_x (ﬂm - HQy) - 3_3; (ﬂlx - Hz:::)) - i (ilz - izz)

1
=—div| | —H,, + Hy, — — (L1, — La2)
jw 0 jw

1 . 1
:Jz le((H HQ) X uz) - T (ilz - JQZ) :
Mit der Grenzflaichenbedingung (1.60) der Tangentialkomponenten der magneti-
schen Feldstérken und der Kontinuitatsgleichung (1.41) erhalt man schlielich

Dies ist die Grenzflichenbedingung (1.57) der Normalkomponenten der elektri-
schen Flussdichten.

Dual erhalt man fir die Differenz der Normalkomponenten der magnetischen
Flussdichten mit der z-Komponente (1.27) des Induktionsgesetzes, (1.31), der
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Grenzflichenbedingung (1.58) der Tangentialkomponenten der elektrischen Feld-
starken und der Kontinuitatsgleichung (1.43) die Grenzflichenbedingung (1.59)
der Normalkomponenten der magnetischen Flussdichten:

0
~— La((£ - ) x ) - (s, ~ M)
=— idlv(ﬂp) — Jiw (M, M,,)
=Pr

Aufgabe 1.4 Unter Verwenden von (1.31) und (1.14) und unter Berticksichtigen
der Produktregel der Ableitung erhéilt man

div(E x H) =div((EyH, — E,Hy) i, + (E,Hy — B H,) ily + (ExHy, — EyH,) i,)

0 0 0
— " (E,H, — E,H,) + — (E,H, — B, H,) + — (E,H, — E,H
a(yz Zy)+8y<zx XZ)_'_az(Xy yx)
_OE, OH, OF, OH,
o et By = - By
| OE, OH, OF o,
Ry SN & i St 3 5 SR e
"oy dy  dy " T Oy
OE, 0H, OF, OH,
+W v+ X@z azH Ev o 0z
OF. OF OF OF. OF OF
S S Rl Y Sl BN 5 b S ¢ Rt R & fdunt Y & bt
<X8y . T vor M or Z@y)
0H, 0H, OH O0H, 0H OH.
—E— E, B, gt gty p Y
( o TP B B, Z@y)
__ﬁ+8E AN
a 82 9. ar )\ "oy )
q _ (0H, OH,\ . (0H, OH,\ .
E( ) +<8z_8x>uy+<8x_8y>uz>
( Erot(H))
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Aufgabe 2.1 Setzt man die aus der magnetischen Feldstérke E berechnete elek-
trische Feldstarke £ in die mit (2.2) umgeformte Helmholtz-Gleichung (2.5) ein, so
erhilt man unter Verwenden von (1.44) und der Quellenfreiheit des magnetischen

Feldes im ladungsfreien Raum p,,, = 0, siehe (1.39) und (1.50),

AE + 53E = grad(div(E)) — rot (rot (E)) + BSE

=~ (amad(div(rot(E)) ) ~ rot (xot (rot (£))) + 5 xot( &)

_ b ot (—rot (rot(£)) + grad (div(H)) + 52H)

we

= —jwi6 rot(Aﬁ+ﬂgﬁ) =0.

Aufgabe 2.2 Unter Verwenden von (1.31), (1.14) und (2.1) folgt aus (2.2)

AH = grad(div(H)) — rot(rot(H))

= grad O, + 0L, + 0L,
—8 ox dy 0z

ot((PH. OHLN (0. M)\ . (0H, 0L .
o oy 92 )™ 0z or | ox y e

_ (82ﬂx n O’H, n 82ﬂ2> i (82ﬂx n O’H, n 82ﬂ2> "
Ox? 0xdy  0xdz) dyor — Oy? oyoz ) 7
<32ﬂx 82ﬂy+82ﬂz>ﬁ _(5’2ﬂy_32ﬂx_32ﬂx+32ﬁz>
0z0x  0z0y 072 ’ Oyox 0y? 072 0z0x

B <82ﬂz _ O’H, B O’H, + 32ﬂx> i (aQEX B O°H, B O°H,
0z0y 0z Ox? oxoy ) 7 0x0z Ox? 0y?
OPH, 0*H, 0°H,\ . O’H, 0O*H, &°H,\ .
<8x2 + 02 + 822> (6:52 + Oy? Tz )uy
N (aﬁz L o4, +62ﬂz>ﬁ
02 Oy 0z2 )"
o N o?H . ol
ox?  Oy2 022

X

Aufgabe 2.3 Die momentane elektrische Energiedichte ist

We = %8 (Ef( +Ey2) :
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siehe (1.45) und (1.74). Die momentane magnetische Energiedichte (1.75) berech-
net sich mit (1.49), (2.28), (1.2), (1.4) und (2.25) zu

2 2
wm:%p(H3+H3):%ﬂ<§—é+§—§> :%»S(E3+E§):we.

Die Norm des Poynting-Vektors gemafl (1.77) berechnet sich mit (2.28), (1.2),
(1.4) und (2.25) zu

|S| = Bty — By 1, = \/% (B2 + E2).

Mit (2.30) und (2.44) folgt die Energiegeschwindigkeit
1

N

Aufgabe 2.4 Ableiten der Phasengeschwindigkeit (2.43) nach der Kreisfrequenz
ergibt

Ve

v, B — w%
ow  p2
Auflésen nach der Gruppengeschwindigkeit (2.47) ergibt

w
Vs = B — p2dw’
Ow
was sich mit (2.43) zu
Up
v —
& _ wOvp
vp Ow

vereinfachen lasst.

Aufgabe 2.5 Es handelt sich um eine elliptisch rechtsdrehend polarisierte Welle.
Allgemein gilt fiir die Momentanwerte der elektrischen Feldkomponenten
Fox = Re(EOX ej“’t) = Re(Eyy) cos(wt) — Im(Ey,) sin(wt)
N—_—— ——
A=1Vm~! B=0,5Vm~!
und .
Eoy = Re(ﬂoy elm) = Re(ﬂoy) cos(wt) — Im(ﬁoy) sin(wt) .

N—— N—
C=1Vm~! D=-0,5Vm~!
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Die Maximalwerte der elektrischen Feldstiarkekomponenten sind dann
Eoxmax = |Eox| = VA2 + B* = /125Vm ™!

und

Eoymax = |Eoy| = VC?+ D2 = Y125V m ",

Der Betrag des momentanen elektrischen Feldstarkevektors o ergibt sich zu'

|20 = V8. + 525,

_\/A2+82+C'2+D2+A2—BQ+C’2—D2

i ) cos(2wt) — (AB + CD) sin(2wt).

Die den Halbachsen entsprechenden Extremalwerte des Betrags des momentanen
elektrischen Feldstédrkevektors E|, berechnet man damit zu?

+ (AB+CD)?

A2+BQ+CQ+D2i\/(AQ—BQ+C2—D2)2

2 i

max,min 2

25 1,25
— 9 :|: 9 —1
5 1 Vm
=/1,25+0,75Vm .

Fiir die Zeitpunkte, zu denen die Extremalwerte erreicht werden, gilt

2 (Wt)max min

+ arct 2(AB+CD) _0 +
arctan rT_mprc_p) .

Hier ist

2(AB + CD)
A2_B2_|_C2_D2

Daraus folgt fiir die Zeitpunkte, zu denen die Extremalwerte erreicht werden

= 0.

t =0, =.
(w )max,mm ) 2

! Es werden die Additionstheoreme cos?(ar) = 1 (1 + cos(2a)), sin?(a) = % (1 — cos(2a)) und
sin(a) cos(B) = 3 (sin(a — B) + sin(a + B8)) verwendet.

2 Die Uberlagerung A; cos(2wt) — A sin(2wt) einer Kosinusschwingung und einer Sinusschwin-
gung gleicher Kreisfrequenz ergibt eine Kosinusschwingung /A2 + A2 cos(2wt + ), fir de-
ren Nullphase tan(yp) = ﬁ—f gilt.
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Fiir den Winkel o, um den die grole Hauptachse der Ellipse beziiglich der z-Achse
verdreht ist, gilt

_ Eoy (W) pay) € c0S((Wh) o) = D Sin((Wh) )
Eoy ((wt) A cos((wt) — Bsin((wt),..)

tan(«)

max) max)

Mit den vorgegebene Werten und (wt) . = 0 folgt
tan(a) = 1,

das heifit

o = —.

4
Man erhalt die in Abbildung C.2 gezeigte Polarisationsellipse.

A

EOy,max

&

max

€T =
EOX,max

Abbildung C.2.: Polarisationsellipse fir Ey, = (14j0,5)Vm™ und E, =
(1-0,5)Vm!

Aufgabe 3.1 Mit (3.2) folgt aus (2.36) die kritische Kreisfrequenz

V) ()
Voo

We =
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Anhang C. Loésungen der Aufgaben

Tabelle C.1.: Kritische Kreisfrequenzen w,

We m
0 1 2
0 1,89- 10051 37710051

n 1]314-10°s7! 366101051 4911005
6,28 105! 6,56-100s! 7,33.1005"!

Mit den Abmessungen ¢ = 50mm und b = 30mm und (2.45) ergeben sich die
Zahlenwerte in Tabelle C.1.

Man erkennt, dass bei einer Kreisfrequenz von w = 2 - 10'°s™! nur TE; o-Wellen
ausbreitungsféhig sind. Damit ergeben sich mit (2.46), (2.48), (2.42), (2.38), (2.45)
und (2.43):

v =——— = 9,17 108ms™,
()

we\ 2
vy =cot/1— (=) =0,981-10°ms™ !,
& w

€

B 21,

N\ =

= 28,8 cm.
w

Aufgabe 3.2 Mit (1.67), (1.46), (3.3) und (3.4) ergibt sich die elektrische Fla-
chenladungsdichte auf der linken Seitenwand xz = 0

wepuHynm (mry) oA
b b

S O o

C

der rechten Seitenwand z = a

. wgﬂﬂo nm (TTL’T(’) Sll’l(nz-y) e:Fjﬁz

Pop = — ELx = =] 32 b oS
wepHynm . (nTy\ L,
j 52 W sm<7> e m ungerade
= c H . ,
-] wagQ_ 2 n%r sin(—m;y) e™% m gerade

dem Boden y =0
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und dem Deckel y = b

H .
Pp=—¢cL, = ngg;() T 'n<m7r:c> cos(nm) eFIF=

a

weuHymnm . /mrmx )
M T <—> e™5%  p ungerade
2
1% a a
wepHymn | (mrx .
,u2 0 sm<—> e™P 1 gerade
B2 a a

Der Normaleneinheitsvektor auf der linken Seitenwand entspricht dem Einheits-
vektor uy in z-Richtung. Dies in (1.68) eingesetzt ergibt mit (3.1) und (3.6) die
elektrische Flachenstromdichte

-

JF:_ﬂXﬁx:ﬂy’lZZ_ﬂzﬁy

H . .
jﬁ—on_WSm YN o2 g~ cos( L) o7 7
B2 b b b Y

auf der linken Seitenwand x = 0 des Hohlleiters. Der Normaleneinheitsvektor der
rechten Seitenwand entspricht dem negativen Einheitsvektor —u, in z-Richtung.
Dies in (1.68) eingesetzt ergibt mit (3.1) und (3.6) die elektrische Fléchenstrom-
dichte

==

jF :E X ﬂ:x = _ﬂyﬁz + ﬂzﬁy
H . .
= :FjBB_QO % cos(mm) sin(n—z‘y) eFP% ii, + H, cos(mm) cos(nﬁ:y) Sas
auf der rechten Seitenwand z = a des Hohlleiters. Der Normaleneinheitsvektor
auf dem Boden entspricht dem Einheitsvektor @, in y-Richtung. Dies in (1.68)
eingesetzt ergibt mit (3.1) und (3.5) die elektrische Flachenstromdichte

JF:_ﬂxuy:ﬂzux_ﬂxuz

T . BHymm mmx .
eFip= Uy Fj =0 " sin eFip= Uy
B2 a a
C

auf dem Boden y = 0 des Hohlleiters. Der Normaleneinheitsvektor auf dem De-
ckel entspricht dem negativen Einheitsvektor —u; in y-Richtung. Dies in (1.68)
eingesetzt ergibt mit (3.1) und (3.5) die elektrische Flédchenstromdichte

=H, cos<m

JF :ﬂ X uy — _ﬂzux + ﬂxuz
mmx

:—ﬂocos< BHymm (mmc

) cos(nm) €T i, + =L " sin ) cos(nm) TP i,

a
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Abbildung C.3.: Sich in positive z-Richtung ausbreitende TE; o-Welle
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auf dem Deckel y = b des Hohlleiters.
In Abbildung C.3 sind die Ergebnisse fiir eine TE; o-Welle graphisch dargestellt.

