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Vorwort

Die Hochfrequenztechnik befasst sich mit dem Nutzen elektromagnetischer Felder
hoher Frequenzen in technischen Systemen. Bei hohen Frequenzen gibt es Wech-
selwirkungen zwischen elektrischen und magnetischen Feldern, die eine Wellenaus-
breitung ermöglichen. Insbesondere lassen sich integrale Größen wie Spannungen
und Ströme im Allgemeinen nicht mehr sinnvoll definieren. Folglich ist der Syste-
mentwurf mit den auf konzentrierten Bauelementen basierenden Konzepten der
Elektronik nicht mehr möglich. Man muss vielmehr wieder direkt von den Max-
wellschen Gleichungen ausgehen. Eine Abstraktion ist aber auch hier möglich. Sie
basiert auf komplexen Wellenamplituden und hat sich in den letzten Jahrzehn-
ten als sehr ergiebig erwiesen. Diese wellenbasierte Sichtweise charakterisiert die
Hochfrequenztechnik als eigenständige Disziplin innerhalb der Elektrotechnik.

Die Hochfrequenztechnik ist eines der traditionellen Fachgebiete der Elektro-
technik. Ihre Entwicklung lässt sich bis zur Veröffentlichung der Maxwellschen
Gleichungen zurückverfolgen. Seitdem wurde ein umfangreiches Fachwissen zu-
sammengetragen. Zahlreiche Veröffentlichungen zeugen davon. Im Literaturver-
zeichnis findet man eine kleine Auswahl bewährter Lehrbücher der Hochfrequenz-
technik [Bae98; Col01; Gus13; Poz12; RWD94]. Hier steht zumeist der Entwurf
hochfrequenztechnischer Komponenten im Vordergrund. Ein Blick auf das heuti-
ge Berufsbild offenbart jedoch, dass das Anwenden der Hochfrequenztechnik, das
heißt das Zusammenfügen hochfrequenztechnischer Komponenten zu komplexen
Systemen und die zumeist digitale Verarbeitung von Signalen aus einer hochfre-
quenztechnischen Umgebung in einem eingebetteten System im Vordergrund der
beruflichen Praxis stehen. Beispiele derartiger Anwendungen sind

• die Hochfrequenzmesstechnik [Sch99; Wit14],

• Funkkommunikationssysteme [Gol05; Mol11; TV05],

• die Radartechnik [Lev88; Ric14] und

• Funknavigationssysteme [Ler95; SDM14].

Aufgrund der Komplexität und der hohen geforderten Performanz derartiger Sys-
teme ist das Beherrschen theoretisch fundierter Modellierungstechniken und die
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Kenntnis des Verhaltens typischer hochfrequenztechnischer Komponenten uner-
lässlich. Ziel des vorliegenden Buchs ist es, dieses Wissen in kompakter Form dar-
zustellen, ohne aber auf mathematische Exaktheit zu verzichten. Dies wird durch
eine Konzentration auf zentrale, allgemein anwendbare Theorien und Modelle der
Hochfrequenztechnik und eine konsequente Abstraktion erreicht.

Die Maxwellschen Gleichungen bilden ein System linearer und verschiebungs-
invarianter Differentialgleichungen. Es ist daher nicht verwunderlich, dass es enge
Querbeziehungen zur typischerweise im Rahmen der Signal- und Systemtheorie
und der Nachrichtentechnik behandelten Theorie der linearen zeitinvarianten Sys-
teme gibt [FB08; OL10]. An den entsprechenden Stellen im vorliegenden Buch
wurden diesbezügliche Anmerkungen eingefügt. Diese sollen dem mit der Signal-
und Systemtheorie vertrauten Leser eine vertiefte Durchdringung der Thematik
ermöglichen, sind aber keine Voraussetzung für das weitere Studium des Buchs.

Das Buch ist in zwei Teile gegliedert. Der erste Teil beschäftigt sich mit der
feldtheoretischen Modellierung [Bal12; Bla07; Har01; Leh10; PM13; Str41]. Die
feldtheoretische Modellierung ist auch heute noch unverzichtbar, da sie nicht nur
die Grundlage abstrakterer Modelle bildet, sondern insbesondere auch zur Analy-
se von Antennen unumgänglich ist [Bal05; Kar11; KM03; ST13]. Antennen bilden
einen zentralen Bestandteil der meisten hochfrequenztechnischen Systeme. Gera-
de die Fähigkeit der von Antennen abgestrahlten elektromagnetischen Wellen sich
im freien Raum ausbreiten zu können, macht die Hochfrequenztechnik für techni-
sche Anwendungen interessant. Ein Vereinfachen der Darstellung und Fokussieren
auf die physikalischen Grundprinzipien gelingt bei der feldtheoretischen Modellie-
rung durch ausschließliches Betrachten einfacher Materialien, das Vernachlässigen
von Verlusten und die Konzentration auf die für technische Anwendungen primär
interessanten ausbreitungsfähigen Wellen.

Der zweite Teil des Buchs beschäftigt sich mit der abstrakteren auf kom-
plexen Wellenamplituden basierenden Modellierung [Hof97; Mic81]. Durch eine
derartige Abstraktion werden auch komplexe Systeme beherrschbar, ohne dass
Modellierungsgenauigkeit verloren geht. Die moderne Hochfrequenzschaltungs-
technik basiert auf der Modellierung mittels komplexer Wellenamplituden und
mit dem Vektornetzwerkanalysator existiert auch eine entsprechende Messtech-
nik [Hie11]. Neben dem idealen Verhalten hochfrequenztechnischer Komponenten
[Gon97; MYJ80] wird auch das in vielen Fällen performanzbegrenzende und prak-
tische Systemarchitekturen motivierende Rauschen diskutiert [SRS06].

Im Anhang findet man neben den Lösungen der Aufgaben ergänzende Aus-
führungen zu nichtlinearen Systemen und der Fourier-Analyse. Nichtlineares Ver-
halten tritt häufig unerwünschter Weise in realen Systemen auf, kann aber auch
gezielt genutzt werden [TSG16]. Die Fourier-Analyse ist Grundlage vieler Verfah-
ren der Hochfrequenzmesstechnik wie der Spektralanalyse [KK12; SM05].
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Kapitel 1.

Feldtheoretische Grundlagen

1.1. Maxwellsche Gleichungen

1.1.1. Feldgrößen und ihre komplexen Amplituden

In der Hochfrequenztechnik interessieren wir uns für rein harmonische, das heißt
sinusförmige Zeitverläufe der Frequenz f der betrachteten Feldgrößen. Gegebe-
nenfalls auftretende nichtharmonische Vorgänge kann man mittels der Fourier-
Transformation als Überlagerung harmonischer Vorgänge darstellen. Die folgen-
den Betrachtungen können somit allgemeiner als Modellierung im Frequenzbereich
aufgefasst werden [FB08].1 Harmonische (vektorielle) Feldgrößen können durch
ihre (vektoriellen) komplexen Amplituden beschrieben werden. Mit der Kreisfre-
quenz

ω = 2πf (1.1)

kann man die Feldgrößen wie folgt darstellen:

elektrische Feldstärke:

~E(x, y, z, t) = Re
(
~E(x, y, z) ejωt

)
(1.2)

~E: vektorieller Momentanwert der elektrischen Feldstärke

~E: vektorielle komplexe Amplitude der elektrischen Feldstärke

elektrische Flussdichte:

~D(x, y, z, t) = Re
(
~D(x, y, z) ejωt

)
(1.3)

~D: vektorieller Momentanwert der elektrischen Flussdichte

~D: vektorielle komplexe Amplitude der elektrischen Flussdichte

1 Die (vektoriellen) komplexen Amplituden kann man weiterhin als die zu den betrachteten
Bandpasssignalen äquivalenten Tiefpasssignale ansehen, siehe (A.39).
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magnetische Feldstärke:

~H(x, y, z, t) = Re
(
~H(x, y, z) ejωt

)
(1.4)

~H: vektorieller Momentanwert der magnetischen Feldstärke

~H: vektorielle komplexe Amplitude der magnetischen Feldstärke

magnetische Flussdichte:

~B(x, y, z, t) = Re
(
~B(x, y, z) ejωt

)
(1.5)

~B: vektorieller Momentanwert der magnetischen Flussdichte

~B: vektorielle komplexe Amplitude der magnetischen Flussdichte

elektrische Stromdichte:

~J(x, y, z, t) = Re
(
~J(x, y, z) ejωt

)
(1.6)

~J: vektorieller Momentanwert der elektrischen Stromdichte

~J: vektorielle komplexe Amplitude der elektrischen Stromdichte

elektrische Ladungsdichte:

ρe(x, y, z, t) = Re
(
ρ

e
(x, y, z) ejωt

)
(1.7)

ρe: Momentanwert der elektrischen Ladungsdichte

ρ
e
: komplexe Amplitude der elektrischen Ladungsdichte

magnetische Stromdichte:

~M(x, y, z, t) = Re
(
~M(x, y, z) ejωt

)
(1.8)

~M : vektorieller Momentanwert der magnetischen Stromdichte

~M : vektorielle komplexe Amplitude der magnetischen Stromdichte

magnetische Ladungsdichte:

ρm(x, y, z, t) = Re
(
ρ

m
(x, y, z) ejωt

)
(1.9)

ρm: Momentanwert der magnetischen Ladungsdichte

ρ
m

: komplexe Amplitude der magnetischen Ladungsdichte
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Vektoren werden durch einen Pfeil gekennzeichnet und komplexe Größen wer-
den unterstrichen. Auf eine explizite Angabe der Argumente x, y, z und t zum
Ausdrücken der Ortsabhängigkeit und der Zeitabhängigkeit wird im Folgenden
zumeist verzichtet.

Magnetische Ladungen und die daraus resultierende magnetische Ladungsdich-
te ρm und magnetische Stromdichte ~M treten in der Realität nie auf. Ihre Ein-
führung führt aber neben einer totalen Symmetrie der Maxwellschen Gleichun-
gen insbesondere zu erheblichen Vereinfachungen bei vielen Feldberechnungen,
bei denen man das ursprüngliche physikalische Problem ohne magnetische La-
dungsdichte ρm und magnetische Stromdichte ~M durch ein äquivalentes Problem
ersetzt, in dem diese Größen vorkommen können, siehe Abschnitt 4.8.

Materialien, in denen weder elektrische Ladungen noch magnetische Ladungen
vorhanden sind und in denen folglich die Ladungsdichten und die Stromdichten
verschwinden, bezeichnet man als Dielektrika.

1.1.2. Durchflutungsgesetz, erste Maxwellsche Gleichung

1.1.2.1. Integrale Form

Das Umlaufintegral über die magnetische Feldstärke ~H ist gleich dem gesamten
umschlossenen elektrischen Strom:

u
∂A

〈 ~H, d~s〉 =
x

A

〈 ~J, d ~A〉
︸ ︷︷ ︸

elektrischer Leitungsstrom

+
x

A

〈∂
~D

∂t
, d ~A〉

︸ ︷︷ ︸
elektrischer Verschiebungsstrom︸ ︷︷ ︸

elektrischer Strom

. (1.10)

Der Umlaufsinn d~s des Integrals und die Flächennormale d ~A bilden dabei eine
Rechtsschraube, siehe Abbildung 1.1. 〈·, ·〉 bezeichnet das Skalarprodukt zweier
Vektoren.2 In der Hochfrequenztechnik werden häufig elektromagnetische Felder
im Dielektrikum mit verschwindender elektrischer Stromdichte ~J betrachtet.

Mit (1.3) folgt, dass die Ableitung im Zeitbereich einer Multiplikation mit jω
im Frequenzbereich entspricht:

∂ ~D

∂t
=

∂

∂t

(
Re
(
~D ejωt

))
= Re

(
~D
∂

∂t

(
ejωt

))
= Re

(
jω ~D ejωt

)
. (1.11)

2 Mit den Vektoren ~a =



a1

a2

a3


 und ~b =



b1

b2

b3


 gilt 〈~a,~b〉 = a1b

∗
1 + a2b

∗
2 + a3b

∗
3.
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d ~A

~J
∂ ~D

∂t

d~s

Abbildung 1.1.: Zum Durchflutungsgesetz

Mit (1.3), (1.4) und (1.6) erhält man das Durchflutungsgesetz für die vektoriellen
komplexen Amplituden:

z

∂A

〈 ~H, d~s〉 =
x

A

〈 ~J, d ~A〉 + jω
x

A

〈 ~D, d ~A〉. (1.12)

1.1.2.2. Differentielle Form, Satz von Stokes

Die Komponenten der Rotation eines Vektorfeldes ~H definiert man zu

[
rot
(
~H
)]

xyz
= lim

dAxyz→0

u
∂ dAxyz

〈 ~H, d~s〉

dAxyz
. (1.13)

Hierbei steht xyz für eine der drei Koordinaten x, y oder z. [·]xyz bezeichnet die
x-, y- oder z-Komponente des Vektors. Der Umlaufsinn d~s des Integrals und die
Flächennormale dAxyz bilden eine Rechtsschraube.

Speziell zum Berechnen der z-Komponente der Rotation in kartesischen Ko-
ordinaten betrachtet man das in Abbildung 1.2 gezeigte, in der x-y-Ebene lie-
gende, infinitesimale Flächenelement dAz mit der Flächennormalen in positiver
z-Richtung.

Das Umlaufintegral der Feldstärke ~H entlang des Randes ∂ dAz des Flächen-

6



1.1. Maxwellsche Gleichungen

x

y

z x0

y0

dx

dydAz

Abbildung 1.2.: Infinitesimales Flächenelement dAz = dx dy

elements dAz ergibt

z

∂ dAz

〈 ~H, d~s〉 =
rechts untenw

links unten

〈 ~H, d~s〉 +
rechts obenw

rechts unten

〈 ~H, d~s〉

+
links obenw

rechts oben

〈 ~H, d~s〉 +
links untenw

links oben

〈 ~H, d~s〉

=Hx

(
x0, y0 − dy

2
, z0, t

)
· dx+Hy

(
x0 +

dx

2
, y0, z0, t

)
· dy

−Hx

(
x0, y0 +

dy

2
, z0, t

)
· dx−Hy

(
x0 − dx

2
, y0, z0, t

)
· dy

=



Hy

(
x0 + dx

2
, y0, z0, t

)
−Hy

(
x0 − dx

2
, y0, z0, t

)

dx

−
Hx

(
x0, y0 + dy

2
, z0, t

)
−Hx

(
x0, y0 − dy

2
, z0, t

)

dy


 dx dy.

Führt man die Grenzübergänge dx → 0 und dy → 0 durch, so erhält man

z

∂ dAz

〈 ~H, d~s〉 =

(
∂Hy

∂x
− ∂Hx

∂y

)
dx dy =

(
∂Hy

∂x
− ∂Hx

∂y

)
dAz.

Schließlich erhält man die z-Komponente

[
rot
(
~H
)]

z
=
∂Hy

∂x
− ∂Hx

∂y

7
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der Rotation in kartesischen Koordinaten.
Man kann gleichartige Überlegungen für infinitesimale Flächenelemente, die in

der y-z-Ebene oder in der z-x-Ebene liegen, anstellen. Man erhält die entsprechen-
den Gleichungen auch, indem man die Komponenten und Koordinaten zyklisch
vertauscht. Es folgt

rot
(
~H
)

=

(
∂Hz

∂y
− ∂Hy

∂z

)
~ux +

(
∂Hx

∂z
− ∂Hz

∂x

)
~uy +

(
∂Hy

∂x
− ∂Hx

∂y

)
~uz (1.14)

für die Rotation in kartesischen Koordinaten, wobei ~ux, ~uy und ~uz die Einheits-
vektoren in x-, y- und z-Richtung sind.

Eine beliebige, nicht infinitesimale Fläche A kann man in unendlich viele in-
finitesimale, in x-, y- oder z-Richtung orientierte Flächenelemente zerlegen. Die
Linienintegrale entlang der inneren Begrenzungen kürzen sich dabei gegenseitig
weg, so dass die Summe der Umlaufintegrale der infinitesimalen Flächenelemente
das Umlaufintegral der gesamten Fläche A ergibt. Die Summe der Oberflächen-
integrale über die infinitesimalen Flächenelemente ergibt das Oberflächenintegral
über die gesamte Fläche A. Damit folgt aus der Definition der Rotation (1.13)
der für beliebige Vektorfelder ~H gültige Satz von Stokesz

∂A

〈 ~H, d~s〉 =
x

A

〈rot
(
~H
)
, d ~A〉. (1.15)

Anwenden des Satzes von Stokes auf das Durchflutungsgesetz (1.10) ergibt
z

∂A

〈 ~H, d~s〉 =
x

A

〈rot
(
~H
)
, d ~A〉 =

x

A

〈 ~J, d ~A〉 +
x

A

〈∂
~D

∂t
, d ~A〉.

Man erhält schließlich das Durchflutungsgesetz in differentieller Form:

rot
(
~H
)

= ~J +
∂ ~D

∂t
. (1.16)

Für die vektoriellen komplexen Amplituden erhält man mit (1.3), (1.4), (1.6)
und (1.11) die im Folgenden vorwiegend verwendete Darstellung des Durchflu-
tungsgesetzes

rot
(
~H
)

= ~J + jω ~D (1.17)

und mit (1.14) die folgenden Komponentengleichungen:

∂Hz

∂y
− ∂Hy

∂z
=Jx + jωDx, (1.18)

∂Hx

∂z
− ∂Hz

∂x
=Jy + jωDy, (1.19)

∂Hy

∂x
− ∂Hx

∂y
=Jz + jωDz. (1.20)
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1.1.3. Induktionsgesetz, zweite Maxwellsche Gleichung

1.1.3.1. Integrale Form

Das negative Umlaufintegral über die elektrische Feldstärke ~E ist gleich dem ge-
samten umschlossenen magnetischen Strom:

−
u
∂A

〈 ~E, d~s〉 =
x

A

〈 ~M, d ~A〉
︸ ︷︷ ︸

magnetischer Leitungsstrom

+
x

A

〈∂
~B

∂t
, d ~A〉

︸ ︷︷ ︸
magnetischer Verschiebungsstrom︸ ︷︷ ︸

magnetischer Strom

. (1.21)

Der Umlaufsinn d~s des Integrals und die Flächennormale d ~A bilden auch hier
wieder eine Rechtsschraube, siehe Abbildung 1.3. In realen Szenarien gibt es keine
magnetischen Ladungen ρm und dann verschwindet die magnetische Stromdichte
~M .

d ~A

~M
∂ ~B

∂t

d~s

Abbildung 1.3.: Zum Induktionsgesetz

Mit (1.2), (1.5), (1.8) und (1.11) erhält man das Induktionsgesetz für die vek-
toriellen komplexen Amplituden:

−
z

∂A

〈 ~E, d~s〉 =
x

A

〈 ~M, d ~A〉 + jω
x

A

〈 ~B, d ~A〉. (1.22)

1.1.3.2. Differentielle Form

Dual zu Abschnitt 1.1.2.2 erhält man durch Anwenden des Satzes von Stokes
(1.15) auf das Induktionsgesetz (1.21)

− rot
(
~E
)

= ~M +
∂ ~B

∂t
. (1.23)
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Für die vektoriellen komplexen Amplituden erhält man mit (1.2), (1.5), (1.8)
und (1.11) die im Folgenden vorwiegend verwendete Darstellung des Induktions-
gesetzes

− rot
(
~E
)

= ~M + jω ~B (1.24)

und mit (1.14) die folgenden Komponentengleichungen:

−∂Ez

∂y
+
∂Ey

∂z
=Mx + jωBx, (1.25)

−∂Ex

∂z
+
∂Ez

∂x
=My + jωBy, (1.26)

−∂Ey

∂x
+
∂Ex

∂y
=M z + jωBz. (1.27)

1.1.4. Quellen des elektrischen Feldes, dritte Maxwellsche
Gleichung

1.1.4.1. Integrale Form

Der elektrische Fluss durch eine geschlossene Hülle ist gleich der eingeschlossenen
elektrischen Ladung:

v
∂V

〈 ~D, d ~A〉 =
y

V

ρe dV

︸ ︷︷ ︸
elektrische Ladung

. (1.28)

Die Flächennormale d ~A zeigt dabei nach außen. In der Hochfrequenztechnik wer-
den häufig elektromagnetische Felder in Dielektrika mit verschwindender elektri-
scher Ladungsdichte ρe betrachtet. Die elektrische Flussdichte ~D ist dann quel-
lenfrei.

Für die komplexen Amplituden erhält man mit (1.3) und (1.7) die Gleichung
{

∂V

〈 ~D, d ~A〉 =
y

V

ρ
e
dV. (1.29)

1.1.4.2. Differentielle Form, Satz von Gauß

Die Divergenz eines Vektorfeldes ~D definiert man zu

div
(
~D
)

= lim
dV→0

v
∂ dV

〈 ~D, d ~A〉

dV
. (1.30)
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Die Flächennormale d ~A zeigt dabei wieder nach außen.
Speziell zum Berechnen der Divergenz in kartesischen Koordinaten betrachtet

man das in Abbildung 1.4 gezeigte infinitesimale Volumenelement dV .

x

y

z

dx

dy

dz

dV

Abbildung 1.4.: Infinitesimales Volumenelement dV = dx dy dz

Der Fluss durch die Hülle ∂ dV des Volumenelements dV ergibt sich zu
{

∂ dV

〈 ~D, d ~A〉 =
x

rechte Seite

〈 ~D, d ~A〉 +
x

linke Seite

〈 ~D, d ~A〉 +
x

Deckel

〈 ~D, d ~A〉

+
x

Boden

〈 ~D, d ~A〉 +
x

Vorderseite

〈 ~D, d ~A〉 +
x

Rückseite

〈 ~D, d ~A〉

=Dx

(
x0 +

dx

2
, y0, z0, t

)
· dy · dz −Dx

(
x0 − dx

2
, y0, z0, t

)
· dy · dz

+Dy

(
x0, y0 +

dy

2
, z0, t

)
· dx · dz −Dy

(
x0, y0 − dy

2
, z0, t

)
· dx · dz

+Dz

(
x0, y0, z0 +

dz

2
, t

)
· dx · dy −Dz

(
x0, y0, z0 − dz

2
, t

)
· dx · dy

=



Dx

(
x0 + dx

2
, y0, z0, t

)
−Dx

(
x0 − dx

2
, y0, z0, t

)

dx

+
Dy

(
x0, y0 + dy

2
, z0, t

)
−Dy

(
x0, y0 − dy

2
, z0, t

)

dy

+
Dz

(
x0, y0, z0 + dz

2
, t
)

−Dz

(
x0, y0, z0 − dz

2
, t
)

dz


 dx dy dz.
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Kapitel 1. Feldtheoretische Grundlagen

Führt man die Grenzübergänge dx → 0, dy → 0 und dz → 0 durch, so erhält
man

{

∂ dV

〈 ~D, d ~A〉 =

(
∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z

)
dx dy dz =

(
∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z

)
dV.

Schließlich erhält man die Divergenz in kartesischen Koordinaten:

div
(
~D
)

=
∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
. (1.31)

Ein beliebiges, nicht infinitesimales Volumen V kann man in unendlich vie-
le infinitesimale Volumenelemente zerlegen. Die Oberflächenintegrale entlang der
inneren Begrenzungen kürzen sich dabei gegenseitig weg, so dass die Summe der
Oberflächenintegrale der infinitesimalen Volumenelemente das Oberflächeninte-
gral des gesamten Volumens V ergibt. Die Summe der Volumenintegrale über die
infinitesimalen Volumenelemente ergibt das Volumenintegral über das gesamte
Volumen V . Damit folgt aus der Definition der Divergenz (1.30) der für beliebige
Vektorfelder ~D gültige Satz von Gauß

{

∂V

〈 ~D, d ~A〉 =
y

V

div
(
~D
)

dV. (1.32)

Anwenden des Satzes von Gauß auf (1.28) ergibt
{

∂V

〈 ~D, d ~A〉 =
y

V

div
(
~D
)

dV =
y

V

ρe dV.

Man erhält schließlich
div

(
~D
)

= ρe. (1.33)

Für die komplexen Amplituden erhält man mit (1.3) und (1.7) die im Folgenden
vorwiegend verwendete Darstellung

div
(
~D
)

= ρ
e
. (1.34)

Aufgabe 1.1 Es wird eine in der x-y-Ebene liegende Fläche A betrachtet, siehe
Abbildung 1.5. Zeigen Sie, dass mit dem nach außen gerichteten Normalenein-
heitsvektor ~u auf dem Rand ∂A der Fläche A für beliebige Vektorfelder ~D folgen-
der, als Gaußscher Satz in der Ebene bekannter Zusammenhang

x

A

(
∂Dx

∂x
+
∂Dy

∂y

)
dA =

z

∂A

〈 ~D, ~u〉 ds (1.35)

gilt! Betrachten Sie hierzu zunächst ein infinitesimales rechteckförmiges Flächen-
element dAz = dx dy.

12



1.1. Maxwellsche Gleichungen

x

y

z

A ds

~u

Abbildung 1.5.: Fläche A mit Normaleneinheitsvektor ~u auf dem Rand ∂A

1.1.5. Quellen des magnetischen Feldes, vierte Maxwellsche
Gleichung

1.1.5.1. Integrale Form

Der magnetische Fluss durch eine geschlossene Hülle ist gleich der eingeschlosse-
nen magnetischen Ladung:

v
∂V

〈 ~B, d ~A〉 =
y

V

ρm dV

︸ ︷︷ ︸
magnetische Ladung

. (1.36)

Die Flächennormale d ~A zeigt auch hier wieder nach außen. In realen Szenarien
gibt es keine magnetischen Ladungen und dann verschwindet die magnetische
Ladungsdichte ρm, das heißt die magnetische Flussdichte ~B ist quellenfrei.

Für die komplexen Amplituden erhält man mit (1.5) und (1.9) die Gleichung
{

∂V

〈 ~B, d ~A〉 =
y

V

ρ
m

dV. (1.37)

1.1.5.2. Differentielle Form

Dual zu Abschnitt 1.1.4.2 erhält man durch Anwenden des Satzes von Stokes
(1.15) auf (1.36)

div
(
~B
)

= ρm. (1.38)

Für die komplexen Amplituden erhält man mit (1.5) und (1.9) die im Folgenden
vorwiegend verwendete Darstellung

div
(
~B
)

= ρ
m
. (1.39)

13
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1.1.6. Ladungserhaltung

Anwenden der Divergenz auf das Durchflutungsgesetz (1.16) ergibt mit (1.44) und
(1.33) die Kontinuitätsgleichung

0 = div
(
rot
(
~H
))

= div


 ~J +

∂ ~D

∂t


 = div

(
~J
)

+
∂ρe

∂t
. (1.40)

Die Summe aus elektrischer Leitungsstromdichte ~J und elektrischer Verschie-
bungsstromdichte ∂ ~D/∂t ist quellenfrei und eine abfließende elektrische Strom-
dichte ~J äußert sich in einer abnehmenden elektrischen Ladungsdichte ρe. Für die
komplexen Amplituden erhält man mit (1.6), (1.7) und (1.11) die Kontinuitäts-
gleichung

0 = div
(
~J
)

+ jωρ
e
. (1.41)

Mit dem Satz von Gauß (1.32) folgt für den aus einem Volumen V herausflie-
ßenden elektrischen Leitungsstrom

{

∂V

〈 ~J, d ~A〉
︸ ︷︷ ︸

elektrischer Leitungsstrom

=
y

V

div
(
~J
)

dV = −
y

V

∂ρe

∂t
dV = − ∂

∂t

y

V

ρe dV

︸ ︷︷ ︸
elektrische Ladung

,

das heißt der aus dem Volumen V herausfließende elektrische Leitungsstrom ent-
spricht der Abnahme der elektrischen Ladung in dem Volumen V .

Völlig dual folgt aus dem Induktionsgesetz (1.23) mit (1.44) und (1.38) die
Kontinuitätsgleichung

0 = div
(
− rot

(
~E
))

= div


 ~M +

∂ ~B

∂t


 = div

(
~M
)

+
∂ρm

∂t
. (1.42)

Die Summe aus magnetischer Leitungsstromdichte ~M und magnetischer Verschie-
bungsstromdichte ∂ ~B/∂t ist quellenfrei und eine abfließende magnetische Strom-
dichte ~M äußert sich in einer abnehmenden magnetischen Ladungsdichte ρm. Für
die komplexen Amplituden erhält man mit (1.8), (1.9) und (1.11) die Kontinui-
tätsgleichung

0 = div
(
~M
)

+ jωρ
m
. (1.43)

Diese Ladungserhaltungssätze sind letztendlich aus den Maxwellschen Glei-
chungen ableitbar und stellen keine weiteren unabhängigen Naturgesetze dar. His-
torisch gesehen hat die Forderung nach der Ladungserhaltung das Einführen einer
elektrischen Verschiebungsstromdichte ∂ ~D/∂t in den Maxwellschen Gleichungen
motiviert.
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1.1. Maxwellsche Gleichungen

Aufgabe 1.2 Zeigen Sie unter Verwenden kartesischer Koordinaten, dass für je-
des Vektorfeld ~H

div
(
rot
(
~H
))

= 0 (1.44)

gilt!

1.1.7. Materialgleichungen

Die Materialgleichungen stellen einen Zusammenhang zwischen den Feldstärken
und den Flussdichten her. Weiterhin sind die elektrische Stromdichte und die elek-
trische Feldstärke miteinander verknüpft. Im Rahmen dieses Buchs werden nur
einfache Materialen betrachtet, die sich durch folgende Eigenschaften auszeichnen:

• Die Materialien sind linear.

• Die Materialien sind zeitinvariant.

• Die Materialien sind isotrop, das heißt die Eigenschaften sind richtungsun-
abhängig.

• Frequenzabhängigkeiten der Materialeigenschaften und die damit verbun-
dene zeitverzögerte Reaktion werden nicht explizit diskutiert.

Für das elektrische Feld gilt
~D = ε ~E. (1.45)

Mit (1.2) und (1.3) folgt
~D = ε ~E. (1.46)

Die Permittivität
ε = ε0εr (1.47)

ist das Produkt der absoluten Permittivität

ε0 = 8,8542 · 10−12 A s V−1 m−1 (1.48)

und der relativen Permittivität εr.
Für das magnetische Feld gilt

~B = µ ~H. (1.49)

Mit (1.4) und (1.5) folgt
~B = µ ~H. (1.50)
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Die Permeabilität
µ = µ0µr (1.51)

ist das Produkt der absoluten Permeabilität

µ0 = 4π · 10−7 V s A−1 m−1 (1.52)

und der relativen Permeabilität µr.
Mit der elektrischen Leitfähigkeit κ gilt weiterhin

~J = κ~E. (1.53)

Mit (1.2) und (1.6) folgt
~J = κ~E. (1.54)

Einsetzen der Materialgleichungen in das Durchflutungsgesetz (1.17) ergibt

rot
(
~H
)

= (κ+ jωε) ~E = jω
(
ε− j

κ

ω

)

︸ ︷︷ ︸
ε

~E. (1.55)

Mit der so definierten komplexen Permittivität ε lassen sich Verluste in leitfähigen
Materialien auf einfache Art und Weise berücksichtigen. Dual kann man eine
komplexe Permeabilität µ definieren. Für das Induktionsgesetz (1.24) folgt

− rot
(
~E
)

= ~M + jωµ ~H = jωµ ~H. (1.56)

1.2. Bedingungen an Grenzflächen

1.2.1. Elektrisches Feld an einer Grenzfläche

Es wird das elektrische Feld an der lokal näherungsweise ebenen Grenzfläche
zweier Materialien unterschiedlicher Permittivitäten betrachtet. Der Normalen-
vektor auf der Grenzfläche und die Einfallsrichtung spannen die Einfallsebene
auf. Das Koordinatensystem wird vereinfachend so gewählt, dass sich die Grenz-
fläche bei z = 0 befindet und die Einfallsebene der x-z-Ebene entspricht, siehe
Abbildung 1.6. Der Normaleneinheitsvektor auf der Grenzfläche in Richtung des
ersten Mediums ist dann der Einheitsvektor ~uz in z-Richtung. Bei Anwenden
der Maxwellschen Gleichungen auf das elektrische Feld an der Grenzfläche sind
die magnetische Flächenstromdichte ~MF in der Grenzfläche, die elektrische Flä-
chenladungsdichte ρ

eF
in der Grenzfläche und die sprunghaften Änderungen der

elektrischen Feldstärke ~E und der elektrischen Flussdichte ~D an der Grenzfläche
relevant. Die Ableitung der Sprungfunktion ist der Dirac-Impuls δ(·).