Die Uberpriifung mit Hilfe der Kontinuititsgleichung (1.41) ergibt mit (2.35)
fiir die linke Seitenwand = = 0 des Hohlleiters

N 2 . .
div(ip) :5 dig N sin<nﬁ:y> FiBz +ﬂ0n_ﬂ sin<nﬁ:y> oFiBz

g2 b b
2 H .
_Wepdo nm sin(@) eTFibz
wos M
- jwﬁeF’

fir die rechte Seitenwand z = a des Hohlleiters

diV(JF) = - 55?] n_b7r cos(m) sin(n—zy) e _ [, cos(m) % sin(%) eTifz
2 H .
Y Z:Q_O % cos(mm) sin(nﬁ:y) i
= jwﬁepa

fiir den Boden y = 0 des Hohlleiters

2
- mi mnx . Homm M .
le(iF) = —ﬂo_sin( ) e:F.]BZ _u_81n( ) e$JBZ
a

a B2 a a
2
_ wepHymm Sm(mwx) oA
o 2
B2 a a
= T WP

und fiir den Deckel y = b des Hohlleiters

2
T . H,ymm MmnT )
) COS(??JT) ejFJﬁz +E_ sin( ) COS(TMT) eHﬁZ
g2 a a

> cos(nm) eFIh?

div(jp) :ﬂo% sin(mﬂ

a

wrepHymn | /mmx
= D) — S
/3 a

=~ Jwpp-

a

Aufgabe 3.3 Mit (1.14) und (2.1) erhélt man

(P 00 00
rot(grad(¢)) —rot<axux+ 8yuy+ 8zuz>

0?¢ 02\ D¢ 0?9\ D¢ ¢\ .
= — Uy + — Uy + — Uy,
yodz 020y 0z0r  0r0z Jxdy  Oyox

=0.
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Aufgabe 3.4 Mit (1.31) und (2.1) erhdlt man

9. 06 8@5_,) _ P &0

B * 8_yuy * 9:%) ~ Ba? oy? 0227

div(grad(¢)) = div <

Aufgabe 3.5 Im Fall horizontaler Polarisation gilt mit (2.15) fiir die elektrischen
Feldstéarken der beiden zu tiberlagernden ebenen homogenen Wellen

By = Bye 107 g = [, o ifolysina)tzcoke) o
und B
E’Q = E, e B2 7 — E, e HBo(—ysina)+zcoda)) 7 |
Es folgt fiir die Uberlagerung der Wellen
E, + E, = 2B, cos(Soy sin(a)) e #7075 7

Die magnetischen Feldstiarken der zu tiberlagernden ebenen homogenen Wellen
ergeben sich durch sinngeméfies Anwenden von (2.28) zu

—

E. . .
H, = E_O e Iholysinta)+zeoda)) (cog(a) Uy — sin(w) i)
F

und
ﬁQ — % e*jﬁo(*y sin(a)+z coda))
11 7

Hieraus erhilt man fiir die Uberlagerung der Wellen

(cos(av) Uy + sin(a) i) .

L. 2B, .
Hy+ Hy =22 e700seote)

(cos(ar) cos(Boy sin(a)) iy + jsin(a) sin(Soy sin(a)) ) .

Das Ergebnis ist eine sich in z-Richtung ausbreitende transversalelektrische Welle
mit der Phasenkonstante

6 = 60 COS<&> )

woraus sich mit (2.12) die kritische Phasenkonstante

Be = /85 — B* = Bosin(a)

ergibt. In y-Richtung hat die resultierende elektrische Feldstarke Nullstellen im

Abstand von
T T

8= Gosin(@) B
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An den Orten der Nullstellen kann man einen elektrischen Leiter parallel zur z-
z-Ebene einfiigen, ohne dass dies einen Einfluss auf das elektromagnetische Feld
hatte. Der Leiterabstand muss folglich ein ganzzahliges Vielfaches des Abstands

der Nullstellen sein:
- nm

B

. Zr o
Ey=—jo22
=T g,

ein, so erhélt man bis auf eine vertikale Verschiebung in y-Richtung, die aus
Abschnitt 3.2.3.1 bekannte Losung

B, +E, = - Fg‘)—O cos("zy) eI

Setzt man weiterhin
H,

und
E1 +E2 == -

PH, nmy
j ) COS(T
Die transversalelektrische Welle entsteht durch Uberlagern zweier zwischen den
Leitern reflektierter horizontal polarisierter ebener homogener Wellen.

Im Fall vertikaler Polarisation gilt mit (2.14) fiir die magnetischen Feldstarken
der beiden zu tiberlagernden ebenen homogenen Wellen

> e 182 uy, + H, sin<%> e 74

H, = Hye 07 i — H, e ifosine)+=codo))

und .
Hy = Hyo PR i, — H, e i(-ysine)t=coto))

Es folgt fiir die Uberlagerung der Wellen
El + Ez = 2H, cos(SByy sin(a)) e oz e i

Die elektrischen Feldstdrken der zu tiberlagernden ebenen homogenen Wellen er-
geben sich durch sinngeméfies Anwenden von (2.27) zu

E| = HyZp e olysinie)tzeoda)) (_ ¢og(q) Uy + sin(a) 4,)

und
E, = HyZy e 30(ysila)tzeod@) (_ cos(a) iy — sin(a) @) .

Hieraus erhilt man fiir die Uberlagerung der Wellen

El =+ EQ =2H /g e ~1Boz cos@)

(— cos(a) cos(Boy sin(w)) iy — jsin(a) sin(Soy sin(a)) ;) .
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Das Ergebnis ist eine sich in z-Richtung ausbreitende transversalmagnetische Wel-
le mit der Phasenkonstante

5 - 50 COS(O[) )

woraus sich mit (2.12) wieder die kritische Phasenkonstante

Be =/ B8 — B> = Bosin(a)

ergibt. In y-Richtung hat die z-Komponente der resultierenden elektrischen Feld-
stiarke Nullstellen im Abstand von

Ay =

s o
60 Siﬂ(Oé) Bc .

An den Orten der Nullstellen der z-Komponente kénnte man einen elektrischen
Leiter parallel zur z-z-Ebene einfiigen. Die nicht verschwindende y-Komponente
der resultierenden elektrischen Feldstarke wére eine Normalkomponente auf der
Oberflache dieses Leiters. Der Leiterabstand muss auch hier ein ganzzahliges Viel-
faches des Abstands der Nullstellen sein:

po T

Be’

Bo
H
o QZFBC
ein, so erhalt man die aus Abschnitt 3.2.3.1 bekannte Losung

H1 + H2 = Jg)p_ﬁz cos<mbry> T

Setzt man weiterhin
5 Eo

und

E1 + EQ =] ﬁﬁ_o <mry) eI Uy + Ejsin <n_7bry) P,
Die transversalmagnetische Welle entsteht durch Uberlagern zweier zwischen den
Leitern reflektierter vertikal polarisierter ebener homogener Wellen.
Fiir den Winkel « gilt

: _ B nm
sin(a) = ENETS
Aus (2.46) folgt die Phasengeschwindigkeit
o - c
P 2
1= (%)
c c

1 — (sin(a))? cos(a)

368



und aus (2.48) folgt die Gruppengeschwindigkeit

\

\

\

> >z > > Z
(a) Phasengeschwindigkeit (b) Gruppengeschwindigkeit

Abbildung C.4.: Ermitteln der Geschwindigkeiten durch Projektion der Lichtge-
schwindigkeit ¢

Aufgabe 3.6 Fir die Kapazitatsbeldge gilt aus Symmetriegriinden
Cho=Cho=Chp=C,

siche Abbildung 3.16. Mit (3.63), (3.63) und (3.63) folgen die Influenzbelagskoef-

fizienten:
d11=Co+C9=2C",
o9 =C90+C"15=2C",
Cll,2 = —0/1,2 =-C"
Mit (3.70) erhalt man schlieBlich den Kopplungsfaktor

1
h=——r =
207~ 2
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Aufgabe 4.1 Die Tangentialvektoren und die metrischen Groéflen ergeben sich
entsprechend (4.11), (4.12) und (4.13) wie folgt:

o Oz dy , 0z

£ -2+ P4 L, - (i) 4 sine) 3,
g =t =1,

£ =P+ P s L, rsin(p) G+ r cos(p) i
o D X W y W z x ¥

Durch Normieren der Tangentialvektoren erhalt man die Einheitsvektoren, ver-
gleiche (4.14), (4.15) und (4.16):

Uy = cos(p) Uy + sin(yp) dy,
U, = — sin(yp) Uy + cos(yp) Uy,
U, =1i,.

=

Die Integrationselemente berechnet man entsprechend (4.19), (4.21) und (4.25)
AL
143" =g7dr? + gZdee® + g7dz?

=dr? + ridy? + d2?,

A4, =g, dp d=,
=r dp dzu,,

d/_f@ =g:9, dr dzi,
= dr dz,,

dgz =0vgp dr dpti,
=r dr dpi,,

dV =g.9,9,drdep dz

=rdrdpdd.

Schlieflich ergeben sich analog zu (4.27), (4.29), (4.31) und (4.33) noch die
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Differentialoperatoren in Zylinderkoordinaten:

1 99 . 1 0¢ = 1 (‘9@25 .
d Bl st “L
sta (¢) 87’ e Jo &p e 9z 9z "
8(;5 109 = 0¢
o et r@gp ot 0z
- 1 0 0 0
d. D - D VA D rYz a Qz T
IV(_) 9:949- <5’ (Do) 5, I (_“"g g ) * s (Pat g¢)>
10 10D, 0D,
+

r(?(D)+;8g0 0z’

. 0 0
rot (ﬂ) :g:gz ( a0 H,9,) — 92 (ﬂw%)) Ur

1 0
H
b (o ) -

(% (Hog,) - 88@ (H rgr)> i,

—
uZ?

9r9e
_(10H, 0H, i OH, 0H,\ . n EQ(H )_laﬂr .
\r Oy 82 82 ar ) r(’?r ") T4 Do e

_ 1 0 (909,99 9:9, 09 9:9, 09
AQ_grggagz <8r ( Jr or o &p G 8g0 o 82 9, 0z
8 102 0?
o) 108 00
o 8r "or r20p? = 022

Aufgabe 4.2 Die Komponenten des vektoriellen Richtungsfaktors (4.42) ergeben
sich, wenn man das Volumen geméif Abbildung C.5 in zwei Hélften zerlegt, zu®

Fyys = fff Loy (1) 570 Ay 4 fff Joys (ﬁ) SJE) g1
- fff L () 207 AV ¢ fff L () 07 av”
= ﬂf 2 Re( Ly 7)) dV’

Der Richtungsfaktor F,, ist hier reell. Damit ist das Argument arg(EXyZ) des
Richtungsfaktors von der Raumrichtung unabhangig.

3 Der Realteil einer komplexen Grofie berechnet sich zu Re(z) = 3 (z + z*).
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v
™

Abbildung C.5.: Zum Berechnen des Phasenzentrums

Aufgabe 4.3 Mit

R=\/p*+ 2?
v(z) = AT R
ergibt sich die erste Ableitung der Greenschen Funktion nach z zu

0p(z) _0yP(z) OR

und der Greenschen Funktion

9z  OR 0z
- 47 R? 2 > AnR? (BR+1)z.
VR + 2
R

Die zweite Ableitung der Greenschen Funktion nach z berechnet sich zu

Po(z)  (—iBePR(BR+1) + e R iB) R — e PR (3R + 1) 3R? 2

022 47 RS R
o-IBR
~ oo UBR A1)
CBR BRI 2 PR R,
- 41 RS ’
Mit
2R

folgt schliefllich
0*¢(2)  (—FR*+i3BR+3) (R? — p?) —iBR* — R* _;p
822 N 47TR5 ¢
_ PR+ 28R 4 2R + R — 3BRp* —3p® _jap
47 R5 '
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Fir stiickweise konstante Basisfunktionen f,,(2’) vereinfacht sich (4.68) zu

Zn+£
, 21 0%Y(z -2 ) )
Zm,n = .]ZF f (E T + 6%(21% -z )) 27Tp dz
_ Az Zm

ZnJr%e_mRm 2 22 2 2 2
=iz | sare (2P0 + 20, + PR = 85 Rmp’ — 39%) pd?
A m

z
=5

. % e iBRm . 2 2 2 2152 /
- iZ fA T (1 +3BRw) (2R2, - 3p%) + B*p*R%,) pd2'

=S

Aufgabe 4.4 Zweimaliges Anwenden der Produktintegrationsregel ergibt

f (% 1 Bz — z')) fu(2) dz

2k

:j (%ﬁz@/) + BQﬁ(z —2) fn(z')> W

:[%272—2 Z] +j< e 200D | gy - ) 1ot ))

:lag(z—z)

0z’

ol - (e — ) 2L )] i

+ f ( 25];”'2 + B%(z’)) ¥z -2 d
_ l@g(z —2')

(I CORCICRED

+ f (8 gna + Ban(Z')> Yz —2)de.

Die Ableitungen der stiickweise sinusformigen Basisfunktionen f,,(z") berechnen

sich zu
Beos(B (2 — zp_1))

Zn—1 S ZI S Zn,

T
By —pcos(fB (zpy1 — 2’ ,
sin(SAz) S 2 S 2
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und

—B%sin(B (2 — z,-1))

Zn—1 S Z/ S Zn

P fu(2) _ sin(BAz) e
32/2 - _52 Sin(ﬁ (Zn+1 _ Z/)) e - B fn(Z )
sin(8Az) n= =
Damit folgen ,
0% fn (2 ,
IlZ) 4 ) =0

und

T <LW —7) | (e - z')) fu(2) d2'

072
-~ (2 —2) Ofu(]7
N 0z

82 fn(Zl) - y(z - ZI) Z'=z

Die Impedanzen (4.68) berechnen sich bei Verwenden stiickweise sinusférmiger
Basisfunktionen f,(2') zu

A

=Zm,n

_ Zp27p ZTI *Y(z — )
I6] 072

Zn—1 Zm

)
_ e | (Wéfz; ?) +62£(zm—z')> ful#) 42
)

6 Zn—1 Zm
Zp2mp " 0PY(2 —
_ Fﬁm) J ( ﬁg;z ?) 3 + B%Y(zm — 2') | fu(2) A2
_ Zw2mp [OY(z — 2) , n Ofa(2)]”
=] 3 [ B 3 Ju(2) +0(2m — 2) 5 LGl
Zp2mp [ 0Y(z — 2) , N Ofa(2) ]
+J ﬂ l 62 men(z)Jrﬂ(Zm—Z) 82’, ‘|z/zzn'

Da die stiickweise sinusférmige Basisfunktion f,(z) fir z, 7 und fir z,,; Null
wird, kiirzen sich beim Einsetzen der Grenzen die Terme mit der Ableitung der
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Greenschen Funktion weg und man erhalt*

Z Of, (7 Of, (7
Zyn = FZ)W'O (ﬁ(zm — 2,) fﬁi,z )| Y(2m — 2n-1) faz(,/z )
+ %(zm - ZnJrl) 8]05;2 ) - %(zm - zn) 8]05;2 ) )

. Zp27mp e IFmn B cos(BAZ) B e IPRmn-1 6
B \47R,, sin(BAz)  47R,,._1 sin(BAz)

B e*jBRm,n-H B N e*JﬂRm,n BCOS(BAZ)
AT Ry i1 sin(fAz) 4w R,,, sin(SAz)

1 ( e IFRmn—1 e IPRmn gin(26Az%) e IBRmni1 )

— -7
J2 rp Ry n—18in(SAz) R, nsin?(BAz) + Ry nt1sin(BAz)

Aufgabe 4.5

function J = momentenmethode(l, rho, N)

’» MOMENTENMETHODE Strombelegung einer Dipolantenne berechnen.
%» Dipolantenne mit auf die Wellenlaenge normierten Radius rho
% und normierter Laenge 1.

% Es werden 2 * N + 1 Segmente verwendet.

% Beispielaufruf:

% J = momentenmethode(1.5, 0.005, 100);

ZF = 120 * pi; ’% Feldwellenwiderstand
beta = 2 * pi; J Phasenkonstante

U = 1; % Fusspunktspannung

deltaz =1 / (2 * N + 1); % Segmentlaenge

% Impedanzmatrix berechnen
[zn,zm] = meshgrid((-N:N) * deltaz, (-N:N) * deltaz);
Z=-j % ZF x rtho / 2 * (
exp(-j * beta * sqrt(rho™2 + (zm - zn + deltaz)."2))
./ sqrt(rho™2 + (zm - zn + deltaz).”2) / sin(beta * deltaz)
- exp(-j * beta * sqrt(rho”2 + (zm - zn)."2))
* sin(2 * beta * deltaz)

4 Es wird das Additionstheorem sin(2a) = 2sin(«) cos(a) verwendet.
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Anhang C. Loésungen der Aufgaben

./ sqrt(rho™2 + (zm - zn)."2) / sin(beta * deltaz)”"2 ...
+ exp(-j * beta * sqrt(rho”™2 + (zm - zn - deltaz)."2))
./ sqrt(rho™2 + (zm - zn - deltaz).”2) / sin(beta * deltaz));

% Strombelegung durch Loesen des linearen Gleichungssystems
E = zeros(2 *x N + 1, 1);

E(N + 1) = -U / deltaz;

J = inv(Z) * E;

end

Aufgabe 5.1 Aus der Lange | = \/2 der Dipolantenne folgt mit (4.43)

pr_m
2 2
Dies in (5.21) eingesetzt ergibt mit (5.18) den Richtungsfaktor
9] .. cos( Z cos(v
Fy(0) = —;0—(? ( ))
54 sin(v)

Daraus berechnet man mit (4.48) unter Verwenden von (4.2) und (4.50) die elek-
trische Feldstarke
Fo e
we 4mr
B eI cos(% Cos(ﬁ))
e dnr 0 sin(0)

Fytiy

e ibr cos(E Cos(ﬁ))

2

[ vl
2mr 0 sin(¥) b

Uy = jZp
im Fernfeld und schlieflich folgt mit (4.53) die Strahlungsleistungsdichte

o Zy L (cos(g Cos(ﬁ)))

2 271 sin(¥)

im Fernfeld.
Die abgestrahlte Leistung ergibt sich mit (4.54) zu

mo27 cos( Z cos(v ?
P=| | 2L, (;;T(;)))) sin(9) dg dv

dv.

N cos? (g cos(ﬂ))
j sin(v)
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Mit der Substitution z = cos(?) folgt

In der Hauptstrahlrichtung 9. = 7/2 ergibt sich die maximale Strahlungs-
leistungsdichte

L[
Smax =7 .
TR
Mit (5.2) berechnet man den Richtfaktor
2
D= = 1,64.
1,22 &

)

Aufgabe 5.2 Der Gruppenrichtungsfaktor der konstant belegten Dipolantenne
der Lange [ = \/2 ergibt sich geméa$ (5.19) als Fourier-Transformierte der Strom-
belegung 1(Z'):

+1/2 +1/2 sin(8,') +1/2
Fo(B,) =1, f P q = 21, f cos(f,2")dz" = 21, [;]
—1/2 0 Z 2'=0

i L
2210% = Il Si(éﬂz) .

B,

Einsetzen von (5.18) ergibt

Eo(0) = 15 §5cos(0)).

Mit (5.14) folgt der Richtungsfaktor

() = —sin) Lt si 55 cos)
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Anhang C. Loésungen der Aufgaben

mit dem Betrag

22000 = Il sin(0) s 75 os()) |

In der Hauptstrahlrichtung ¥,,,x = 7/2 ergibt sich der Maximalwert,

|E79| = ‘lo‘ L.

max

Einsetzen in (5.16) ergibt mit (4.43) die Richtcharakteristik

C0) =

sin (1) si (7?§ cos(’t?)> } ;

sin () si (éﬁ cos(ﬁ‘)) } _

siehe Abbildung C.6.

ur  § =0

s
[§

ol
S

(a) 1= \/2

Abbildung C.6.: Richtcharakteristiken C'(¥) von Dipolantennen mit konstanter
Strombelegung. In Abbildung C.6a zum Vergleich gestrichelt Di-
polantenne der Lange [ = \/2 mit sinusférmiger Strombelegung
und gepunktet idealer elektrischer Dipol

Aufgabe 5.3 Die elektrische Feldstirke der sich im Hohlleiter ausbreitenden
TE; o-Welle in der Apertur = = 0 ist

= wpHy ™ Y\ -
Lo = =)=y — COS{ — | Uy,
Zoa a
~————
E
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siehe (3.4). Man beachte das abweichend von den tiblichen Konventionen in Ab-
schnitt 3.1 gewihlte Koordinatensystem. Nach dem Aquivalenztheorem strahlt
die magnetischen Flachenstromdichte

ﬂp — QEO X ﬁ:x - QEO COS<7T_y> ﬁy
a

in der Apertur z = 0 das gleiche elektromagnetische Feld in den rechten Halbraum
x > 0 ab, siehe Abbildung 4.11.
Dual zu (5.27) berechnet man den Gruppenrichtungsfaktor®

EFq(By, B, jj Mg, ( v, z)eJ(ﬁyy +Pa2') dy dz’

+a/2 +b/2
_ Byy JBzz
—QE(]fcos(a)e]y dy/ Ie dz
—a/2 —b/2

+a/2 - , +b/2
=2k, j cos( y)cos(ﬁyy dy’ f cos(,2') dz

—a/2 —b/2
+a/2 +b/2

=gy [ (eon((F=0) ) +eon((T ) ) o [ ot
sin(z - ) wr” . W + 1) wr” ) )] ”

E - 6y ;o g + By A 6z 2/=0
sin(Z = sin sin o
(2-58) sin(3+5,2)) sin(5.2)
‘anb( g—ﬂyg TTEehs ) Al

i)
I ET

Der Betrag des Gruppenrichtungsfaktors Fq(Sy, 5,) ist
4]Ey|ab | <0s(83)

) b
e (“)‘

® Es wird das Additionstheorem cos(a) cos(8) = 1 (cos(a — ) + cos(a + 3)) verwendet.

|EG(6Y7 ﬂz)| =
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0.5

N
9, /;;/II;I

CG (Bya ﬁz)

s

”/I"I'OW\\\\

s
I/,I;lll X

il

N
["'0 (X (TR

XTI

-0.5 05
B,/ B = cos(d) -1 -1 B,/8 = sin(yp) sin(¥)

Abbildung C.7.: Gruppenrichtcharakteristik C¢(8y, 3,) einer Hornantenne. Breite
a = 4 und Hohe b = 2\

Die Hauptstrahlrichtung ist 8, = 0 und 3, = 0, das heifit senkrecht zur Aper-
tur. Der dort erreichte Maximalwert des Betrags des Gruppenrichtungsfaktors
F(By, B,) berechnet sich zu

paret

so dass man mit (5.24) die Gruppenrichtcharakteristik
cos( 3,2 b
Jelil)

C ) =
G(Byaﬁ ) B (@>2
erhélt, siehe Abbildung C.7.

Fiir stark biindelnde Hornantennen entspricht die Richtcharakteristik C(f3y, 53,)
ungefahr der Gruppenrichtcharakteristik C(fy, 3,) und der Richtfaktor kann ge-
maf (5.36) naherungsweise aus der Gruppenrichtcharakteristik alleine berechnet
werden:

4 2
D~ mp 5

J o7 e s(s,t) a8, a8,

Bi=—o0 By=—o00 \ 1- (‘%)2
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Die auftretenden Integrale berechnen sich zu®
o

[ s (ng) s~

—00

und’
2

COS > COS 5

0 (Byg) 4 © (By;) 3
dﬂy — dﬂy = —
L 1— (—5;“)2 of (%)2 - (By%)z

Mit (4.43) erhalt man schlieBlich fiir Richtfaktor

Aufgabe 5.4 Da die Richtcharakteristik C'(¢) nur vom Poldistanzwinkel ¢ ab-
héngt, berechnet sich der Richtfaktor entsprechend (5.17) zu

2
D= 5 :
[ | X enBdeod®)=¢)| sin () dv)
0 n=0
Mit der Substitution
z = fdcos(d) — b
vereinfacht sich das Integral zu
2
D= 5
. —le—w Nil ; 4
— s el dz
BdN? ="
B 2
- ) 563‘*11) Nilei Nil j 4 '
BdN* —Bd—y \n=0 m=0
Ausmultiplizieren ergibt den Richtfaktor
2

D=

. PEY NZ1N-1 '
gave | X X ellmede
—Bd—yp n=0 m=0

oo
6 Es wird das bestimmte Integral [ si?(az)dz = {7 verwendet.

— 00

0o 2
" Es wird das bestimmte Integral [ % = ﬁ verwendet.
o (5) —(ax)

381



Anhang C. Loésungen der Aufgaben

Da immer Paare mit e(®=")% auftreten, kiirzen sich die Sinusanteile weg und
man erhalt

2
b= T
s > cos((n —m)z)dz
—Bd—yp n=0 m=0
2
B ) pd—y —1N-1 '
e ) [N+ Z > cos((n—m)z) | dz
—Bd—p n=0 27&2

Terme mit der Indexdifferenz n—m = £p kommen in der Summe jeweils N —p-mal
vor. Damit erhélt man®

2
D= dz
Bd—yp | N-1 N- 1
W I > (N —p)cos(pz) + + ) cos(pz)
—Ad=y | p=1 Bl p:1
n—m=— n—m=p
B 2
- Bd—y
[T e
— By
B 2
e (2608 42 (sl (50— ) — sn(p (-5 - 0))
B N
o N-—1 . !
1+ % p;l (N —p) Sln(pBZ)BZOS(W)

siehe Abbildung C.8. Man beachte, dass diese Gleichung natiirlich nur dann gilt,
wenn die Richtcharakteristik Cgy () korrekt normiert war, das heifit wenn ir-
gendwo innerhalb des sichtbaren Bereichs der Maximalwert eins erreicht wird.
Dies ist nicht bei allen beliebig gewahlten Phasendekrementen v der Fall.

Speziell fiir d = A\/2 ist geméB (4.43) fd = w und es folgt D = N. Bei anderen
Antenennabstdnden auftretende abweichende Ergebnisse erklaren sich dadurch,
dass Verkopplungen der Antennenelemente nirgends korrekt berticksichtigt wur-
den.