16



1.2. Bedingungen an Grenzflächen

x

z

ε1

ε2

~D1 = ε1
~E1

~D2 = ε2
~E2

~MF ρ
eF

Abbildung 1.6.: Elektrisches Feld an einer Grenzfläche

Für die linke Seite der Gleichung (1.34) erhält man mit (1.31)

div
(
~D
)

= (D1z −D2z) δ(z) = 〈 ~D1 − ~D2, ~uz〉 δ(z) ,

da man alle Ableitungen außer denen in z-Richtung vernachlässigen kann. Für
die rechte Seite der Gleichung (1.34) erhält man

ρ
e

= ρ
eF
δ(z) .

Es folgt
〈 ~D1 − ~D2, ~uz〉 = ρ

eF
. (1.57)

Die Differenz der Normalkomponenten der elektrischen Flussdichten an einer
Grenzfläche entspricht der elektrischen Flächenladungsdichte ρ

eF
in der Grenz-

fläche.
Für die linke Seite des Induktionsgesetzes (1.24) erhält man mit (1.14)

− rot
(
~E
)

=
(
E1y −E2y

)
δ(z) ~ux − (E1x −E2x) δ(z) ~uy

=
((
~E1 − ~E2

)
× ~uz

)
δ(z) ,

da man alle Ableitungen außer denen in z-Richtung vernachlässigen kann. ×
bezeichnet hierbei das Vektorprodukt zweier Vektoren.3 Für die rechte Seite des
Induktionsgesetzes (1.24) erhält man

~M = ~MF δ(z) ,

3 Mit den Vektoren ~a =



a1

a2

a3


 und ~b =



b1

b2

b3


 gilt ~a×~b = (a2b3 − a3b2) ~ux +(a3b1 − a1b3) ~uy +

(a1b2 − a2b1) ~uz.
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da man die auch an der Grenzfläche endlich große magnetische Flussdichte ~B
vernachlässigen kann. Es folgt

(
~E1 − ~E2

)
× ~uz = ~MF. (1.58)

Die Differenz der Tangentialkomponenten der elektrischen Feldstärken an einer
Grenzfläche ist proportional zur magnetischen Flächenstromdichte ~MF in der
Grenzfläche.

1.2.2. Magnetisches Feld an einer Grenzfläche

Es wird das magnetische Feld an der lokal näherungsweise ebenen Grenzfläche
zweier Materialien unterschiedlicher Permeabilitäten betrachtet. Das Koordina-
tensystem wird vereinfachend wieder so gewählt, dass sich die Grenzfläche bei
z = 0 befindet und die Einfallsebene der x-z-Ebene entspricht, siehe Abbildung
1.7. Bei Anwenden der Maxwellschen Gleichungen auf das magnetische Feld an
der Grenzfläche sind die elektrische Flächenstromdichte ~JF in der Grenzfläche, die
magnetische Flächenladungsdichte ρ

mF
in der Grenzfläche und die sprunghaften

Änderungen der magnetischen Feldstärke ~H und der magnetischen Flussdichte ~B
an der Grenzfläche relevant.

x

z

µ1

µ2

~B1 = µ1
~H1

~B2 = µ2
~H2

~JF ρ
mF

Abbildung 1.7.: Magnetisches Feld an einer Grenzfläche

Für die linke Seite der Gleichung (1.39) erhält man mit (1.31)

div
(
~B
)

= (B1z −B2z) δ(z) = 〈 ~B1 − ~B2, ~uz〉 δ(z) ,

da man alle Ableitungen außer denen in z-Richtung vernachlässigen kann. Für
die rechte Seite der Gleichung (1.39) erhält man

ρ
m

= ρ
mF
δ(z) .
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Es folgt
〈 ~B1 − ~B2, ~uz〉 = ρ

mF
. (1.59)

Die Differenz der Normalkomponenten der magnetischen Flussdichten an einer
Grenzfläche entspricht der magnetischen Flächenladungsdichte ρ

mF
in der Grenz-

fläche.
Für die linke Seite des Durchflutungsgesetzes (1.17) erhält man mit (1.14)

rot
(
~H
)

= −
(
H1y −H2y

)
δ(z) ~ux + (H1x −H2x) δ(z) ~uy

= −
((
~H1 − ~H2

)
× ~uz

)
δ(z) ,

da man alle Ableitungen außer denen in z-Richtung vernachlässigen kann. Für
die rechte Seite des Durchflutungsgesetzes (1.17) erhält man

~J = ~JF δ(z) ,

da man die auch an der Grenzfläche endlich große elektrische Flussdichte ~D ver-
nachlässigen kann. Es folgt

−
(
~H1 − ~H2

)
× ~uz = ~JF. (1.60)

Die negative Differenz der Tangentialkomponenten der magnetischen Feldstärken
an einer Grenzfläche ist proportional zur elektrischen Flächenstromdichte ~JF in
der Grenzfläche.

Aufgabe 1.3 Die betrachteten elektromagnetischen Felder seien im jeweiligen
Medium Lösungen der Maxwellschen Gleichungen. Zeigen Sie, dass dann die
Grenzflächenbedingungen (1.57) und (1.59) der Normalkomponenten der Fluss-
dichten erfüllt sind, falls die Grenzflächenbedingungen (1.58) und (1.60) der Tan-
gentialkomponenten der Feldstärken erfüllt sind!

1.2.3. Grenzfläche zweier Dielektrika

An der Grenzfläche zweier Dielektrika sind die Flächenladungsdichten und die
Flächenstromdichten Null. Wenn man das Koordinatensystem vereinfachend wie-
der so wählt, dass die Grenzfläche der x-y-Ebene entspricht, folgen aus (1.57),
(1.58), (1.59) und (1.60) an der Grenzfläche z = 0:

〈 ~D1 − ~D2, ~uz〉 =0, (1.61)
(
~E1 − ~E2

)
× ~uz =~0, (1.62)

〈 ~B1 − ~B2, ~uz〉 =0. (1.63)
(
~H1 − ~H2

)
× ~uz =~0, (1.64)
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Die Normalkomponenten der Flussdichten und die Tangentialkomponenten der
Feldstärken sind an der Grenzfläche zweier Dielektrika stetig.

1.2.4. Oberfläche eines idealen elektrischen Leiters

In einem idealen elektrischen Leiter muss das elektrische Feld verschwinden. We-
gen des Induktionsgesetzes (1.24) und der verschwindenden magnetischen Strom-
dichte ~M kann dann in einem idealen elektrischen Leiter auch kein zeitverän-
derliches magnetisches Feld existieren. Ideale elektrische Leiter sind feldfrei. An
der Oberfläche eines idealen elektrischen Leiters können eine elektrische Flächen-
stromdichte ~JF und eine elektrische Flächenladungsdichte ρ

eF
vorhanden sein. Die

magnetische Flächenstromdichte ~MF und die magnetische Flächenladungsdichte
ρ

mF
sind jedoch an der Oberfläche eines idealen elektrischen Leiters stets Null.

Folglich müssen die Tangentialkomponenten der elektrischen Feldstärke ~E und
die Normalkomponente der magnetischen Flussdichte ~B an der Oberfläche eines
idealen elektrischen Leiters Null sein, siehe (1.58) und (1.59). Wenn das Koordi-
natensystem so gewählt wird, dass der Bereich z < 0 mit dem idealen elektrischen
Leiter gefüllt ist, müssen an der Oberfläche z = 0

~E × ~uz = ~0 (1.65)

und
〈 ~B, ~uz〉 = 0 (1.66)

gelten.
Mit (1.57) ergibt sich an der Oberfläche z = 0 des idealen elektrischen Leiters

die elektrische Flächenladungsdichte

ρ
eF

= 〈 ~D, ~uz〉. (1.67)

Der negative magnetische Feldstärkevektor ~H , der Normaleneinheitsvektor ~uz und
die elektrische Flächenstromdichte ~JF an der Oberfläche z = 0 des idealen elek-
trischen Leiters bilden wegen (1.60) ein Rechtssystem:

~JF = − ~H × ~uz. (1.68)

1.2.5. Oberfläche eines idealen magnetischen Leiters

Aus Dualitätsgründen wird auch ein idealer magnetischer Leiter eingeführt. In ei-
nem idealen magnetischen Leiter muss das magnetische Feld verschwinden. Wegen
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des Durchflutungsgesetzes (1.17) und der verschwindenden elektrischen Strom-
dichte ~J kann dann in einem idealen magnetischen Leiter auch kein zeitverän-
derliches elektrisches Feld existieren. Ideale magnetische Leiter sind feldfrei. An
der Oberfläche eines idealen magnetischen Leiters können eine magnetische Flä-
chenstromdichte ~MF und eine magnetische Flächenladungsdichte ρ

mF
vorhanden

sein. Die elektrische Flächenstromdichte ~JF und die elektrische Flächenladungs-
dichte ρ

eF
sind jedoch an der Oberfläche eines idealen magnetischen Leiters stets

Null. Folglich müssen die Tangentialkomponenten der magnetischen Feldstärke
~H und die Normalkomponente der elektrischen Flussdichte ~D an der Oberfläche
eines idealen magnetischen Leiters Null sein, siehe (1.60) und (1.57). Wenn das
Koordinatensystem so gewählt wird, dass der Bereich z < 0 mit dem idealen
magnetischen Leiter gefüllt ist, müssen an der Oberfläche z = 0

~H × ~uz = ~0 (1.69)

und
〈 ~D, ~uz〉 = 0 (1.70)

gelten.
Mit (1.59) ergibt sich an der Oberfläche z = 0 des idealen magnetischen Leiters

die magnetische Flächenladungsdichte

ρ
mF

= 〈 ~B, ~uz〉. (1.71)

Der elektrische Feldstärkevektor ~E, der Normaleneinheitsvektor ~uz und die magne-
tische Flächenstromdichte ~MF an der Oberfläche z = 0 des idealen magnetischen
Leiters bilden wegen (1.58) ein Rechtssystem:

~MF = ~E × ~uz. (1.72)

1.2.6. Dualität von elektrischem und magnetischem Feld

Aufgrund der Dualität der Maxwellschen Gleichungen erhält man aus einem die
Maxwellschen Gleichungen erfüllendem elektromagnetischen Feld bei Durchfüh-
ren der Ersetzungen in Tabelle 1.1 wieder ein mögliches elektromagnetisches Feld.
Speziell die Maxwellschen Gleichungen und die Materialgleichungen gehen durch
die Ersetzungen in sich selbst über.

21



Kapitel 1. Feldtheoretische Grundlagen

Tabelle 1.1.: Dualität von elektrischem und magnetischem Feld

ersetze ~H durch −~E

ersetze ~E durch ~H

ersetze ~B durch −~D

ersetze ~D durch ~B

ersetze ~M durch − ~J

ersetze ~J durch ~M
ersetze ρ

m
durch −ρ

e

ersetze ρ
e

durch ρ
m

ersetze ε durch µ
ersetze µ durch ε

1.3. Poynting-Vektor

Charakteristisch und für viele technische Anwendungen essentiell ist die Fähig-
keit elektromagnetischer Felder Energie zu transportieren. Das Ziel der folgenden
Betrachtungen ist das Gewinnen von Aussagen über den Energiefluss in elektro-
magnetischen Feldern.

Die folgenden Betrachtungen gehen von

• der Verlustleistungsdichte

pV = 〈 ~E, ~J〉 , (1.73)

• der elektrischen Energiedichte

we = 1
2
〈 ~E, ~D〉 (1.74)

und

• der magnetischen Energiedichte

wm = 1
2
〈 ~H, ~B〉 (1.75)

aus. Die aus einem Volumen V austretende Strahlungsleistung P entspricht der
Abnahme der im Volumen V gespeicherten elektrischen und magnetischen Energie
weniger der Verlustleistung im Volumen V . Mit (1.45), (1.49) und (1.53) erhält
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1.3. Poynting-Vektor

man

P = − ∂

∂t

y

V

(we + wm) dV −
y

V

pV dV

= − ∂

∂t

y

V

(
1

2
ε〈 ~E, ~E〉 +

1

2
µ〈 ~H, ~H〉

)
dV −

y

V

κ〈 ~E, ~E〉 dV

= −
y

V


ε〈 ~E, ∂

~E

∂t
〉 + µ〈 ~H, ∂

~H

∂t
〉

 dV −

y

V

κ〈 ~E, ~E〉 dV.

(1.76)

Multiplizieren der elektrischen Feldstärke ~E mit dem Durchflutungsgesetz (1.16)
ergibt mit (1.45) und (1.53)

〈 ~E, rot
(
~H
)
〉 = 〈 ~E, ~J〉 + 〈 ~E, ∂

~D

∂t
〉 = κ〈 ~E, ~E〉 + ε〈 ~E, ∂

~E

∂t
〉.

Multiplizieren der magnetischen Feldstärke ~H mit dem Induktionsgesetz (1.23)
ergibt mit (1.49)

−〈 ~H, rot
(
~E
)
〉 = 〈 ~H, ∂

~B

∂t
〉 = µ〈 ~H, ∂

~H

∂t
〉.

Mit (1.81) folgt für die Strahlungsleistung

P = −
y

V

(
〈 ~E, rot

(
~H
)
〉 − 〈 ~H, rot

(
~E
)
〉
)

dV =
y

V

div
(
~E × ~H

)
dV.

Man definiert den Poynting-Vektor

~S = ~E × ~H. (1.77)

Mit dem Satz von Gauß (1.32) folgt die Strahlungsleistung

P =
y

V

div
(
~S
)

dV =
{

∂V

〈~S, d ~A〉. (1.78)

Der Poynting-Vektor ~S beschreibt die Strahlungsleistungsdichte.
In der Hochfrequenztechnik interessieren wir uns insbesondere für den zeitlichen

Mittelwert des Poynting-Vektors ~S bei harmonischer Zeitabhängigkeit der Feld-
stärken. Bei harmonisch zeitabhängigen Feldstärken berechnet sich der Poynting-
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Kapitel 1. Feldtheoretische Grundlagen

Vektor mit (1.2) und (1.4) zu4

~S = Re
(
~E ejωt

)
× Re

(
~H ejωt

)

=
1

2

(
~E ejωt + ~E

∗
e−jωt

)
× 1

2

(
~H ejωt + ~H

∗
e−jωt

)

=
1

4

(
~E × ~H

)
ej2ωt +

1

4

(
~E × ~H

∗)
+

1

4

(
~E

∗ × ~H
)

+
1

4

(
~E

∗ × ~H
∗)

e−j2ωt .

Der Mittelwert

1

4

(
~E × ~H

∗)
+

1

4

(
~E

∗ × ~H
)

= Re
(1

2
~E × ~H

∗
)

entspricht dem Realteil des komplexen Poynting-Vektors

~S =
1

2
~E × ~H

∗
. (1.79)

Die im Mittel aus einem Volumen V austretende Strahlungsleistung ist

P =
{

∂V

〈Re
(
~S
)
, d ~A〉. (1.80)

Aufgabe 1.4 Zeigen Sie unter Verwenden kartesischer Koordinaten, dass für be-
liebige Vektorfelder ~E und ~H

div
(
~E × ~H

)
= 〈 ~H, rot

(
~E
)
〉 − 〈 ~E, rot

(
~H
)
〉 (1.81)

gilt!

4 Der Realteil einer komplexen Größe x berechnet sich zu Re(x) = 1
2 (x+ x∗).
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Kapitel 2.

Elektromagnetische Wellen

2.1. Helmholtz-Gleichungen

Im Folgenden wird das elektromagnetische Feld in einem homogenem Dielek-
trikum betrachtet. Es werden vereinfachend kartesische Koordinaten verwendet.
Wendet man auf das Durchflutungsgesetz (1.17) nochmals die Rotation an, so
erhält man mit (1.46) bei verschwindender elektrischer Stromdichte ~J

rot
(
rot
(
~H
))

= jωε rot
(
~E
)
.

Mit dem Gradienten

grad
(
φ
)

=
∂φ

∂x
~ux +

∂φ

∂y
~uy +

∂φ

∂z
~uz (2.1)

eines Skalarfeldes φ in kartesischen Koordinaten, dem Laplace-Operator

∆ ~H = grad
(
div

(
~H
))

− rot
(
rot
(
~H
))

(2.2)

und der Quellenfreiheit des magnetischen Feldes ~H im ladungsfreien Raum ρm =
0, siehe (1.39) und (1.50), erhält man

−∆ ~H = jωε rot
(
~E
)
.

Einsetzen des Induktionsgesetzes (1.24) ergibt mit (1.50) und

β0 = ω
√
εµ (2.3)

bei verschwindender magnetischer Stromdichte ~M die Helmholtz-Gleichung

∆ ~H + β2
0
~H = ~0 (2.4)

für die magnetische Feldstärke ~H . Dual erhält man ausgehend vom Induktions-
gesetz (1.24) durch Einsetzen des Durchflutungsgesetzes (1.17) die Helmholtz-
Gleichung

∆ ~E + β2
0
~E = ~0 (2.5)
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Kapitel 2. Elektromagnetische Wellen

für die elektrische Feldstärke ~E. Ziel wird es sein, spezielle Randbedingungen
erfüllende, als elektromagnetische Wellen bezeichnete, Lösungen der Helmholtz-
Gleichungen zu finden. Zunächst werden jedoch charakteristische Eigenschaften
möglicher Lösungen der Helmholtz-Gleichungen studiert.

Aufgabe 2.1 Aus dem Durchflutungsgesetz (1.17) erhält man mit (1.46) bei ver-
schwindender elektrischer Stromdichte ~J die elektrische Feldstärke

~E = −j
1

ωε
rot
(
~H
)
.

Zeigen Sie, dass die so berechnete elektrische Feldstärke ~E die Helmholtz-Gleichung
(2.5) erfüllt, falls die magnetische Feldstärke ~H die Helmholtz-Gleichung (2.4) er-
füllt!

Aufgabe 2.2 Zeigen Sie ausgehend von der Definition des Laplace-Operators
(2.2), dass für den Laplace-Operator in kartesischen Koordinaten

∆ ~H =
∂2 ~H

∂x2
+
∂2 ~H

∂y2
+
∂2 ~H

∂z2
(2.6)

gilt!

2.2. Zylindrische Wellenleiter

2.2.1. Helmholtz-Gleichungen für zylindrische Wellenleiter

Zylindrische Wellenleiter, wie der in Abbildung 2.1 gezeigte, zeichnen sich durch
ihren konstanten Querschnitt aus. Das Koordinatensystem wird so gewählt, dass
die Längsachse des zylindrischen Wellenleiters der z-Achse entspricht. Das Dielek-
trikum sei homogen und von idealen elektrischen Leitern berandet.

Es werden Lösungen der Helmholtz-Gleichungen mit einer harmonischen z-
Abhängigkeit gesucht. Für eine sich in positive (negative) z-Richtung ausbreitende
elektromagnetische Welle wählt man daher den Ansatz

~H(x, y, z, t) = Re
(
~H(x, y, z) ejωt

)
= Re

(
~H0(x, y) e∓jβz ejωt

)
(2.7)

für die magnetische Feldstärke ~H . Das obere (untere) Vorzeichen gilt hier und
im Folgenden stets bei Ausbreitung in positiver (negativer) z-Richtung. β ist die
Phasenkonstante. Dual verwendet man den Ansatz

~E(x, y, z, t) = Re
(
~E(x, y, z) ejωt

)
= Re

(
~E0(x, y) e∓jβz ejωt

)
(2.8)
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2.2. Zylindrische Wellenleiter

z

Abbildung 2.1.: Kurzes Stück eines zylindrischen Wellenleiters bestehend aus zwei
Leitern, deren Querschnitt grau dargestellt ist

für die elektrische Feldstärke ~E.
Eine genauere Betrachtung des Anwendens des Laplace-Operators (2.6) auf die

magnetische Feldstärke ~H einer sich auf einem zylindrischen Wellenleiter ausbrei-
tenden elektromagnetischen Welle ergibt

∆ ~H = ∆
(
~H0 e∓jβz

)
=


∂

2 ~H0

∂x2
+
∂2 ~H0

∂y2
− β2 ~H0


 e∓jβz .

Man definiert den zweidimensionalen Laplace-Operator

∆xy
~H0 =

∂2 ~H0

∂x2
+
∂2 ~H0

∂y2
. (2.9)

Dies in die Helmholtz-Gleichung (2.4) eingesetzt ergibt nach Wegkürzen von e∓jβz

die zweidimensionale Helmholtz-Gleichung

∆xy
~H0 +

(
β2

0 − β2
)

︸ ︷︷ ︸
β2

c

~H0 = ~0 (2.10)

für die magnetische Feldstärke ~H0 bei z = 0. Dual erhält man aus (2.5) die
zweidimensionale Helmholtz-Gleichung

∆xy
~E0 +

(
β2

0 − β2
)

︸ ︷︷ ︸
β2

c

~E0 = ~0 (2.11)
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Kapitel 2. Elektromagnetische Wellen

für die elektrische Feldstärke ~E0 bei z = 0.
Man findet zunächst elektromagnetische Felder ~H0 und ~E0 in der Querschnitts-

ebene z = 0 des zylindrischen Wellenleiters und zugehörige kritische Phasenkon-
stanten βc mit

β2
c = β2

0 − β2 (2.12)

als frequenzunabhängige Lösungen der zweidimensionalen Helmholtz-Gleichungen.
Die kritische Phasenkonstante βc hängt nur von der Geometrie des zylindrischen
Wellenleiters, nicht aber von der Kreisfrequenz ω ab. Mathematisch gesehen han-
delt es sich bei den zweidimensionalen Helmholtz-Gleichungen mit ihren durch die
Geometrie des zylindrischen Wellenleiters gegebenen Randbedingungen um Ei-
genwertprobleme [Bla07]. Es gibt unendlich viele diskrete, aus Eigenwerten −β2

c

und zugehörigen Eigenfunktionen ~H0 oder ~E0 bestehende Lösungen. Diese die
Feldstruktur beschreibenden Lösungen des Eigenwertproblems werden als Moden
bezeichnet. Zu jedem Mode gibt es unendlich viele elektromagnetische Wellen, die
sich in Amplitude, Phase und Ausbreitungsrichtung unterscheiden.

Falls sich die Längsachse des zylindrischen Wellenleiters in eine beliebige, durch
den Einheitsvektor ~u beschriebene, Raumrichtung erstreckt, erhält man für die
sich in diese Raumrichtung ausbreitende elektromagnetische Welle mit dem Pha-
senvektor

~β = β~u = βx~ux + βy~uy + βz~uz (2.13)

und dem Ortsvektor
~r = x~ux + y~uy + z~uz

des Beobachtungsortes die Ansätze

~H = Re
(
~H0 e−j〈~β,~r〉 ejωt

)
= Re

(
~H0 e−jβxx e−jβyy e−jβzz ejωt

)
(2.14)

und
~E = Re

(
~E0 e−j〈~β,~r〉 ejωt

)
= Re

(
~E0 e−jβxx e−jβyy e−jβzz ejωt

)
. (2.15)

~H0 und ~E0 dürfen hier nur von den zum Phasenvektor ~β senkrechten Transver-
salkoordinaten abhängen.

2.2.2. Transversalkomponenten und Longitudinalkomponenten

Für eine sich in positive (negative) z-Richtung ausbreitende elektromagnetische
Welle kann man die Transversalkomponenten Hx, Hy, Ex und Ey der Feldstärken
aus den Longitudinalkomponenten Hz und Ez der Feldstärken berechnen.

Für sich in positive (negative) z-Richtung ausbreitende elektromagnetische Wel-
len gemäß (2.7) lauten die ersten beiden Komponentengleichungen (1.18) und
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2.2. Zylindrische Wellenleiter

(1.19) des Durchflutungsgesetzes im Dielektrikum Jx = Jy = 0 unter Verwenden
von (1.46):

∂Hz

∂y
± jβHy =jωεEx, (2.16)

∓jβHx − ∂Hz

∂x
=jωεEy. (2.17)

Dual erhält durch Einsetzen von (2.8) in die ersten beiden Komponentenglei-
chungen (1.25) und (1.26) des Induktionsgesetzes im Dielektrikum Mx = My = 0
unter Verwenden von (1.50):

−∂Ez

∂y
∓ jβEy =jωµHx, (2.18)

±jβEx +
∂Ez

∂x
=jωµHy. (2.19)

Auflösen nach den Transversalkomponenten ergibt mit (2.3) und (2.12):

Exβ
2
c = ∓ jβ

∂Ez

∂x
− jωµ

∂Hz

∂y
, (2.20)

Eyβ
2
c = ∓ jβ

∂Ez

∂y
+ jωµ

∂Hz

∂x
, (2.21)

Hxβ
2
c = ∓ jβ

∂Hz

∂x
+ jωε

∂Ez

∂y
, (2.22)

Hyβ
2
c = ∓ jβ

∂Hz

∂y
− jωε

∂Ez

∂x
. (2.23)

2.2.3. Transversalelektromagnetische Wellen

Transversalelektromagnetische Wellen (TEM-Wellen), die auch als Lecher-Wellen
(L-Wellen) bezeichnet werden, sind elektromagnetische Wellen, deren Feldstärken
keine Longitudinalkomponenten Hz und Ez haben. Für die kritische Phasenkon-
stante transversalelektromagnetischer Wellen muss βc = 0 gelten, siehe (2.20),
(2.21), (2.22) und (2.23), wenn das elektromagnetische Feld nicht vollständig ver-
schwinden soll. Aus (2.12) und (2.3) folgt die Phasenkonstante

β = β0 = ω
√
εµ. (2.24)

Weiterhin folgt aus (2.16) und (2.17) oder (2.18) und (2.19) für die Transver-
salkomponenten einer sich in positive (negative) z-Richtung ausbreitenden trans-
versalelektromagnetischen Welle

Ex

Hy

= −Ey

Hx

= ± β

ωε
= ±ωµ

β
.
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Kapitel 2. Elektromagnetische Wellen

Man erhält den Feldwellenwiderstand

ZF =
β

ωε
=
ωµ

β
=
√
µ

ε
(2.25)

transversalelektromagnetischer Wellen. Der Feldwellenwiderstand des Vakuums
ergibt sich mit (1.48) und (1.52) zu

ZF0 =

√
µ0

ε0
= 120πΩ = 377 Ω. (2.26)

Der elektrische Feldstärkevektor ~E und der magnetische Feldstärkevektor ~H einer
transversalelektromagnetischen Welle sind in Phase und stehen zu jedem Zeit-
punkt senkrecht aufeinander:

~E = ± ZF
~H × ~uz, (2.27)

~H = ∓
~E × ~uz

ZF
. (2.28)

Mit (1.79) folgt der komplexe Poynting-Vektor

~S =
1

2

(
ExH

∗
y − EyH

∗
x

)
~uz

= ± 1

2ZF

(
|Ex|2 +

∣∣∣Ey

∣∣∣
2
)
~uz = ± 1

2ZF

∥∥∥ ~E
∥∥∥

2
~uz

= ± 1

2
ZF

(∣∣∣Hy

∣∣∣
2

+ |Hx|2
)
~uz = ±1

2
ZF

∥∥∥ ~H
∥∥∥

2
~uz

(2.29)

einer sich in positive (negative) z-Richtung ausbreitenden transversalelektroma-
gnetischen Welle. ‖·‖ bezeichnet die Norm des Vektors.1 Der komplexe Poynting-
Vektor ~S einer transversalelektromagnetischen Welle ist rein reell, das heißt die
transversalelektromagnetische Welle transportiert nur Wirkleistung.

Aufgabe 2.3 Zeigen Sie, dass bei transversalelektromagnetischen Wellen die elek-
trische Energiedichte we und die magnetische Energiedichte wm zu jedem Zeit-
punkt gleich sind! Die Energiedichten selbst können dabei sehr wohl zeitabhängig
oder ortsabhängig sein. Wie groß ist die Energiegeschwindigkeit

ve =

∥∥∥~S
∥∥∥

we + wm
(2.30)

transversalelektromagnetischer Wellen?
1 Die Norm des Vektors ~a ist ‖~a‖ =

√
〈~a,~a〉.
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2.2.4. Transversalelektrische Wellen

Transversalelektrische Wellen (TE-Wellen), die auch als H-Wellen bezeichnet wer-
den, sind elektromagnetische Wellen, deren elektrische Feldstärke ~E keine Longi-
tudinalkomponente Ez hat. Die magnetische Feldstärke ~H hat jedoch eine Longi-
tudinalkomponente Hz. Für die kritische Phasenkonstante transversalelektrischer
Wellen muss βc 6= 0 gelten, siehe (2.20), (2.21), (2.22) und (2.23), wenn die Lon-
gitudinalkomponente Hz der magnetischen Feldstärke ~H nicht über die gesamte
Querschnittsfläche konstant sein soll, was im Widerspruch zu den Randbedingun-
gen stünde.

Im Folgenden wird gezeigt, dass β2
c reell und nichtnegativ ist.2 Sei A die mit

dem Dielektrikum gefüllte Querschnittsebene des zylindrischen Wellenleiters. Der
Rand ∂A der Querschnittsebene A entspricht den Leiteroberflächen. ~u sei der Nor-
maleneinheitsvektor auf der Leiteroberfläche. Mit der zweidimensionalen Helmholtz-
Gleichung (2.10), (2.9) und dem Gaußschen Satz in der Ebene (1.35) erhält man
unter Berücksichtigen der Produktregel der Ableitung

β2
c

x

A

|H0z|2 dA =
x

A

H∗
0zβ

2
cH0z dA = −

x

A

H∗
0z∆xyH0z dA

= −
x

A

H∗
0z

(
∂2H0z

∂x2
+
∂2H0z

∂x2

)
dA

= −
x

A

(
∂

∂x

(
H∗

0z

∂H0z

∂x

)
+

∂

∂y

(
H∗

0z

∂H0z

∂y

))
dA

+
x

A

(
∂H∗

0z

∂x

∂H0z

∂x
+
∂H∗

0z

∂y

∂H0z

∂y

)
dA

= −
z

∂A

〈H∗
0z

∂H0z

∂x
+H∗

0z

∂H0z

∂y
, ~u〉 ds

+
x

A



∣∣∣∣∣
∂H0z

∂x

∣∣∣∣∣

2

+

∣∣∣∣∣
∂H0z

∂y

∣∣∣∣∣

2

 dA.

Die Ableitung der tangentialen z-Komponente H0z der magnetischen Feldstärke
~H an der Oberfläche des idealen elektrischen Leiters nach der Normalenrichtung
ergibt Null, siehe (2.20), (2.21) und (1.65). Damit folgt

z

∂A

〈H∗
0z

∂H0z

∂x
+H∗

0z

∂H0z

∂y
, ~u〉 ds =

z

∂A

H∗
0z 〈∂H0z

∂x
+
∂H0z

∂y
, ~u〉

︸ ︷︷ ︸
= 0 auf dem Rand ∂A

ds = 0.

2 Die Eigenwerte des Laplace-Operators sind reell und nichtnegativ, da der Laplace-Operator
auf der Menge der die Randbedingungen erfüllenden Funktion selbstadjungiert ist.
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Man erhält schließlich

β2
c =

s
A

(∣∣∣∂H0z

∂x

∣∣∣
2

+
∣∣∣∂H0z

∂y

∣∣∣
2
)

dA
s
A

|H0z|2 dA
︸ ︷︷ ︸

reell

≥ 0.