8 Es wird das Additionstheorem sin(a) — sin(3) = 2 sin(o‘—;ﬂ) cos(o‘Tﬂi) verwendet.
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—d/)\=0,75
6l - d/A =05

wla |-
3

2T
2

(G
Abbildung C.8.: Richtfaktor D einer linearen Gruppenantenne. N = 4

Aufgabe 6.1 Mit (6.5) ergibt sich die Wellenldnge zu

47TAR
A= =1,12m.
Ve — "

Die Strahlungsleistungsdichte am Ort des Empfangers ergibt sich mit (6.2) und
dem Gewinn Gt = 1 der Sendeantenne zu

P
[ p—

_ —2
s = 1958 pWm .
SchlieBlich erhélt man mit (6.1) die Empfangsleistung

Pr = SAg = 7,958 uW.

Aufgabe 6.2 Oberhalb der Grenzfliche, das heifit im Gebiet 1, existieren die
einfallende und die reflektierte elektromagnetische Welle mit den Normalkompo-
nenten

1 2
Sy, = % ‘EIOy‘ cos(ar)
und ) 2
2 L 2
Sr, = T2 }EROy‘ cos(ay) = Y ‘EIOy‘ cos(an)
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der komplexen Poynting-Vektoren, siehe (2.29). Dies ergibt nach Uberlagern eine

Normalkomponente
1-1%
27w

2 7o cos?(ag) cos(ar)
(Zpg cos(aq) + Zpy cos(ar)

2
Sy, + Sk, = ’

2
o |

cos(ag) = )2 ‘Emy

des resultierenden komplexen Poynting-Vektors, wobei im letzten Schritt der Re-
flexionsfaktor I"; fiir senkrechte Polarisation geméaf (6.19) eingesetzt wurde.

Die Normalkomponente des komplexen Poynting-Vektors der transmittierten
Welle im Gebiet 2 ergibt sich mit dem Transmissionsfaktor 7', fiir senkrechte
Polarisation geméf (6.21) zu

1 2

1
St, :% ’ETOy cos(ar) = Y ’EIOy
2 7o cos®(ag) cos(ar)

— FE
(Zpy cos(ar) + Zp1 Cos(aT))2 ’_on

2 2
’ ’ cos(ar)

’ 2

Man erkennt, dass die Normalkomponenten der komplexen Poynting-Vektoren
gleich sind.

Aufgabe 6.3 FEs wird der Einfallswinkel a; = ag gesucht, fir den der Reflexi-
onsfaktor Null wird. Im Fall senkrechter Polarisation folgt durch Nullsetzen des
Zahlerterms des Reflexionsfaktors I} geméaf (6.19) die folgende Bedingung:

0 =Zpy cos(ap) — Zp1 cos(ar) ,

sin%(a
Zgy, cos’(ap) 1—sin’(ap) sinQéaB) - sinQEaB
Z%,  cos?(ap) 1 —sin?(ap) m -1 7

sin(ag) \ Z3, 72, sin?(ap)

Mit dem Snelliusschen Brechungsgesetz (6.14) und dem sich mit den Feldwellen-
widerstanden gemafl (2.25) ergebenden Verhéltnis

Ty _ [erii
Zy1 Eally
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folgt:

1 <€1M2 B 1) _ G2 Eifh

Y
SIDQ(OéB) €201 a1 EgM2
1 P2 €2\ _H2  h
- T T
sin?(ag) \p1 1) o
B2 e2
— a2 €1
sin(ap) =, | 5 —ar
w1 pe2
Speziell fiir e, = 9 erhélt man:
B2
. _ 1
sin(ag) =,| 75—
Bl p2
2 1=
cos(ap) =\/1 —sin*(ap) = || 7"
M1 2
B2 _
sinfes)  [2-1 [
=\ ==
cos(ag) 1 -4 T

ap :arctan< &> .
\ t1

Im Fall paralleler Polarisation folgt durch Nullsetzen des Zahlerterms des Re-

flexionsfaktors I'j geméafB (6.25) die folgende Bedingung:

0 =Zp; cos(ap) — Zps cos(ar) ,

sin(a
Z]%l _COS2(QT) _ - SiDQ(QT) o SiHanB) - sinQEagg
Z%, cos?(ap) 1—sin?(ag) m -1

1 (Z%1

1 _Z%l sin?(ar)
sin?(ag) \ Z3,

- Z%,  sin?(ap)’
_ ) :€2/~L1 !
E1l42 52#2’

1 EaM1
sin?(ag) \ e1p2

1 € M2\ &2 &1
—— |\ ===
sin?(ag) \e1 €1 &9

2 _ M
. _ le 151
sin(ap) =\| ,—2
€1 €9

)
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Speziell fir gy = po erhélt man:

21
sin(ag) = 6521 —,
1 e
1_ e
cos(ap) =\/1 —sin?(ag) = || 5—=,
el e
sin(ap) _ = - _ e
cos(ap) 1-< e’

ap =arctan| /— | .
€1

Aufgabe 6.4 Die Lange des direkten Pfades ergibt sich zu

(hr — hg)’

2r ’
siehe Abbildung C.9. Der reflektierte Pfad scheint von einem gespiegelten Sender
auszugehen, siehe Abbildung 4.7. Die Lénge des reflektierten Pfades ergibt sich
7u

r) = \/7’2 +(hy —hg)* ~r+

ht + hg)”
r® = \/7’2 + (hp+hg)* ~r+ %7
siehe Abbildung C.9. Die Naherungen gelten jeweils fiir den betrachteten Fall,
dass der horizontale Abstand viel grofler als die Hohen ist, das heifit dass hr/r
und hg /7 sehr klein sind.

Mit (6.7) folgt die Transfermatrix

—ig (r—i— (hT;hR)Q

T ~° ) 1 0

%e_mr efjﬁ (hT;:lR)2 1 0
r 0 -1

des direkten Pfades. Beim Spiegeln des Senders ergibt sich gemafi Abbildung 4.7
im Fall horizontaler linearer Polarisation eine zusatzliche Phasendrehung um ,
vergleiche auch (6.28) und Abbildung 6.4. Mit (6.7) folgt die Transfermatrix

_ig(r (hT+hR)2
T® )
= 7 ,r,_'_(hT+hR,)2 01

2r

e I pGoins)® (10
~ e 2r
r 01
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< N
N <
Sender @<c—-—----mmmmm o @ T
direkter Pfad
hr — hg
% Empfanger
reflektierter Pfad | hr +hr
gespiegelter Sender @77 Ej 4
" g

Abbildung C.9.: Spiegelung des Senders an der ideal elektrisch leitenden Ebene

des gespiegelten Pfades.
Entsprechend (6.39) erhalt man mit (4.43) im Fall vertikaler linearer Polarisa-
tion die Empfangsleistung

\ 2
Pr ~Pr | —

\ 2 hph hphpy |2
:PT <—> ‘ejﬁ TTR _i_ei«lﬁ TT R
4dmr

AN (. hrhg
—PT (%) COS (277'7

2r

e I glr—hn)® +e—iﬂr o8 (hrthr)’

2
r r ‘

Die Naherung in der letzten Zeile gilt fiir sehr grofie horizontale Abstande 7.
Fiir sehr groie horizontale Abstéande r iiberlagern sich im Fall vertikaler linearer
Polarisation die Beitrége der beiden Pfade konstruktiv, so dass sich im Vergleich
zur Freiraumausbreitung (6.6) die doppelte Amplitude und die vierfache Leistung
ergeben. Im Fall horizontaler linearer Polarisation erhédlt man auf analoge Art und
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Weise die Empfangsleistung

2 —ipr a2 a—jfr 22
Ha%F%<ii> e el e eﬂwrxm’
s r T
2 2
() [
Amr

A2 hrhg
—pPp [ 2 sin?(or—2R
T (27rr> i < T AT )

hihi
=,

%PT

r

Fiir sehr grofle horizontale Abstédnde r iiberlagern sich im Fall horizontaler linearer

Polarisation die Beitrage der beiden Pfade fast destruktiv, so dass sich eine sehr

stark mit vierter Potenz des horizontalen Abstands » abnehmende Empfangsleis-

tung Py ergibt. Abbildung C.10 zeigt typische Verliufe des Ubertragungsfaktors

Pr/Pr als Funktion des horizontalen Abstands r. Die starken Fluktuationen im

Bereich kleiner horizontaler Abstdnde r resultieren aus dem raschen Wechsel zwi-
schen konstruktiver und destruktiver Interferenz der beiden Pfade.

o vertikal
o horizontal
Freiraum

—100

—150

10 102 103 10

r/m
Abbildung C.10.: Ubertragungsfaktor Pg/Pr als Funktion des horizontalen Ab-
stands r bei Zweiwegeausbreitung bei unterschiedlichen linearen

Polarisationen. Gestrichelt zum Vergleich Freiraumausbreitung.
A=0,1m, hy =10m, hg = 1m
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Aufgabe 7.1 Die normierte resultierende komplexe Wellenamplitude lasst sich
mit (7.7) und (7.13) wie folgt umformen:

PREGIEINE)
lao| (1 + |Lo)
ag (797 +Iy &)
 laol (14 1Lol)
—iBz iBz
:e +£0 el e_] arg(go) ]
1+ [Ly|

Der Betrag der normierten resultierenden komplexen Wellenamplitude ergibt
sich zu

¢ (2)| = e
1+ |Ly|
iz (1 + [T | 7o) ejQBz)

B T+ Ll
Z%MV (14 |L| cos(arg(Ly) + 282))? + |Lo|? sin2(arg(Ly,) + 262)
~ V1 P + 21T cos(ara(Ty) +25),

Mit -

D

gemaf (7.15) erhélt man den Betrag der normierten resultierenden komplexen
Wellenamplitude als Funktion des Anpassungsfaktors m und des Reflexionsfak-
torarguments arg(L):”

1 1-— 2 1-—
() =1+ (T )+ 29 cos(ang(Ly) + 262)

=Vt m) (1= m) 2 (1~ m?) cos(arg(Ta) + 252)

:%\/2 +2m? +2(1 —m?2) (1 - 251112(% arg(Ly) + Bz))

:\/1 + (m? — 1) sin? (% arg(Ly) + 5,2).

9 Es wird das Additionstheorem cos(2a) = 1 — 2sin?(«) verwendet.
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Aufgabe 7.2 Mit der kritischen Kreisfrequenz

5c _ Weo
NGTEERVET

siehe (2.36), (1.47) und (1.51), berechnet sich der Feldwellenwiderstand transver-
salelektrischer Wellen gemafl (2.31) zu

ZFO
ZFTE — o
A / 1 j— ﬂ [ Eiur

siehe (2.42) und (2.25).
Unter Verwenden des Reflexionsfaktors

We =

£ _ EROy _ _EROX

)
EHOy EHOX

siehe (7.1), (7.4) und (7.7), und des Feldwellenwiderstands

EHOy . EROy
Hyox  Hpox

ZFTEI = -

im ungefiillten Teil z < 0 des Hohlleiters ergibt sich die Wellenimpedanz

7o Enoy + Erogy _ Enoy (1+1)
=1 EHOX + HROX HHOX (1 - £)
1+T
1-T

:ZFTEl

im ungefillten Teil z < 0 des Hohlleiters, sieche (2.32). Unter Verwenden des
Feldwellenwiderstands

ZFTE2 = -

im gefiillten Teil z > 0 des Hohlleiters, siehe (2.32). An der Grenzflache miissen die
resultierenden Tangentialkomponenten der Feldstérken geméf (1.62) und (1.64)
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stetig sein. Es folgt, dass auch die Wellenimpedanzen gleich sein miissen:

Z -7
[ —ZFTE2 FTEL

B ZprE2 + ZPTEL

Damit keine Reflexion auftritt, miissen die Feldwellenwiderstiande des ungefiill-
ten und des gefiillten Hohlleiterbereichs gleich sein:

ZFTEl :ZFTEQ )

L
0 ZFO er

ZF _
Jim (=) Vl‘ (g)

w

WO 2 9
() 2 (-620)
w Er w

Hier ist wep = w/2 und es folgt:

1\ 1\ 2
() (- 0)),
2./ lhy Er 2
1 .

4 — =3

Erhr €y
3u2 — dey iy + 1 =0.

Speziell fiir e, = 4 erhélt man eine quadratische Gleichung

3u? — 16, +1=0

fiir die Permeabilitat p, mit den Losungen

Lo _r_8, /6t
9 3 3 V9

Aufgabe 7.3 Aus (7.24) folgt fir den Reflexionsfaktor

Hr =

w1 oo

I =
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Der Betrag des Reflexionsfaktors ist

R— 7,

N=+—">=
L] R+ 7z

wobei das obere Vorzeichen fir R > Zj, gilt. Dies in (7.14) eingesetzt ergibt den
Anpassungsfaktor

1F 57 R+ ZLFR+Z _{Z—RL falls R > Zy,
id
Z1,

_1:{:21?}:_R+ZL:ER:FZL_ falls R < 7y,

Aufgabe 7.4 Eine beidseitig kurzgeschlossene Leitung der Lange [ ist bei jenen
Kreisfrequenzen in Resonanz, bei denen die Leitungsldnge ganzzahliges Vielfaches

der halben Wellenlénge ist, sieche (7.33) und (2.38):

1= )T
™
PT_g

Zunachst werden TE,, ,-Wellen betrachtet, bei denen m oder n von Null ver-
schieden sein muss. Mit (2.35) und (3.2) erhélt man:

() - () ()
() () ()

Mit (2.3) folgt fiir die Resonanzkreisfrequenzen

Bo 1 \/ m\ 2 n\ 2 D\ 2
o= e BTG O
ep Amy/ep a b l
wobei p von Null verschieden sein muss.

Die kritischen Phasenkonstanten (3. der TM,, ,-Wellen berechnen sich mit der
gleichen Formel (3.2), so dass sich auch die gleiche Formel fiir die Resonanz-
kreisfrequenzen w, ,, ergibt, mit dem Unterschied das jetzt m und n von Null
verschieden sein miissen. Dafiir darf p Null sein, was einer unendlichen Wellenlan-

ge A entspricht. Die Resonanzkreisfrequenz wy, ,, o entspricht dann der kritischen
Kreisfrequenz der TM,,, ,,-Welle.
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Aufgabe 8.1 Es wird behauptet, dass die Orte konstanten Wirkleitwerts G Krei-
se mit Mittelpunkt % und Radius % in der Impedanzebene sind. Daher muss
fiir einen beliebigen gegebenen Wirkleitwert G unabhangig vom Blindleitwert B
stets die folgende Kreisgleichung erfillt sein:

12 1?2

256 =(36) -
5~
G+iB 2G| \2G/ "’

2G — (G +B)[ =|G +B[,
G* + B> =G* + B”.
In der zweiten Zeile wurde die Impedanz Z gemafl (8.1) eingesetzt.

Es wird behauptet, dass die Orte konstanten Blindleitwerts B Kreise mit Mit-
telpunkt —ji und Radius ﬁ in der Impedanzebene sind. Daher muss fiir einen
beliebigen gegebenen Blindleitwert B unabhéngig vom Wirkleitwert G stets die
folgende Kreisgleichung erfiillt sein:

112 /112

Z4+i—| =(—
’_+J2B (23)’
Lo 2_(1>2
a¢+iB o] ~\2B) -

2B +j(G +jB)I" =|G +jBl",
B’ +G* =G + B*.
In der zweiten Zeile wurde wieder die Impedanz Z geméaf (8.1) eingesetzt.
Aufgabe 8.2 Man wahlt den Bezugswiderstand Ry = 100€2 und erhélt so die

in Tabelle C.2 zusammengestellten normierten Bauelementewerte.

Tabelle C.2.: Bauelementewerte

R2:1OOQ RQ/RNzl GQRNzl
XL =wlL =200 XL/RN =2 BLRN = —0,5
Xc1 = _w—lcl =-80Q X¢/Rn=-0,8 BcgiRy=1,25

Xoo=—55 = 20092 Xeo/Rn=-2  BeRy =05

Mit den Bauelementewerten zeichnet man den Transformationsweg im Inversi-
onsdiagramm, siehe Abbildung C.11. und erhalt so die Eingangsimpedanz

Z, = (0,5 —j0,5) Ry = (50 — j50) 2.
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Anhang C. Loésungen der Aufgaben

iX/Rx

A

J0,5—
j0.4

~i0,5

—jl—

Abbildung C.11.: Transformationsweg in der Impedanzebene

Aufgabe 8.3 Es wird behauptet, dass die Orte konstanten Anpassungsfaktors
m Kreise mit Mittelpunkt % 5% + m) und Radius % (% — m) in der Impedan-
zebene sind. Daher muss fiir einen beliebigen gegebenen Anpassungsfaktor m un-
abhéngig von der normierten Leitungslange [/ stets die folgende Kreisgleichung

erfillt sein:

‘ m+jtan(27r§) 1+ m?2 1 - m2\?

= 15
14+ jm tan(Zwﬁ)

2

Y

‘m2 +Jjm tan<27r§> —1—jm®tan (27?%) = (
(m2 - 1)2 ‘1 — jmtan (27?%) = (1 — m2)2 ‘1 + jmtan (27r§>
(

(m?~ 1) <1 + m? tan? (27%)) =(1-m?)’ (1 + m? tan? <2w§>> .

l
1— m2)2 ‘1 +jmtan<27rx>

2
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In der zweiten Zeile wurde die Impedanz Z gemafl (8.6) eingesetzt.
Es wird behauptet, dass die Orte konstanter normierter Leitungslénge [ /A Krei-

se mit Mittelpunkt —jZy, cot (47?%) und Radius

21,
sin(4m L)
sind. Daher muss fiir eine beliebige gegebene normierte Leitungsldnge [/ unab-
héngig vom Anpassungsfaktor m stets die folgende Kreisgleichung erfiillt sein:'*!!

2
1\ VA
‘z +iZy cot <47r—> ==
A sin (47?%)

m + jtan(271) 1 — tan? (zﬂi) ’ 1+ tan?(2n1)
ZL— l — |z :
\ 1+jm tan(27rx) 2 tan(27r ( 2 tan(27rx) )

(o) s () o)
)

o) ol
(o))

In der zweiten Zeile wurde wieder die Impedanz Z geméf (8.6) eingesetzt.

in der Impedanzebene

2

+JjZL

2

[
1+jmt 2m—
+Jm an< 7r)\>

2

l
1+jmt 2m—
+]m an( 7T)\>

Aufgabe 8.4 Es wird behauptet dass die Orte konstanten Wirkwiderstands R

Kreise mit Mittelpunkt 7 + 7 und Radius 7 + = in der Reflexionsfaktorebene sind.

Daher muss fiir einen beheblgen gegebenen Wirkwiderstand R unabhéangig vom

10 Es wird das Additionstheorem cot(2a) = 1 (m - tan(a)) = 1;::&1?) verwendet.

s 2
sin(a)
11 By gilt =+ 1 _ cosa)tsin¥e) _ oGy _ 14tanX(a)

sin(2ar) = 2sin(a) cofa) ~ 2sin(a) cofa) Qz:iz; - 2tan(a) -
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Anhang C. Loésungen der Aufgaben

Blindwiderstand X stets die folgende Kreisgleichung erfiillt sein:

-l = (72)
~ Zu+Rl \ZL+R)’
2

R+jX—-Z, R _( Z, )2
R+ijX+ 2%, Zy,+R Zi,+R)
(R+X — Zu) (Zu+ R) — R(R+jX + Zu)]* =Z{ |R+jX + Zu)%,

2
iX2, - 22— 2R =| 2R+ %X + 2

2

Y

(22 + ZLR)2 + X222 = (ZuR + Zﬁ)2 +22X2

In der zweiten Zeile wurde der Reflexionsfaktor I' gemaf (8.8) eingesetzt.

Es wird behauptet, dass die Orte konstanten Blindwiderstands X Kreise mit
Mittelpunkt 1 + j% und Radius % in der Reflexionsfaktorebene sind. Daher
muss fiir einen beliebigen gegebenen Blindwiderstand X unabhéngig vom Wirk-
widerstand R stets die folgende Kreisgleichung erfillt sein:

2 2
\z—l—jé =(é) ,
X

X
R+jX -2, X+iZ 2_(@)2
R+iX + 7y, X S\X /)

(R+iX —Z) X — (X +jZ1) (R+jX + Z0)|? =Z2 |R+jX + Z.|*,

2 2
|~ZLX —jZLR -2} =|ZLR+iZuX + 2}

)

2 2
ZiX*+ (ZuR+ 2) =(ZuR+ 22) + Z2 X2
In der zweiten Zeile wurde wieder der Reflexionsfaktor ' gemaf (8.8) eingesetzt.

Aufgabe 8.5 Mit dem Wellenwiderstand Z;, = 50€) der Leitungen ergibt sich
der normierte Widerstand

Ly

Z,
Die parallelgeschaltete kurzgeschlossene Stichleitung wirkt wie ein parallelgeschal-
teter Blindleitwert B. Dieser muss so grof§ sein, dass das Transformationsergebnis
auf dem Kreis konstanten Anpassungsfaktors m durch die normierte Eingangsim-
pedanz

Z,

21 _y

Zy,
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liegt. Aus Abbildung C.12 liest man den erforderlichen normierten Blindleitwert
BZ, =—-15

ab. Als minimal erforderliche normierte Lange der kurzgeschlossenen Stichleitung
zum Realisieren dieses Blindleitwerts liest man aus Abbildung C.12
l

— = 0,094
A Y
ab. Zur Transformation in die Eingangsimpedanz Z; wird nun noch eine Leitung
der kiirzestmoglichen normierten Lange

Ly

= (0.25 - 0,074) = 0,176

benétigt, siehe Abbildung C.12.

£ =0,094

L _
L= 0,074

Kurzschluss

Abbildung C.12.: Transformationsweg im Smith-Diagramm
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Anhang C. Loésungen der Aufgaben

Aufgabe 9.1 Es wird ein Betriebszustand betrachtet, in dem alle Spannungen
bis auf die Spannung U,, an Tor n Null sind. Mit (9.13) folgt fiir die Summe der
in die Tore hineinflieBenden Strome

N

N N
0= Zl lm = Zl Xm,ngn = Qn va"'

m=1
Die Spaltensummen der Admittanzmatrix Y eines massefreien Netzwerks miissen
Null sein. Falls die Spannungen

U,=U, n=1...N,

an allen Toren gleich sind, ergibt sich der in Tor m hineinflieBende Strom mit
(9.13) zu
N
L,=> Y, U=U>Y,,
n=1 n=1
Die Zeilensummen der Admittanzmatrix Y eines massefreien Netzwerks miissen
Null sein.

Aufgabe 9.2 Da die Streumatrix S eines reziproken Mehrtors geméfl (9.9) sym-
metrisch ist, ergibt sich die transponierte Impedanzmatrix mit (9.17) zu

das heifit die Impedanzmatrix Z eines reziproken Mehrtors ist symmetrisch.
Da die Inverse einer symmetrischen Matrix symmetrisch ist, muss auch die
Admittanzmatrix symmetrisch sein
Y=Y"

Die mit (9.16) aus der Impedanzmatrix Z berechenbare Streumatrix S verlust-
freier Mehrtore muss gemaf (9.7) unitér sein. Man erhélt die Bedingung

(Z+ RyE)' - (Z - RyE)- (27 — RyE) - (27 + RyE) | =E.
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Da die Impedanzmatrix Z reziproker Mehrtore symmetrisch ist, folgt!?
(Z — RNE) - (Z" — RNE) = (Z + RNE) - (Z" + RNE)
Z-Z°— RNZ" — RxZ+ RAE =Z-Z" + RyZ" + RyZ + RLE
Z+17Z" =0
Re(Z) =0.

Da die Inverse einer rein imagindren Matrix auch rein imaginér ist, muss gleiches
fir die Admittanzmatrix gelten:

Re(Y) =0.

Aufgabe 9.3 Ausdriicken der Spannungen und Stréme durch die komplexen
Wellenamplituden geméa$ (7.18) und (7.19) ergibt:

as, —b
VR b)) =A/R b,) —B = —=>
N(Ql +_1) 41 N(Q2+_2) ESA \/R—N 9
U, U, T
=2

Auflésen nach g und b, ergibt:

1 B 1 B
Ql:é<A+R:N+RNQ+Q)Q2+§<A_R:N+RNQ_Q>Q2’

Ia,b T

=a,a

1 B 1 B
1_71:5(A+R——RNQ—Q)Q2+§(A—R——RNQ+Q)Q2-

N N
Ib,b Ib,a

Durch Auflésen nach den Kettenparametern erhélt man:

A :% (Ia,b + L+ Ty + Ib,a) ;

B :% (Ia,b — Lo+ Ty — Ib,a) ;
C :% (Ia,b + L0 —Thy — Ib,a) ;
D :% (Ia,b — Lo — Ty + Ib,a) .

12 Der Realteil einer komplexen Grofe berechnet sich zu Re(z) = 3 (z + z*).
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Anhang C. Loésungen der Aufgaben

Jetzt kann man noch geméf (9.21) die Transmissionsparameter als Funktionen
der Streuparameter einsetzen und erhalt:

A :25271 (1= Sa0+ 8y, — det(8)),
B = 2];1; (14 S0+ 51+ det(8))
o= RNlim (1= 85— 8, + det(S))
D =35 (14 Syp — 81,1 — det(8)) .

Auflésen der Gleichung fiir a; nach b, ergibt die ersten beiden Streuparameter als
Funktionen der Kettenparameter:

) 2 ~A+ 4 —RxC+D

Yy = Qo.