Zum Berechnen des Feldwellenwiderstands ZFTE bildet man das Verhältnis aus
(2.20) und (2.23) oder aus (2.21) und (2.22) und setzt Ez = 0 ein. Mit (2.12),
(2.3) und (2.25) erhält man den Feldwellenwiderstand

ZFTE = ±Ex

Hy

= ∓Ey

Hx

=
ωµ

β
=

ωµ

β0

√
1 −

(
βc

β0

)2
=

ZF√
1 −

(
βc

β0

)2
(2.31)

transversalelektrischer Wellen, siehe auch (2.42). Zusammenfassend schreibt man

~E = ±ZFTE
~H × ~uz. (2.32)

2.2.5. Transversalmagnetische Wellen

Transversalmagnetische Wellen (TM-Wellen), die auch als E-Wellen bezeichnet
werden, sind elektromagnetische Wellen, deren magnetische Feldstärke ~H keine
Longitudinalkomponente Hz hat. Die elektrische Feldstärke ~E hat jedoch eine
Longitudinalkomponente Ez. Für die kritische Phasenkonstante transversalma-
gnetischer Wellen muss βc 6= 0 gelten, siehe (2.20), (2.21), (2.22) und (2.23),
wenn die Longitudinalkomponente Ez der elektrischen Feldstärke ~E nicht über
die gesamte Querschnittsfläche konstant sein soll, was im Widerspruch zu den
Randbedingungen stünde.

Die tangentiale z-Komponente E0z der elektrischen Feldstärke ~E an der Ober-
fläche des idealen elektrischen Leiters ist Null, vergleiche (1.65). Damit folgt

z

∂A

〈E∗
0z

∂E0z

∂x
+ E∗

0z

∂E0z

∂y
, ~u〉 ds =

z

∂A

E∗
0z︸︷︷︸

= 0 auf dem Rand ∂A

〈∂E0z

∂x
+
∂E0z

∂y
, ~u〉 ds = 0.

Mit einer im Übrigen formal zur Rechnung in Abschnitt 2.2.4 gleichartigen Rech-
nung ausgehend von der zweidimensionalen Helmholtz-Gleichung (2.11) kann man
zeigen, dass β2

c auch hier reell und nichtnegativ ist.
Zum Berechnen des Feldwellenwiderstands ZFTM bildet man das Verhältnis aus

(2.20) und (2.23) oder aus (2.21) und (2.22) und setzt Hz = 0 ein. Mit (2.12),
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(2.3) und (2.25) erhält man den Feldwellenwiderstand

ZFTM = ±Ex

Hy

= ∓Ey

Hx

=
β

ωε
=
β0

√
1 −

(
βc

β0

)2

ωε
= ZF

√√√√1 −
(
βc

β0

)2

(2.33)

transversalmagnetischer Wellen, siehe auch (2.42). Zusammenfassend schreibt man

~H = ∓
~E × ~uz

ZFTM
. (2.34)

2.2.6. Phasenkonstante und Wellenlänge

Aus (2.12) ergibt sich mit (2.3) die Phasenkonstante

β =
√
β2

0 − β2
c =

√
ω2εµ− β2

c . (2.35)

Die elektromagnetische Welle ist nur dann ausbreitungsfähig, das heißt die Pha-
senkonstante β ist nur dann reell, wenn die Kreisfrequenz ω größer als die kritische
Kreisfrequenz

ωc = 2πfc =
βc√
εµ

(2.36)

ist. Anderenfalls entstünde ein aperiodisch abklingendes elektromagnetisches Feld.
Für diesen Fall und verallgemeinernd für den Fall verlustbehafteter Dielektrika
mit komplexen Permittivitäten ǫ und komplexen Permeabilitäten µ ergibt sich
eine komplexe Wellenzahl

k = β − jα =
√
ω2ǫµ− β2

c . (2.37)

Der negative Imaginärteil α der Wellenzahl k wird als Dämpfungskonstante be-
zeichnet. Im Folgenden werden jedoch nur die für technische Anwendungen beson-
ders interessanten ausbreitungsfähigen und ungedämpften elektromagnetischen
Wellen mit rein reeller Wellenzahl k = β weiter betrachtet.

Aus der Phasenkonstante β berechnet man die Wellenlänge

λ =
2π

β
=

2π√
β2

0 − β2
c

, (2.38)

siehe (2.7), (2.8) und Abbildung 2.2. Es gibt elektromagnetische Wellen, deren
kritische Phasenkonstante βc Null ist, siehe Abschnitt 2.2.3. Die Wellenlänge λ
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einer derartigen elektromagnetischen Welle entspricht der sogenannten Freiraum-
wellenlänge

λ0 =
2π

β0
. (2.39)

Hiermit folgt für die Wellenlänge

λ =
λ0√

1 −
(
βc

β0

)2
. (2.40)

z

Hxyz(x0, y0, z, t0)

λ

Abbildung 2.2.: Elektromagnetische Welle mit der Wellenlänge λ

Man definiert weiterhin die kritische Wellenlänge

λc =
2π

βc
. (2.41)

Unter Verwenden von (2.3) folgt für den Term im Nenner von (2.40)
√√√√1 −

(
βc

β0

)2

=

√√√√1 −
(
λ0

λc

)2

=

√

1 −
(
ωc

ω

)2

. (2.42)

2.2.7. Phasengeschwindigkeit

Die Phasengeschwindigkeit ergibt sich mit der Strecke ∆z, welche die Phasenfront
in der Zeit ∆t zurücklegt, zu

vp =
∆z

∆t
,

siehe Abbildung 2.3. An der Phasenfront einer sich in positive z-Richtung aus-
breitenden elektromagnetischen Welle gilt

e−jβz+jωt = e−jβ(z+∆z)+jω(t+∆t),
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siehe (2.7) und (2.8). Es folgt die Phasengeschwindigkeit

vp =
ω

β
(2.43)

und mit (2.35) und (2.3) schließlich

vp =
ω

β0

√
1 −

(
βc

β0

)2
=

1
√
εµ

√
1 −

(
βc

β0

)2
.

z

∆z

Hxyz(x0, y0, z, t0)

Hxyz(x0, y0, z, t0 + ∆t)

Abbildung 2.3.: Sich in positive z-Richtung ausbreitende elektromagnetische Wel-
le

Die Phasengeschwindigkeit vp einer sich in einem Dielektrikum mit frequenzu-
nabhängigen Materialeigenschaften ausbreitenden elektromagnetischen Welle ist
nur dann frequenzunabhängig, wenn die kritische Phasenkonstante βc Null ist.
Für derartige elektromagnetische Wellen entspricht die Phasengeschwindigkeit vp

der Lichtgeschwindigkeit

c =
1√
εµ
. (2.44)

Mit (1.48) und (1.52) ergibt sich die Vakuumlichtgeschwindigkeit zu

c0 =
1√
ε0µ0

= 3 · 108 m s−1. (2.45)

Für die Phasengeschwindigkeit folgt

vp =
c√

1 −
(
βc

β0

)2
, (2.46)

siehe auch (2.42). Beim Annähern an die kritische Kreisfrequenz ωc wird die Pha-
sengeschwindigkeit vp unendlich groß, siehe Abbildung 2.5.
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2.2.8. Gruppengeschwindigkeit

Es wird die Nachrichtenübertragung über ein Wellenleiterstück der Länge ∆z
mit einer sich in positive z-Richtung ausbreitenden elektromagnetischen Welle
betrachtet, siehe Abbildung 2.4. Die Phasenkonstante β sei zunächst beliebig
frequenzabhängig. Aus nachrichtentechnischer Sicht ist insbesondere die aus der
Impulsantwort einfach ablesbare Laufzeit ∆t der Nachrichten interessant [OL10].
Die gesuchte Impulsantwort lässt sich prinzipiell aus der Übertragungsfunktion
e−jβ(ω)∆z durch inverse Fourier-Transformation berechnen. Man wird jedoch typi-
scherweise aufgrund der komplizierten Frequenzabhängigkeit der Phasenkonstante
β(ω) keine analytische Lösung für die Impulsantwort finden.

∆z

~H ~H e−jβ(ω)∆z

Wellenleiter

Abbildung 2.4.: Lineares zeitinvariantes System

Für schmalbandige Nachrichtensignale der mittleren Kreisfrequenz ω0 kann
man zum Vereinfachen des Problems die lineare Taylor-Approximation

β(ω) ≈ β(ω0) +
∂β

∂ω
(ω − ω0)

verwenden. Damit folgt für die Übertragungsfunktion

e−jβ(ω)∆z ≈ e−jβ(ω0)∆z−j ∂β
∂ω

(ω−ω0)∆z = e−jβ(ω0)∆z+j ∂β
∂ω
ω0∆z

︸ ︷︷ ︸
Phasenverschiebung

e−j ∂β
∂ω
ω∆z .

Durch inverse Fourier-Transformation erhält man hieraus bis auf eine nicht weiter
interessierende Phasenverschiebung die Impulsantwort

F−1
(
e−j ∂β

∂ω
ω∆z

)
=

1

2π

+∞w

−∞
e−j ∂β

∂ω
ω∆z ejωt dω = δ


t− ∂β

∂ω
∆z

︸ ︷︷ ︸
∆t


 .

δ(·) ist der Dirac-Impuls. Es folgt die Gruppengeschwindigkeit

vg =
∆z

∆t
=

1
∂β
∂ω

=
∂ω

∂β
. (2.47)

36



2.2. Zylindrische Wellenleiter

Mit (2.35), (2.3) und (2.44) folgt für elektromagnetische Wellen bei frequenzu-
nabhängigen Materialeigenschaften

vg =
1

∂
∂ω

(√
ω2εµ− β2

c

) =
1√
εµ

√√√√1 −
(
βc

β0

)2

= c

√√√√1 −
(
βc

β0

)2

, (2.48)

siehe auch (2.42). Beim Annähern an die kritische Kreisfrequenz ωc wird die Grup-
pengeschwindigkeit vg Null, siehe Abbildung 2.5.

0 0,2 0,4 0,6 0,8 1
0

1

2

3

vp/c

vg/c

ωc/ω

Abbildung 2.5.: Phasengeschwindigkeit vp und Gruppengeschwindigkeit vg

Die Gruppengeschwindigkeit vg ist frequenzunabhängig, falls die Phasenkon-
stante β proportional zur Kreisfrequenz ω ist, siehe Abbildung 2.6. Dies ist bei
einer sich in einem Dielektrikum mit frequenzunabhängigen Materialeigenschaften
ausbreitenden elektromagnetischen Welle der Fall, wenn die kritische Phasenkon-
stante βc Null ist. Dann sind Phasengeschwindigkeit vp und Gruppengeschwin-
digkeit vg gleich der Lichtgeschwindigkeit c. Man bezeichnet die elektromagne-
tische Welle als dispersionsfrei. Dispersionen resultieren aus einer nichtlinearen
Frequenzabhängigkeit der Phasenkonstante β. Dispersionen sind meistens uner-
wünscht, da die frequenzabhängige Gruppengeschwindigkeit vg zu Verzerrungen
bei der Signalübertragung führt. Man unterscheidet im Allgemeinen

Wellenleiterdispersionen, die aus der charakteristischen nichtlinearen Frequenz-
abhängigkeit (2.35) der Phasenkonstante β bei elektromagnetischen Wellen
mit einer kritischen Phasenkonstante βc größer Null resultieren und
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0 0,5 1 1,5 2 2,5 3

dispersionsfrei

dispersionsbehaftet

ω/ωc

β

Abbildung 2.6.: Dispersionsdiagramm

Materialdispersionen, die aus einer nichtlinearen Frequenzabhängigkeit der Pha-
senkonstante β infolge frequenzabhängiger Materialeigenschaften resultie-
ren.

Aufgabe 2.4 Zeigen Sie, dass sich die Gruppengeschwindigkeit gemäß

vg =
vp

1 − ω
vp

∂vp

∂ω

aus der Phasengeschwindigkeit vp berechnen lässt!

2.3. Ebene homogene Welle im freien Raum

Die ebene homogene Welle stellt die einfachste Lösung der Helmholtz-Gleichungen
dar. Eine ebene Welle ist dadurch charakterisiert, dass die Phasenfronten, das
heißt die Orte gleicher Phasen, Ebenen im Raum sind. Von einer ebenen homo-
genen Welle fordert man zusätzlich, dass diese Ebenen konstanter Phase auch
Orte konstanter Amplitude sind. Der freie Raum entspricht einem zylindrischen
Wellenleiter mit unendlichem Querschnitt. Bei einer ebenen homogenen, sich in
positive (negative) z-Richtung ausbreitenden, elektromagnetischen Welle gelten
folglich

~H(x, y, z) = ~H0 e∓jβz (2.49)
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und
~E(x, y, z) = ~E0 e∓jβz, (2.50)

vergleiche (2.7) und (2.8).
Da die Feldstärken einer sich in z-Richtung ausbreitenden ebenen homogenen

Welle nicht von den Transversalkoordinaten x und y abhängen, folgt aus der
z-Komponente (1.20) des Durchflutungsgesetzes im Dielektrikum Jz = 0 unter
Verwenden von (1.46)

Ez =
1

jωε

(
∂Hy

∂x
− ∂Hx

∂y

)
= 0.

Dual folgt aus der z-Komponente (1.27) des Induktionsgesetzes im Dielektrikum
M z = 0 unter Verwenden von (1.50)

Hz =
1

jωµ

(
−∂Ey

∂x
+
∂Ex

∂y

)
= 0.

Die ebene homogene Welle ist also eine transversalelektromagnetische Welle. Man
kann beispielsweise die konstanten, von den Transversalkoordinaten x und y un-
abhängigen Transversalkomponenten E0x und E0y der elektrischen Feldstärke ~E0

für z = 0 oder alternativ die Transversalkomponenten H0x und H0y der ma-

gnetischen Feldstärke ~H0 für z = 0 beliebig vorgeben. Wie man leicht durch
Einsetzen überprüft, erfüllt dieser Ansatz unter Berücksichtigen von βc = 0 die
zweidimensionalen Helmholtz-Gleichungen (2.10) und (2.11). Wie bei allen trans-
versalelektromagnetischen Wellen sind die elektrische Feldstärke ~E und die ma-
gnetische Feldstärke ~H über den Feldwellenwiderstand ZF miteinander verknüpft,
siehe (2.27) und (2.28). Des Weiteren gelten natürlich alle allgemeinen Eigenschaf-
ten transversalelektromagnetischer Wellen auch hier, siehe Abschnitt 2.2.3.

Die folgende Betrachtung der zeitabhängigen räumlichen Ausrichtung des elek-
trischen Feldstärkevektors ~E einer sich in positive z-Richtung ausbreitenden ebe-
nen homogenen Welle führt zum Begriff der Polarisation. Willkürlich wird die
Ebene z = 0 betrachtet. Für den Momentanwert der elektrischen Feldstärke gilt
mit (1.2)

E0x = Re
(
E0x ejωt

)
= Re(E0x) cos(ωt) − Im(E0x) sin(ωt)

und
E0y = Re

(
E0y ejωt

)
= Re

(
E0y

)
cos(ωt) − Im

(
E0y

)
sin(ωt) .

Die Spitze des elektrischen Feldstärkevektors ~E0 durchläuft mit fortschreitender
Zeit eine Ellipse in der x-y-Ebene, siehe Abbildung 2.7.
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x

y

z

~E0

∥∥∥ ~E0

∥∥∥
max

∥∥∥ ~E0

∥∥∥
min

α

Abbildung 2.7.: Polarisationsellipse

Den Drehsinn definiert man bezüglich der Blickrichtung in Ausbreitungsrich-
tung der ebenen homogenen Welle. Diese Blickrichtung ist willkürlich aber in
der Hochfrequenztechnik üblich. In der Optik wählt man die Blickrichtung bei-
spielsweise genau umgekehrt, so dass sich der Drehsinn umkehrt. Anhand der in
Abbildung 2.8 eingeführten Größen unterscheidet man folgende Polarisationszu-
stände:

• 0 < αx − αy < π: E0x eilt E0y vor, rechtsdrehend polarisiert

• 0 < αy − αx < π: E0y eilt E0x vor, linksdrehend polarisiert

• αx − αy = 0 oder αx − αy = π: E0x und E0y gleichphasig oder gegenphasig,
linear polarisiert

• αx − αy = π/2 und |E0x| =
∣∣∣E0y

∣∣∣: rechtsdrehend zirkular polarisiert

• αy − αx = π/2 und |E0x| =
∣∣∣E0y

∣∣∣: linksdrehend zirkular polarisiert

Bei linearer Polarisation entartet die Polarisationsellipse zu einer Linie und bei
zirkularer Polarisation ist die Polarisationsellipse ein Kreis. Jede ebene homogene
Welle kann man eineindeutig als Überlagerung zweier orthogonaler Basiswellen
darstellen. Als derartige Polarisationsbasen kommen beispielsweise linear hori-
zontal und linear vertikal oder zirkular rechtsdrehend und zirkular linksdrehend
polarisierte ebene homogene Wellen in Frage. Dies wird in Richtfunksystemen und
Satellitenkommunikationssystemen ausgenutzt, um unter Verwenden der beiden
orthogonal polarisierten Basiswellen unabhängige Informationen zu übertragen.
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Im

Re

αx = arg(E0x)

αy = arg
(
E0y

)

E0x

E0y

Abbildung 2.8.: Ermitteln des Drehsinns

Aufgabe 2.5 Eine ebene homogene Welle breite sich in positive z-Richtung aus.
Die Transversalkomponenten Ex und Ey der elektrischen Feldstärke ~E haben bei
z = 0 die komplexen Amplituden

E0x = (1 + j0,5) V m−1

beziehungsweise
E0y = (1 − j0,5) V m−1.

Zeichnen Sie die Polarisationsellipse!
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Wellenleiter

3.1. Hohlleiter

3.1.1. Aufbau von Hohlleitern

Hohlleiter sind mit einem homogenen Dielektrikum, wie zum Beispiel Luft, ge-
füllte rohrförmige Wellenleiter konstanten Querschnitts aus näherungsweise ideal
elektrisch leitendem Material. Es handelt sich um Einleitersysteme.

Im Folgenden werden nur die mathematisch einfach zu handhabenden Recht-
eckhohlleiter betrachtet. Dies ist keine wesentliche Einschränkung, da auch bei
Hohlleitern anderen Querschnitts wie Rundhohlleitern keine fundamental anders-
artigen Effekte auftreten. Abbildung 3.1 zeigt das verwendete Koordinatensystem.
Die Längsachse des Hohlleiters, in deren Richtung sich die elektromagnetische
Welle ausbreitet, entspricht der z-Richtung. Die Breite des Hohlleiters wird mit
a, die Höhe mit b bezeichnet. Das Koordinatensystem wird in der Regel so ge-
wählt, dass a > b gilt.

x

y

z
a

b

Abbildung 3.1.: Rechteckhohlleiter
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3.1.2. Transversalelektrische Wellen in Hohlleitern

Zunächst werden transversalelektrische Wellen, das heißt elektromagnetische Wel-
len, deren elektrische Feldstärke ~E keine Longitudinalkomponente Ez hat, unter-
sucht. Es wird eine die z-Komponente der zweidimensionalen Helmholtz-Gleichung
(2.10) und die Randbedingungen

∂Hz

∂x
= 0 für x = 0 und x = a

und
∂Hz

∂y
= 0 für y = 0 und y = b,

siehe (2.20), (2.21) und (1.65), erfüllende Longitudinalkomponente Hz der ma-
gnetischen Feldstärke ~H gesucht.

Es wird der Ansatz

Hz = H0 cos
(
mπx

a

)
cos
(
nπy

b

)

︸ ︷︷ ︸
H0z

e∓jβz (3.1)

für die Longitudinalkomponente der magnetischen Feldstärke ~H verwendet, der
die Randbedingungen erfüllt, falls m und n ganzzahlig sind. Die zu den ganzzah-
ligen Parametern m und n gehörenden transversalelektrischen Wellen bezeichnet
man als TEm,n-Wellen. m oder n muss von Null verschieden sein. Einsetzen der
Longitudinalkomponente H0z der magnetischen Feldstärke ~H0 bei z = 0 in die z-
Komponente der zweidimensionalen Helmholtz-Gleichung (2.10) ergibt mit (2.9)

0 = −H0

(
mπ

a

)2

cos
(
mπx

a

)
cos
(
nπy

b

)

−H0

(
nπ

b

)2

cos
(
mπx

a

)
cos
(
nπy

b

)

+ β2
cH0 cos

(
mπx

a

)
cos
(
nπy

b

)
.

Die kritische Phasenkonstante ergibt sich zu

βc =

√(
mπ

a

)2

+
(
nπ

b

)2

. (3.2)

Die Transversalkomponenten der Feldstärken einer sich in positive (negative) z-
Richtung ausbreitenden transversalelektrischen Welle berechnet man mit (2.20),
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(2.21), (2.22) und (2.23) aus den Longitudinalkomponenten Hz und Ez = 0 der
Feldstärken:

Ex = − j
ωµ

β2
c

∂Hz

∂y
= j

ωµH0

β2
c

nπ

b
cos
(
mπx

a

)
sin
(
nπy

b

)
e∓jβz, (3.3)

Ey =j
ωµ

β2
c

∂Hz

∂x
= −j

ωµH0

β2
c

mπ

a
sin
(
mπx

a

)
cos
(
nπy

b

)
e∓jβz, (3.4)

Hx = ∓ j
β

β2
c

∂Hz

∂x
= ±j

βH0

β2
c

mπ

a
sin
(
mπx

a

)
cos
(
nπy

b

)
e∓jβz, (3.5)

Hy = ∓ j
β

β2
c

∂Hz

∂y
= ±j

βH0

β2
c

nπ

b
cos
(
mπx

a

)
sin
(
nπy

b

)
e∓jβz . (3.6)

Im Allgemeinen ist nur das elektrische Feld transversalelektrischer Wellen über-
sichtlich darstellbar, da es hier ausreicht, die elektrische Feldstärke in einer belie-
bigen Querschnittsebene zweidimensional darzustellen, siehe Abbildung 3.2.

n = 2

n = 1

n = 0

m = 0 m = 1 m = 2

Abbildung 3.2.: Elektrische Felder transversalelektrischer Wellen

Aufgabe 3.1 Berechnen Sie die kritischen Kreisfrequenzen ωc,m,n der TEm,n-
Wellen eines luftgefüllten Hohlleiters der Breite a = 50 mm und der Höhe b =
30 mm für m, n ≤ 2! Berechnen Sie weiterhin für eine sich auf diesem Hohlleiter
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ausbreitende transversalelektrische Welle der Kreisfrequenz ω = 2 · 1010 s−1 die
Phasengeschwindigkeit vp, die Gruppengeschwindigkeit vg und die Wellenlänge λ!

Aufgabe 3.2 Berechnen Sie auf den Hohlleiterwänden jeweils die elektrische
Flächenladungsdichte ρ

eF
aus der elektrischen Feldstärke ~E und die elektrische

Flächenstromdichte ~JF aus der magnetischen Feldstärke ~H, wenn sich im Hohl-
leiter eine TEm,n-Welle ausbreitet! Überprüfen Sie Ihr Ergebnis mit Hilfe der Kon-
tinuitätsgleichung (1.41)!

3.1.3. Transversalmagnetische Wellen in Hohlleitern

Nun werden transversalmagnetische Wellen, das heißt elektromagnetische Wellen,
deren magnetische Feldstärke ~H keine Longitudinalkomponente Hz hat, unter-
sucht. Hier wählt man den Ansatz

Ez = E0 sin
(
mπx

a

)
sin
(
nπy

b

)

︸ ︷︷ ︸
E0z

e∓jβz (3.7)

für die Longitudinalkomponente der elektrischen Feldstärke ~E. Der Ansatz erfüllt
die Randbedingungen

Ez = 0 für x = 0 und x = a

und
Ez = 0 für y = 0 und y = b,

vergleiche (1.65), falls m und n ganzzahlig sind. Die zu den ganzzahligen Para-
metern m und n gehörenden transversalmagnetischen Wellen bezeichnet man als
TMm,n-Wellen. Im Gegensatz zu transversalelektrischen Wellen, bei denen nur m
oder n von Null verschieden sein muss, müssen bei transversalmagnetischen Wel-
len m und n von Null verschieden sein. Einsetzen der Longitudinalkomponente
E0z der elektrischen Feldstärke ~E0 bei z = 0 in die z-Komponente der zweidimen-
sionalen Helmholtz-Gleichung (2.11) ergibt mit (2.9)

0 = − E0

(
mπ

a

)2

sin
(
mπx

a

)
sin
(
nπy

b

)

− E0

(
nπ

b

)2

sin
(
mπx

a

)
sin
(
nπy

b

)

+ β2
cE0 sin

(
mπx

a

)
sin
(
nπy

b

)
.
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Die kritische Phasenkonstante ergibt sich wie bei den transversalelektrischen Wel-
len, siehe (3.2), zu

βc =

√(
mπ

a

)2

+
(
nπ

b

)2

. (3.8)

Die Transversalkomponenten der Feldstärken einer sich in positive (negative) z-
Richtung ausbreitenden transversalmagnetischen Welle berechnet man mit (2.20),
(2.21), (2.22) und (2.23) aus den Longitudinalkomponenten Ez und Hz = 0 der
Feldstärken:

Ex = ∓ j
β

β2
c

∂Ez

∂x
= ∓j

βE0

β2
c

mπ

a
cos
(
mπx

a

)
sin
(
nπy

b

)
e∓jβz, (3.9)

Ey = ∓ j
β

β2
c

∂Ez

∂y
= ∓j

βE0

β2
c

nπ

b
sin
(
mπx

a

)
cos
(
nπy

b

)
e∓jβz, (3.10)

Hx =j
ωε

β2
c

∂Ez

∂y
= j

ωεE0

β2
c

nπ

b
sin
(
mπx

a

)
cos
(
nπy

b

)
e∓jβz, (3.11)

Hy = − j
ωε

β2
c

∂Ez

∂x
= −j

ωεE0

β2
c

mπ

a
cos
(
mπx

a

)
sin
(
nπy

b

)
e∓jβz . (3.12)

Im Allgemeinen ist nur das magnetische Feld transversalmagnetischer Wellen
übersichtlich darstellbar, da es hier ausreicht, die magnetische Feldstärke in einer
beliebigen Querschnittsebene zweidimensional darzustellen, siehe Abbildung 3.3.

n = 2

n = 1

m = 1 m = 2

Abbildung 3.3.: Magnetische Felder transversalmagnetischer Wellen
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3.2. Zweileitersysteme

3.2.1. Aufbau von Zweileitersystemen

Im Folgenden werden Zweileitersysteme mit konstantem Querschnitt und homo-
genem Dielektrikum betrachtet. Das Koordinatensystem wird so gewählt, dass
die der Ausbreitungsrichtung entsprechende Längsachse des Zweileitersystems der
z-Achse entspricht, siehe Abbildung 3.4. Im Folgenden werden zunächst transver-
salelektromagnetische Wellen näher untersucht. Bei höheren Kreisfrequenzen sind
aber möglicherweise auch andere Wellentypen ausbreitungsfähig.

x

y

z

Abbildung 3.4.: Koaxiales Zweileitersystem

3.2.2. Transversalelektromagnetische Wellen auf
Zweileitersystemen

3.2.2.1. Feldstärken

Es wird der Ansatz
~E = −U 0 grad(φ)︸ ︷︷ ︸

~E0

e∓jβz (3.13)

für die elektrische Feldstärke einer sich in positive (negative) z-Richtung ausbrei-
tenden transversalelektromagnetischen Welle verwendet. φ ist das auf die Span-
nung zwischen den Leitern normierte elektrostatische Potential. Da die Tangen-
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tialkomponenten des elektrostatischen Feldes an den Leiteroberflächen Null sind,
erfüllt der Ansatz die (1.65) entsprechenden Randbedingungen.

Das elektrostatische Feld ist wirbelfrei, siehe (3.14). Im ladungsfreien Dielek-
trikum ρe = 0 ist das elektrostatische Feld zudem gemäß (1.33) und (1.46) auch
quellenfrei, das heißt es ist Lösung der Laplace-Gleichung

div(grad(φ)) = ∆φ = 0.

Einsetzen der elektrischen Feldstärke ~E0 bei z = 0 in die zweidimensionale
Helmholtz-Gleichung (2.11) ergibt mit (2.2)

~0 = − U0∆xy (grad(φ)) − U0β
2
c grad(φ)

= − U0∆ (grad(φ)) − U0β
2
c grad(φ)

= − U0 grad(div(grad(φ))) + U 0 rot(rot(grad(φ))) − U0β
2
c grad(φ)

= − U0β
2
c grad(φ) .

Der Ansatz ist folglich eine Lösung der zweidimensionalen Helmholtz-Gleichung,
falls für die kritische Phasenkonstante βc = 0 gilt. Die so gefundene elektrische
Feldstärke ~E hat keine Longitudinalkomponente ~Ez. Mit Hilfe der z-Komponente
(1.27) des Induktionsgesetzes, (1.50) und (2.1) findet man, dass auch die Longi-
tudinalkomponente

Hz = −jU 0

1

ωµ

(
∂2φ

∂x∂y
− ∂2φ

∂y∂x

)
e∓jβz = 0

der magnetischen Feldstärke ~H verschwindet. Es handelt sich folglich um ei-
ne transversalelektromagnetische Welle. Es gelten die allgemeinen Eigenschaften
transversalelektromagnetischer Wellen, siehe Abschnitt 2.2.3.

In einem Hohlleiter, das heißt einen Einleitersystem, kann keine derartige trans-
versalelektromagnetische Welle existieren. Das elektrostatische Potential φ muss
auf der gesamten leitenden Berandung des Einleitersystems konstant sein und
somit ist das elektrostatische Potential φ auf einem Einleitersystem insgesamt
konstant. Die elektrische Feldstärke ~E ist dann Null.

Aufgabe 3.3 Zeigen Sie unter Verwenden kartesischer Koordinaten, dass für al-
le Skalarfelder φ

rot(grad(φ)) = ~0 (3.14)

gilt!

Aufgabe 3.4 Zeigen Sie, dass für den skalaren Laplace-Operator in kartesischen
Koordinaten

∆φ = div(grad(φ)) =
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
(3.15)

gilt!
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3.2.2.2. Spannung

Für eine in der Querschnittsebene im Dielektrikum mit verschwindender magne-
tischer Stromdichte ~M liegende Fläche A folgt mit Hz = 0 aus dem Induktions-
gesetz (1.22) und (1.50)

−
z

∂A

〈 ~E, d~r〉 = jωµ
x

A

〈 ~H, d ~A〉 = jωµ
x

A

Hz dA = 0.