A+ EZ +RCHD T A+ E+RCHD
§21 §2,2

Dies in die Gleichung fiir b; eingesetzt und aufgelost nach b; ergibt die iibrigen
beiden Streuparameter:

) A+ 4 —RyC—D
= a
T A+ 2+ RC+D
. ( B p. —A+ i —BNC+ D
— — — — a
2\" "Ry " T A+ E+RCH+D
1 B
(A== — D
+2(_ - RNQ+_)Q2
A+#£ —-RC—-D . _2AD-2BC
= a as.
A+ Z+RC+D " A+ EZ+BRC+D
§171 §1,2
Aufgabe 9.4 Aus (9.36) folgt
S=U-M.-U"
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Einsetzen in (9.6) ergibt fiir ein passives Mehrtor

*T

Ogg*T-(E—(UT~§-U) -(UT-§~U))@
ZQ*T-(U-UT—U-M*T-UT-U-M-UT)-g

:g*T.U.(E_M*T.M).UT.Q.
—_— N

g/»«T g/
Mit passend gewahltem Vektor a’ ergibt sich eine zu (9.6) formal gleichartige
hermitesche Form mit der modalen Streumatrix M statt der Streumatrix S. Diese
Ungleichung ist nur dann fir alle Vektoren a’ erfiillt, wenn die Matrix E-M"TM
positiv semidefinit ist, das heifit keine negativen Eigenwerte hat.

Die nodale Streumatrix S reziproker Mehrtore ist geméf (9.9) symmetrisch. Es
folgt:

.Ut
.Ut

=

Das heifit die modale Streumatrix M reziproker Mehrtore ist symmetrisch.

Aufgabe 10.1 Die Streumatrix des Serienwiderstands ist

S(l) _ 1 R 2RN
- R+2Ry \2Rx R

und die Streumatrix der Parallelkapazitét ist
S(2) _ 1 —ij’ RN 2
- 2 + jwC RN 2 —jwCRx )’
siehe (10.14) und (10.15). Mit (9.21) erhélt man die Transmissionsmatrizen
R R
T = (1 T Ty )

2RN 2RN

und

v ().

_ jwCRN 1 — jwCRN
2 2

Die resultierende Transmissionsmatrix ist

T=10.73),
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Anhang C. Loésungen der Aufgaben

Wegen
1
—
221 Ia,b7

siehe (9.22), ist insbesondere

T, =L8T3 + 70T
R ijRN R jWCRN
14+ — 1
(1 5m) (55 ) s
_ 2Ry + R+ jwCRy (Rx + R)
N 2Rx

von Interesse. Es folgt die Ubertragungsfunktion

o 2Rx
=21 9RN+ R+ jwCRy (R + R)

Aufgabe 10.2 Mit (9.18) und (10.20) erhélt man die Admittanzmatrix
Y _i 10 _ 1 ZE - RIZ\I _QjRNZL
L e \\0 1) T 225 R \2iRna 22— R
Loy, 1 (Z-R 2RxZ\)
0 1) " Z2+ Ry \—2jRxZy Z}— R}
1 (722 + R} 0 (2 — R} —2jRxZy
N 0 7t + R —2jRx7y, Z} — R%
(AR 0\ (Z R -2RnZ -
0 7} + R —2jRn7Zy,  ZE — R

1 ( 2R% 2jRNZL>.< 272 —2jRNZL>1

"Ry \2iRnZ,  2RY —2iRnZy, 277

_ 1 (B ia) (o SR

Zy, \JZ. Rx —jRx 71

_ 1 (Rx jZu\ 1 Zi JR\ _ L (0]
Zy \iZt Rx) ZE+ R% \JRxn 71 Ziu \j 0)°

Aufgabe 10.3 Es werden zwei spezielle Betriebszustédnde des Teilers betrachtet,
siehe Abbildung C.13.

—_
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Abbildung C.13.: Spezielle Betriebszustinde des eingangsseitig angepassten Tei-
lers

Wegen S, ; = 0 muss die bei Abschluss von Tor 2 und Tor 3 mit dem Bezugs-
widerstand Ry an Tor 1 sichtbare Impedanz Ry sein, siehe (9.5) und (7.23):

1
Rx =3 (R+ Rx),
R :RN.
Der aus Tor 2 herausflieBende Strom ist in diesem Betriebszustand aus Symme-

triegriinden halb so grofl wie der in Tor 1 hineinflieBende Strom. Mit (7.19) und
(9.4) folgt:

_ —b, la,—b
VR 2 VRN
I, I
by :% (1 +.5 1) ap,
1
Ss4 =5
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Anhang C. Loésungen der Aufgaben

Bei Abschluss von Tor 1 und Tor 3 mit dem Bezugswiderstand Ry ist die an
Tor 2 sichtbare Impedanz

)
RQ - RN + (RN||2RN) - gRN

Mit (7.24) folgt:
_Re—Ry 1
=22 Ry + R 4
Die Summe der in die Tore hineinflieBenden Strome ist Null. Mit (7.19) und (9.4)
folgt:

—b1 i ay — 1_72 i —bg -0
v/ Rn v Ry v Rn ’
I I I
ES] ES) i3

=S 00 + (1 - 52,2) a, =bs.

Unter Ausnutzen der Reziprozitét (9.9) folgt mit (9.4):

by = (—52,1 +1- 52,2) as,
1
Sgo =—.
232 =
Unter Berticksichtigen des symmetrischen Aufbaus des eingangsseitig angepass-
ten Teilers und der Reziprozitat (9.9) erhélt man schliefllich die Streumatrix

1

02 2
S=-[2 11
4l9 11

Der eingangsseitig angepasste Teiler ist nicht verlustfrei und nur an Tor 1 eigen-
reflexionsfrei, siehe (9.7) und (9.5).

Aufgabe 10.4 Bei Abschluss der Tore 2, 3 und 4 mit dem Bezugswiderstand
Ry muss an die Tor 1 sichtbare Impedanz geméf (9.5) und (7.23) gleich dem
Bezugswiderstand Ry sein, damit der Teiler eigenreflexionsfrei ist:

1
Rx :R+§(R+RN)

41
—“R+-R
gty

1
R —§RN.
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Der aus Tor 2 herausfliefende Strom ist in diesem Betriebszustand aus Symme-
triegriinden ein Drittel so grofl wie der in Tor 1 hineinflieBende Strom. Mit (7.19)
und (9.4) folgt:

—by 1
VEx 3 VRN
N——
1, I
1
by :§Q1>
1
Sy1=2.
221 =73

Unter Ausnutzen des symmetrischen Aufbaus erhélt man schliellich die Streuma-
trix

0111
1{1 01 1
S_§1101
1110

Aufgabe 11.1 Einsetzen von (11.3), (11.4) und (11.9) in (11.7) ergibt

Y — Sy2931 — 8395, n S39— 9599441y + 5429541, .
T Syot+ 8308450, — 8408530 T Syo + 8309430 — 8408550
£, Fr,
Man liest

P, = Sy2851 — 832941
- Syo+ 8398430 — 8429530,

und
S0 — 8328944 + 8425341,

F =
s Syo+ 8308431 — 5429530,
ab. Einsetzen von (11.3), (11.4) und (11.9) in (11.5) ergibt
51,254 1) <§1 o 9125440 )
a=|S——5 b+ |- —5— +SL,)d
< b Sy Sy Sy o

S198, 50
i <__1,2_4,3_b
§4,2

+ §173£b> .

Mit b aus der ersten Gleichung folgen
Eo,o = 51,1
n —819841 + 8128418330, — 81284 300831 + 813005405351 — 81305532541
Syo+ 8328431 — 84289530,
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Anhang C. Loésungen der Aufgaben

und

o= (§1,2 — 8128330 — 81284408 + 8128440085 31, + 84257 41,
+ 8140085084 31 — 84981 4L, S5 30 — 81284 3008340 + 51 301,95
— 8130585085441, + §1,3£b§4,2§3,4£a)/ (§4,2 + 8328, 30 — 54,253,3£b) .
Im Falle eines Richtkopplers mit S;; = 814 = Sy = Sp3 = S35 = S35 =

§4,1 = 54,4 =0, 51,2 = §2,1 = 53,4 = 54,3 und §1,3 = 52,4 = 53,1 = §4,27 siehe
(10.34), erhélt man:

21,2=b=a
Iy, = g + 812857 3L,
213
F 1,0 251 39
E1,1 :§1,2£a-

Im Falle reflexionsfreier Messstellen I', = 'y = 0 erhélt man:

b oSS,
20,0 —&1,1 — S ’
42
F _5172
40,1 _S )
242
b o SuaSi,
41,0 —&3,1 — S )
42
_ O3
1,1 —
Si2

Aufgabe 11.2 Die Messung am idealen Abschluss ['y; = 0 ergibt
E1,1 = E\/[a

siche (11.13). Fiir die Messungen am idealen Leerlauf ' = 1 und am idealen
Kurzschluss 'y = —1 folgen mit (11.13)

Lo = £+ ﬂ)Eop — det(F)

beziehungsweise
Ig=F,, —LsFqo+ det(F).
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Durch Addition beider Gleichungen erhélt man
Ly + Ly = 2F,; + (I, — I§) Foy.

Einsetzen des aus der Messung am idealen Abschluss I'y; = 0 bekannten Fehler-
terms F; ; ergibt

Lo +Lg—2F,, Lo +Lg—20y
e Iy — Ly Io-Lg

SchliefSlich erhélt man aus der Messung am idealen Kurzschluss ['g = —1 unter
Verwenden der bereits berechneten Fehlerterme F'y ; und £

det(F) =L — Fy, +L§Fy

'y + g — 26
_2TGTY — Tl — T4,

- I,
Aufgabe 11.3  Aus (11.33) erhilt man mit I = b}, /af,
=y, + I'=—det(F,) L + oyl I

Die Messung am idealen Abschluss ['y; = 0 ergibt

El,l = ﬂ\/{-
Die Messungen an idealem Leerlauf ' = 1 und am idealem Kurzschluss 'y = —1
ergeben
I+ Lo = —det(Fy) + EO,OE/O
beziehungsweise

-+ Ly = det(E,) - EO,OEé'
Durch Addition beider Gleichungen erhélt man
—2F,, + T + I = Fo (L — T§)

Einsetzen des aus der Messung am idealen Abschluss I'y; = 0 bekannten Fehler-
terms Fy ; ergibt

Lo +Ig—2F,, Lo +Lg—20y
e Iy — Ly Io-Lg
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SchlieBlich erhélt man aus der Messung am idealen Leerlauf ' = 1 unter Ver-
wenden der bereits berechneten Fehlerterme F 11 und F' 0.0

det(Fp) =F,, — It + Fy oL
I + T, — 2L

:£/ _ £/ + =0 =M £/
M O £/O o £/S O
_ 20 — Doy, — T4l
A

Aus (11.32) erhalt man mit St , = by /ay;, und Sty | = byy/ay, fir die Messung
an der idealen Durchverbindung

L7 0L 22
—F11+§/T11: F —£r21
L£°39
und I
L0
F—32§£f271 = - det(EA) + EO,Oﬁifl,l-

Einsetzen des aus der Messung am idealen Abschluss I'y; = 0 bekannten Fehler-
terms I ; ergibt

/ / /
Fy0Fs s o —F.+ §T1,1 2711 Iy

Fs, Sto4 Sta4
Einsetzen der aus den Messungen an den idealen Eintoren bekannten Fehlerterme
det(F,) und Iy ergibt
I, = det(Fp) + Fo 05T,
ey Sta4
| LoDy + DsTy — 200T% + (Lo + L — 204 St 4
Shay (L6 — T6)

Aufgabe 12.1 Bei Kurzschluss an Tor 3 gilt

Qg - O
Mit (9.13) folgt
ll Xl 1 Xl 2 Xl 3 Ql
12 - K2,1 Z2 2 X2,3 Q2 )
13 K?),l ZL’),Z X3,3 O
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das heiffit man erhalt die Admittanzmatrix des Zweitors durch Streichen der drit-
ten Zeile und der dritten Spalte der Admittanzmatrix Y des Dreitors.

Gemaf Aufgabe 9.1 miissen die Spaltensummen der Admittanzmatrix Y eines
massefreien Netzwerks Null sein. Es folgt:

X?),l =1- Z1,1 - Zz,h

X3,2 =1- Kl,Q - KQ,Q'
Gemaf Aufgabe 9.1 miissen die Zeilensummen der Admittanzmatrix Y eines mas-
sefreien Netzwerks Null sein. Es folgt:

X1,3 =1 - K1,1 - K1,27
X2,3 =1- K2,1 - K2,2-

SchlieBlich erhalt man noch
Yas=1-Y3,—Y3o=Y,,;+Yo; +Y,5+Y,,—1

Hiermit ist es moglich, die Admittanzmatrix Y des Dreitors aus der Admittanz-
matrix des Zweitors zu berechnen.

Aufgabe 12.2 Der Klemmenleistungsgewinn ergibt sich mit (10.18) und (12.28)
zu

12
(-

= PAL
Die von der Leitung aufgenommene Leistung muss gleich der von der Leitung

abgegebenen Leistung sein, da die Leitung verlustfrei ist.
Der Einfigungsgewinn ergibt sich mit (10.18) und (12.30) zu

1 - o,
’ 2

‘ 2

1-rony [

Gy =

T T

y
An reflexionsfreien Quellen I'q = 0 oder reflexionsfreien Lasten [, = 0 ist der
Einfligungsgewinn G| = 1.