Die elektrische Feldstärke ~E ist bei transversalelektromagnetischen Wellen in der
Querschnittsebene wirbelfrei. Man kann daher in einer Querschnittsebene eine
Spannung U zwischen den beiden Leitern definieren, die vom Integrationsweg
unabhängig ist. In einer Querschnittsebene gilt unter Verwenden von (3.13) mit
einem beliebigen Integrationsweg zwischen den Leitern

U =
w

r

〈 ~E, d~r〉 = e∓jβz
w

r

〈 ~E0, d~r〉
︸ ︷︷ ︸

U0

, (3.16)

siehe Abbildung 3.5. Für eine sich in positive (negative) z-Richtung ausbreitende
transversalelektromagnetische Welle gilt daher

U = U 0 e∓jβz . (3.17)

U

d~r

Abbildung 3.5.: Zur Definition der Spannung U

3.2.2.3. Strom

Für eine in der Querschnittsebene im Dielektrikum mit verschwindender elektri-
scher Stromdichte ~J liegende, das heißt keinen Leiter beinhaltende, Fläche A folgt
mit Ez = 0 aus dem Durchflutungsgesetz (1.12) unter Verwenden von (1.46)

z

∂A

〈 ~H, d~s〉 = jωε
x

A

〈 ~E, d ~A〉 = jωε
x

A

Ez dA = 0.
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Die magnetische Feldstärke ~H ist bei transversalelektromagnetischen Wellen in
der Querschnittsebene innerhalb des Dielektrikums wirbelfrei. Man kann daher
in einer Querschnittsebene einen Strom I durch einen der Leiter definieren, der
vom Integrationsweg unabhängig ist. In der Querschnittsebene gilt mit einem
beliebigen Integrationsweg um einen der Leiter herum

I =
z

s

〈 ~H, d~s〉 = e∓jβz
z

s

〈 ~H0, d~s〉
︸ ︷︷ ︸

I0

. (3.18)

d~r, d~s und die positive z-Richtung sollen hierbei ein Rechtssystem bilden, siehe
Abbildung 3.5 und Abbildung 3.6. Für eine sich in positive (negative) z-Richtung
ausbreitende transversalelektromagnetische Welle gilt

I = I0 e∓jβz . (3.19)

I

d~s

Abbildung 3.6.: Zur Definition des Stroms I

3.2.2.4. Wellenwiderstand

Das Verhältnis aus Spannung U und Strom I ist eine vom Ort z unabhängige,
als Wellenwiderstand ZL bezeichnete und für das Zweileitersystem charakteris-
tische Konstante. Für eine sich in positive (negative) z-Richtung ausbreitende
transversalelektromagnetische Welle gilt

U

I
=
U 0

I0

= ±ZL, (3.20)

siehe (3.17) und (3.19). Wegen der aus der Proportionalität der Feldstärken einer
transversalelektromagnetischen Welle, siehe (2.27) und (2.28), folgenden Gleich-
phasigkeit (Gegenphasigkeit) von Spannung U und Strom I ist der Wellenwider-
stand ZL reell und positiv.
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3.2.2.5. Ersatzschaltbild

Für die Ableitung der Spannung U einer sich in positive (negative) z-Richtung
ausbreitenden transversalelektromagnetischen Welle nach z gilt mit (3.17), (3.20)
und (2.24)

∂U

∂z
= ∓jβU = −jβZLI = −jω

√
εµZL︸ ︷︷ ︸
L′

I. (3.21)

Der Induktivitätsbelag
L′ =

√
εµZL (3.22)

hat die Einheit H m−1.
Für die Ableitung des Stroms I einer sich in positive (negative) z-Richtung

ausbreitenden transversalelektromagnetischen Welle nach z gilt mit (3.19), (3.20)
und (2.24)

∂I

∂z
= ∓jβI = −jβ

1

ZL

U = −jω
√
εµ

1

ZL︸ ︷︷ ︸
C′

U. (3.23)

Der Kapazitätsbelag

C ′ =
√
εµ

1

ZL

(3.24)

hat die Einheit F m−1.
Der Wellenwiderstand (3.20) ergibt sich zu

ZL =
L′

√
εµ

=
√
εµ

C ′ =

√
L′

C ′ . (3.25)

Mit (2.45), (2.46) und (2.48) folgt unter Berücksichtigen von βc = 0 für die
Phasengeschwindigkeit und die Gruppengeschwindigkeit

vp = vg =
1√
L′C ′

. (3.26)

Die Gleichungen (3.21) und (3.23) bilden ein als Leitungsgleichungen bezeich-
netes Differentialgleichungssystem, mit dem man Spannung U und Strom I be-
stimmen kann. Nochmaliges Ableiten von (3.21) nach z und Einsetzen von (3.23)
ergibt mit (2.24)

∂2U

∂z2
= −jωL′∂I

∂z
= −ω2L′C ′U = −β2U. (3.27)

Dual erhält man
∂2I

∂z2
= −β2I. (3.28)
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Man hätte diese Differentialgleichungen auch direkt aus dem Ersatzschaltbild in
Abbildung 3.7 ablesen können. Der hier verfolgte feldtheoretische Ansatz liefert
jedoch zusätzlich die Erkenntnis, dass Induktivitätsbelag L′ und Kapazitätsbelag
C ′ bei Zweileitersystemen mit homogenem Dielektrikum wegen

L′C ′ = εµ (3.29)

abhängige Größen sind.

I(z) I(z + dz)

U(z) U(z + dz)

L′ dz

C ′ dz

Abbildung 3.7.: Ersatzschaltbild eines kurzen Stücks der Länge dz eines Zweilei-
tersystems

3.2.2.6. Leistung

Die transportierte Leistung P lässt sich gemäß (1.80) mit Hilfe des komplexen
Poynting-Vektors ~S durch Integration über eine Querschnittsfläche berechnen.
Für das Flächenelement gilt

d ~A = d~r × d~s,

wobei wie in Abbildung 3.8 gezeigt der Integrationsweg d~r entlang der elektri-
schen Feldlinien verlaufe und der Integrationsweg d~s entlang der magnetischen
Feldlinien verlaufe. Mit (1.79), (1.80), (3.16) und (3.18) folgt1

P =
x

A

〈Re
(

1

2
~E × ~H

∗
)
, d~r × d~s〉

= Re




x

A

1

2

(
〈 ~E, d~r〉〈 ~H∗

, d~s〉 − 〈 ~H∗
, d~r〉〈 ~E, d~s〉

)



= Re


1

2

w

r

〈 ~E, d~r〉
w

s

〈 ~H∗
, d~s〉




= Re
(

1

2
U I∗

)
.

(3.30)

1 Es wird die Lagrange-Identität 〈~a×~b,~c× ~d〉 = 〈~a,~c〉〈~b, ~d〉 − 〈~a, ~d〉〈~b,~c〉 verwendet.
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d ~A

d~s
d~r

Abbildung 3.8.: Infinitesimales Flächenelement d ~A = d~r×d~s in der Querschnitts-
ebene

3.2.3. Beispiele von Zweileitersystemen

3.2.3.1. Bandleitung

Die Breite a der Leiter der in Abbildung 3.9 gezeigten Bandleitung sei viel größer
als der Abstand b, so dass Streufelder vernachlässigbar sind.

Das normierte Potential des elektrostatischen Feldes des Plattenkondensators
ist

φ =
y

b
.

Mit (3.13) und (2.1) folgt die elektrische Feldstärke

~E = −U 0

1

b
e∓jβz ~uy (3.31)

und mit (2.28) erhält man schließlich die magnetische Feldstärke

~H = ±U 0

1

ZFb
e∓jβz ~ux (3.32)

einer sich in positive (negative) z-Richtung ausbreitenden transversalelektroma-
gnetischen Welle auf der Bandleitung.

Die Kapazität eines Plattenkondensators der Länge l ist

C =
εal

b
.

Damit folgen der Kapazitätsbelag

C ′ =
C

l
=
εa

b
, (3.33)
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x

y

z
~E

~H

a

b

Abbildung 3.9.: Bandleitung mit einer sich in positive z-Richtung ausbreitenden
transversalelektromagnetischen Welle

unter Verwenden von (3.29) der Induktivitätsbelag

L′ =
µb

a
(3.34)

und mit (3.25) und (2.25) der Wellenwiderstand

ZL =
√
µ

ε

b

a
= ZF

b

a
. (3.35)

Für transversalelektrische Wellen wählt man den für ganzzahlige n die Rand-
bedingungen erfüllenden Ansatz

Hz = H0 cos
(
nπy

b

)

︸ ︷︷ ︸
H0z

e∓jβz (3.36)

für die Longitudinalkomponente der magnetischen Feldstärke ~H , siehe (2.20) und
(1.65). Die zu den ganzzahligen Parametern n > 0 gehörenden transversalelek-
trischen Wellen bezeichnet man als TEn-Wellen, siehe Abbildung 3.10. Einsetzen
der Longitudinalkomponente H0z der magnetischen Feldstärke ~H0 bei z = 0 in
die z-Komponente der zweidimensionalen Helmholtz-Gleichung (2.10) ergibt mit
(2.9)

0 = −H0

(
nπ

b

)2

cos
(
nπy

b

)
+ β2

cH0 cos
(
nπy

b

)
.
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Die kritische Phasenkonstante ergibt sich zu

βc =
nπ

b
. (3.37)

Die Transversalkomponenten der Feldstärken einer sich in positive (negative) z-
Richtung ausbreitenden transversalelektrischen Welle berechnet man mit (2.20),
(2.21), (2.22) und (2.23) aus den Longitudinalkomponenten Hz und Ez = 0 der
Feldstärken:

Ex =j
ωµH0

β2
c

nπ

b
sin
(
nπy

b

)
e∓jβz, (3.38)

Ey =0, (3.39)

Hx =0, (3.40)

Hy = ± j
βH0

β2
c

nπ

b
sin
(
nπy

b

)
e∓jβz . (3.41)

n = 1

n = 2
~H

~E

Abbildung 3.10.: Transversalelektrische Wellen auf einer Bandleitung. Dargestellt
ist ein Längsschnitt durch die Bandleitung in der y-z-Ebene

Für transversalmagnetische Wellen wählt man den für ganzzahlige n die (1.65)
entsprechenden Randbedingungen erfüllenden Ansatz

Ez = E0 sin
(
nπy

b

)

︸ ︷︷ ︸
E0z

e∓jβz (3.42)

für die Longitudinalkomponente der elektrischen Feldstärke ~E. Die zu den ganz-
zahligen Parametern n > 0 gehörenden transversalmagnetischen Wellen bezeich-
net man als TMn-Wellen, siehe Abbildung 3.11. Einsetzen der Longitudinalkom-
ponente E0z der elektrischen Feldstärke ~E0 bei z = 0 in die z-Komponente der
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zweidimensionalen Helmholtz-Gleichung (2.11) ergibt mit (2.9)

0 = −E0

(
nπ

b

)2

sin
(
nπy

b

)
+ β2

cE0 sin
(
nπy

b

)
.

Die kritische Phasenkonstante ergibt sich wie bei transversalelektrischen Wellen,
siehe (3.37), zu

βc =
nπ

b
. (3.43)

Die Transversalkomponenten der Feldstärken einer sich in positive (negative) z-
Richtung ausbreitenden transversalmagnetischen Welle berechnet man mit (2.20),
(2.21), (2.22) und (2.23) aus den Longitudinalkomponenten Ez und Hz = 0 der
Feldstärken:

Ex =0, (3.44)

Ey = ∓ j
βE0

β2
c

nπ

b
cos
(
nπy

b

)
e∓jβzz, (3.45)

Hx =j
ωεE0

β2
c

nπ

b
cos
(
nπy

b

)
e∓jβzz, (3.46)

Hy =0. (3.47)

n = 1

n = 2
~H

~E

Abbildung 3.11.: Transversalmagnetische Wellen auf einer Bandleitung. Darge-
stellt ist ein Längsschnitt durch die Bandleitung in der y-z-
Ebene

Aufgabe 3.5 Es wird die Überlagerung zweier sich in unterschiedliche Richtun-
gen ausbreitender ebener homogener Wellen gleicher Amplitude betrachtet, siehe
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Abbildung 3.12. Zeigen Sie, dass sich die transversalelektrischen Wellen auf einer
Bandleitung als Überlagerung zweier derartiger horizontal polarisierter Wellen
darstellen lassen! Zeigen Sie, dass sich die transversalmagnetischen Wellen auf
einer Bandleitung als Überlagerung zweier derartiger vertikal polarisierter Wellen
darstellen lassen!

x
z

y

α
α

~β1 = β0 sin(α)~uy + β0 cos(α)~uz

~β2 = −β0 sin(α)~uy + β0 cos(α)~uz

Abbildung 3.12.: Ausbreitungsrichtungen der beiden zu überlagernden Wellen

3.2.3.2. Koaxialleitung

Bei der in Abbildung 3.13 gezeigten Koaxialleitung handelt es sich um einen kreis-
zylindrischen aus Innenleiter, Dielektrikum und Außenleiter bestehenden Wellen-
leiter.

x

y

z

dD

Abbildung 3.13.: Koaxialleitung
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Die Kapazität eines Zylinderkondensators der Länge l ist

C =
2πεl

ln
(
D
d

) .

Damit folgen der Kapazitätsbelag

C ′ =
C

l
=

2πε

ln
(
D
d

) , (3.48)

unter Verwenden von (3.29) der Induktivitätsbelag

L′ =
µ ln

(
D
d

)

2π
(3.49)

und mit (3.25) und (2.25) der Wellenwiderstand

ZL =
1

2π

√
µ

ε
ln
(
D

d

)
=

1

2π
ZF ln

(
D

d

)
. (3.50)

In der Hochfrequenztechnik verwendet man üblicherweise Koaxialleitungen mit
einem einheitlichen Wellenwiderstand von ZL = 50 Ω.

3.2.3.3. Planare Wellenleiter

Die in Abbildung 3.14 gezeigten planaren Wellenleiter können aufwandsgünstig
gefertigt werden. Die technischen Herausforderungen bestehen neben den häu-
fig ungünstigen Eigenschaften der verwendeten Dielektrika insbesondere darin,
dass viele dieser Wellenleiter inhomogene Dielektrika haben. Von den in Abbil-
dung 3.14 gezeigten Beispielen planarer Wellenleiter hat nur die Streifenleitung
ein homogenes Dielektrikum. Die Streifenleitung ist allerdings nur in Mehrlagen-
technik zu fertigen. Bei den übrigen einfacher zu fertigenden planaren Wellen-
leitern besteht das felderfüllte Dielektrikum aus dem Substrat und aus Luft.
Die sich auf einem derartigen planaren Wellenleiter mit inhomogenem Dielek-
trikum ausbreitenden elektromagnetischen Wellen sind keine transversalelektro-
magnetischen Wellen. Häufig handelt es sich jedoch in hinreichend guter Nähe-
rung um transversalelektromagnetischen Wellen. Man spricht dann von quasi-
transversalelektromagnetischen Wellen.
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Substrat

(a) Mikrostreifenleitung

Substrat

(b) Streifenleitung

Substrat

(c) Koplanare Leitung

Abbildung 3.14.: Planare Wellenleiter

3.3. Transversalelektromagnetische Wellen auf
Mehrleitersystemen

3.3.1. Allgemeine Mehrleitersysteme

Es werden Mehrleitersysteme mit konstantem Querschnitt und homogenem Di-
elektrikum betrachtet, siehe Abbildung 3.15. Einer der Leiter wird als Bezugsleiter
ausgewählt und im Folgenden als Masse bezeichnet. Es verbleiben N ≥ 1 weitere
Leiter, wobei der Spezialfall N = 1 den in Abschnitt 3.2 besprochenen Zweilei-
tersystemen entspricht. Das Koordinatensystem wird wieder so gewählt, dass die
der Ausbreitungsrichtung entsprechende Längsachse des Mehrleitersystems der
z-Achse entspricht.

Im Folgenden werden nur transversalelektromagnetische Wellen näher unter-
sucht. Eine die Helmholtz-Gleichung (2.5) und die Randbedingungen erfüllende
elektrische Feldstärke ~E einer sich in positive (negative) z-Richtung ausbreiten-
den transversalelektromagnetischen Welle findet man wieder ausgehend von ei-
nem normierten elektrostatischen Potential φ. Der Nachweis erfolgt genau so wie
in Abschnitt 3.2.2.1. Der wesentliche Unterschied zu Zweileitersystemen besteht
darin, dass das normierte elektrostatische Potential φ und damit die Struktur des
elektrostatischen Feldes auf Mehrleitersystemen nicht eindeutig ist. Abhängig von
der Ladungsverteilung auf den Leitern ergeben sich elektrostatische Felder unter-
schiedlicher Struktur. Es bestehen N Freiheitsgrade und man kann folglich jedes
elektrostatische Potential −U 0φ auf dem Mehrleitersystem als Linearkombination
von N linear unabhängigen, aber ansonsten beliebigen, normierten elektrostati-
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x

y

z

Bezugsleiter, Masse

Leiter 1

Leiter 2

U 1 U 2

I1

I2

Abbildung 3.15.: Dreileitersystem

schen Potentialen φ(n), n = 1 . . .N , darstellen. Für die elektrische Feldstärke
einer sich in positive (negative) z-Richtung ausbreitenden transversalelektroma-
gnetischen Welle folgt in Verallgemeinerung von (3.13)

~E =
N∑

n=1

−U (n)
0 grad

(
φ(n)

)
e∓jβz

︸ ︷︷ ︸
~E

(n)

. (3.51)

Auf dem Mehrleitersystem sind also N verschiedene transversalelektromagneti-
sche Moden gleichzeitig ausbreitungsfähig. Phasenkonstante β, Phasengeschwin-
digkeit vp und Gruppengeschwindigkeit vg aller transversalelektromagnetischen
Moden auf Mehrleitersystemen mit homogenem Dielektrikum sind gleich.

Analog zur Vorgehensweise bei Zweileitersystemen in den Abschnitten 3.2.2.2
und 3.2.2.3 kann man bei Mehrleitersystemen die Spannung

Un = U 0n e∓jβz (3.52)

zwischen Leiter n und Masse und den Strom

In = I0n e∓jβz (3.53)
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durch Leiter n definieren. Man definiert den Spannungsvektor

U =




U1
...
UN


 (3.54)

und den Stromvektor

I =




I1
...
IN


 . (3.55)

Mit einer geeignet gewählten reellen Wellenwiderstandsmatrix

ZL =




ZL1,1 · · · ZL1,N
...

...
ZLN,1 · · · ZLN,N


 (3.56)

gilt aufgrund der Linearität für eine sich in positive (negative) z-Richtung aus-
breitende transversalelektromagnetische Welle

U = ±ZL · I, (3.57)

vergleiche Abschnitt 3.2.2.4. Aufgrund der Reziprozität des Mehrleitersystems ist
die Wellenwiderstandsmatrix ZL symmetrisch.2 Ableiten der Spannungen U nach
z ergibt mit (2.24)

∂U

∂z
= ∓jβU = −jβZL · I = −jω

√
εµZL︸ ︷︷ ︸
L′

·I. (3.58)

Die Induktivitätsbelagsmatrix

L′ =




L′
1,1 · · · L′

1,N
...

...
L′
N,1 · · · L′

N,N


 =

√
εµZL (3.59)

ist wie die Wellenwiderstandsmatrix ZL reell und symmetrisch.
Die inverse Wellenwiderstandsmatrix Z−1

L ist reell und symmetrisch, da die
Inverse einer reellen symmetrischen Matrix wieder eine reelle symmetrische Matrix
ist. Es gilt

I = ±Z−1
L · U. (3.60)

2 Das Mehrleitersystem kann man als Mehrtor auffassen und die Impedanzmatrix Z eines
reziproken Mehrtors ist wie auch dessen Streumatrix S symmetrisch, siehe Aufgabe 9.2.
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3.3. Transversalelektromagnetische Wellen auf Mehrleitersystemen

Ableiten der Ströme I nach z ergibt mit (2.24)

∂I

∂z
= ∓jβU = −jβZ−1

L · U = −jω
√
εµZ−1

L︸ ︷︷ ︸
C′

·U. (3.61)

Die Influenzbelagskoeffizientenmatrix

C′ =




c′
1,1 · · · c′

1,N
...

...
c′
N,1 · · · c′

N,N


 =

√
εµZ−1

L (3.62)

ist wie die Wellenwiderstandsmatrix ZL reell und symmetrisch. Sie enthält die
Influenzbelagskoeffizienten c′

n,m = c′
m,n.

Für ein kurzes Stück eines Dreileitersystems erhält man das in Abbildung 3.16
gezeigte Ersatzschaltbild mit den folgenden Kapazitätsbelägen:

C ′
1,0 =c′

1,1 + c′
1,2, (3.63)

C ′
2,0 =c′

2,2 + c′
1,2, (3.64)

C ′
1,2 = − c′

1,2. (3.65)

Mit der Einheitsmatrix E gilt weiterhin

L′ · C′ = εµE, (3.66)

was eine Verallgemeinerung der Zusammenhänge (3.29) beim Zweileitersystem
darstellt. Induktivitätsbelagsmatrix L′ und Influenzbelagskoeffizientenmatrix C′

sind bei Mehrleitersystemen mit homogenem Dielektrikum abhängige Größen.
Speziell für Dreileitersysteme gilt

C′ =

(
c′

1,1 c′
1,2

c′
1,2 c′

2,2

)
= εµL′−1 =

εµ

L′
1,1L′

2,2 − L′2
1,2

(
L′

2,2 −L′
1,2

−L′
1,2 L′

1,1

)
. (3.67)

Nochmaliges Ableiten von (3.58) nach z und Einsetzen von (3.61) ergibt mit
(2.24)

∂2U

∂z2
= −ω2L′ · C′ · U = −ω2εµU = −β2U. (3.68)

Dual erhält man
∂2I

∂z2
= −β2I. (3.69)
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)
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)
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2
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z
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Abbildung 3.16.: Ersatzschaltbild eines kurzen Stücks der Länge dz eines Dreilei-
tersystems
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3.3.2. Symmetrische Dreileitersysteme

Symmetrisch zur Masse aufgebaute Dreileitersysteme zum Verbinden elektroni-
scher Komponenten sind von besonderer technischer Bedeutung. Einerseits kann
man die Einkopplung von Störsignalen durch Verwenden differentieller Signale
reduzieren. Andererseits ist es häufig vorteilhaft, elektronische Schaltungen sym-
metrisch zur Masse aufzubauen. Man erhält dann zwangsläufig massesymmetri-
sche differentielle Eingänge und Ausgänge. Abbildung 3.17 zeigt zwei Beispiele
symmetrisch aufgebauter Dreileitersysteme.

U1 U2

I1 I2

(a) Allgemeines symmetrisches Dreileiter-
system

U 1 U 2

I1 I2

(b) Rein massegekoppeltes symmetrisches Dreilei-
tersystem

Abbildung 3.17.: Symmetrische Dreileitersysteme

Der symmetrische Aufbau bewirkt insbesondere, dass die Induktivitätsbeläge

L′ = L′
1,1 = L′

2,2

und die Influenzbelagskoeffizienten

c′ = c′
1,1 = c′

2,2

für beide Leiter gleich sind. Mit (3.59) folgt

ZL1,1 = ZL2,2.

Der Grad der Kopplung wird durch den Kopplungsfaktor

k =
ZL1,2

ZL1,1
=
L′

1,2

L′ = −c′
1,2

c′ (3.70)
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beschrieben. Für die Umformungen wurden (3.59) und (3.67) verwendet. Insbe-
sondere sind die induktiven und die kapazitiven Kopplungen gleich.

Ein eleganter Ansatz besteht darin, Eigenvektoren der Wellenwiderstandsma-
trix Z als Moden zu verwenden [GL13]. Speziell bei symmetrischen Dreileitersys-
temen sind die Eigenvektoren alleine durch die Struktur der Matrizen gegeben.
Es gelten

±
(
ZL1,1 ZL1,2

ZL1,2 ZL1,1

)

︸ ︷︷ ︸
ZL

·
(
I(−)

−I (−)

)

︸ ︷︷ ︸
I

(−)

= ± (ZL1,1 − ZL1,2)

(
I(−)

−I(−)

)

︸ ︷︷ ︸
I

(−)

= ±
(
U (−)

−U (−)

)

︸ ︷︷ ︸
U

(−)

und

±
(
ZL1,1 ZL1,2

ZL1,2 ZL1,1

)

︸ ︷︷ ︸
ZL

·
(
I(+)

I(+)

)

︸ ︷︷ ︸
I

(+)

= ± (ZL1,1 + ZL1,2)

(
I(+)

I(+)

)

︸ ︷︷ ︸
I

(−)

= ±
(
U (+)

U (+)

)

︸ ︷︷ ︸
U

(−)

.

Das heißt die Gegentaktwelle und die Gleichtaktwelle sind solche Eigenvektoren
entsprechenden Moden. Die Stromvektoren I(−) und I(+) sind die Eigenvektoren
der Wellenwiderstandsmatrix ZL. Der Wellenwiderstand

Z
(−)
L = ± U (−)

I(−)
= ZL1,1 − ZL1,2

=
L′ − L′

1,2√
εµ

=
√
εµ

c′ − c′
1,2

=

√√√√L′ − L′
1,2

c′ − c′
1,2

=

√√√√L′ (1 − k)

c′ (1 + k)

der Gegentaktwelle und der Wellenwiderstand

Z
(+)
L = ± U (+)

I(+)
= ZL1,1 + ZL1,2

=
L′ + L′

1,2√
εµ

=
√
εµ

c′ + c′
1,2

=

√
L′ + L′

1,2

c′ + c′
1,2

=

√√√√L′ (1 + k)

c′ (1 − k)

der Gleichtaktwelle sind die zugehörigen Eigenwerte. Für die Umformungen wur-
den (3.59), (3.67) und (3.70) verwendet. Weiterhin sind die Spannungsvektoren
U(−) und U(+) die Eigenvektoren der inversen Wellenwiderstandsmatrix Z−1

L .
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3.3. Transversalelektromagnetische Wellen auf Mehrleitersystemen

Man definiert den Wellenwiderstand

ZL =
√
Z

(−)
L Z

(+)
L = 4

√√√√L′ (1 − k)

c′ (1 + k)
· L

′ (1 + k)

c′ (1 − k)
=

√
L′

c′ . (3.71)

Damit folgt für den Wellenwiderstand der Gegentaktwelle

Z
(−)
L = ZL

√
1 − k

1 + k
(3.72)

und für den Wellenwiderstand der Gleichtaktwelle

Z
(+)
L = ZL

√
1 + k

1 − k
. (3.73)

Jede sich auf einem symmetrischen Dreileitersystem ausbreitende transversal-
elektromagnetische Welle kann man in eine Gegentaktwelle und eine Gleichtakt-
welle zerlegen, siehe Abbildung 3.18.

Die Spannungen
U 1 = U (−) + U (+) (3.74)

und
U2 = −U (−) + U (+) (3.75)

der Leiter ergeben sich durch Überlagern der Gegentaktspannung U (−) und der
Gleichtaktspannung U (+). Es folgen

U (−) =
U1 − U 2

2
(3.76)

und

U (+) =
U 1 + U 2

2
. (3.77)

Die Ströme
I1 = I(−) + I(+) (3.78)

und
I2 = −I(−) + I(+) (3.79)

der Leiter ergeben sich durch Überlagern des Gegentaktstroms I(−) und des
Gleichtaktstroms I(+). Es folgen

I(−) =
I1 − I2

2
(3.80)
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U 1

U 2

I1

I2

ZL, k

U (−)

−U (−)

I(−)

−I(−)

Z
(−)
L

U (+)

U (+)

I(+)

I(+)

Z
(+)
L

Abbildung 3.18.: Zerlegung eines symmetrischen Dreileitersystems in ein Gegen-
taktsystem und ein Gleichtaktsystem. Die gestrichelt gezeich-
neten Hälften brauchen aus Symmetriegründen nicht weiter be-
trachtet zu werden
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3.3. Transversalelektromagnetische Wellen auf Mehrleitersystemen

und

I(+) =
I1 + I2

2
. (3.81)

Für die transportierte Leistung erhält man aufgrund der Orthogonalität von
Gegentaktmode und Gleichtaktmode

P =
1

2
Re(U 1I

∗
1) +

1

2
Re(U2I

∗
2)

=
1

2
Re
((
U (−) + U (+)

) (
I(−) + I(+)

)∗)

+
1

2
Re
((

−U (−) + U (+)
) (

−I(−) + I(+)
)∗)

= Re
(
U (−)I(−)∗)

︸ ︷︷ ︸
Gegentaktwelle

+ Re
(
U (+)I(+)∗)

︸ ︷︷ ︸
Gleichtaktwelle

,

(3.82)

vergleiche (3.30). Man beachte den Wegfall des Faktors 1/2 beim Berechnen
der transportierten Leistung aus den Gegentaktgrößen und den Gleichtaktgrö-
ßen der daraus resultiert, dass Spannungen und Ströme der Gegentaktwelle und
der Gleichtaktwelle jeweils nur die Spannung beziehungsweise den Strom eines
einzigen Leiters berücksichtigen.

Eine Sonderstellung nehmen die rein massegekoppelten symmetrischen Dreilei-
tersysteme mit

L′
1,2 = 0

und
c′

1,2 = 0

ein, siehe Abbildung 3.17b. Mit (3.70) folgt für den Kopplungsfaktor

k = 0 (3.83)

und folglich sind der Wellenwiderstand (3.72) der Gegentaktwelle und der Wel-
lenwiderstand (3.73) Gleichtaktwelle gleich:

Z
(−)
L = Z

(+)
L = ZL. (3.84)

Aufgabe 3.6 Es wird ein aus drei gleichartigen Leitern in gleicher relativer An-
ordnung bestehendes Dreileitersystem betrachtet, siehe Abbildung 3.19. Wie groß
ist der Kopplungsfaktor k?
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U 1 U 2

I1 I2

Masse

Leiter 1 Leiter 2

Abbildung 3.19.: Aus drei gleichartigen Leitern in gleicher relativer Anordnung
bestehendes Dreileitersystem
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Kapitel 4.

Antennentheorie

4.1. Vektorpotential

Das Ziel der folgenden Betrachtungen ist es, das von der elektrischen Stromdichte
~J einer Antenne in ein homogenes Dielektrikum abgestrahlte elektromagnetische
Feld zu berechnen. Die magnetische Stromdichte ~M sei hier Null.

Man definiert das magnetische Vektorpotential ~A als Lösung der inhomogenen
Helmholtz-Gleichung

∆ ~A + β2 ~A = −µ ~J, (4.1)

wobei
β = ω

√
εµ (4.2)

die Phasenkonstante ist. Die elektrische Stromdichte ~J ist die Quelle des magne-
tischen Vektorpotentials ~A. Bei Verwenden kartesischer Koordinaten zerfällt die
vektorielle inhomogene Helmholtz-Gleichung (4.1) des magnetischen Vektorpo-
tentials ~A in drei skalare inhomogene Helmholtz-Gleichungen

∆Ax + β2Ax = − µJx, (4.3)

∆Ay + β2Ay = − µJy, (4.4)

∆Az + β2Az = − µJz, (4.5)

siehe (2.6) und (3.15), das heißt die Komponenten der elektrischen Stromdichte
~J sind die Quellen der entsprechenden Komponenten des magnetischen Vektor-
potentials ~A. Im Folgenden wird gezeigt, dass man mittels

~B = rot
(
~A
)

(4.6)

aus dem magnetischen Vektorpotential ~A ein die Maxwellschen Gleichungen er-
füllendes elektromagnetisches Feld erhält.

Wegen (1.44) ist die aus dem magnetischen Vektorpotential ~A mit (4.6) be-
rechnete magnetische Flussdichte ~B wie im Fall verschwindender magnetischer
Ladungsdichte ρ

m
von (1.39) gefordert stets quellenfrei.
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Mit dem Durchflutungsgesetz (1.17), (1.50) und (4.6) erhält man die elektrische
Flussdichte

~D =
1

jωµ
rot
(
rot
(
~A
))

− 1

jω
~J.

Mit (1.44) und (1.41) erhält man wie von (1.34) gefordert

div
(
~D
)

=
1

jωµ
div

(
rot
(
rot
(
~A
)))

− 1

jω
div

(
~J
)

= ρ
e
.

Schließlich setzt man die aus der elektrischen Flussdichte ~D unter Verwenden
von (1.46), (2.2), (4.1) und (4.2) berechnete elektrische Feldstärke

~E =
1

jωεµ
rot
(
rot
(
~A
))

− 1

jωε
~J

=
1

jωεµ
grad

(
div

(
~A
))

− 1

jωεµ
∆ ~A − 1

jωε
~J

=
1

jωεµ
grad

(
div

(
~A
))

− jω ~A

(4.7)

noch in das Induktionsgesetz (1.24) ein. Unter Verwenden von (3.14) und (4.6)
erhält man wie bei verschwindender magnetischer Stromdichte ~M vom Indukti-
onsgesetz (1.24) gefordert

− rot
(
~E
)

= − 1

jωεµ
rot
(
grad

(
div

(
~A
)))

+ jω rot
(
~A
)

= jω ~B.

Im allgemeinen Fall, dass sowohl eine nichtverschwindende elektrische Strom-
dichte ~J als auch eine nichtverschwindende magnetische Stromdichte ~M vorhan-
den ist, kann man das elektromagnetische Feld aufgrund der Linearität der Max-
wellschen Gleichungen als Überlagerung des nur von der elektrischen Stromdichte
~J abgestrahlten elektromagnetischen Feldes und des nur von der magnetischen
Stromdichte ~M abgestrahlten elektromagnetischen Feldes berechnen. Das Berech-
nen des von der magnetischen Stromdichte ~M abgestrahlten elektromagnetischen
Feldes erfolgt unter Ausnutzen der Dualitätsbeziehungen aus Tabelle 1.1 mit Hilfe
eines elektrischen Vektorpotentials.