Der Ubertragungsgewinn ergibt sich mit (10.18) und (12.32) zu

O N T B O = [ 5]

i-ewironf ]

Gr =
11— e AT Ly
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Der verfiighare Leistungsgewinn ergibt sich mit (10.18) und (12.35) zu

’efjmf (1 - ’LQF)

Ga = T ’e—j%l £Q’2

=1

Dies ist aufgrund der Verlustfreiheit der Leitung zu erwarten.
Zum Berechnen des maximalen verfiigharen Leistungsgewinns Gyag bestimmt
man zundchst mit (10.18) und (12.22) den Stabilitatsfaktor

. 2
1+ ‘— e_ﬂm‘
o 2 |e_j5l| |e_j61| o

Man erhélt schlieSlich mit (10.18) und (12.39) den maximalen verfiigbaren Leis-
tungsgewinn
G

Aufgabe 12.3 Die Einwegleitung ist wegen S;, = 0 riickwirkungsfrei, so dass
der Ubertragungsgewinn G'v dem unilateralen Ubertragungsgewinn Gty entspricht.
Aus (10.23) und (12.42) folgt

2
Gr =Gy = (1 — ’EQ‘ > (1 — |£L|2) .
G GL
Q

Der Klemmenleistungsgewinn ergibt sich mit (10.23) und (12.28) zu
G=1- |£L|2 )

vergleiche auch (12.37). Die Einwegleitung ist nicht verlustfrei.
Der verfiighare Leistungsgewinn ergibt sich mit (10.23) und (12.35) zu

2

I

Ga=1-Lq

vergleiche auch (12.38).
Der Einfiigungsgewinn ergibt sich mit (10.23) und (12.30) zu

2
Gy =1 — Dol |

An einer reflexionsfreien Quelle Ly=0 oder an einer reflexionsfreien Last '}, =0
ist der Einfligungsgewinn G = 1.
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Aufgabe 12.4 Mit
(K—\/K2—1) (K+\/K2—1) - K2 - (K2—1) —1

folgt aus (12.39) fiir den maximalen verfiigbaren Leistungsgewinn unter Bertick-
sichtigen des korrekten Vorzeichens vor der Wurzel

’§2,1’ 1
Sia| (K + VEZ=T)

Im Grenzfall riickwirkungsfreier Zweitore S; , — 0 erhdlt man mit (12.40)

Gyac =

1S54 Sz |S1e] : )

G ~|s -
MAG —7 ‘51,2’ <‘§171‘2 B 1) <‘§272‘2 B 1) }—2,1 <‘§171‘2 B 1) <‘§272‘2 B 1>

Dies entspricht dem maximalen unilateralen Ubertragungsgewinn Grumax geméis
(12.54).

Aufgabe 13.1 Aus der Streumatrix S der Paralleladmittanz geméaf (10.15) fol-
gen mit (13.15)"

1 1 YR 2 4
§E{|QR1‘2} = §E{‘QR2|Z} =kTB (1 - |2|:X1\11N\2 e +ZRN|Z>
2+ Y Ry|* = |V Ry|* - 4
2+ Y Ry|*

2Y"Rx + 2Y Ry

2+ Y Ryl
pARe(XBy)

2+ Y Ryl

=kTDB

und

—2Y*Rn — 2Y Ry
2+ Y Ry’

4 RG(XRN)

‘2 + Y RN ‘2

=5 B{bw P} = £ B{lbeal?}
1
2

13 Der Realteil einer komplexen Grofle berechnet sich zu Re(z) =

1 * 1 *
5 E{bmbm} = 5 E{szbm} =—kTB
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Fiir den normierten Korrelationskoeffizienten folgt
c=1.

Die Rauschquellen sind vollstdndig korreliert, wie man es aufgrund des Kurz-
schlusses zwischen Tor 1 und Tor 2 auch intuitiv erwartet.

Aufgabe 13.2 Mit (13.15) und (10.23) ergibt sich die Rauschwellenkorrelati-
onsmatrix der thermisch rauschenden Einwegleitung homogener Temperatur T'

zu
%E{|QR1|2} %E{bmbﬁz} 10

"= (éE{z_ﬁubm} éE{ngF}) — (O 0)'

Mit (13.16), (13.17) und (13.18) berechnet man die Rauschparameter:

2
E{ } = kTB,

b)) |
Ri,=R5, =-Eq|br1 — 50 -0 =0,
1,2 2,1 {( R1 Sa, R2 So, R2

2
R2,2 ZQE{ } :0

Mit (13.19) erhalt man die effektive Rauschtemperatur

51,1

Ry, =

291

l—)Rl - QRZ

N | — N | —

—_

—b
§271—R2

’EQIQ

Tg=T———.
1—|Lq

Hieraus folgt mit (13.24) die Rauschzahl

2
T |L
F=1+ ?‘L’Q.
01 - ||
Falls die Temperatur 7" der Einwegleitung der Bezugstemperatur Ty entspricht,
erhalt man .
F=—s.
1 - |Lo
Dies entspricht dem Ergebnis, dass man aufgrund von (13.30) und dem Ergebnis
von Aufgabe 12.3 erwartet.
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Aufgabe 13.3 Aus (13.30) folgt, dass die Rauschzahl F' minimal wird, wenn der
verflighare Leistungsgewinn G, maximal wird. Aus (12.39) folgt

1 ’51,2’

Fimin = Guvac N ‘52,1‘ (K —VK?— 1).

Bei thermisch rauschenden Zweitoren homogener Temperatur 7' entspricht die
Leistungsanpassung der Rauschanpassung.
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10-Term-Fehlermodell, 258
3-Term-Fehlermodell, 247
5-Term-Fehlermodell, 258
7-Term-Fehlermodell, 252

ABC D-Matrix, siehe Kettenmatrix
Abschluss, 159
symmetrischer, 174
symmetrischer rein massegekop-
pelter, 176
Abschlussimpedanz, 165
Abstandsfaktor, 83
Abtasttheorem, 125, 342, 348
Abtastung, 125, 340, 348
Admittanzmatrix, 203
Amplitude, 157
Amplitude, komplexe, 3, 157
Amplitudengewinn, 314
Anpassung, 159
Anpassungsfaktor, 160
Antenne, iv
Antenne, lineare, 109
Antenne, omnidirektionale, 105
Antennenelement, 122
Auflésebandbreite, 243, 349, 351
Ausfallswinkel, 137
Ausgangskompressionspunkt, 315
Ausgangssignal, 311
Eintonanregung, 313
Kleinsignalndherung, 315
Zweitonanregung
Kleinsignalnédherung, 318
Ausnutzungsfaktor, 265, 276
Autokorrelationsfunktion, 112, 351

420

Autotransformation, 170

Available Power Gain, siehe Leistungs-
gewinn, verfiigharer

Averaging, siehe Mitteln

Azimutwinkel, 73

Bandleitung, 54
Bandpassmodus, 338
Bandpasssignal, 327, 328
Bartlett-Methode, 353
Bezugsebene, 198
Bezugskreisfrequenz, 327
Bezugstemperatur, 284
Bezugswelle, 157, 198
Boltzmann-Konstante, 284
Brechungsgesetz, siehe Snelliussches
Brechungsgesetz
Brewster-Winkel, 143, 145

Deembedding, 253

Detektor, 350

Determinante, 206

Device under Test, siehe Messobjekt
Dielektrikum, 5

Dipol, 79

Dipolantenne, 98, 109
Dipolmoment, elektrisches, 79
Dirac-Impuls, 16, 36, 81
Dirac-Impulses, 330
Dirac-Impulsfolge, 340
Direktivitat, 247, 252, 258
Dirichlet-Kern, 127, 344, 349
Dispersion, 37

Divergenz
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Berechnung, 76
Definition, 10
kartesische Koordinaten, 12
Kugelkoordinaten, 76
Dreileitersystem, symmetrisches, 65,
172
rein massegekoppeltes, 69, 176, 208
Dreitor, 227
Dualitat, Fourier-Transformation, 331
Dualitéat, Maxwellsche Gleichungen, 21
Dualtransformation, 171
Durchflutungsgesetz, siehe erste Max-
wellsche Gleichung
Dynamikbereich, 322
Déampfungsglied, 224, 322
Dampfungskonstante, 33

Eigenparameter, 210
Eindeutigkeitstheorem, 89
Einfallsebene, 16, 136
Einfallsrichtung, 16, 136
Einfallswinkel, 137
Einfiigungsgewinn, 274
Eingangsimpedanz, 165
Eingangskompressionspunkt, 314
Einheitsvektor, 8, 74
Eintor, 219
Eintor, rauschendes, 283
Eintorquelle, 219
Einwegleitung, 228
Elementardipol, 100
Elementrichtcharakteristik, 111, 117,
123
Elementrichtungsfaktor, 110
Empfangsleistung
Freiraumausbreitung, 131

Freiraumausbreitung, polarimetrisch,

135
Mehrwegeausbreitung, 152
Streuung, 147

Streuung, polarimetrisch, 151
Energiedichte

elektrische, 22

magnetische, 22
Energiegeschwindigkeit, 30
Ersatzrauschquelle, 294
Excess Noise Ratio, siehe Ubertem-

peraturverhaltnis

Faltungstheorem, 332
Fehlerkorrektur
Rauschzahlmessung, 301
Reflektometer, 246248
Vektornetzwerkanalysator, 251-254
Fehlerzweitor, 245, 250
Feldstarke
elektrische, 3
Dipol, 86
Fernfeldnéherung, 84
magnetische, 4
Dipol, 85
Fernfeldnédherung, 84
Feldtheorie, iv
Feldwellenwiderstand, 85
in z-Richtung, 140, 142
transversalelektrische Welle, 32
transversalelektromagnetische Wel-
le, 30
transversalmagnetische Welle, 33
Vakuum, 30
Fensterfunktion, 125, 334, 348
Fernfeld, 82
Fernnebensprechen, 241
Flussdichte
elektrische, 3
magnetische, 4
Flachenelement
Berechnung, 75
Kugelkoordinaten, 75
Flachenladungsdichte
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elektrische, 16, 20

magnetische, 18, 21
Flachenstromdichte

elektrische, 18, 20

magnetische, 16, 21
Fourier-Korrespondenzen, 354
Fourier-Reihe, 124, 342

Rechteckschwingung, 326
Fourier-Transformation, 3, 36, 112, 117,

329

Fourier-Transformation, diskrete, 344
Freiraumwellenlange, 34
Frequenz, 3
Frequenzbereich, 3
Frequenzverschiebung, 337
Fresnelsche Formeln, 138
Funkkommunikationssystem, iii
Funknavigationssystem, iii

GauB, Satz von, 12
Gauflscher Satz in der Ebene, 12
Gegentaktmode, 172
Gegentaktspannung, 67
resultierende, 173
Gegentaktstrom, 67
resultierender, 173
Gegentaktwelle, 66, 172
Gesetz, multiplikatives, 110
Gewinn, 105, 133
Ausgangsanpassung, 280, 281
Déampfungsglied, 224
Eingangsanpassung, 280
Gitterkeule, 126, 127
Gleichanteil, 313

Gleichgewicht, thermodynamisches, 285,

288
Gleichtaktmode, 172
Gleichtaktspannung, 67

resultierende, 173
Gleichtaktstrom, 67
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resultierender, 173
Gleichtaktwelle, 66, 172
Gradient
Berechnung, 75
kartesische Koordinaten, 25
Kugelkoordinaten, 75
Grating Lobe, siehe Gitterkeule
Greensche Funktion, 81
Fernfeldnédherung, 82
Grenzflichenbedingungen
Dielektrika, 19-20
elektrisches Feld, 16-18
idealer elektrischer Leiter, 20
idealer magnetischer Leiter, 20—
21
magnetisches Feld, 18-19
Grundwelle, 312
Gruppenantenne, 122
Gruppenantenne, lineare, 123
Gruppengeschwindigkeit, 36
Mehrleitersystem, 61
Zweileitersystem, 52
Gruppenrichtcharakteristik, 111, 117,
123
konstante Strombelegung, 119
Strombelegung mit konstanten Pha-
sendekrement, 128
Gruppenrichtungsfaktor, 110
Aperturantenne, 116, 117
Dipolantenne, 112
Gruppenantenne, 122
konstante Strombelegung, 119
lineare Antenne, 110, 111
lineare Gruppenantenne, 124
Strombelegung mit konstanten Pha-
sendekrement, 127
Grofle, metrische, 74

harmonisch, 3, 312, 349

Harmonische, 313, 315



INDEX

Harmonischenabstand, 316
Hauptkeule, 114, 126, 127
Helmholtz-Gleichung
elektrische Feldstarke, 25
magnetische Feldstérke, 25
Vektorpotential, 71
Helmholtz-Gleichung, zweidimensiona-
le
elektrische Feldstarke, 27
magnetische Feldstarke, 27
Hertzscher Dipol, siehe Dipol
Hochfrequenzmesstechnik, iii
Hochfrequenztechnik, iii
Hochfrequenzverstarker, 261
Hohlleiter, 43
Hohlraumresonator, 171
Horizontaldiagramm, 107
Hornantenne, 121
Huygens-Aquivalent, 96
Huygenssches Prinzip, 91