4.2. Kugelkoordinaten

4.2.1. Koordinatentransformation

Bei der Analyse von Antennenproblemen interessiert häufig nur das als Fernfeld
bezeichnete elektromagnetische Feld in großer Entfernung von der Sendeantenne.
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Von hier aus betrachtet erscheint die Antenne wie eine weit entfernte Punktquel-
le. Das Berechnen des Fernfeldes vereinfacht sich daher signifikant, wenn man
Kugelkoordinaten Radius r, Poldistanzwinkel ϑ und Azimutwinkel ϕ als ein an
das Problem angepasstes Koordinatensystem verwendet, siehe Abbildung 4.1. Die
kartesischen Koordinaten x, y und z ergeben sich als Funktionen von Radius r,
Poldistanzwinkel ϑ und Azimutwinkel ϕ wie folgt:

x =r sin(ϑ) cos(ϕ) , (4.8)

y =r sin(ϑ) sin(ϕ) , (4.9)

z =r cos(ϑ) . (4.10)

x

y

z

ϕ

ϑ
~r

~ur~uϕ

~uϑ

Abbildung 4.1.: Kugelkoordinaten

Die Koordinatenlinien sind die Orte, an denen alle Koordinaten bis auf eine
einzige ausgewählte Koordinate konstante Werte annehmen. Da die Koordina-
tenlinien im Gegensatz zu kartesischen Koordinaten hier im Allgemeinen keine
Geraden sind, spricht man von krummlinigen Koordinaten. Man erhält die Tan-
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gentialvektoren der Koordinatenlinien:

~tr =
∂x

∂r
~ux +

∂y

∂r
~uy +

∂z

∂r
~uz = sin(ϑ) cos(ϕ) ~ux + sin(ϑ) sin(ϕ) ~uy + cos(ϑ) ~uz,

~tϑ =
∂x

∂ϑ
~ux +

∂y

∂ϑ
~uy +

∂z

∂ϑ
~uz = r cos(ϑ) cos(ϕ) ~ux + r cos(ϑ) sin(ϕ) ~uy − r sin(ϑ) ~uz,

~tϕ =
∂x

∂ϕ
~ux +

∂y

∂ϕ
~uy +

∂z

∂ϕ
~uz = −r sin(ϑ) sin(ϕ) ~ux + r sin(ϑ) cos(ϕ) ~ux.

Man definiert die metrischen Größen:

gr =
∥∥∥~tr
∥∥∥ = 1, (4.11)

gϑ =
∥∥∥~tϑ
∥∥∥ = r, (4.12)

gϕ =
∥∥∥~tϕ
∥∥∥ = r sin(ϑ) . (4.13)

Durch Normieren der Tangentialvektoren erhält man die Einheitsvektoren in Rich-
tung der Koordinatenlinien:

~ur =
~tr
gr

= sin(ϑ) cos(ϕ) ~ux + sin(ϑ) sin(ϕ)~uy + cos(ϑ) ~uz, (4.14)

~uϑ =
~tϑ
gϑ

= cos(ϑ) cos(ϕ) ~ux + cos(ϑ) sin(ϕ) ~uy − sin(ϑ) ~uz, (4.15)

~uϕ =
~tϕ
gϕ

= − sin(ϑ) sin(ϕ) ~ux + sin(ϑ) cos(ϕ) ~uy. (4.16)

4.2.2. Integrationselemente

Im Folgenden werden zunächst die allgemeinen Beziehungen hergeleitet und dann
in einem letzten Schritt die metrischen Größen gr, gϑ und gϕ für Kugelkoordinaten
gemäß (4.11), (4.12) und (4.13) eingesetzt. Für ein Linienelement erhält man

d~s =~tr dr + ~tϑ dϑ+ ~tϕ dϕ

=~urgr dr + ~uϑgϑ dϑ+ ~uϕgϕ dϕ (4.17)

=~ur dr︸︷︷︸
dsr

+~uϑ r dϑ︸ ︷︷ ︸
dsϑ

+~uϕ r sin(ϑ) dϕ︸ ︷︷ ︸
dsϕ

. (4.18)

Kugelkoordinaten sind orthogonale Koordinaten, das heißt die Einheitsvektoren
sind orthonormal:

〈~up, ~uq〉 =





1 p = q

0 p 6= q
.
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Da die Kugelkoordinaten orthogonal sind, gilt

‖d~s‖2 =〈d~s, d~s〉
=〈~urgr dr + ~uϑgϑ dϑ+ ~uϕgϕ dϕ, ~urgr dr + ~uϑgϑ dϑ+ ~uϕgϕ dϕ〉
=g2

r dr2 + g2
ϑdϑ

2 + g2
ϕdϕ2 (4.19)

=dr2 + r2dϑ2 + r2 sin2(ϑ) dϕ2. (4.20)

Da die Einheitsvektoren ~uϑ, ~uϕ und ~ur = ~uϑ × ~uϕ orthogonal sind und ein
Rechtssystem bilden, gilt für das Flächenelement

d ~Ar =
(
~tϑ dϑ

)
×
(
~tϕ dϕ

)
= (~uϑgϑ dϑ) × (~uϕgϕ dϕ)

=gϑgϕ dϑ dϕ~ur (4.21)

=r2 sin(ϑ) dϑ dϕ~ur. (4.22)

Analog erhält man die übrigen Flächenelemente

d ~Aϑ = grgϕ dr dϕ~uϑ = r sin(ϑ) dr dϕ~uϑ (4.23)

und
d ~Aϕ = grgϑ dr dϑ~uϕ = r dr dϑ~uϕ. (4.24)

Mit dem Spatprodukt erhält man schließlich das Volumenelement

dV =〈~tr dr,
(
~tϑ dϑ

)
×
(
~tϕ dϕ

)
〉 = 〈~urgr dr, (~uϑgϑ dϑ) × (~uϕgϕ dϕ)〉

=grgϑgϕ dr dϑ dϕ (4.25)

=r2 sin(ϑ) dr dϑ dϕ. (4.26)

4.2.3. Vektoranalysis für krummlinige orthogonale Koordinaten

4.2.3.1. Gradient

Die Komponenten des Gradienten ergeben sich aus der Änderung des Skalarfeldes
φ in die entsprechenden Richtungen. Für die r-Komponente gilt beispielsweise

[
grad

(
φ
)]

r
= lim

dr→0

φ
(
r + dr

2
, ϑ, ϕ

)
− φ

(
r − dr

2
, ϑ, ϕ

)

gr dr︸ ︷︷ ︸
dsr

=
1

gr

∂φ

∂r
.

Zusammengefasst erhält man

grad
(
φ
)

=
1

gr

∂φ

∂r
~ur +

1

gϑ

∂φ

∂ϑ
~uϑ +

1

gϕ

∂φ

∂ϕ
~uϕ (4.27)

=
∂φ

∂r
~ur +

1

r

∂φ

∂ϑ
~uϑ +

1

r sin(ϑ)

∂φ

∂ϕ
~uϕ, (4.28)
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wobei in der letzten Zeile die metrischen Größen gr, gϑ und gϕ für Kugelkoordi-
naten gemäß (4.11), (4.12) und (4.13) eingesetzt wurden.

4.2.3.2. Divergenz

Eine Rechnung analog zu Abschnitt 1.1.4.2 ergibt für ein infinitesimales Volu-
menelement dV

{

∂ dV

〈 ~D, d ~A〉 =Dr

(
r +

dr

2
, ϑ, ϕ

)
· gϑ

(
r +

dr

2
, ϑ, ϕ

)
· gϕ

(
r +

dr

2
, ϑ, ϕ

)
· dϑ · dϕ

−Dr

(
r − dr

2
, ϑ, ϕ

)
· gϑ

(
r − dr

2
, ϑ, ϕ

)
· gϕ

(
r − dr

2
, ϑ, ϕ

)
· dϑ · dϕ

+Dϑ

(
r, ϑ+

dϑ

2
, ϕ

)
· gr

(
r, ϑ+

dϑ

2
, ϕ

)
· gϕ

(
r, ϑ+

dϑ

2
, ϕ

)
· dr · dϕ

−Dϑ

(
r, ϑ− dϑ

2
, ϕ

)
· gr

(
r, ϑ− dϑ

2
, ϕ

)
· gϕ

(
r, ϑ− dϑ

2
, ϕ

)
· dr · dϕ

+Dϕ

(
r, ϑ, ϕ+

dϕ

2

)
· gr

(
r, ϑ, ϕ+

dϕ

2

)
· gϑ

(
r, ϑ, ϕ+

dϕ

2

)
· dr · dϑ

−Dϕ

(
r, ϑ, ϕ− dϕ

2

)
· gr

(
r, ϑ, ϕ− dϕ

2

)
· gϑ

(
r, ϑ, ϕ− dϕ

2

)
· dr · dϑ.

Dies in die Definition der Divergenz (1.30) eingesetzt ergibt mit dem Volumen-
element dV gemäß (4.25)

div
(
~D
)

= lim
dr dϑ dϕ→0

v
∂ dV

〈 ~D, d ~A〉

grgϑgϕ dr dϑ dϕ
︸ ︷︷ ︸

dV

=
1

grgϑgϕ

(
∂

∂r
(Drgϑgϕ) +

∂

∂ϑ
(Dϑgrgϕ) +

∂

∂ϕ

(
Dϕgrgϑ

))
(4.29)

=
1

r2

∂

∂r

(
r2Dr

)
+

1

r sin(ϑ)

∂

∂ϑ
(sin(ϑ)Dϑ) +

1

r sin(ϑ)

∂Dϕ

∂ϕ
, (4.30)

wobei in der letzten Zeile die metrischen Größen gr, gϑ und gϕ für Kugelkoordi-
naten gemäß (4.11), (4.12) und (4.13) eingesetzt wurden.
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4.2.3.3. Rotation

Eine Rechnung analog zu Abschnitt 1.1.2.2 ergibt für ein infinitesimales Flächen-
element dAϕ

z

∂ dAϕ

〈 ~H, d~s〉 =Hr

(
r, ϑ− dϑ

2
, ϕ

)
· gr

(
r, ϑ− dϑ

2
, ϕ

)
· dr

+Hϑ

(
r +

dr

2
, ϑ, ϕ

)
· gϑ

(
r +

dr

2
, ϑ, ϕ

)
· dϑ

−Hr

(
r, ϑ+

dϑ

2
, ϕ

)
· gr

(
r, ϑ+

dϑ

2
, ϕ

)
· dr

−Hϑ

(
r − dr

2
, ϑ, ϕ

)
· gϑ

(
r − dr

2
, ϑ, ϕ

)
· dϑ.

Dies in die Definition der Rotation (1.13) eingesetzt ergibt mit dem Flächenele-
ment dAϕ gemäß (4.24) für die ϕ-Komponente der Rotation

[
rot
(
~H
)]
ϕ

= lim
dr dϑ→0

u
∂ dAϕ

〈 ~H, d~s〉

grgϑ dr dϑ︸ ︷︷ ︸
dAϕ

=
1

grgϑ

(
∂

∂r
(Hϑgϑ) − ∂

∂ϑ
(Hrgr)

)
.

Die übrigen Komponenten erhält man auf analoge Art und Weise, so dass man
zusammengefasst das Endergebnis

rot
(
~H
)

=
1

gϑgϕ

(
∂

∂ϑ

(
Hϕgϕ

)
− ∂

∂ϕ
(Hϑgϑ)

)
~ur

+
1

grgϕ

(
∂

∂ϕ
(Hrgr) − ∂

∂r

(
Hϕgϕ

))
~uϑ

+
1

grgϑ

(
∂

∂r
(Hϑgϑ) − ∂

∂ϑ
(Hrgr)

)
~uϕ (4.31)

=

(
1

r sin(ϑ)

∂

∂ϑ

(
sin(ϑ)Hϕ

)
− 1

r sin(ϑ)

∂Hϑ

∂ϕ

)
~ur

+

(
1

r sin(ϑ)

∂H r

∂ϕ
− 1

r

∂

∂r

(
rHϕ

))
~uϑ

+

(
1

r

∂

∂r
(rHϑ) − 1

r

∂H r

∂ϑ

)
~uϕ (4.32)

erhält, wobei in der letzten Gleichung die metrischen Größen gr, gϑ und gϕ für
Kugelkoordinaten gemäß (4.11), (4.12) und (4.13) eingesetzt wurden.
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4.2.3.4. Laplace-Operator

Anwenden des skalaren Laplace-Operators (3.15) auf ein Skalarfeld φ ergibt

∆φ = div
(
grad

(
φ
))

= div

(
1

gr

∂φ

∂r
~ur +

1

gϑ

∂φ

∂ϑ
~uϑ +

1

gϕ

∂φ

∂ϕ
~uϕ

)

=
1

grgϑgϕ

(
∂

∂r

(
gϑgϕ
gr

∂φ

∂r

)
+

∂

∂ϑ

(
grgϕ
gϑ

∂φ

∂ϑ

)
+

∂

∂ϕ

(
grgϑ
gϕ

∂φ

∂ϕ

))
(4.33)

=
1

r2

∂

∂r

(
r2∂φ

∂r

)
+

1

r2 sin(ϑ)

∂

∂ϑ

(
sin(ϑ)

∂φ

∂ϑ

)
+

1

r2 sin2(ϑ)

∂2φ

∂ϕ2
. (4.34)

In der letzten Zeile wurden die metrischen Größen gr, gϑ und gϕ für Kugelkoor-
dinaten gemäß (4.11), (4.12) und (4.13) eingesetzt.

Aufgabe 4.1 Ein weiteres häufig verwendetes Koordinatensystem sind die Zylin-
derkoordinaten Radius r, Azimutwinkel ϕ und Höhe z, siehe Abbildung 4.2. Die
kartesischen Koordinaten x, y und z ergeben sich als Funktionen von Radius r,
Azimutwinkel ϕ und Höhe z wie folgt:

x =r cos(ϕ) ,

y =r sin(ϕ) ,

z =z.

Berechnen Sie die Tangentialvektoren, die metrischen Größen, die Integrations-
elemente und die Differentialoperatoren für Zylinderkoordinaten!

x

y

z

ϕ

~r

~ur~uϕ

~uz

Abbildung 4.2.: Zylinderkoordinaten

78



4.3. Berechnen des magnetischen Vektorpotentials

4.3. Berechnen des magnetischen Vektorpotentials

Die folgenden Betrachtungen gelten nur für homogene Dielektrika. Zunächst be-
trachten wir einen in z-Richtung orientierten idealen elektrischen Dipol (Hertz-
schen Dipol) im Ursprung, siehe Abbildung 4.3. Der ideale elektrische Dipol be-
steht aus zwei im Gegentakt oszillierenden elektrischen Ladungen Q und −Q in
einem infinitesimalen Abstand l. Zwischen diesen Ladungen fließt ein elektrischer
Linienstrom

I0 = jωQ,

siehe Abschnitt 1.1.6. Trotz des infinitesimalen Abstands l soll das elektrische
Dipolmoment

Ql =
I0l

jω
(4.35)

einen endlichen Wert annehmen.

z

x

y

+l/2

−l/2

+Q

−Q

~r

I0

Abbildung 4.3.: Idealer elektrischer Dipol

Die elektrische Stromdichte ~J(~r) mit der z-Komponente

Jz(~r) = I0l δ(~r)

erzeugt die z-Komponente Az des magnetischen Vektorpotentials ~A. Außerhalb
des Ursprungs, das heißt für r > 0 ist die z-Komponente Jz(~r) der elektrischen
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Stromdichte ~J(~r) Null und aus der inhomogenen Helmholtz-Gleichung (4.5) folgt
die homogene Helmholtz-Gleichung

∆Az + β2Az = 0.

Die hier gesuchte Lösung der homogenen Helmholtz-Gleichung muss kugelsym-
metrisch sein, das heißt die z-Komponente Az des magnetischen Vektorpotentials
~A darf nur vom Radius r und nicht von Poldistanzwinkel ϑ und Azimutwinkel ϕ
abhängen. Mit dem skalaren Laplace-Operator (4.34) in Kugelkoordinaten folgt
die homogene Helmholtz-Gleichung

1

r2

∂

∂r

(
r2∂Az

∂r

)
+ β2Az = 0

für ein kugelsymmetrisches Szenario. Man findet die hier interessierende retar-
dierte Lösung

Az ∼ 1

r
e−jβr

sowie die wegen Verletzens des Kausalitätsprinzips physikalisch unsinnige avan-
cierte Lösung

Az ∼ 1

r
e+jβr .

Zum Bestimmen des Proportionalitätsfaktors betrachten wir die z-Komponente
Az des magnetischen Vektorpotentials ~A in unmittelbarer Nähe des idealen elek-
trischen Dipols, das heißt für sehr kleine r ≪ 1/β. Dann ist die Phasenkonstante
β vernachlässigbar klein und die z-Komponente

Az ∼ 1

r

des magnetischen Vektorpotentials ~A muss der Poisson-Gleichung

∆Az = div(grad(Az)) = −µI0l δ(~r)

genügen, siehe (4.5) und (3.15). Für eine kleine Kugel um den Ursprung folgt mit
dem Satz von Gauss (1.32) und dem Gradienten in Kugelkoordinaten (4.28)

µI0l =
y

Kugel

µI0l δ(~r) dV = −
y

Kugel

div(grad(Az)) dV

∼ −
y

Kugel

div
(

grad
(

1

r

))
dV = −

{

Kugeloberfläche

〈grad
(

1

r

)
, d ~Ar〉

=
{

Kugeloberfläche

1

r2
dAr = 4π.
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Der Proportionalitätsfaktor muss also µI0l

4π
sein und man erhält die z-Komponente

Az(~r) = µI0l
e−jβr

4πr︸ ︷︷ ︸
ψ(~r)

(4.36)

des magnetischen Vektorpotentials ~A eines idealen elektrischen Dipols im Ur-
sprung. Die im Folgenden immer wieder verwendete, einer Kugelwelle entspre-
chende Elementarlösung

ψ(~r) =
e−jβr

4πr
=

e−jβ‖~r‖

4π ‖~r‖ (4.37)

ist als Greensche Funktion des freien Raumes bekannt.
Aufgrund der Verschiebungsinvarianz der Helmholtz-Gleichung (4.5) ergibt sich

die von einem an den Ort ~r′ verschobenen idealen elektrischen Dipol

Jz(~r) = I0l δ
(
~r − ~r′

)

erzeugte z-Komponente des magnetischen Vektorpotentials ~A zu

Az(~r) = µI0lψ
(
~r − ~r′

)
.

Mit Hilfe der Ausblendeigenschaft des Dirac-Impulses δ(·) kann man eine be-
liebige elektrische Stromdichte J z(~r) in z-Richtung als gewichtete Überlagerung
von verschobenen idealen elektrischen Dipolen darstellen:

Jz(~r) =
y

V ′

J z

(
~r′
)
δ
(
~r − ~r′

)
dV ′.

Aufgrund der Linearität und Verschiebungsinvarianz der Helmholtz-Gleichung
(4.5) ergibt sich die z-Komponente des magnetischen Vektorpotentials ~A zu

Az(~r) =
y

V ′

µJz

(
~r′
)
ψ
(
~r − ~r′

)
dV ′. (4.38)

Formal handelt es sich bei diesem Integral um ein Faltungsintegral [FB08]. Die z-
Komponente Az(~r) des magnetischen Vektorpotentials ~A erhält man durch Falten
der mit µ skalierten z-Komponente Jz(~r) der elektrischen Stromdichte ~J(~r) mit
der Greenschen Funktion ψ(~r).

Gleichartige Betrachtungen gelten auch für die übrigen Komponenten des ma-
gnetischen Vektorpotentials ~A. Bei Verwenden kartesischer Koordinaten erhält
man zusammengefasst das magnetische Vektorpotential

~A(~r) =
y

V ′

µ ~J
(
~r′
)
ψ
(
~r − ~r′

)
dV ′. (4.39)
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Mit den hier eingeführten Hilfsmitteln ist es beispielsweise möglich, bei gege-
bener Strombelegung ~J

(
~r′
)

in einer Antenne das abgestrahlte elektromagnetische
Feld zu berechnen. Hierzu wird man zunächst das magnetische Vektorpotential
~A(~r) und daraus die Feldstärken berechnen.

4.4. Fernfeldnäherung

Beim Einsatz in Funkkommunikationssystemen interessiert man sich primär für
das Fernfeld der Sendeantenne, das heißt für das elektromagnetische Feld in einer
relativ zu den Antennenabmessungen und zu 1/β großen Entfernung von der
Sendeantenne.

Allgemein gilt nach dem Kosinussatz

∥∥∥~r − ~r′
∥∥∥ =

√
r2 + r′2 − 2rr′ cos(ξ),

siehe Abbildung 4.4. Im Fernfeld ist r′ relativ klein, das heißt es gilt r′ ≪ r, und
man kann die lineare Taylor-Approximation

∥∥∥~r − ~r′
∥∥∥ ≈ r − r′ cos(ξ)

verwenden. Eingesetzt in die Greensche Funktion (4.37) erhält man mit dem in
die betrachtete Ausbreitungsrichtung zeigenden Phasenvektor ~β gemäß (2.13) die
Fernfeldnäherung der Greenschen Funktion

ψ
(
~r − ~r′

)
≈ e−jβ(r−r′ cos(ξ))

4πr
=

e−jβr

4πr
ejβr′ cos(ξ) =

e−jβr

4πr
ej〈~β,~r′〉 . (4.40)

Durch Einsetzen der Fernfeldnäherung der Greenschen Funktion in (4.39) er-
hält man die Fernfeldnäherung des magnetischen Vektorpotentials in kartesischen
Koordinaten

~A(~r) ≈ µ e−jβr

4πr︸ ︷︷ ︸
Abstandsfaktor

y

V ′

~J
(
~r′
)

ejβr′ cos(ξ) dV ′

︸ ︷︷ ︸
vektorieller Richtungsfaktor ~F

=
µ e−jβr

4πr︸ ︷︷ ︸
Abstandsfaktor

y

V ′

~J
(
~r′
)

ej〈~β,~r′〉 dV ′

︸ ︷︷ ︸
vektorieller Richtungsfaktor ~F

.

(4.41)

82



4.4. Fernfeldnäherung

dV ′

~A

r′

r − r′ cos(ξ) ≈
∥∥∥~r − ~r′

∥∥∥

∥∥∥~r − ~r′
∥∥∥

ξ

~J

r′ cos(ξ)

Abbildung 4.4.: Zur Fernfeldnäherung

Der Faktor ej〈~β,~r′〉 resultiert aus den bei der Überlagerung der magnetischen Vek-
torpotentiale ~A(~r) der elektrischen Stromdichten ~J

(
~r′
)

in den Volumenelemen-
ten dV ′ zu berücksichtigenden geometriebedingten Phasenverschiebungen. Die
Richtungsabhängigkeit des magnetischen Vektorpotentials ~A(~r) wird im Fernfeld
durch den vektoriellen Richtungsfaktor

~F =
y

V ′

~J
(
~r′
)

ejβr′ cos(ξ) dV ′ =
y

V ′

~J
(
~r′
)

ej〈~β,~r′〉 dV ′ (4.42)

beschrieben. Die Entfernungsabhängigkeit des magnetischen Vektorpotentials ~A(~r)

ist im Fernfeld durch den Abstandsfaktor µ e−jβr

4πr
gegeben, das heißt der Betrag

des magnetischen Vektorpotentials ~A(~r) nimmt im Fernfeld mit 1/r ab. Die Wel-
lenlänge ist

λ =
2π

β
. (4.43)

Bei vielen Antennen gelingt es zumindest näherungsweise, einen Nullpunkt
des Koordinatensystems so zu definieren, dass die Argumente der Komponenten
des vektoriellen Richtungsfaktors ~F (ϑ, ϕ) für den interessierenden Winkelbereich
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ϑ und ϕ konstant sind. Die im Fernfeld beobachtete elektromagnetische Welle
scheint dann eine von diesem als Phasenzentrum bezeichneten Nullpunkt ausge-
hende Kugelwelle zu sein.

Durch Berechnen der Rotation (4.32) des magnetischen Vektorpotentials ~A in
Kugelkoordinaten erhält man gemäß (4.6) unter Verwenden (1.50) die magneti-
sche Feldstärke

~H =
1

µ
rot
(
~A
)

=
1

µr

(
1

sin(ϑ)

∂

∂ϑ

(
sin(ϑ)Aϕ

)
− 1

sin(ϑ)

∂Aϑ

∂ϕ

)
~ur

+
1

µr

(
1

sin(ϑ)

∂Ar

∂ϕ
− ∂

∂r

(
rAϕ

))
~uϑ +

1

µr

(
∂

∂r
(rAϑ) − ∂Ar

∂ϑ

)
~uϕ.

(4.44)

Im Fernfeld dominieren die nur mit 1/r abnehmenden Terme und man kann alle
stärker abnehmenden Terme vernachlässigen. Man erhält die Fernfeldnäherung

~H ≈ − 1

µr

∂

∂r

(
rAϕ

)
~uϑ +

1

µr

∂

∂r
(rAϑ) ~uϕ =

1

r

∂

∂r

(
e−jβr

4π

)(
−F ϕ~uϑ + F ϑ~uϕ

)

=
jβ e−jβr

4πr

(
F ϕ~uϑ − F ϑ~uϕ

)
(4.45)

=j
β

µ
Aϕ~uϑ − j

β

µ
Aϑ~uϕ = j

β

µ
~A × ~ur (4.46)

für die magnetische Feldstärke. F ϑ und Fϕ sind die ϑ-Komponente beziehungs-

weise die ϕ-Komponente des vektoriellen Richtungsfaktors ~F .
Mit Hilfe des Durchflutungsgesetzes (1.17) und (1.46) kann man nun aus der

magnetischen Feldstärke ~H die elektrische Feldstärke ~E berechnen. Mit der Rota-
tion in Kugelkoordinaten (4.32) ergibt sich unter Verwenden von (4.2) die Fern-
feldnäherung der elektrischen Feldstärke, wenn man wieder alle stärker als mit
1/r abnehmende Terme vernachlässigt, zu

~E =
1

jωε
rot
(
~H
)

=
1

jωεr



(

1

sin(ϑ)

∂

∂ϑ

(
sin(ϑ)Hϕ

)
− 1

sin(ϑ)

∂Hϑ

∂ϕ

)
~ur

+

(
1

sin(ϑ)

∂Hr

∂ϕ
− ∂

∂r

(
rHϕ

))
~uϑ +

(
∂

∂r
(rHϑ) − ∂Hr

∂ϑ

)
~uϕ


 (4.47)

≈ 1

jωεr

(
− ∂

∂r

(
rHϕ

)
~uϑ +

∂

∂r
(rHϑ) ~uϕ

)
≈ β

ωεr

∂

∂r

(
e−jβr

4π

)(
F ϑ~uϑ + F ϕ~uϕ

)

= − j
β2

ωε

e−jβr

4πr

(
F ϑ~uϑ + F ϕ~uϕ

)
(4.48)

= − jω
(
Aϑ~uϑ + Aϕ~uϕ

)
= jω

(
~A × ~ur

)
× ~ur. (4.49)

84



4.4. Fernfeldnäherung

Mit dem Feldwellenwiderstand

ZF =
√
µ

ε
(4.50)

und (4.2) folgt aus (4.46) und (4.49) für das Fernfeld

~E = ZF
~H × ~ur. (4.51)

Die von einer Antenne abgestrahlte elektromagnetische Welle ist im Fernfeld ei-
ne transversalelektromagnetische Welle. Magnetischer Feldstärkevektor ~H und
elektrischer Feldstärkevektor ~E sind in Phase und stehen zu jedem Zeitpunkt
senkrecht aufeinander. Die Feldstärken nehmen mit 1/r ab und es gibt eine Rich-
tungsabhängigkeit der Feldstärken. Der in (1.79) eingeführte komplexe Poynting-
Vektor

~S =
1

2

(
ZF

~H × ~ur

)
× ~H

∗
=

1

2
ZF

∥∥∥ ~H
∥∥∥

2
~ur =

1

2ZF

∥∥∥ ~E
∥∥∥

2
~ur (4.52)

zeigt im Fernfeld von der Antenne radial nach außen weg und nimmt mit 1/r2 ab,
was auch aus der Energieerhaltung folgt. Da der komplexe Poynting-Vektor ~S im
Fernfeld rein reell ist, transportiert die abgestrahlte elektromagnetische Welle im
Fernfeld nur Wirkleistung, deren Betrag durch die Strahlungsleistungsdichte

S =
∥∥∥Re

(
~S
)∥∥∥ =

1

2
ZF

∥∥∥ ~H
∥∥∥

2
=

1

2ZF

∥∥∥ ~E
∥∥∥

2
(4.53)

gegeben ist. Ausgehend von (1.80) kann man die abgestrahlte Leistung P durch
Integration der Strahlungsleistungsdichte S über eine Kugeloberfläche mit dem
Flächenelement dAr gemäß (4.22) berechnen:

P =
{

Kugeloberfläche

S dAr =
πw

ϑ=0

2πw

ϕ=0

Sr2 sin(ϑ) dϕ dϑ. (4.54)

Als Beispiel wird der ideale elektrische Dipol betrachtet. Das magnetische Vek-
torpotential ~A des idealen elektrischen Dipols wurde bereits in (4.36) berechnet.
Umgerechnet in Kugelkoordinaten erhält man

~A = 〈 ~A, ~ur〉~ur + 〈 ~A, ~uϑ〉~uϑ + 〈 ~A, ~uϕ〉~uϕ =
µI0l e

−jβr

4πr
(cos(ϑ) ~ur − sin(ϑ) ~uϑ) ,

siehe (4.14), (4.15) und (4.16). Hieraus ergibt sich mit (4.44) die magnetische
Feldstärke

~H =
1

µr

(
∂

∂r
(rAϑ) − ∂Ar

∂ϑ

)
~uϕ =jβI0l

e−jβr

4πr

(
1 +

1

jβr

)
sin(ϑ) ~uϕ (4.55)

≈jβI0l
e−jβr

4πr
sin(ϑ) ~uϕ (4.56)
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des idealen elektrischen Dipols und mit (4.47), (4.2) und (4.50) die elektrische
Feldstärke

~E =
1

jωεr

1

sin(ϑ)

∂

∂ϑ

(
sin(ϑ)Hϕ

)
~ur − 1

jωεr

∂

∂r

(
rHϕ

)
~uϑ

=jβZFI0l
e−jβr

4πr



(

2

jβr
+

2

(jβr)2

)
cos(ϑ) ~ur

+

(
1 +

1

jβr
+

1

(jβr)2

)
sin(ϑ) ~uϑ


 (4.57)

≈jβZFI0l
e−jβr

4πr
sin(ϑ) ~uϑ (4.58)

des idealen elektrischen Dipols. Die jeweils in den letzten Zeilen angegebenen
Näherungen gelten im Fernfeld, wo es sich erwartungsgemäß um eine transver-
salelektromagnetische Welle handelt. Das gesamte elektromagnetische Feld ist,
wie aufgrund der Antennengeometrie erwartet, rotationssymmetrisch bezüglich
der z-Achse. Man erkennt, dass die magnetischen Feldlinien kreisförmig um die
z-Achse, das heißt entlang von Breitenkreisen auf Kugeln um die Antenne verlau-
fen. Die elektrischen Feldlinien verlaufen im Fernfeld entlang der Meridiankreise
auf Kugeln um die Antenne, siehe Abbildung 4.5. Die Richtungsabhängigkeit der
Feldstärken im Fernfeld wird durch den Faktor sin(ϑ) beschrieben. Die transver-
salelektromagnetische Welle im Fernfeld ist linear vertikal polarisiert. Der kom-
plexe Poynting-Vektor

~S =
1

2
ZF

(
β |I0| l sin(ϑ)

4πr

)2

~ur (4.59)

des idealen elektrischen Dipols gemäß (4.52) ist im Fernfeld wie erwartet reell und
zeigt von der Antenne radial nach außen weg. Die vom idealen elektrischen Dipol
abgestrahlte Strahlungsleistungsdichte (4.53) im Fernfeld ist

S =
1

2
ZF

(
β |I0| l sin(ϑ)

4πr

)2

. (4.60)

Die Strahlungsleistungsdichte S nimmt erwartungsgemäß mit 1/r2 ab.