Impedanz, 164
Impedanzmatrix, 203
Impulsantwort, 36, 330

reelle, 332
Induktionsgesetz, siehe zweite Max-

wellsche Gleichung

Induktivitatsbelag, 52

Bandleitung, 55

Koaxialleitung, 59
Induktivitatsbelagsmatrix, 62
Influenzbelagskoeffizientenmatrix, 63
Inphasekomponente, 327

Insertion Power Gain, siehe Einfiigungs-

gewinn
Interceptpunkt
ausgangsseitiger, 320
Kaskade, 324
eingangsseitiger, 319
Kaskade, 324

Interceptpunkt der Harmonischen
ausgangsseitiger, 317
eingangsseitiger, 316

Intermodulationsabstand, 318

Intermodulationsprodukt, 318

Interpolation, 346

Inversionsdiagramm, 180

isotrop, 15

Kalibrierstandard, 247
Kapazitédtsbelag, 52

Bandleitung, 54

Koaxialleitung, 59
Kaskade, 207, 297
kausal, 333
Kennlinie, 311

Kaskade, 322
Kettenmatrix, 208
Kleinsignalndherung, 315
Klemmenleistungsgewinn, 272, 274
Koaxialleitung, 58
Komponente, hochfrequenztechnische,

iv

Konnektivitatsmatrix, 216
Kontinuitétsgleichung, 14
Konversionsparameter, 210
Koordinaten

krummlinige, 73

orthogonale, 74
Koordinatenlinie, 73
Kopplungsfaktor, 65
Kramers-Kronig-Beziehungen, 334
Kreisfrequenz, 3, 312
Kreisfrequenz, kritische, 33
Kugelkoordinaten, 73

A/2-Transformator, 171, 226
A/4-Transformator, 172, 226
Ladung

elektrische, 10
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INDEX

magnetische, 13
Ladung, elektrische, 14
Ladungsdichte
elektrische, 4
magnetische, 4
Ladungserhaltung, 14-15
Ladungserhaltungssatz, 14
Laplace-Gleichung, 49
Laplace-Operator
Definition, 25
kartesische Koordinaten, 26
Laplace-Operator, skalarer
Berechnung, 78
Definition, 49
kartesische Koordinaten, 49
Kugelkoordinaten, 78
Laplace-Operator, zweidimensionaler,
27
Lasttoranpassung, 258
Leistung, 167, 351
abgestrahlte, 85
ablaufende Welle, 197
Eintorquelle, 263
hinlaufende Welle, 158
Mehrtor, 198
riicklaufende Welle, 158
symmetrisches Dreileitersystem, 69
verfiighare, 265
zulaufende Welle, 197
Zweileitersystem, 53
Leistungsanpassung, 265
Leistungsdichtespektrum, 352
Leistungsgewinn, maximaler stabiler,
279
Leistungsgewinn, maximaler verfiig-
barer, 276, 278
Leistungsgewinn, verfiigharer, 275
Kaskade, 275
Leiter
idealer elektrischer, 20

424

idealer magnetischer, 20
Leitfahigkeit, 16
Leitung, koplanare, 60
Leitung, kurzgeschlossene, 169
Leitung, leerlaufende, 170
Leitungsdiagramm, 186
Leitungsgleichungen, 52
Leitungsstrom

elektrischer, 5, 14

magnetischer, 9
Leitungsstiick, 225
Leitungstransformation, 195
Lichtgeschwindigkeit, 35
Likelihood-Funktion, 353
Linienelement

Berechnung, 74

Kugelkoordinaten, 74
Longitudinalkomponente, 28

p-Test, 270
Main Lobe, siche Hauptkeule
Mason-Regeln, 199
Materialgleichung, 15
Maximum Available Power Gain, sie-
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Maximum Stable Power Gain, siehe
Leistungsgewinn, maximaler sta-
biler
Maximum-Likelihood-Schatzung, 353
Maxwellsche Gleichung
dritte, 10-12
erste, 59
vierte, 13
zweite, 9-10
Mehrleitersystem, 60
Mehrtor, 197
eigenreflexionsfreies, 201
entkoppeltes, 292
lineares, 198
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Messobjekt, 243, 245, 250, 298
Messtoranpassung, 247, 252
Mikrostreifenleitung, 60
Mischer
additiver, 326
idealer, 325
multiplikativer, 326
Mitteln, 353
Mode, 28
Modenkonversion, 174, 210, 221, 233
Momentenmethode, 97
Multiplizierer, 325

Nahfeld-Fernfeld-Transformation, 96
Nahnebensprechen, 241
Nebenkeule, 114, 126
Netzwerk, 214
massefreies, 205
rauschendes, 287
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Nullphase, 157

Oberwelle, 313
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OSM-Verfahren, 247
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relative, 16
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te, 110
Phasendekrement, 125
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Zweileitersystem, 52
Phasenkonstante, 26, 33, 71
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Hohlleiter, 44
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Dipol, 86
Fernfeldnédherung, 85
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idealer magnetischer Leiter, 145

Proportionalitéitsprinzip, Fourier-Transformatioparallele Polarisation, 143

331

Quadraturdemodulator, 328
Quadraturkomponente, 327
Quadraturmodulator, 327
Quelle, 211
Quelltoranpassung, 258

Radargleichung, 147
Radartechnik, iii
Rauschabstand, 321
Rauschanpassung, 305
Rauschdiode, 300
Rauschen, iv
Rauschen, thermisches, 284
Rauschleistung, verfiigbare, 283, 284,
286
Rauschleistungsdichte, verfiigbare, 284
Rauschparameter, 294
Rauschtemperatur, 286
Rauschtemperatur, effektive, 294
Kaskade, 298
minimale, 303
Rauschurwelle, 283, 286
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292
Rauschzahl, 295, 297
Kaskade, 298
minimale, 305
Rauschzahl, zusétzliche, 295
Kaskade, 298
Rechteckfenster, 336, 348
Rechteckhohlleiter, sieche Hohlleiter
Reflektometer, 243
ideales, 245
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senkrechte Polarisation, 140
Reflexionsgleichlauf, 247, 252, 258
Renormalisierung, 225
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Resonator, siehe Hohlraumresonator
reziprok, 88
Reziprozititstheorem, 88, 202
Richtcharakteristik, 111, 117, 123

Aperturantenne, 117

Definition, 106

Dipol, 107

Dipolantenne, 114
Richtcharakteristik, vektorielle kom-
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Richtdiagramm, 107
Richtfaktor

Definition, 105

Dipol, 106, 107

Dipolantenne, 114

konstante Strombelegung, 121

lineare Antenne, 111

Strombelegung mit konstanten Pha-

sendekrement, 128
Richtkoppler, 236
Richtungsfaktor, 110

Aperturantenne, 116

lineare Antenne, 109
Richtungsfaktor, vektorieller, 83
Ringmischer, 326
Rollett, siehe Stabilitdtsfaktor
Rotation

Berechnung, 77

Definition, 6
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Schaltungssimulation, 217
Selbstkalibrierung, 254
Serienimpedanz, 222
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Blindwiderstand, 183, 194
Wirkwiderstand, 182, 191
Side Lobe, siehe Nebenkeule
Signal- und Systemtheorie, iv
Signal-Rausch-Abstand, 296
Signalflussgraph, 199
Skalarprodukt, 5
Smith-Diagramm, 190
Snelliussches Brechungsgesetz, 137
Spaltfunktion, 119, 336
Spannung
resultierende, 163
Zweileitersystem, 50
Spannungsquelle, 212
Spannungsvektor
Mehrleitersystem, 62
Spektralanalysator, 298, 351
Spektralanalyse, iv, 347
Spektrum, 347
Spektrumanalysator, siehe Spektral-
analysator, siehe Spektralana-
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Spiegelung
idealer elektrischer Leiter, 90
idealer magnetischer Leiter, 91
Spiegelungsprinzip, 90-91
Sprungfunktion, 16
Spurious Free Dynamic Range, siehe
Dynamikbereich
Stabilitat
Eintorquelle, 263
unbedingte, 269
Zweitor, 266

Stabilitatsfaktor, 271
Stabilitatskreis, 267, 268
Standing Wave Ratio, siehe Stehwel-
lenverhéltnis
Stehwellenverhéltnis, 162
Stokes, Satz von, 8
Strahlungsleistung, 23
Strahlungsleistungsdichte
Dipol, 86
Fernfeldnédherung, 85
mittlere, 24
momentane, 23
Streifenleitung, 60
Streuer, 146
Streumatrix, 198
Streumatrix, komplexe polarimetrische,
151
Streuparameter, 198
modale, 209, 211, 220, 232
nodale, 210, 211
Streuparameter, komplexer polarime-
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Streuquerschnitt, 147
bistatischer, 147
monostatischer, 147
Streuung, 146
Strom
elektrischer, 5
magnetischer, 9
resultierender, 163
Zweileitersystem, 51
Strombelegung, 82
konstante, 114, 119
sinusformige, 112
Stromdichte
elektrische, 4
magnetische, 4
Stromquelle, 213
Stromvektor
Mehrleitersystem, 62
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vereinfachter, 255

Superpositionsprinzip, Fourier-Transformation, vollwertiger, 248

331
Symmetrie, Ubertragungsfunktion, 332
System, nichtlineares, 311
statisches, 311
Systemrauschtemperatur, 295

Teiler, allseitig angepasster, 230
Teiler, eingangsseitig angepasster, 231
Tiefpass-Bandpass-Transformation, 327,
339
Tiefpassmodus, 337
Tiefpasssignal, dquivalentes, 327, 328
TOSM-Verfahren, 254, 259
Totalreflexion, 138, 159
Transducer Power Gain, siehe Uber-
tragungsgewinn

Transfermatrix, 136, 151
Transformation

Impedanz, 165

Reflexionsfaktor, 159

symmetrisches Dreileitersystem, 176
Transistor, 261
Transmissionsfaktor

parallele Polarisation, 143

senkrechte Polarisation, 141
Transmissionsgleichlauf, 252, 258
Transmissionsmatrix, 206

Kaskade, 207
Transmissionsparameter, 206
Transversalkomponente, 28

UOSM-Verfahren, 254
Urwelle, 211, 219

Vakuumlichtgeschwindigkeit, 35

Varianz, 351

Vektornetzwerkanalysator, iv, 248
idealer, 250

imperfekter, 250
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Vektorpotential
elektrisches, 72
magnetisches, 71, 81
Dipol, 85
Fernfeldnédherung, 82
Vektorprodukt, 17
Verlustleistungsdichte, 22
Verschiebungsstrom
elektrischer, 5
magnetischer, 9
Vertikaldiagramm, 107
Verzweigung, 230
Viertor, 232
Viertor-Zweitor-Reduktion, 246
Volumenelement
Berechnung, 75
Kugelkoordinaten, 75
Vorverstarker, rauscharmer, 302
Vorzeichenfunktion, 333

Welle

ablaufende, 197

ebene, 38

ebene homogene, 38

elektromagnetische, 26

hinlaufende, 157

riicklaufende, 157

stehende, 160

transversalelektrische, 31
Bandleitung, 55
Hohlleiter, 44

transversalelektromagnetische, 29
Bandleitung, 54
Zweileitersystem, 49

transversalmagnetische, 32
Bandleitung, 56
Hohlleiter, 46

zulaufende, 197
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Wellenamplitude, komplexe, iv, 157,
163, 197
Rauschurwelle, 283, 286
symmetrisches Dreileitersystem, 173
Urwelle, 211, 219
Wellenamplitude, resultierende kom-
plexe, 159
Wellenimpedanz, 140, 143
Wellenleiter, zylindrischer, 26
Wellenlange, 33, 83
Wellenlange, kritische, 34
Wellenwiderstand
Bandleitung, 55
Gegentaktwelle, 67
Gleichtaktwelle, 67
Koaxialleitung, 59
symmetrisches Dreileitersystem, 67
Zweileitersystem, 51, 52
Wellenwiderstandsmatrix, 62
Wellenzahl, 33
Wellenzahlbereich, 112
Wirkflache, 131, 133
Wirkungsgrad, 105

Y-Faktor, 300

Zeitbereichsanalyse, 330
Zero-Padding, 346
Zirkulator, 227
Zweileitersystem, 48
Zweitor
eigenreflexionsfreies, 292
rauschendes, 293, 297
symmetrisch aufgebautes, 220
Zweitorgewinn, unilateraler, 280
Zylinderkoordinaten, 78

Ahnlichkeitssatz, Fourier-Transformation,
331
Aquivalenztheorem
ebene Grenzfliche, 95

feldfreier Innenraum, 92

idealer Leiter, 93
Uberabtastung, 346, 349
Ubertemperaturverhaltnis, 301
Ubertragungsfaktor, 132
Ubertragungsfunktion, 36, 329
Ubertragungsgewinn, 274
Ubertragungsgewinn, unilateraler, 279

maximaler, 282
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