Aufgabe 4.2 Zeigen Sie, dass das Phasenzentrum einer Antenne mit einer zum
Ursprung symmetrischen elektrischen Stromdichte

~J
(
~r′
)

= ~J
∗(−~r′

)

im Ursprung liegt!
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4.4. Fernfeldnäherung
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Abbildung 4.5.: Elektrisches Feld eines idealen elektrischen Dipols [KD90]. Mo-
mentaufnahmen im Abstand einer zwölftel Periodendauer
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4.5. Reziprozitätstheorem

Die Feldstärken ~E und ~H beschreiben das durch eine erste Konfiguration an
Quellen außerhalb des Gebiets V verursachte elektromagnetische Feld und die

Feldstärken ~E
′
und ~H

′
beschreiben das durch eine zweite Konfiguration an Quel-

len außerhalb des Gebiets V verursachte elektromagnetische Feld. Es wird eine
geschlossene Hülle ∂V um das quellenfreie, mit einem reziproken, das heißt einem
linearen und isotropen Material ausgefüllte Gebiet V betrachtet. Mit dem Satz
von Gauss (1.32) und (1.81) erhält man

{

∂V

〈 ~E × ~H
′ − ~E

′ × ~H, d ~A〉

=
y

V

div
(
~E × ~H

′ − ~E
′ × ~H

)
dV

=
y

V

(
〈 ~H ′

, rot
(
~E
)
〉 − 〈 ~E, rot

(
~H

′)〉 − 〈 ~H, rot
(
~E

′)〉 + 〈 ~E ′
, rot

(
~H
)
〉
)

dV.

Mit dem Durchflutungsgesetz (1.17), dem Induktionsgesetz (1.24), (1.46), (1.50)
und (1.54) folgt im quellenfreien Gebiet V mit ~J = ~0 und ~M = ~0 weiter
{

∂V

〈 ~E × ~H
′ − ~E

′ × ~H, d ~A〉

=
y

V

(
〈 ~H ′

,−jωµ ~H〉 − 〈 ~E, κ~E ′
+ jωε ~E

′〉 − 〈 ~H,−jωµ ~H
′〉 + 〈 ~E ′

, κ ~E + jωε ~E〉
)

dV

=0.

Es folgt das Reziprozitätstheorem
{

∂V

〈 ~E × ~H
′
, d ~A〉 =

{

∂V

〈 ~E′ × ~H, d ~A〉. (4.61)

4.6. Eindeutigkeitstheorem

Es wird ein quellenfreies Gebiet V betrachtet. Die elektrische Feldstärke ~E und die
magnetische Feldstärke ~H beschreiben ein durch Quellen außerhalb des Gebiets
V erzeugtes elektromagnetisches Feld im Gebiet V . Die elektrische Feldstärke
~E ′ und die magnetische Feldstärke ~H ′ beschreiben ein weiteres in dem Gebiet
V mögliches, im Allgemeinen durch andere Quellen außerhalb des Gebiets V
erzeugtes elektromagnetisches Feld, siehe Abbildung 4.6. Aufgrund der Linearität
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~E, ~H ~E ′, ~H ′

V V

~J

~M

~J ′

~M ′

Abbildung 4.6.: Eindeutigkeitstheorem

der Maxwellschen Gleichungen ist dann auch das Differenzfeld ~E− ~E ′ und ~H− ~H ′

ein in dem quellenfreien Gebiet V mögliches elektromagnetisches Feld.
Gleichsetzen der aus dem Poynting-Vektor (1.77) mit (1.78) berechneten Strah-

lungsleistung P und der mit (1.76) berechneten Strahlungsleistung P ergibt
{

∂V

〈
((
~E − ~E ′

)
×
(
~H − ~H ′

))
, d ~A〉

= − ∂

∂t

y

V

(
1

2
ε〈 ~E − ~E ′, ~E − ~E ′〉 +

1

2
µ〈 ~H − ~H ′, ~H − ~H ′〉

)
dV

−
y

V

κ〈 ~E − ~E ′, ~E − ~E ′〉 dV

= − ∂

∂t

y

V

(
1

2
ε
∥∥∥ ~E − ~E ′

∥∥∥
2

+
1

2
µ
∥∥∥ ~H − ~H ′

∥∥∥
2
)

dV −
y

V

κ
∥∥∥ ~E − ~E ′

∥∥∥
2

dV.

Falls die Tangentialkomponenten der elektrischen Feldstärken ~E und ~E ′ oder die
Tangentialkomponenten der magnetischen Feldstärken ~H und ~H ′ auf der Hül-
le ∂V übereinstimmen, so ist die durch die Hülle ∂V transportierte Leistung P
gemäß der ersten Zeile der Gleichung Null. Die letzte Zeile der Gleichung muss
dann ebenfalls zu allen Zeiten Null sein. Dies ist nur möglich, falls ~E = ~E ′ und
~H = ~H ′ gelten, das heißt wenn die Feldstärken in jedem Punkt im Gebiet V
gleich sind. Das von Quellen außerhalb eines Gebiets V erzeugte elektromagneti-
sche Feld innerhalb eines quellenfreien Gebiets V ist folglich durch die Tangenti-
alkomponenten der elektrischen Feldstärke oder die Tangentialkomponenten der
magnetischen Feldstärke auf der Hülle ∂V des Gebiets eindeutig bestimmt. Dies
ist die Aussage des Eindeutigkeitstheorems. Das Eindeutigkeitstheorem gilt auch,
wenn sich im Gebiet V zusätzlich in beiden Szenarien gleiche Quellen befinden,
da die im obigen Beweis zu bildende Differenz der Quellen dann Null ist.
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4.7. Spiegelungsprinzipien

4.7.1. Spiegelung am idealen elektrischen Leiter

In der Oberfläche einer unendlich ausgedehnten ideal elektrisch leitenden Ebene
werden sich elektrische Flächenstromdichten ~JF derart einstellen, dass die Grenz-
flächenbedingungen erfüllt sind. Insbesondere müssen gemäß (1.65) die Tangen-
tialkomponenten der elektrischen Feldstärke ~E verschwinden. Wie man zum Bei-
spiel durch Überlagern der elektromagnetischen Felder idealer elektrischer Dipole
leicht feststellt, sind die Grenzflächenbedingungen am Ort des idealen elektrischen
Leiters auch dann erfüllt, wenn statt der elektrischen Flächenstromdichten ~JF ge-
spiegelte Quellen gemäß Abbildung 4.7 vorhanden sind. Die elektromagnetischen
Felder im rechten Halbraum sind in beiden Fällen wegen des Eindeutigkeitstheo-
rems identisch, da die Tangentialkomponenten der elektrischen Feldstärken am
Ort der Oberfläche des idealen elektrischen Leiters in beiden Fällen gleich Null
sind und die Quellen im rechten Halbraum gleich sind.

~J ~J ~J

~M ~M ~M

Abbildung 4.7.: Spiegelung elektrischer Stromdichten ~J und magnetischer Strom-
dichten ~M an einem unendlich ausgedehnten ebenen idealen elek-
trischen Leiter

4.7.2. Spiegelung am idealen magnetischen Leiter

Dual zum Fall der unendlich ausgedehnten ideal elektrisch leitenden Ebene kann
man auch die Grenzflächenbedingungen an der unendlich ausgedehnten ideal ma-
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gnetisch leitenden Ebene durch gespiegelte Quellen berücksichtigen, siehe Abbil-
dung 4.8.

~J ~J ~J

~M ~M ~M

Abbildung 4.8.: Spiegelung elektrischer Stromdichten ~J und magnetischer Strom-
dichten ~M an einem unendlich ausgedehnten ebenen idealen ma-
gnetischen Leiter

4.8. Äquivalenztheoreme

4.8.1. Huygenssches Prinzip

Anschaulich kann nach dem Huygensschen Prinzip jeder Punkt einer Wellenfront
als Ausgangspunkt einer sekundären Kugelwelle betrachtet werden und man kann
die Wellenfront wieder als Einhüllende dieser sekundären Wellenfronten rekonstru-
ieren. Das Huygenssche Prinzip ist bei vielen Berechnungen zur Wellenausbreitung
hilfreich. Beispielsweise kann ein auf einer beliebigen Hülle um die eigentliche An-
tenne vorhandenes elektromagnetisches Feld wieder als Ausgangspunkt der elek-
tromagnetischen Welle betrachtet werden, das heißt die Hülle wirkt als virtuelle
Antenne. Im Folgenden sollen die Ideen des Huygensschen Prinzips mathematisch
präzise formuliert werden.
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4.8.2. Formulierung mit feldfreiem Innenraum

Eine Hülle teilt den Raum in ein Gebiet V1 mit den ein elektromagnetisches Feld
erzeugenden Quellen ~J und ~M und ein quellenfreies Gebiet V2, siehe Abbildung
4.9. ~E und ~H sind die Feldstärken des von den Quellen ~J und ~M erzeugten, den
gesamten aus den Gebieten V1 und V2 bestehenden Raum erfüllenden elektroma-
gnetischen Feldes.

~E, ~H

~E, ~H ~E
′
= ~E, ~H

′
= ~H

0, 0

V1

V2

V1

V2

~JF = − ~H × ~u

~MF = ~E × ~u
~J ~M

~u

Abbildung 4.9.: Formulierung des Äquivalenztheorems mit feldfreiem Innenraum

Das elektromagnetische Feld

~E
′
=





0 in V1

~E in V2

und

~H
′
=





0 in V1

~H in V2

.

erfüllt zusammen mit den virtuellen Quellen

~JF = − ~H × ~u (4.62)

und
~MF = ~E × ~u (4.63)

auf der Hülle des nun quellenfreien und feldfreien Gebiets V1 die (1.58) und (1.60)
entsprechenden Grenzflächenbedingungen auf der Hülle des Gebiets V1, ist also bei
Abwesenheit der Quellen ~J und ~M eine Lösung der Maxwellschen Gleichungen.
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Aufgrund des Eindeutigkeitstheorems entspricht dieses durch die Flächenstrom-
dichten ~JF und ~MF bei Abwesenheit der Quellen ~J und ~M erzeugte elektroma-
gnetische Feld im Gebiet V2 dem von den Quellen ~J und ~M bei Abwesenheit der
Flächenstromdichten ~JF und ~MF erzeugten elektromagnetischen Feld im Gebiet
V2.

4.8.3. Formulierung mit idealen Leitern

In einem nächsten Schritt kann man das nun feldfreie Gebiet V1 mit einem idea-
len elektrischen Leiter oder einem idealen magnetischen Leiter ausfüllen, siehe
Abbildung 4.10.

0, 0

~E, ~H

V1

V2

~JF = − ~H × ~u

~MF = ~E × ~u

~u

idealer
elektrischer
Leiter

~E, ~H

V1

V2

~JF = − ~H × ~u

~MF = ~E × ~u

~u

idealer
magnetischer
Leiter

~E, ~H

V1

V2

~JF = − ~H × ~u

~MF = ~E × ~u

~u

Abbildung 4.10.: Formulierung des Äquivalenztheorems mit idealen Leitern
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Das von den Flächenstromdichten ~JF und ~MF erzeugte elektromagnetische Feld
im Gebiet V2 ändert sich durch das Einbringen eines idealen Leiters im feldfrei-
en Gebiet V1 nicht. Falls das feldfreie Gebiet V1 mit einem idealen elektrischen
Leiter ausgefüllt ist, so ist die Tangentialkomponente der elektrischen Feldstär-
ke ~E auf der Leiteroberfläche durch die magnetische Flächenstromdichte ~MF und
die (1.58) entsprechende Grenzflächenbedingung eindeutig gegeben. Aufgrund des
Eindeutigkeitstheorems ist dann auch das elektromagnetische Feld im Gebiet V2

eindeutig bestimmt. Die elektrische Flächenstromdichte ~JF folgt direkt aus der
(1.68) entsprechenden Grenzflächenbedingung und braucht nicht bekannt zu sein.
Dual dazu ist das elektromagnetische Feld im Gebiet V2 eindeutig durch die elek-
trische Flächenstromdichte ~JF und die Grenzflächenbedingungen des idealen ma-
gnetischen Leiters bestimmt.

Das Berechnen des von den Flächenstromdichten ~JF oder ~MF erzeugten elektro-
magnetischen Feldes ist jedoch im Allgemeinen kompliziert, da die Grenzflächen-
bedingungen an den Leiteroberflächen berücksichtigt werden müssen. Nur wenn
die Grenzfläche eine unendlich ausgedehnte Ebene ist, sind die Berechnungen re-
lativ einfach, da man die Spiegelungsprinzipien gemäß Abschnitt 4.7 anwenden
kann, siehe Abbildung 4.11. Die elektrische Flächenstromdichte ~JF auf dem idea-
len elektrischen Leiter wird durch die gespiegelte elektrische Flächenstromdichte
kompensiert. Das von der magnetischen Flächenstromdichte ~MF auf dem idealen
elektrischen Leiter erzeugte elektromagnetische Feld im Gebiet V2 ist nach dem
Spiegelungsprinzip gleich dem von der doppelten magnetischen Flächenstromdich-
te 2 ~MF alleine bei Nichtvorhandensein des idealen elektrischen Leiters erzeugten
elektromagnetischen Feld im Gebiet V2. Bei Anwenden des Spiegelungsprinzips er-
hält man im Gebiet V1 ein nichtverschwindendes gespiegeltes elektromagnetisches
Feld, das jedoch nicht weiter von Interesse ist. Duales gilt für ideale magnetische
Leiter. Zusammenfassend ist bei unendlich ausgedehnten ebenen Grenzflächen das
von den Quellen ~J und ~M erzeugte elektromagnetische Feld im Gebiet V2 gleich

• dem von der elektrischen Flächenstromdichte ~JF = − ~H × ~u und der ma-
gnetischen Flächenstromdichte ~MF = ~E × ~u gemeinsam erzeugten elektro-
magnetischen Feld im Gebiet V2,

• dem von der doppelten elektrischen Flächenstromdichte 2 ~JF alleine erzeug-
ten elektromagnetischen Feld im Gebiet V2 und

• dem von der doppelten magnetischen Flächenstromdichte 2 ~MF alleine er-
zeugten elektromagnetischen Feld im Gebiet V2.

Das heißt die elektrische Flächenstromdichte ~JF = − ~H × ~u und die magnetische
Flächenstromdichte ~MF = ~E×~u auf einer ebenen Grenzfläche erzeugen im Gebiet
V2 jeweils das gleiche elektromagnetische Feld.
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0, 0 ~E, ~H

V1 V2

~JF = − ~H × ~u

~MF = ~E × ~u

~u

idealer
elektrischer

Leiter

0, 0 ~E, ~H

V1 V2

~JF = − ~H × ~u

~MF = ~E × ~u

~u

~E, ~H

V1 V2

~MF = 2 ~E × ~u

~u

idealer
magnetischer

Leiter

0, 0 ~E, ~H

V1 V2

~JF = − ~H × ~u

~MF = ~E × ~u

~u

~E, ~H

V1 V2

~JF = −2 ~H × ~u

~u

Abbildung 4.11.: Formulierung des Äquivalenztheorems mit idealen Leitern und
ebenen Grenzflächen
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Das von einer ideal elektrisch leitenden und damit im Inneren feldfreien An-
tenne abgestrahlte elektromagnetische Feld entspricht dem von der elektrischen
Flächenstromdichte ~JF und der magnetischen Flächenstromdichte ~MF auf der
Antenne bei Nichtvorhandensein der ideal elektrisch leitenden Strukturen abge-
strahlten elektromagnetischen Feld. Dieser als Huygens-Äquivalent der Antenne
bezeichnete Ansatz rechtfertigt rückwirkend die Annahme, dass die Antenne ihr
elektromagnetisches Feld in ein homogenes Dielektrikum abstrahlt, obwohl das In-
nere der Antenne in der Realität nicht mit dem umgebenden Dielektrikum gefüllt
ist.

In der Antennenmesstechnik ist es aufgrund der begrenzten räumlichen Abmes-
sungen von Antennenmessplätzen insbesondere bei niedrigeren Kreisfrequenzen ω
oft nicht möglich, das eigentlich interessierende Fernfeld direkt messtechnisch zu
untersuchen. Stattdessen misst man die Tangentialkomponenten der elektrischen
Feldstärke ~E oder der magnetischen Feldstärke ~H im Nahfeld auf einer Hülle um
die Antenne. Gemäß dem Huygensschen Prinzip ist es möglich, daraus mit einer
sogenannten Nahfeld-Fernfeld-Transformation das Fernfeld zu berechnen.

4.9. Momentenmethode

4.9.1. Lösungsansatz der Momentenmethode

In der Praxis ist die Strombelegung auf einer Antenne nicht a priori bekannt, son-
dern ergibt sich aus dem Wechselspiel zwischen Strombelegung und abgestrahltem
elektromagnetischem Feld. Ziel der folgenden Betrachtungen ist es, unter Berück-
sichtigen dieser Wechselwirkungen die Strombelegung auf der Antenne zu bestim-
men. Es wird der Fall betrachtet, dass die Quelle des elektromagnetischen Feldes
ausschließlich die elektrische Flächenstromdichte ~JF

(
~r′
)

ist. Eine Erweiterung auf

den Fall, dass auch eine magnetische Flächenstromdichte ~MF

(
~r′
)

vorhanden ist,
ist aufgrund der Dualität der Gleichungen leicht möglich.

Für das durch die elektrische Flächenstromdichte ~JF

(
~r′
)

erzeugte magnetische
Vektorpotential gilt

~A(~r) =
x

A′

µ ~JF

(
~r′
)
ψ
(
~r − ~r′

)
dA′,

siehe (4.39). Hier wurde davon ausgegangen, dass die elektrische Flächenstrom-
dichte ~JF

(
~r′
)

in den homogenen Raum abstrahlt.
Aus (4.7) folgt mit (4.2) und (4.50) für die elektrische Feldstärke

~E = −j
ZF

µ

(
1

β
grad

(
div

(
~A
))

+ βω ~A

)
. (4.64)
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Einsetzen des Vektorpotentials ~A(~r) ergibt

~E(~r) = − jZF


grad


div




x

A′

~JF

(
~r′
)

β
ψ
(
~r − ~r′

)
dA′




+

x

A′

β ~JF

(
~r′
)
ψ
(
~r − ~r′

)
dA′




=L
(
~JF

(
~r′
))
,

das heißt die elektrische Feldstärke ~E(~r) ergibt sich durch Anwenden eines linearen
Operators L(·) auf die durch die elektrische Flächenstromdichte ~JF

(
~r′
)

gegebene
Strombelegung.

Die elektrische Feldstärke ~E(~r) in der ideal elektrisch leitenden Antenne ist be-
kannt. Sie ist außer an den Orten, an denen sich speisende Stromquellen befinden,
Null. Obige Gleichung ist also eine Integro-Differentialgleichung zum Bestimmen
der elektrischen Flächenstromdichte ~JF

(
~r′
)
.

Die Momentenmethode ist ein numerisches Verfahren zum Bestimmen der Lö-
sungen von Integro-Differentialgleichungen [Gib14; Har93]. Sie basiert darauf,
dass man die zu bestimmende Funktion, hier die elektrische Flächenstromdich-
te ~JF

(
~r′
)
, durch eine endliche Summe gewichteter Basisfunktionen approximiert.

Mit den N Basisfunktionen ~fn
(
~r′
)
, n = 1 . . .N , und den N komplexen Gewichten

JFn, n = 1 . . .N , gilt näherungsweise

~JF

(
~r′
)

=
N∑

n=1

~fn
(
~r′
)
JFn. (4.65)

Anwenden des linearen Operators ergibt

~E(~r) = L
(

N∑

n=1

~fn
(
~r′
)
JFn

)
=

N∑

n=1

L
(
~fn
(
~r′
))
JFn.

Für einzelne Komponenten der elektrischen Feldstärke gilt

Exyz(~r) =
N∑

n=1

Lxyz

(
~fn
(
~r′
))
JFn,

wobei xyz für eine der drei Koordinaten x, y oder z steht. Für eine so am Ort ~rm
berechnete elektrische Feldstärkekomponente gilt

Em = Exyz(~rm) =
N∑

n=1

Zm,nJFn.

Die hier auftretenden Gewichtsfaktoren

Zm,n = Lxyz

(
~fn
(
~r′
))
, n = 1 . . . N, (4.66)
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haben die Einheit einer Impedanz und können selbst bei komplizierten Antennen-
geometrien numerisch leicht durch Anwenden des linearen Operators Lxyz(·) auf

die Basisfunktionen ~fn
(
~r′
)

berechnet werden. Man erhält das lineare Gleichungs-
system 



E1
...

EM


 =




Z1,1 . . . Z1,N
...

...
ZM,1 . . . ZM,N


 ·




JF1
...

JFN


 , (4.67)

für die N komplexen Gewichte JFn, n = 1 . . .N , das im Fall M = N eine eindeu-
tige Lösung hat.

Das von der Antenne am Ort ~r erzeugte magnetische Vektorpotential ~A(~r)
kann man aus der nun bekannten elektrischen Flächenstromdichte ~JF

(
~r′
)

mit den
bereits vorgestellten Verfahren berechnen. Aus dem so erhaltenen magnetischen
Vektorpotential ~A(~r) kann man die Feldstärken berechnen.

In der Praxis findet man viele Variationen des hier vorgestellten Grundprinzips
der Momentenmethode [Dav11; Jin15]. Ein wichtiges Ziel ist hierbei das Maxi-
mieren der Genauigkeit des Ergebnisses bei möglichst kleinem Rechenaufwand.
Insbesondere die Art und die Anzahl N der Basisfunktionen ist geschickt zu wäh-
len.

4.9.2. Analyse einer Dipolantenne

Die in Abschnitt 4.9.1 eingeführten Grundprinzipien werden nun auf eine Dipol-
antenne angewendet. Die Dipolantenne besteht aus einer speisenden Stromquelle
und zwei gleich langen, kreiszylinderförmigen, ideal elektrisch leitenden Draht-
stücken, siehe Abbildung 4.12. Die Länge der Dipolantenne sei l und der Radius
sei ρ.

Aus Symmetriegründen kann man davon ausgehen, dass die elektrische Flächen-
stromdichte ~JF auf dem Antennenumfang konstant ist und nur eine z-Komponente
hat. Es gilt also

~JF(z′) = JF(z′)~uz.

Da der elektrische Strom nur eine z-Komponente hat, hat auch das magnetische
Vektorpotential ~A nur eine z-Komponente Az. Die z-Komponente des magneti-
schen Vektorpotentials für Punkte auf der z-Achse ergibt sich mit dem Abstand√
ρ2 + (z − z′)2 eines Punktes auf der kreiszylinderförmigen Antennenoberfläche
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z

x

y

2ρ

+l/2

−l/2

U 0

z−N

z−1

z+1

z+N

I0

JF−N

JF−1

JF0

JF+1

JF+N

Abbildung 4.12.: Anwenden der Momentenmethode auf eine Dipolantenne
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bei z′ und einem Punkt auf der z-Achse bei z zu

Az(z) =

+ l
2w

− l
2

µ 2πρJF(z′)︸ ︷︷ ︸
I(z′)

e−jβ
√
ρ2+(z−z′)2

4π
√
ρ2 + (z − z′)2

︸ ︷︷ ︸
ψ(z−z′)

dz′,

siehe (4.39) und (4.37). Es wird nur die z-Komponente der elektrischen Feldstärke
~E auf der z-Achse benötigt, die sich mit (4.64), (1.31) und (2.1) zu

Ez(z) = −j
ZF

µ

(
1

β

∂2Az(z)

∂z2
+ βAz(z)

)

berechnet. Einsetzen des magnetischen Vektorpotentials Az(z) und vertauschen
der Reihenfolge von Integration und Differentiation ergibt z-Komponente

Ez(z) = −jZF

+ l
2w

− l
2

(
1

β

∂2ψ(z − z′)

∂z2
+ βψ(z − z′)

)
2πρJF(z′) dz′

der elektrischen Feldstärke Ez(z) am Ort z.
Die Dipolantenne wird in 2N+1 als Elementardipole bezeichnete Segmente der

Länge

∆z =
l

2N + 1

unterteilt. Der Mittelpunkt des n-ten Elementardipols liegt bei

zn = n∆z =
nl

2N + 1
.

Die elektrische Flächenstromdichte wird durch eine gewichtete Summe von Basis-
funktionen approximiert:

JF(z′) =
+N∑

n=−N
fn(z′)JFn.

Man kann beispielsweise jeweils auf einem Elementardipol konstante und sonst
verschwindende Basisfunktionen

fn(z′) =





1 zn − ∆z
2

≤ z′ ≤ zn + ∆z
2

0 sonst
, n = −N . . .+N,
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verwenden. Einsetzen der approximierten elektrischen Flächenstromdichte JF(z′)
in die Gleichung zum Berechnen der z-Komponente Ez(z) der elektrischen Feld-
stärke Ez(z) ergibt für den Abtastpunkt z = zm

Em = Ez(zm) =
+N∑

n=−N
Zm,nJFn.

Die Impedanzen

Zm,n = − jZF

+ l
2w

− l
2

(
1

β

∂2ψ(z − z′)

∂z2
+ βψ(z − z′)

)
2πρfn(z′) dz′,

m, n = −N . . .+N,

(4.68)

sind im Allgemeinen nur numerisch und nicht analytisch berechenbar.
Die Dipolantenne wurde in eine große Anzahl 2N + 1 an Elementardipolen

der Länge ∆z zerlegt. Die die Strombelegung beschreibenden Gewichte JFn, n =
−N . . . + N , sind unter Berücksichtigen der Verkopplungen zwischen den Ele-
mentardipolen so zu bestimmen, dass insbesondere die z-Komponenten Em, m =
−N . . . − 1,+1 . . . + N , der elektrischen Feldstärken Ez(zm) in den Elementar-
dipolen mit Ausnahme des mittleren 0-ten Elementardipols mit der speisenden
Stromquelle Null sind. Im mittleren 0-ten Elementardipol mit der speisenden
Stromquelle muss für die z-Komponente der elektrischen Feldstärke

Ez(0) = −U 0

∆z

gelten. Man kann nun das eindeutig lösbare lineare Gleichungssystem




E−N
...

E+N


 =




0
...
0

−U0

∆z

0
...
0




=




Z−N,−N . . . Z−N,+N
...

...
Z+N,−N . . . Z+N,+N


 ·




JF−N
...

JF+N




gemäß (4.67) für die 2N+1 komplexen Gewichte JFn, n = −N . . .+N , aufstellen.
Abbildung 4.13 zeigt die mit Hilfe der Momentenmethode ermittelte Strom-

belegung einer schlanken Dipolantenne der Länge 2l = 3λ/2. Der Durchmesser
der Dipolantenne ist 2ρ = 0,005λ. Es wurden 2N + 1 = 201 Segmente und stück-
weise sinusförmige Basisfunktionen nach Aufgabe 4.4 verwendet. Zum Vergleich
ist durchgezogen eine sinusförmige Strombelegung eingezeichnet.
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Abbildung 4.13.: Mit der Momentenmethode ermittelte Strombelegung einer Di-
polantenne. Durchgezogen sinusförmiger Verlauf

Aufgabe 4.3 Berechnen Sie die erste und die zweite Ableitung der Greenschen
Funktion

ψ(z) =
e−jβ

√
ρ2+z2

4π
√
ρ2 + z2

nach z! Zeigen Sie, dass im Falle stückweise konstanter Basisfunktionen

fn(z′) =





1 zn − ∆z
2

≤ z′ ≤ zn + ∆z
2

0 sonst

mit der Abkürzung

rm =
√
ρ2 + (zm − z′)2

für die in (4.68) eingeführten Impedanzen

Zm,n = −jZF

zn+ ∆z
2w

zn− ∆z
2

e−jβRm

2βR5
m

(
(1 + jβRm)

(
2R2

m − 3ρ2
)

+ β2ρ2R2
m

)
ρ dz′,

gilt!
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Aufgabe 4.4 Zeigen Sie zunächst, dass für beliebige Basisfunktionen fn(z′)

zlw

zk

(
∂2ψ(z − z′)

∂z2
+ β2ψ(z − z′)

)
fn(z′) dz′

= −
[
∂ψ(z − z′)

∂z
fn(z′) + ψ(z − z′)

∂fn(z′)

∂z′

]zl

z′=zk

+
zlw

zk

(
∂2fn(z′)

∂z′2 + β2fn(z′)

)
ψ(z − z′) dz′

gilt! Nutzen Sie hierzu aus, dass für die Ableitungen der Greenschen Funktion

∂ψ(z − z′)

∂z
= −∂ψ(z − z′)

∂z′

und
∂2ψ(z − z′)

∂z2
=
∂2ψ(z − z′)

∂z′2

gilt.
Speziell für stückweise sinusförmige Basisfunktionen

fn(z′) =





sin(β (z′ − zn−1))

sin(β∆z)
zn−1 ≤ z′ ≤ zn

sin(β (zn+1 − z′))

sin(β∆z)
zn ≤ z′ ≤ zn+1

,

siehe Abbildung 4.14, kann man die in (4.68) eingeführten Impedanzen Zm,n ana-
lytisch berechnen. Zeigen Sie, dass sich die Impedanzen mit den Abkürzungen

Rm,n−1 =
√
ρ2 + (zm − zn−1)

2,

Rm,n =
√
ρ2 + (zm − zn)2,

Rm,n+1 =
√
ρ2 + (zm − zn+1)

2

zu

Zm,n = −j
1

2
ZFρ


 e−jβRm,n−1

Rm,n−1 sin(β∆z)
− e−jβRm,n sin(2β∆z)

Rm,n sin2(β∆z)
+

e−jβRm,n+1

Rm,n+1 sin(β∆z)




ergeben!
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zn−1 zn zn+1
0

1

z′

f n
(z

′ )

Abbildung 4.14.: Stückweise sinusförmige Basisfunktion fn(z′) für ∆z = λ/8

Aufgabe 4.5 Implementieren Sie die Momentenmethode zum Berechnen der Strom-
belegung einer Dipolantenne in Matlab! Verwenden Sie die stückweise sinusförmi-
gen Basisfunktionen aus Aufgabe 4.4.
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Antennenbauformen

5.1. Kenngrößen von Antennen

5.1.1. Richtfaktor und Gewinn

Im Folgenden wird nur das Fernfeld betrachtet. Reale Antennen haben immer
eine mehr oder weniger ausgeprägte Richtwirkung, das heißt die von einer Sende-
antenne erzeugte Strahlungsleistungsdichte S ist außer von der Entfernung r des
Beobachtungspunktes von der Sendeantenne auch noch von der Richtung, unter
welcher der Beobachtungspunkt von der Sendeantenne aus gesehen erscheint, ab-
hängig. In Funkkommunikationssystemen wird man die Sendeantenne bevorzugt
so ausrichten, dass die Hauptstrahlrichtung in Richtung des Empfängers zeigt.
Man interessiert sich also für die von der Sendeantenne in der Hauptstrahlrich-
tung erzeugte maximale Strahlungsleistungsdichte Smax. Um die Richtwirkung der
Sendeantenne beurteilen zu können, vergleicht man diese maximale Strahlungs-
leistungsdichte Smax mit der von einer fiktiven omnidirektionalen Sendeanten-
ne bei gleicher abgestrahlter Leistung P in der gleichen Entfernung r erzeugten
Strahlungsleistungsdichte

S0 =
P

4πr2
, (5.1)

siehe (4.54). Man definiert den Richtfaktor

D =
Smax

S0
=
Smax

P
4πr2. (5.2)

Der Richtfaktor D ist für das Fernfeld definiert und ist dort entfernungsunabhän-
gig, da die Strahlungsleistungsdichte S mit 1/r2 abnimmt.

Wenn man die von der Sendeantenne in Hauptstrahlrichtung erzeugte maximale
Strahlungsleistungsdichte Smax ins Verhältnis zu der von einer fiktiven omnidirek-
tionalen Sendeantenne erzeugten Strahlungsleistungsdichte bei gleicher zugeführ-
ter Sendeleistung setzt, so erhält man den Gewinn G. Mit dem Wirkungsgrad η
der Sendeantenne gilt

G = ηD. (5.3)
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Bei den hier primär betrachteten verlustfreien Sendeantennen ist der Richtfaktor
D gleich dem Gewinn G.

Als Beispiel wird der ideale elektrische Dipol betrachtet. Mit (4.54) berechnet
man aus der Strahlungsleistungsdichte S des idealen elektrischen Dipols gemäß
(4.60) die abgestrahlte Leistung1

P =
1

2
ZF

(
β |I0| l

4π

)2 πw

ϑ=0

2πw

ϕ=0

sin3(ϑ) dϕ dϑ =
1

2
ZF

(
β |I0| l

4π

)2

2π
πw

0

sin3(ϑ) dϑ

=
4

3
ZFπ

(
β |I0| l

4π

)2

.

Die Hauptstrahlrichtung des idealen elektrischen Dipols ist ϑ = π/2. Die in dieser
Hauptstrahlrichtung erzeugte maximale Strahlungsleistungsdichte ist

Smax =
1

2
ZF

(
β |I0| l

4πr

)2

,

siehe (4.60). Schließlich erhält man mit (5.2) den Richtfaktor

D =
Smax

P
4πr2 =

3

2
= 1,5 (5.4)

des idealen elektrischen Dipols.

5.1.2. Richtcharakteristik

Der Richtfaktor D liefert nur eine integrale Beschreibung der Richtwirkung einer
Antenne. Zum detaillierten Beschreiben der Richtungsabhängigkeit der von einer
Sendeantenne im Fernfeld erzeugten Feldstärken und Strahlungsleistungsdichte S
verwendet man die als Richtcharakteristik bezeichnete auf die maximale Feldstär-
ke normierte Feldstärke bei einer bestimmten großen Entfernung r im Fernfeld:

C(ϑ, ϕ) =

∥∥∥ ~E(ϑ, ϕ)
∥∥∥

∥∥∥ ~E
∥∥∥

max

=

∥∥∥ ~H(ϑ, ϕ)
∥∥∥

∥∥∥ ~H
∥∥∥

max

=

√
|F ϑ(ϑ, ϕ)|2 +

∣∣∣Fϕ(ϑ, ϕ)
∣∣∣
2

√
|F ϑ|2 +

∣∣∣Fϕ

∣∣∣
2
∣∣∣∣∣
max

, (5.5)

Die Umformungen folgen aus (4.45) und (4.48). Mit (4.53) folgt weiterhin

C(ϑ, ϕ) =

√
S(ϑ, ϕ)

Smax
. (5.6)

1 Es gilt
r

sin3(x) dx = − cos(x) + 1
3 cos3(x).
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Zur graphischen Darstellung der Richtcharakteristik C(ϑ, ϕ) verwendet man
überwiegend die folgenden beiden zweidimensionalen Richtdiagrammtypen:

Horizontaldiagramm: Für ϑ = π/2 trägt man in Polarkoordinaten C(π/2, ϕ)
auf.

Vertikaldiagramm: Für ϕ = 0 trägt man in Polarkoordinaten C(ϑ, 0) auf.

Als Beispiel wird der ideale elektrische Dipol betrachtet. Die vom idealen elek-
trischen Dipol im Fernfeld erzeugte elektrische Feldstärke ist

∥∥∥ ~E(ϑ, ϕ)
∥∥∥ =

βZF |I0| l
4πr

|sin(ϑ)| ,

siehe (4.58). Der Maximalwert der elektrischen Feldstärke in der Hauptstrahlrich-
tung ϑ = π/2 ist

∥∥∥ ~E
∥∥∥

max
=
βZF |I0| l

4πr
.

Mit (5.5) erhält man die Richtcharakteristik

C(ϑ, ϕ) = |sin(ϑ)| (5.7)

des idealen elektrischen Dipols. Diese Richtcharakteristik C(ϑ, ϕ) hängt nicht vom
Azimutwinkel ϕ ab, das heißt sie ist wie erwartet rotationssymmetrisch bezüglich
der z-Achse. Abbildung 5.1 zeigt das dreidimensionale Richtdiagramm des idealen
elektrischen Dipols. Das in Abbildung 5.2 dargestellt Vertikaldiagramm ergibt sich
als vertikaler Schnitt durch das dreidimensionale Richtdiagramm.

Die in einer beliebigen Richtung erzeugte Strahlungsleistungsdichte ergibt sich
mit (5.6) und (5.2) zu

S(ϑ, ϕ) = DS0C
2(ϑ, ϕ) . (5.8)

Den Richtfaktor D der Antenne kann man nun aus der Richtcharakteristik C(ϑ, ϕ)
berechnen. Die abgestrahlte Leistung ergibt sich mit (4.54) zu

P = DS0

πw

ϑ=0

2πw

ϕ=0

C2(ϑ, ϕ) r2 sin(ϑ) dϕ dϑ.

Daraus folgt mit (5.1) der Richtfaktor

D =
P

S0

πr
ϑ=0

2πr
ϕ=0

C2(ϑ, ϕ) r2 sin(ϑ) dϕ dϑ

=
4π

πr
ϑ=0

2πr
ϕ=0

C2(ϑ, ϕ) sin(ϑ) dϕ dϑ

.
(5.9)
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z

Abbildung 5.1.: Dreidimensionales Richtdiagramm des idealen elektrischen Dipols

z

x

ϑ
sin(ϑ)

Abbildung 5.2.: Vertikaldiagramm des idealen elektrischen Dipols
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Manchmal interessiert man sich nicht nur für die Beträge der von einer Sen-
deantenne erzeugten Feldstärken, sondern auch für die durch die zeitabhängige
räumliche Ausrichtung des elektrischen Feldstärkevektors ~E beschriebene Polari-
sation und die Nullphase. Diese Informationen sind in der vektoriellen komplexen
Richtcharakteristik

C(ϑ, ϕ) =

(
Cϑ(ϑ, ϕ)
Cϕ(ϑ, ϕ)

)
(5.10)

mit den sich aus den entsprechenden Komponenten des elektrischen Feldstärke-
vektors ergebenden Komponenten

Cϑϕ(ϑ, ϕ) =
Eϑϕ(ϑ, ϕ) ejβr

∥∥∥ ~E
∥∥∥

max

=
−jF ϑϕ(ϑ, ϕ)

√
|F ϑ|2 +

∣∣∣F ϕ

∣∣∣
2
∣∣∣∣∣
max

(5.11)

enthalten, siehe auch (4.48). ϑϕ steht hierbei für eine der zwei Koordinaten ϑ oder
ϕ. Die Definition ist nur in Kombination mit der Festlegung einer Referenzphase
eindeutig. Man legt sie beispielsweise durch die Phase des Speisestroms I0 fest.
Wegen der Normierung auf den maximal auftretenden Feldstärkebetrag und der
Kompensation der entfernungsbedingten Phasendrehung durch die Multiplikation
mit ejβr ist auch die vektorielle Richtcharakteristik C(ϑ, ϕ) entfernungsunabhän-
gig. Die Richtcharakteristik (5.5) berechnet sich aus der vektoriellen komplexen
Richtcharakteristik zu

C(ϑ, ϕ) = ‖C(ϑ, ϕ)‖ . (5.12)

5.2. Lineare Antennen

5.2.1. Allgemeine Betrachtungen zu linearen Antennen

Lineare Antennen bestehen aus einem geraden, sehr dünnen, idealen elektrischen
Leiter. Das Koordinatensystem wird vereinfachend so gewählt, dass die Längsach-
se des Leiters der z-Achse entspricht. Abbildung 5.3 zeigt eine schlanke Dipolan-
tenne mit Radius ρ ≪ λ und der Länge l als Beispiel einer linearen Antenne.

Der Strom I(z′) fließt ausschließlich in z-Richtung, so dass der hier aufgrund
der Antennensymmetrie nur vom Poldistanzwinkel ϑ abhängende vektorielle Rich-
tungsfaktor ~F gemäß (4.42) in kartesischen Koordinaten nur eine z-Komponente

F z(ϑ) =
w

l

I(z′) ejβz′ cos(ϑ) dz′ (5.13)
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z

2ρ

l

I0

~β

ϑ

Abbildung 5.3.: Schlanke Dipolantenne

hat. In Kugelkoordinaten verschwindet die ϕ-Komponente F ϕ(ϑ) = 0 und die
ϑ-Komponente ist

F ϑ(ϑ) = − sin(ϑ)︸ ︷︷ ︸
FE(ϑ)

w

l

I(z′) ejβz′ cos(ϑ) dz′

︸ ︷︷ ︸
FG(ϑ)

, (5.14)

siehe (4.15). Die ebenfalls von Null verschiedene r-Komponente F r(ϑ) interes-
siert hier nicht weiter. Der Richtungsfaktor F ϑ(ϑ) einer aus gleichartigen und
gleich ausgerichteten Elementarantennen, hier idealen elektrischen Dipolen, zu-
sammengesetzten Antenne entspricht stets dem Produkt aus Elementrichtungs-
faktor FE(ϑ) und Gruppenrichtungsfaktor FG(ϑ). Diesen allgemeingültigen Zu-
sammenhang bezeichnet man als multiplikatives Gesetz. Der Gruppenrichtungs-
faktor

FG(ϑ) =
w

l

I(z′) ejβz′ cos(ϑ) dz′ (5.15)

beschreibt das Zusammenwirken der infinitesimalen, die Strombelegung I(z′) ap-
proximierenden, idealen elektrischen Dipole. Der im Integral auftretende Faktor
ejβz′ cos(ϑ) berücksichtigt die sich aus den geometriebedingten Pfadlängenverkür-
zungen z′ cos(ϑ) ergebenden Phasenverschiebungen, siehe Abbildung 5.4.

Die Richtcharakteristik (5.5) ergibt sich entsprechend dem multiplikativen Ge-
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z

ϑ

z′ cos(ϑ)

z′

0

Abbildung 5.4.: Geometriebedingte Pfadlängenverkürzung z′ cos(ϑ)

setz zu

C(ϑ) =
|F ϑ(ϑ)|
|F ϑ|max

=
|FE(ϑ)FG(ϑ)|

|FEFG|max

∼ |sin(ϑ)|︸ ︷︷ ︸
CE(ϑ)

|FG(ϑ)|
|FG|max︸ ︷︷ ︸
CG(ϑ)

. (5.16)

Die Richtcharakteristik C(ϑ) ist proportional zum Produkt aus Elementrichtcha-
rakteristik CE(ϑ) und Gruppenrichtcharakteristik CG(ϑ). Es gilt Gleichheit, falls
die Hauptstrahlrichtungen der Elementrichtcharakteristik CE(ϑ) und der Grup-
penrichtcharakteristik CG(ϑ) zusammenfallen. Den Richtfaktor kann man wegen
der Rotationssymmetrie um die z-Achse gemäß

D =
2

πr
0

C2(ϑ) sin(ϑ) dϑ
(5.17)

aus der Richtcharakteristik C(ϑ) berechnen, siehe (5.9).
Wenn man den Gruppenrichtungsfaktor FG(ϑ) nicht als Funktion des Poldi-

stanzwinkels ϑ sondern als Funktion der z-Komponente

βz = β cos(ϑ) (5.18)

des in die betrachtete Ausbreitungsrichtung zeigenden Phasenvektors ~β gemäß
(2.13) betrachtet, erkennt man, dass der Gruppenrichtungsfaktor

FG(βz) =
w

l

I(z′) ejβzz′
dz′ (5.19)
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die Fourier-Transformierte der Strombelegung I(z′) ist [FB08]. Man spricht von
der Strombelegung I(z′) im Ortsbereich und dem Gruppenrichtungsfaktor FG(βz)
im Wellenzahlbereich. Die quadrierte Gruppenrichtcharakteristik ist proportional
zum Betragsquadrat des Gruppenrichtungsfaktors

C2
G(βz) ∼ |FG(βz)|2

und das Betragsquadrat des Gruppenrichtungsfaktors ergibt sich nach den Ergeb-
nissen der Signaltheorie als Fourier-Transformierte der Autokorrelationsfunktion
der Strombelegung I(z′):

|FG(βz)|2 =F ∗
G(βz)FG(βz)

=
∞w

−∞
I∗(z′′) e−jβzz′′

dz′′
∞w

−∞
I(z′) ejβzz′

dz′

=
∞w

−∞

∞w

−∞
I∗(z′′) I(z′) ejβz(z′−z′′) dz′′ dz′

=
∞w

−∞

∞w

−∞
I∗(z′′) I(z′′ + z′) dz′′

︸ ︷︷ ︸
Autokorrelationsfunktion

ejβzz′
dz′

︸ ︷︷ ︸
Fourier-Transformation

.

Diese in Abbildung 5.5 dargestellten Zusammenhänge erweisen sich als außer-
ordentlich nützlich, da sie es ermöglichen, aus der Signal- und Systemtheorie
bekannte Verfahren auch zur Antennenanalyse und zur Antennensynthese ein-
zusetzen.

5.2.2. Dipolantennen mit sinusförmiger Strombelegung

Mit numerischen Untersuchungen wie zum Beispiel mit der Momentenmethode
und auch mit approximativen feldtheoretischen Betrachtungen findet man, dass
die Strombelegung auf einer in der Mitte mit dem Strom I0 gespeisten schlanken
Dipolantenne mit Radius ρ ≪ λ in guter Näherung sinusförmig ist:

I(z′) =





I0

sin
(
β
(
l
2

− |z′|
))

sin
(
β l

2

) −l/2 ≤ z′ ≤ l/2

0 sonst

. (5.20)

Mit der nun bekannten Strombelegung I(z′) ist die weitere Analyse der Dipolan-
tenne einfach. Der Gruppenrichtungsfaktor ergibt sich gemäß (5.19) als Fourier-
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Abbildung 5.5.: Ortsbereich und Wellenzahlbereich
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Transformierte der Strombelegung I(z′):2

FG(βz) =

l/2w

−l/2

I0

sin
(
β
(
l
2

− |z′|
))

sin
(
β l

2

) ejβzz′
dz′

=
l/2w

0

2I0

sin
(
β
(
l
2

− z′
))

sin
(
β l

2

) cos(βzz
′) dz′

=
I0

sin
(
β l

2

)
l/2w

0


 sin

(
β
l

2
− (βz + β) z′

)
+ sin

(
β
l

2
+ (βz − β) z′

)
 dz′

=
I0

sin
(
β l

2

)




cos
(
β l

2
− (βz + β) z′

)

βz + β
−

cos
(
β l

2
+ (βz − β) z′

)

βz − β



l/2

z′=0

=
I0

sin
(
β l

2

)




cos
(
βz

l
2

)
− cos

(
β l

2

)

βz + β
−

cos
(
βz

l
2

)
− cos

(
β l

2

)

βz − β




=
2βI0

sin
(
β l

2

)
cos
(
β l

2

)
− cos

(
βz

l
2

)

β2
z − β2

.

(5.21)

Die Richtcharakteristik C(βz) entspricht gemäß (5.16) dem normierten Betrag des
mit dem Elementrichtungsfaktor FE(βz) multiplizierten Gruppenrichtungsfaktors
FG(βz). Die in Abbildung 5.6 gezeigten Richtcharakteristiken C(ϑ) sind als Funk-
tionen des Poldistanzwinkels ϑ dargestellt, siehe (5.18). Für große Längen l > λ
der Antenne bilden sich zusätzlich zu den Hauptkeulen auch noch Nebenkeulen
aus. Die Anzahl der Nebenkeulen nimmt mit wachsender Länge l der Antenne zu.
Die zugehörigen Richtfaktoren D wurden mit (5.17) numerisch berechnet.

Aufgabe 5.1 Berechnen Sie den Richtfaktor D einer schlanken Dipolantenne der
Länge l = λ/2 mit sinusförmiger Strombelegung I(z′)!

Aufgabe 5.2 Berechnen Sie die Richtcharakteristik C(ϑ) einer schlanken Dipol-
antenne der Länge l mit konstanter Strombelegung

I(z′) =




I0 −l/2 ≤ z′ ≤ l/2

0 sonst
!

Skizzieren Sie die Richtcharakteristik C(ϑ) für l = λ/2 und l = 4λ! Vergleichen
Sie das Ergebnis mit der Richtcharakteristik eines idealen elektrischen Dipols und
einer Dipolantenne der Länge l = λ/2 mit sinusförmiger Strombelegung!

2 Es wird das Additionstheorem sin(α) cos(β) = 1
2 (sin(α− β) + sin(α+ β)) verwendet.
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(c) l = 3λ/2, D = 2,23
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(d) l = 4λ, D = 3,56

Abbildung 5.6.: Richtcharakteristiken C(ϑ) von Dipolantennen mit sinusförmiger
Strombelegung I(z′). In Abbildung 5.6a gestrichelt zum Vergleich
idealer elektrischer Dipol
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5.3. Aperturantennen

5.3.1. Allgemeine Betrachtungen zu Aperturantennen

Nach dem Huygensschen Prinzip kann man das abgestrahlte elektromagnetische
Feld ausgehend von ersatzweise angenommenen Flächenstromdichten in der Aper-
tur berechnen. Im Folgenden soll allgemein das Zustandekommen der Richtcha-
rakteristik bei einer als bekannt vorausgesetzten zweidimensionalen Strombele-
gung in der Apertur betrachtet werden. Es werden folgende vereinfachende Ein-
schränkungen gemacht:

• Die Apertur sei eben und liege in der y-z-Ebene. Letzteres lässt sich durch
geeignete Wahl des Koordinatensystems erreichen.

• Es gebe nur eine elektrische Flächenstromdichte ~JF, das heißt die magneti-
sche Flächenstromdichte ~MF sei Null. Sollte es auch eine magnetische Flä-
chenstromdichte ~MF geben, so kann man separat in dualer Vorgehensweise
das von ihr abgestrahlte elektromagnetische Feld berechnen. Anschließend
überlagert man die von elektrischer Flächenstromdichte ~JF und magne-
tischer Flächenstromdichte ~MF abgestrahlten elektromagnetischen Felder
vektoriell.

• Die elektrische Flächenstromdichte ~JF habe nur eine z-Komponente. Sollte
es auch eine y-Komponente geben, so kann man separat in dualer Vorgehens-
weise das von dieser y-Komponente abgestrahlte elektromagnetische Feld
berechnen. Anschließend überlagert man die von den verschiedenen Kompo-
nenten der Flächenstromdichte ~JF abgestrahlten elektromagnetischen Fel-
der vektoriell.

Abbildung 5.7 zeigt das beschriebene Szenario.
Mit dem in die betrachtete Ausbreitungsrichtung zeigenden Phasenvektor ~β

gemäß (2.13) und dem Ortsvektor ~r′ des Flächenelements dA′ folgt

〈~β, ~r′〉 = βy′ sin(ϕ) sin(ϑ) + βz′ cos(ϑ) ,

siehe Abbildung 5.7. Damit berechnet man den Gruppenrichtungsfaktor

FG(ϑ, ϕ) =
x

A′

JFz(y
′, z′) ejβ(y′ sin(ϕ) sin(ϑ)+z′ cos(ϑ)) dy′ dz′, (5.22)

vergleiche (4.42) und (5.15).
Der Richtungsfaktor ergibt sich gemäß dem multiplikativen Gesetz zu

F ϑ(ϑ, ϕ) = FE(ϑ, ϕ)FG(ϑ, ϕ) = − sin(ϑ)FG(ϑ, ϕ) , (5.23)
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x

y

z

ϕ

ϑ
dA′

~JF

(
~r′
) ~β = β sin(ϑ) cos(ϕ) ~ux + β sin(ϑ) sin(ϕ) ~uy + β cos(ϑ) ~uz

~r′ = y′~uy + z′~uz

Abbildung 5.7.: Aperturantenne

vergleiche (5.14). Die Richtcharakteristik (5.5) ergibt sich entsprechend dem mul-
tiplikativen Gesetz zu

C(ϑ, ϕ) =
|F ϑ(ϑ, ϕ)|
|F ϑ|max

=
|FE(ϑ, ϕ)FG(ϑ, ϕ)|

|FEFG|max

∼ |sin(ϑ)|︸ ︷︷ ︸
CE(ϑ,ϕ)

|FG(ϑ, ϕ)|
|FG|max︸ ︷︷ ︸
CG(ϑ,ϕ)

. (5.24)

Die Richtcharakteristik C(ϑ, ϕ) ist proportional zum Produkt aus Elementricht-
charakteristik CE(ϑ, ϕ) und Gruppenrichtcharakteristik CG(ϑ, ϕ). Es gilt Gleich-
heit, falls die Hauptstrahlrichtungen der Elementrichtcharakteristik CE(ϑ, ϕ) und
der Gruppenrichtcharakteristik CG(ϑ, ϕ) zusammenfallen.

Mit der y-Komponente
βy = β sin(ϕ) sin(ϑ) (5.25)

und der z-Komponente
βz = β cos(ϑ) (5.26)

des Phasenvektors ~β aus Abbildung 5.7 folgt für den Gruppenrichtungsfaktor

FG(βy, βz) =
x

A′

JFz(y
′, z′) ej(βyy′+βzz′) dy′ dz′, (5.27)

das heißt der Gruppenrichtungsfaktor FG(βy, βz) ist die zweidimensionale Fourier-
Transformierte der Strombelegung JFz(y

′, z′).
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Die Orte konstanten Poldistanzwinkels ϑ entsprechen Orten konstanten βz in
der βy-βz-Ebene, siehe Abbildung 5.8. Weiterhin gilt

(
βy

β

)2

+

(
βz

β

)2

sin2(ϕ) = sin2(ϕ) ,

das heißt die Orte konstanten Azimutwinkels ϕ entsprechen Ellipsen in der βy-βz-
Ebene, siehe Abbildung 5.8.

βy/β = sin(ϕ) sin(ϑ)

βz/β = cos(ϑ)

ϑ = π
2

ϑ = π
3

ϑ = π
6

ϑ = 2π
3

ϑ = 5π
6

ϕ = 0 +π
6

+π
3−π

6
−π

3

Abbildung 5.8.: Abbildung der ϑ-ϕ-Ebene auf die βy-βz-Ebene

Häufig ist die Hauptstrahlrichtung senkrecht zur Apertur. Für einen kleinen
Bereich um diese Hauptstrahlrichtung ϑ = π/2 und ϕ = 0 beziehungsweise βy = 0
und βz = 0 erhält man die folgenden linearen Taylor-Approximationen:

sin(ϑ) ≈1, (5.28)

cos(ϑ) ≈π

2
− ϑ, (5.29)

sin(ϕ) ≈ϕ, (5.30)

βy ≈βϕ, (5.31)

βz ≈β
(
π

2
− ϑ

)
. (5.32)
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5.3.2. Aperturantennen mit konstanter Strombelegung

Es wird die in Abbildung 5.9 gezeigte rechteckförmige Apertur mit konstanter
Strombelegung

JFz(y
′, z′) =




JF0 −a

2
< y′ < a

2
und − b

2
< z′ < b

2

0 sonst
(5.33)

betrachtet.

y

z

x

a

b

Abbildung 5.9.: Rechteckförmige Apertur

Der Gruppenrichtungsfaktor ergibt sich gemäß (5.27) als zweidimensionale Fourier-
Transformation der Strombelegung JFz(y

′, z′):

FG(βy, βz) =

b
2w

z′=− b
2

a
2w

y′=− a
2

JF0 ej(βyy′+βzz′) dy′ dz′

=JF0

a
2w

− a
2

cos(βyy
′) dy′

b
2w

− b
2

cos(βzz
′) dz′

=JF0ab
sin
(
a
2
βy

)

a
2
βy

sin
(
b
2
βz

)

b
2
βz

= JF0ab si
(
a

2
βy

)
si

(
b

2
βz

)
.

(5.34)

Die Fourier-Transformierte si(·) des Rechteckimpulses wird als Spaltfunktion be-
zeichnet. Abbildung 5.10 zeigt die sich aus dem Gruppenrichtungsfaktor mit (5.24)
ergebende Gruppenrichtcharakteristik3

CG(βy, βz) =
∣∣∣∣si
(
a

2
βy

)∣∣∣∣

∣∣∣∣∣si
(
b

2
βz

)∣∣∣∣∣ . (5.35)

3Es gilt si(0) = 1.
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Abbildung 5.10.: Gruppenrichtcharakteristik CG(βy, βz) einer rechteckförmigen
Aperturantenne mit konstanter Strombelegung. Breite a = 4λ
und Höhe b = 2λ

Die Hauptstrahlrichtung der rechteckförmigen Aperturantenne mit konstanter
Strombelegung ist βy = 0 und βz = 0, das heißt senkrecht zur Apertur. Den
Richtfaktor D kann man mit (5.9) berechnen. Das dabei zu berechnende Integral
ist allerdings nur für den Sonderfall in Relation zur Wellenlänge λ großer Ab-
messungen a ≫ λ und b ≫ λ näherungsweise analytisch berechenbar. Dann ist
die Strahlungsleistung in einer schmalen Hauptkeule um die Hauptstrahlrichtung
konzentriert. Im Bereich signifikanter Werte der Richtcharakteristik (5.24) gilt
dann wegen (5.28) näherungsweise

C2(βy, βz) ≈ C2
G(βy, βz) .

Für den Richtfaktor (5.9) folgt mit (5.31) und (5.32)

D ≈ 4π
∞r

ϑ=−∞

∞r
ϕ=−∞

C2
G(ϑ, ϕ) dϕ dϑ

≈ 4πβ2

∞r
βz=−∞

∞r
βy=−∞

C2
G(βy, βz) dβy dβz

. (5.36)
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Einsetzen der Gruppenrichtcharakteristik ergibt mit (4.43) der Richtfaktor4

D =
4πβ2

∞r
βz=−∞

∞r
βy=−∞

si2
(
a
2
βy

)
si2
(
b
2
βz

)
dβy dβz

= ab
4π

λ2
. (5.37)

Aufgabe 5.3 Es wird die in der Abbildung 5.11 gezeigte Hornantenne betrachtet.
In dem Hohlleiter breite sich eine TE1,0-Welle aus. Zeigen Sie, dass man das von
der Hornantenne abgestrahlte elektromagnetische Feld näherungsweise als das von
der magnetischen Flächenstromdichte

MFy =





2E0 cos
(
πy
a

)
−a

2
≤ y ≤ a

2
und − b

2
≤ z ≤ b

2

0 sonst

in der Apertur x = 0 abgestrahlte elektromagnetische Feld berechnen kann! Be-
rechnen Sie die Gruppenrichtcharakteristik CG(βy, βz) der Hornantenne! Berech-
nen Sie für grosse Hornantennen a ≫ λ und b ≫ λ mit starker Richtwirkung den
Richtfaktor D als Funktion von Breite a, Höhe b und Wellenlänge λ näherungs-
weise aus der Gruppenrichtcharakteristik CG(βy, βz)!

x

y

z

a

b

Abbildung 5.11.: Hornantenne

4 Es wird das bestimmte Integral
+∞r

−∞

si2(ax) dx = π
|a| verwendet.
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5.4. Gruppenantennen

5.4.1. Allgemeine Betrachtungen zu Gruppenantennen

Gruppenantennen bestehen aus N Antennenelementen. Die Speiseströme In, n =
0 . . .N − 1, der Antennenelemente haben im Allgemeinen unterschiedliche Am-
plituden und Nullphasen. Die von den Antennenelementen abgestrahlten elektro-
magnetischen Felder überlagern sich vektoriell.

Im Folgenden sollen die Grundprinzipien der Gruppenantennen unter verein-
fachenden, aber in praktischen Realisierungen häufig zumindest näherungsweise
erfüllten Voraussetzungen erläutert werden:

• Die Gruppenantenne besteht aus identischen gleich orientierten Antennen-
elementen.

• Die Antennenelemente beeinflussen sich gegenseitig nicht. Diese Näherung
ist nur bei hinreichend großen Antennenelementabständen zulässig.

Mit

• der von einem einzigen Antennenelement im Ursprung bei Speisung mit dem
Strom IE in einer Entfernung r im Fernfeld erzeugten elektrischen Feldstärke
~EE,

• der Position ~r′
n des n-ten Antennenelements und

• dem in die durch Poldistanzwinkel ϑ und Azimutwinkel ϕ beschriebene be-
trachtete Ausbreitungsrichtung zeigenden Phasenvektor ~β gemäß (2.13)

folgt für die von der Gruppenantenne erzeugte elektrische Feldstärke im Fernfeld

~E =
~EE

IE︸︷︷︸
~FE

N−1∑

n=0

In ej〈~β,~r′
n〉

︸ ︷︷ ︸
FG

, (5.38)

vergleiche (5.15). Der in der Summe auftretende Faktor ej〈~β,~r′
n〉 berücksichtigt

die sich aus den geometriebedingten Pfadlängenverkürzungen ergebenden Pha-
senverschiebungen. Das Zusammenwirken der Antennenelemente wird durch den
Gruppenrichtungsfaktor

FG(ϑ, ϕ) =
N−1∑

n=0

In ej〈~β,~r′
n〉 (5.39)

122



5.4. Gruppenantennen

beschrieben. Er ist von der Art der Antennenelemente unabhängig. Die Richtcha-
rakteristik (5.5) ergibt sich entsprechend dem multiplikativen Gesetz zu

C(ϑ, ϕ) =

∥∥∥~FE(ϑ, ϕ)FG(ϑ, ϕ)
∥∥∥

∥∥∥~FEFG

∥∥∥
max

∼
∥∥∥ ~FE(ϑ, ϕ)

∥∥∥
∥∥∥~FE

∥∥∥
max︸ ︷︷ ︸

CE(ϑ,ϕ)

|FG(ϑ, ϕ)|
|FG|max︸ ︷︷ ︸
CG(ϑ,ϕ)

. (5.40)

Die Richtcharakteristik C(ϑ, ϕ) ist proportional zum Produkt aus Elementricht-
charakteristik CE(ϑ, ϕ) und Gruppenrichtcharakteristik

CG(ϑ, ϕ) =
|FG(ϑ, ϕ)|
|FG|max

. (5.41)

Es gilt Gleichheit, falls die Hauptstrahlrichtungen der Elementrichtcharakteristik
CE(ϑ, ϕ) und der Gruppenrichtcharakteristik CG(ϑ, ϕ) zusammenfallen.

Der Entwurfsraum der Gruppenantennen bietet viele zur Optimierung der Grup-
penrichtcharakteristik CG(ϑ, ϕ) nutzbare Freiheitsgrade wie

• die räumliche Anordnung und Ausrichtung der Antennenelemente,

• die Ausrichtung der Gruppenantenne im Raum relativ zur gewünschten
Hauptstrahlrichtung,

• die relativen Beträge der Speiseströme In, n = 0 . . . N − 1, und

• die Nullphasen der Speiseströme In, n = 0 . . .N − 1.

Die Möglichkeit die Richtcharakteristik C(ϑ, ϕ) einer Gruppenantenne auf elek-
tronischem Wege insbesondere durch phasenverschobenes Ansteuern der Anten-
nenelemente zu beeinflussen, wird in vielen Anwendungen in der Radartechnik
(Phased Array Radar) und in der Funkkommunikationstechnik (MIMO-Systeme)
genutzt.

5.4.2. Lineare Gruppenantennen

5.4.2.1. Allgemeine Betrachtungen zu linearen Gruppenantennen

Im Folgenden sollen exemplarisch lineare Gruppenantennen betrachtet werden.
Die identischen gleich ausgerichteten Antennenelemente seien im gleichen gegen-
seitigen Abstand d auf der z-Achse angeordnet, siehe Abbildung 5.12. Die Position
des n-ten Antennenelements sei

~r′
n = zn~uz = nd~uz. (5.42)
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z

y

d

0

N − 1

d cos(ϑ)

ϑ

Abbildung 5.12.: Lineare Gruppenantenne

Die Anordnung ist rotationssymmetrisch bezüglich der z-Achse.
Mit dem in die betrachtete Ausbreitungsrichtung zeigenden Phasenvektor ~β

gemäß (2.13) folgt
〈~β, ~r′

n〉 = βnd cos(ϑ) ,

siehe Abbildung 5.12. Durch Einsetzen in (5.39) erhält man den wegen der Anten-
nensymmetrie nur vom Poldistanzwinkel ϑ abhängenden Gruppenrichtungsfaktor

FG(ϑ) =
N−1∑

n=0

In ejβnd cos(ϑ) . (5.43)

Mit der Substitution
βd = βd cos(ϑ) (5.44)

erkennt man, dass sich der Gruppenrichtungsfaktor

FG(βd) =
N−1∑

n=0

In ejβdn (5.45)

als Fourier-Reihe mit den Koeffizienten In, n = 0 . . .N − 1, ergibt. Zur Analyse
und Synthese von Gruppenantennen sind daher Methoden der digitalen Signal-
verarbeitung anwendbar [JD93; KK12; OS10; Tre02]. Insbesondere entspricht das
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Problem des Entwurfs einer Strombelegung In, n = 0 . . .N − 1, zum bestmögli-
chen Approximieren eines gewünschten Gruppenrichtungsfaktors FG(βd) und da-
mit einer gewünschten Gruppenrichtcharakteristik CG(ϑ, ϕ) mathematisch dem
Problem des Entwurfs der Koeffizienten eines digitalen Filters.

Die Koeffizienten In, n = 0 . . . N − 1, kann man auch als Abtastwerte einer
kontinuierlichen Strombelegung ansehen. Der Gruppenrichtungsfaktor FG(βd) ist
infolge des Abtastens der Strombelegung im Ortsbereich eine periodische Funk-
tion mit der Periode 2π. Im gesamten Winkelbereich gilt −1 ≤ cos(ϑ) ≤ 1.
Zum Vermeiden sichtbarer periodischer Wiederholungen des Gruppenrichtungs-
faktors FG(βd) muss daher entsprechend dem Abtasttheorem für den Antennen-
elementabstand

2π ≥ βd2,

das heißt

d ≤ λ

2
(5.46)

gelten, siehe Abbildung 5.13. Die endliche Ausdehnung der Gruppenantenne im
Ortsbereich kann man als Ergebnis einer Multiplikation einer unendlich ausge-
dehnten Strombelegung mit einer Fensterfunktion auffassen, vergleiche Anhang
B.1. Im Wellenzahlbereich ist der Gruppenrichtungsfaktor der unendlich ausge-
dehnten Strombelegung dann mit der Fourier-Transformierten der Fensterfunkti-
on zu falten, um den Gruppenrichtungsfaktor FG(βd) der endlich ausgedehnten
Gruppenantenne zu erhalten. Dies führt im Allgemeinen zu einer Verbreiterung
der Maxima und zu zusätzlichen Nebenmaxima der Gruppenrichtcharakteristik
CG(ϑ, ϕ).

5.4.2.2. Lineare Gruppenantennen mit Strombelegung konstanten
Phasendekrements

Strombelegung konstanten Phasendekrements Im Folgenden seien die Am-
plituden der Speiseströme In, n = 0 . . . N − 1, alle gleich:

|In| = |I0| .

Weiterhin seien auch die relativen Phasenverschiebungen der Speiseströme be-
nachbarter Antennenelemente gleich. Der n-te Speisestrom ergibt sich dann mit
dem Phasendekrement ψ zu

In = I0 e−jnψ . (5.47)
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(c) d = λ, N = 4
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Abbildung 5.13.: Einfluss des Antennenelementabstands d auf die Gruppenricht-
charakteristik CG(ϑ) einer linearen Gruppenantenne mit kon-
stanter Strombelegung In = I0, n = 0 . . .N − 1. Die Größe
der gesamten Apertur ist konstant Nd = 4λ. Bei kleinem An-
tennenelementabstand d konvergiert die Gruppenrichtcharakte-
ristik CG(ϑ) gegen die sich bei einer kontinuierlichen Strom-
belegung ergebenden Richtcharakteristik, vergleiche Abbildung
C.6b. Man beachte, dass die Richtcharakteristik in Abbildung
C.6b zusätzlich mit der Elementrichtcharakteristik CE(ϑ) =
|sin(ϑ)| gewichtet ist, was jedoch nur im Bereich der Neben-
keulen (Side Lobes) sichtbar ist. Unterabtasten führt zu als Git-
terkeulen (Grating Lobes) bezeichneten periodischen Wiederho-
lungen der Hauptkeulen (Main Lobes)
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Gruppenrichtungsfaktor Man erhält den Gruppenrichtungsfaktor5

FG(βd) =I0

1 − e−jNψ ejNβd

1 − e−jψ ejβd
= I0 ej N−1

2
(βd−ψ) e−j N

2
(βd−ψ) − ej N

2
(βd−ψ)

e−j 1
2

(βd−ψ) − ej 1
2

(βd−ψ)

=NI0 ej N−1
2

(βd−ψ)
sin
(
N
2

(βd − ψ)
)

N sin
(

1
2

(βd − ψ)
)

︸ ︷︷ ︸
diN(βd−ψ)

.
(5.48)

Die hier auftretende Funktion diN(·) wird als Dirichlet-Kern bezeichnet.

Hauptstrahlrichtung In der Hauptstrahlrichtung

βd,max = ψ (5.49)

des Gruppenrichtungsfaktors FG(βd) werden die geometriebedingten Phasenver-
schiebungen durch das Phasendekrement ψ kompensiert, siehe (5.48). Mit (5.44)
findet man den zugehörigen Azimutwinkel

ϑmax = arccos

(
ψ

βd

)
. (5.50)

Der Maximalwert des Betrags des Gruppenrichtungsfaktors FG(βd) ergibt sich
aus (5.48) mit der de l’Hospitalschen Regel zu6

|FG|max = N |I0| . (5.51)

Bei größeren Abständen d > λ/2 der Antennenelemente kann es weitere als Gitter-
keulen bezeichnete sichtbare periodische Wiederholungen der Hauptkeule geben.
Die Hauptstrahlrichtung der Gruppenantenne weicht bei nicht omnidirektionalen
Antennenelementen mehr oder weniger stark von der hier berechneten Haupt-
strahlrichtung des Gruppenrichtungsfaktors FG(βd) ab.

Nullstellen Nullstellen des Gruppenrichtungsfaktors FG(βd) gemäß (5.48) erge-
ben sich, sofern keine Gitterkeulen auftreten, für

sin
(
N

2
(βd,0 − ψ)

)
= 0,

5 Es wird die Summenformel
N−1∑
n=0

qn =
1−qN

1−q
der endlichen geometrischen Reihe verwendet.

6Es gilt diN (0) = 1.
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das heißt

βd,0 =
2mπ

N
+ ψ, m = ±1,±2, . . . . (5.52)

Mit (5.44) findet man die zugehörigen Azimutwinkel

ϑ0 = arccos

(
2mπ
N

+ ψ

βd

)
, m = ±1,±2, . . . . (5.53)

Richtfaktor Es sei vorausgesetzt, dass die Hauptstrahlrichtungen der Elemen-
trichtcharakteristik CE(βd) und der Gruppenrichtcharakteristik CG(βd) zusam-
menfallen. In der Hauptstrahlrichtung überlagern sich die elektromagnetischen
Felder der Antennenelemente konstruktiv, das heißt die von der Gruppenanten-
ne abgestrahlten Feldstärken in Hauptstrahlrichtung sind N -mal so groß wie die
von einem einzigen Antennenelement abgestrahlten Feldstärken. Die Strahlungs-
leistungsdichte S ist folglich um den Faktor N2 erhöht. Wenn man noch berück-
sichtigt, dass die von der Gruppenantenne insgesamt abgestrahlte Leistung P
das N -fache der von einem einzigen Antennenelement abgestrahlten Leistung ist,
ergibt sich der Richtfaktor der Gruppenantenne zu

D = DEN, (5.54)

wobei DE der Richtfaktor des Antennenelements ist.

Gruppenrichtcharakteristik Die Gruppenrichtcharakteristik erhält man gemäß
(5.41) durch Normieren des Betrags des Gruppenrichtungsfaktors (5.48) auf seinen
Maximalbetrag |I0|N :

CG(βd) =
1

N

∣∣∣∣∣

N−1∑

n=0

ejn(βd−ψ)

∣∣∣∣∣ = |diN(βd − ψ)| . (5.55)

In Abbildung 5.14 sind die Gruppenrichtcharakteristiken CG(ϑ) einiger exempla-
rischer linearer Gruppenantennen als Funktionen des Poldistanzwinkels ϑ dar-
gestellt, siehe (5.44). Zum Ermitteln der Richtcharakteristiken C(ϑ) der Grup-
penantennen wäre noch eine Wichtung mit der Elementrichtcharakteristik CE(ϑ)
erforderlich.

Aufgabe 5.4 Es wird eine lineare Gruppenantenne aus N omnidirektionalen An-
tennenelementen mit einer Strombelegung konstanten Phasendekrements ψ be-
trachtet. Berechnen Sie mit (5.9) den Richtfaktor D aus der Richtcharakteristik

C(ϑ) =
1

N

∣∣∣∣∣

N−1∑

n=0

ejn(βd cos(ϑ)−ψ)

∣∣∣∣∣!

Wie erklären Sie sich die Abweichung zu dem in (5.54) angegebenen Wert D = N?
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Abbildung 5.14.: Schwenken der Hauptstrahlrichtung der Gruppenrichtcharakte-
ristik CG(ϑ) einer linearen Gruppenantenne mit zwei Antennen-
elementen durch Einstellen des Phasendekrements ψ. Antennen-
elementabstand d = λ/2
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Kapitel 6.

Ausbreitung elektromagnetischer Wellen

6.1. Freiraumausbreitung

6.1.1. Wirkfläche

Eine als Empfangsantenne betriebene Antenne sei einer einfallenden ebenen ho-
mogenen Welle ausgesetzt. Die Antenne gibt dann an den Empfänger eine Emp-
fangsleistung PR ab, die proportional zur Strahlungsleistungsdichte S der ein-
fallenden ebenen homogenen Welle ist. Bei sowohl bezüglich der Raumrichtung
optimaler Ausrichtung als auch bezüglich der Polarisation optimaler Anpassung
der Antenne und bei Leistungsanpassung gibt die Antenne die Empfangsleistung

PR = SAR (6.1)

an den Empfänger ab. Der Proportionalitätsfaktor AR hat die Einheit einer Fläche
und wird als Wirkfläche der Antenne bezeichnet. Die Wirkfläche AR entspricht
im Allgemeinen nicht der geometrischen Querschnittsfläche der Antenne. Nur bei
großen Aperturantennen entspricht die Wirkfläche AR näherungsweise der geo-
metrischen Querschnittsfläche der Antenne.

6.1.2. Empfangsleistung

Es wird die in Abbildung 6.1 gezeigte Funkübertragungsstrecke betrachtet. Der
Abstand r zwischen Sender und Empfänger sei groß im Vergleich zur Wellenlänge
λ und zu den Antennenabmessungen, das heißt der Empfänger befindet sich im
Fernfeld des Senders.

Sowohl der Sender als auch der Empfänger seien leistungsangepasst. Die vom
Sender an die Sendeantenne abgegebene Sendeleistung ist PT. Mit dem Gewinn
GT der Sendeantenne ist die vom Sender am Ort des Empfängers erzeugte Strah-
lungsleistungsdichte bei optimaler Ausrichtung der Sendeantenne

S =
PT

4πr2
GT, (6.2)
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r

PT PR

GT AR

Sender Empfänger

Abbildung 6.1.: Funkübertragungsstrecke

siehe (5.2) und (5.3). Die Empfangsleistung ergibt sich mit der Wirkfläche AR

der Empfangsantenne bei optimaler Ausrichtung der Empfangsantenne und bei
Polarisationsanpassung zu

PR = SAR =
PT

4πr2
GTAR, (6.3)

siehe (6.1). Die Empfangsleistung PR nimmt mit 1/r2 ab, das heißt der Dämp-
fungsexponent ist zwei. Das Verhältnis

PR

PT
=

1

4πr2
GTAR (6.4)

aus Empfangsleistung und Sendeleistung wird als Übertragungsfaktor bezeich-
net. Der Übertragungsfaktor entspricht aufgrund der hier angenommenen Leis-
tungsanpassungen dem in Abschnitt 12.4.6 eingeführtem maximalen verfügbaren
Leistungsgewinn GMAG der als Zweitor betrachteten Funkübertragungsstrecke.

6.1.3. Zusammenhang zwischen Gewinn und Wirkfläche

Der Funkkanal ist reziprok, weil die Antennen und die Szenarien, in denen sich
die elektromagnetischen Wellen ausbreiten, praktisch ausschließlich aus linearen
und isotropen Materialien bestehen. Jede Sendeantenne ist auch als Empfangsan-
tenne nutzbar und umgekehrt. Insbesondere hängt der Übertragungsfaktor (6.4)
einer Funkübertragungsstrecke nicht davon ab, welche der beiden Antennen als
Sendeantenne und welche als Empfangsantenne genutzt wird. Es sind folglich zwei
Übertragungsrichtungen zu vergleichen:

1. Antenne 1 mit dem Gewinn G1 wird als Sendeantenne und Antenne 2 mit
der Wirkfläche A2 wird als Empfangsantenne genutzt. Der Übertragungs-
faktor ergibt sich zu

PR

PT
=

1

4πr2
G1A2.
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2. Antenne 2 mit dem Gewinn G2 wird als Sendeantenne und Antenne 1 mit
der Wirkfläche A1 wird als Empfangsantenne genutzt. Der Übertragungs-
faktor ergibt sich zu

PR

PT

=
1

4πr2
G2A1.

Aus der Gleichheit der beiden Ausdrücke folgt

A1

G1
=
A2

G2
.

Das Verhältnis aus Gewinn G und Wirkfläche A ist für alle Antennen gleich.
Die Wirkfläche einer großen rechteckförmigen verlustfreien Aperturantenne mit

konstanter Strombelegung entspricht der geometrischen Querschnittsfläche

A = ab.

Einsetzen des in (5.37) berechneten Richtfaktors D, der wegen der hier ange-
nommenen Verlustfreiheit η = 1 dem Gewinn G entspricht, ergibt die für alle
Antennen gültige Beziehung

A

G
=
λ2

4π
(6.5)

zwischen Gewinn und Wirkfläche. Üblicherweise wird in Datenblättern nur der
Gewinn G einer Antenne angegeben. Die Wirkfläche A lässt sich dann einfach
berechnen.

Man kann nun die Wirkfläche AR als Funktion des Gewinns GR in (6.3) ein-
setzen und erhält die Friis-Übertragungsgleichung [Fri46]

PR = PT

(
λ

4πr

)2

GTGR. (6.6)

Die Empfangsleistung nimmt mit wachsender Kreisfrequenz ω, das heißt sin-
kender Wellenlänge λ quadratisch ab. Dies gilt jedoch nur, falls man Antennen
konstanten Gewinns verwendet und nicht die Möglichkeit ausnutzt, bei höheren
Kreisfrequenzen ω und damit kleineren Wellenlängen λ in einem gegebenen Bau-
volumen Antennen größeren Gewinns zu realisieren.

Aufgabe 6.1 Im Fernfeld einer Sendeantenne im Abstand r = 1000 m befinde
sich eine Empfangsantenne. Die Sendeleistung sei PT = 100 W. Es werde ange-
nommen, dass die Sendeantenne omnidirektional ist. Die Empfangsantenne sei
auf die Sendeantenne optimal ausgerichtet, polarisationsangepasst und an den
Empfängereingang leistungsangepasst. Die Wirkfläche der Empfangsantenne sei
AR = 1 m2. Der Gewinn der Empfangsantenne sei GR = 10. Bestimmen Sie die
Wellenlänge λ, die Strahlungsleistungsdichte S am Ort der Empfangsantenne und
die Empfangsleistung PR!
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6.1.4. Polarimetrische Analyse der Freiraumausbreitung

Nun werden beliebig ausgerichtete Antennen beliebiger Polarisationseigenschaften
betrachtet. Die senderseitigen und empfängerseitigen lokalen Koordinatensysteme
seien im Raum parallel ausgerichtet, siehe Abbildung 6.2.

Sender

xT

yT

zT

ϕT

ϑT

~uTϕ
~uTr

~uTϑ

Empfänger

xR

yR

zR

ϕR

ϑR

~uRr

~uRϕ

~uRϑ

r

Abbildung 6.2.: Senderseitiges und empfängerseitiges lokales Koordinatensystem

Beim Berechnen der Empfangsleistung sind die vektoriellen komplexen Richt-
charakteristiken der Sendeantenne CT(ϑR, ϕR) in Ausfallsrichtung ϑT, ϕT und
der Empfangsantenne CR(ϑR, ϕR) in Einfallsrichtung ϑR, ϕR zu berücksichtigen.
Gemäß der Definition (5.11) der vektoriellen komplexen Richtcharakteristik der
Sendeantenne ergibt sich die ϑ- oder ϕ-Komponente der elektrischen Feldstärke
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am im Fernfeld befindlichen Ort der Empfangsantenne zu

Eϑϕ =
∥∥∥ ~E
∥∥∥

max
CTϑϕ(ϑT, ϕT) e−jβr .

Der Beitrag der einzelnen Polarisationskomponenten zur Strahlungsleistungsdich-
te am Empfangsort ergibt sich mit (4.52) und (6.2) zu

Sϑϕ =
1

2

1

ZF

∣∣∣Eϑϕ

∣∣∣
2

=
1

2

1

ZF

∥∥∥ ~E
∥∥∥

2

max
︸ ︷︷ ︸

Smax

∣∣∣CTϑϕ(ϑT, ϕT) e−jβr
∣∣∣
2

=
PTGT

4πr2

∣∣∣CTϑϕ(ϑT, ϕT) e−jβr
∣∣∣
2
.

Die aus dem Empfang einer einzigen Polarisationskomponente resultierende Emp-
fangsleistung ergibt sich mit (6.1) und (6.5) unter Berücksichtigen der Richtwir-
kung und der Polarisationseigenschaften der Empfangsantenne gemäß (5.11) zu

PRϑϕ =Sϑϕ
∣∣∣CRϑϕ(ϑR, ϕR)

∣∣∣
2
GR

λ2

4π︸ ︷︷ ︸
AR

=PT

(
λ

4πr

)2

GTGR

∣∣∣CRϑϕ(ϑR, ϕR) e−jβr CTϑϕ(ϑT, ϕT)
∣∣∣
2
.

Überlagern der Empfangssignale der beiden Polarisationskomponenten ergibt die
gesamte Empfangsleistung

PR =PRϑ + PRϕ

=PT

(
λ

4π

)2

GTGR

∣∣∣∣∣CTϑ(ϑT, ϕT)
e−jβr

r
CRϑ(ϑR, ϕR) − CTϕ(ϑT, ϕT)

e−jβr

r
CRϕ(ϑR, ϕR)

∣∣∣∣∣

2

=PT

(
λ

4π

)2

GTGR

∣∣∣∣∣∣∣∣∣∣

CT
R(ϑR, ϕR) · e−jβr

r
·
(

1 0
0 −1

)

︸ ︷︷ ︸
T

·CT(ϑT, ϕT)

∣∣∣∣∣∣∣∣∣∣

2

.

(6.7)

Man beachte, dass die senderseitigen und empfängerseitigen Einheitsvektoren in
ϕ-Richtung entgegengesetzt gerichtet sind, siehe Abbildung 6.2. Die Transferma-
trix T beschreibt die Amplitudenabnahmen und die Phasendrehungen der Po-
larisationskomponenten auf dem Ausbreitungspfad. Da der Polarisationszustand
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einer elektromagnetischen Welle bei Freiraumausbreitung unverändert bleibt und
die Koordinatensysteme parallel ausgerichtet sind, sind die Nichtdiagonalelemente
der Transfermatrix T hier Null.

Für das Skalarprodukt in (6.7) gilt gemäß der Schwarzschen Ungleichung
∣∣∣∣∣C

T
R(ϑR, ϕR) ·

(
1 0
0 −1

)
· CT(ϑT, ϕT)

∣∣∣∣∣ ≤ ‖CR(ϑR, ϕR)‖ ‖CT(ϑT, ϕT)‖ . (6.8)

Gleichheit gilt bei Polarisationsanpassung

CR(ϑR, ϕR) ∼
(

1 0
0 −1

)
· CT(ϑT, ϕT)∗ . (6.9)

Wenn die Antennen weiterhin optimal ausgerichtet sind

‖CR(ϑR, ϕR)‖ = ‖CT(ϑT, ϕT)‖ = 1,

gilt für das Skalarprodukt in (6.7)
∣∣∣∣∣C

T
R(ϑR, ϕR) ·

(
1 0
0 −1

)
· CT(ϑT, ϕT)

∣∣∣∣∣ = ‖CR(ϑR, ϕR)‖ ‖CT(ϑT, ϕT)‖

=1

(6.10)

und die polarimetrische Berechnungsformel (6.7) geht in die konventionelle skalare
Berechnungsformel (6.6) über.

6.2. Reflexion und Transmission an Grenzflächen

6.2.1. Schräger Einfall einer ebenen homogenen Welle

Zunächst wird eine einzige, schräg auf eine ebene Grenzfläche zwischen zwei Di-
elektrika einfallende, ebene homogene Welle betrachtet. Das Koordinatensystem
wird vereinfachend so gewählt, dass sich die Grenzfläche bei z = 0 befindet und die
Einfallsebene der x-z-Ebene entspricht, siehe Abbildung 6.3. Die Einfallsrichtung
wird durch den Poldistanzwinkel ϑ beschrieben.

Der in die Ausbreitungsrichtung zeigende Phasenvektor gemäß (2.13) hat die
x-Komponente

βx = β sin(ϑ) = ω
√
εµ sin(ϑ) (6.11)

und die z-Komponente

βz = β cos(ϑ) = ω
√
εµ cos(ϑ) .
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x
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z

αI = ϑI αR = π − ϑR

αT = ϑT

~βI

~βT

~βR

ε1, µ1

ε2, µ2

Abbildung 6.3.: Einfallende, reflektierte und transmittierte elektromagnetische
Welle

Es wurde jeweils die Phasenkonstante β gemäß (2.24) eingesetzt.
Mit (2.14) und (2.15) folgt für die Feldstärken

~H = ~H0 e−j〈~β,~r〉 = ~H0 e−jβxx e−jβzz (6.12)

und
~E = ~E0 e−j〈~β,~r〉 = ~E0 e−jβxx e−jβzz . (6.13)

Das Erfüllen der Grenzflächenbedingungen erfordert neben der einfallenden
ebenen homogenen Welle im Allgemeinen auch die Existenz einer reflektierten
und einer transmittierten ebenen homogenen Welle.

Die Grenzflächenbedingungen können nur dann gleichzeitig in allen Punkten
z = 0 der Grenzfläche erfüllt sein, wenn die x-Komponenten der Phasenvektoren,
das heißt die Komponenten in Richtung der Grenzfläche, für alle drei ebenen
homogenen Wellen gleich sind. Beim Betrachten von elektromagnetischen Wellen
an Grenzflächen ist es weiterhin üblich, die Einfallswinkel und die Ausfallswinkel
bezüglich der Grenzflächennormalen zu messen, siehe Abbildung 6.3. Mit (6.11)
folgt √

ε1µ1 sin(αI) =
√
ε1µ1 sin(αR) =

√
ε2µ2 sin(αT) .

Das heißt der Einfallswinkel αI ist gleich dem Ausfallswinkel αR der reflektierten
ebenen homogenen Welle und für den Ausfallswinkel der transmittierten ebenen
homogenen Welle gilt das Snelliussche Brechungsgesetz

sin(αI)

sin(αT)
=

√
ε2µ2

ε1µ1

. (6.14)
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Es folgt

sin(αT) = sin(αI)

√
ε1µ1

ε2µ2
.

Für

sin(αI)

√
ε1µ1

ε2µ2
> 1,

das heißt

αI > αG = arcsin

(√
ε2µ2

ε1µ1

)
, (6.15)

hat diese Gleichung keine Lösung. Es tritt Totalreflexion auf. Den Winkel αG

bezeichnet man als Grenzwinkel der Totalreflexion.
Jede beliebig polarisierte ebene homogene Welle lässt sich in eine linear senk-

recht zur Einfallsebene und eine linear parallel zur Einfallsebene polarisierte ebene
homogene Welle zerlegen. Im Folgenden werden die beiden beschriebenen linearen
Polarisationszustände getrennt betrachtet, siehe Abbildung 6.4 und Abbildung
6.5.

6.2.2. Fresnelsche Formeln

6.2.2.1. Senkrechte Polarisation

Die Fresnelschen Formeln dienen dem Berechnen der Reflexionsfaktoren und der
Transmissionsfaktoren. Im Folgenden sei der Fall der Totalreflexion ausgeschlos-
sen. Die Tangentialkomponenten der elektrischen Feldstärken entsprechen im hier
betrachteten Fall der zur Einfallsebene senkrechten Polarisation den y-Komponen-
ten, die auch die einzigen vorhandenen Komponenten der elektrischen Feldstär-
ken sind. Die Tangentialkomponenten der magnetischen Feldstärken entsprechen
den x-Komponenten. Die magnetischen Feldstärken kann man mit den Feldwel-
lenwiderständen aus den elektrischen Feldstärken berechnen, siehe (2.28). Durch
Projektion erhält man die x-Komponenten der magnetischen Feldstärken:

HI0x = −EI0y

cos(αI)

ZF1

,

HR0x =ER0y

cos(αI)

ZF1
,

HT0x = −ET0y

cos(αT)

ZF2

.

Das Verhältnis der Tangentialkomponenten, das heißt der zur z-Richtung senk-
rechten Komponenten, von zueinander gehörenden elektrischen Feldstärken und
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Abbildung 6.4.: Elektrische Feldstärken senkrecht zur Einfallsebene
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Abbildung 6.5.: Elektrische Feldstärken parallel zur Einfallsebene
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magnetischen Feldstärken wird durch die Feldwellenwiderstände in z-Richtung

ZF1z =
ZF1

cos(αI)
= −EI0y

H I0x

=
ER0y

HR0x

(6.16)

und

ZF2z =
ZF2

cos(αT)
= −ET0y

HT0x

(6.17)

beschrieben.
Der Reflexionsfaktor für senkrechte Polarisation wird als

Γ⊥ =
ER0y

EI0y

= −HR0x

HI0x

definiert. An der Grenzfläche müssen die resultierenden Tangentialkomponenten
der Feldstärken gemäß (1.62) und (1.64) stetig sein. Daraus folgt, dass auch die
Wellenimpedanzen

Z1 = −EI0y + ER0y

H I0x +HR0x

= −EI0y (1 + Γ⊥)

H I0x (1 − Γ⊥)
= ZF1z

1 + Γ⊥
1 − Γ⊥

und

Z2 = −ET0y

HT0x

= ZF2z.

an der Grenzfläche stetig sein müssen. Gleichsetzen der Wellenimpedanzen ergibt

ZF2z = ZF1z
1 + Γ⊥
1 − Γ⊥

und schließlich erhält man den Reflexionsfaktor

Γ⊥ =
ZF2z − ZF1z

ZF2z + ZF1z
(6.18)

=
ZF2 cos(αI) − ZF1 cos(αT)

ZF2 cos(αI) + ZF1 cos(αT)
(6.19)

für senkrechte Polarisation. Der in die Gleichung einzusetzende Ausfallswinkel αT

der transmittierten ebenen homogenen Welle ergibt sich aus dem Snelliusschen
Brechungsgesetz (6.14). Abbildung 6.6 zeigt den Reflexionsfaktor Γ⊥ für senk-
rechte Polarisation als Funktion des Einfallswinkels αI für einige exemplarische
Grenzflächen. Für ε2/ε1 = 1/2 tritt ab einem Einfallswinkel von αG = π/4 Total-
reflexion auf, siehe (6.15).
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Abbildung 6.6.: Reflexionsfaktor Γ⊥ für senkrechte Polarisation. µ1 = µ2

Mit (1.62) folgt aus (6.19) der Transmissionsfaktor

T⊥ =
ET0y

EI0y

=
EI0y + ER0y

EI0y

(6.20)

=1 + Γ⊥ =
2ZF2z

ZF2z + ZF1z

=
2ZF2 cos(αI)

ZF2 cos(αI) + ZF1 cos(αT)
(6.21)

für senkrechte Polarisation. Abbildung 6.7 zeigt den Transmissionsfaktor T⊥ für
senkrechte Polarisation als Funktion des Einfallswinkels αI für einige exemplari-
sche Grenzflächen.

Man beachte, dass Reflexionsfaktoren und Transmissionsfaktoren stets bezüg-
lich der elektrischen Feldstärken definiert sind. Der Transmissionsfaktor T⊥ für
senkrechte Polarisation kann daher auch einen Betrag größer als eins annehmen,
ohne dass dies im Widerspruch zur Energieerhaltung stünde. Es ist die durch die
Grenzfläche transportierte Energie zu betrachten, das heißt es sind die Normal-
komponenten der komplexen Poynting-Vektoren zu vergleichen.

Aufgabe 6.2 Eine ebene homogene Welle falle schräg auf eine ebene Grenzflä-
che zwischen zwei Dielektrika ein, so dass eine transmittierte und eine reflek-
tierte ebene homogene Welle entstehen. Die einfallende ebene homogene Welle
sei senkrecht polarisiert. Zeigen Sie, dass die Normalkomponenten der komplexen
Poynting-Vektoren auf beiden Seiten der Grenzfläche gleich sind!
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Abbildung 6.7.: Transmissionsfaktor T⊥ für senkrechte Polarisation. µ1 = µ2

6.2.2.2. Parallele Polarisation

Die Tangentialkomponenten der magnetischen Feldstärken entsprechen im hier
betrachteten Fall der zur Einfallsebene parallelen Polarisation den y-Komponenten,
die auch die einzigen vorhandenen Komponenten der magnetischen Feldstärken
sind. Die Tangentialkomponenten der elektrischen Feldstärken entsprechen den
x-Komponenten. Die elektrischen Feldstärken kann man mit den Feldwellenwi-
derständen aus den magnetischen Feldstärken berechnen, siehe (2.27). Durch Pro-
jektion erhält man die x-Komponenten der elektrischen Feldstärken:

EI0x =H I0yZF1 cos(αI) ,

ER0x = −HR0yZF1 cos(αI) ,

ET0x =HT0yZF2 cos(αT) .

Das Verhältnis der Tangentialkomponenten, das heißt der zur z-Richtung senk-
rechten Komponenten, von zueinander gehörenden elektrischen Feldstärken und
magnetischen Feldstärken wird durch die Feldwellenwiderstände in z-Richtung

ZF1z = ZF1 cos(αI) =
EI0x

HI0y

= −ER0x

HR0y

(6.22)

und

ZF2z = ZF2 cos(αT) =
ET0x

HT0y

(6.23)
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6.2. Reflexion und Transmission an Grenzflächen

beschrieben. Man beachte, dass sich die Feldwellenwiderstände in z-Richtung für
den Fall senkrechter und paralleler Polarisation unterscheiden, vergleiche (6.16)
und (6.17).

Der Reflexionsfaktor für parallele Polarisation wird als

Γ‖ =
ER0x

EI0x

= −HR0y

H I0y

definiert. An der Grenzfläche müssen die Tangentialkomponenten der Feldstärken
gemäß (1.62) und (1.64) stetig sein. Daraus folgt, dass auch die Wellenimpedanzen

Z1 =
EI0x + ER0x

H I0y +HR0y

=
EI0x

(
1 + Γ‖

)

H I0y

(
1 − Γ‖

) = ZF1z
1 + Γ‖
1 − Γ‖

und

Z2 =
ET0x

HT0y

= ZF2z.

an der Grenzfläche stetig sein müssen. Durch Gleichsetzen der Wellenimpedanzen
Z1 und Z2 erhält man den Reflexionsfaktor

Γ‖ =
ZF2z − ZF1z

ZF2z + ZF1z

(6.24)

=
ZF2 cos(αT) − ZF1 cos(αI)

ZF2 cos(αT) + ZF1 cos(αI)
(6.25)

für parallele Polarisation. Man beachte, dass sich als Funktionen der Feldwellenwi-
derstände in z-Richtung formal gleiche Ergebnisse für beide Polarisationszustände
ergeben, vergleiche (6.18) und (6.24). Abbildung 6.8 zeigt den Reflexionsfaktor Γ‖
für parallele Polarisation als Funktion des Einfallswinkels αI für einige exemplari-
sche Grenzflächen. Den Einfallswinkel αI, bei dem der Reflexionsfaktor Null wird,
bezeichnet man als Brewster-Winkel αB.

Mit (1.64) folgt aus (6.25) der Transmissionsfaktor

T‖ =
ET0y

EI0y

=
ZF2HT0y

ZF1H I0y

=
ZF2

ZF1

(
H I0y +HR0y

H I0y

)
=
ZF2

ZF1

(
1 − Γ‖

)

=
2ZF2 cos(αI)

ZF2 cos(αT) + ZF1 cos(αI)
(6.26)

für parallele Polarisation. Abbildung 6.9 zeigt den Transmissionsfaktor T‖ für
parallele Polarisation als Funktion des Einfallswinkels αI für einige exemplarische
Grenzflächen.
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Abbildung 6.8.: Reflexionsfaktor Γ‖ für parallele Polarisation. µ1 = µ2
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Abbildung 6.9.: Transmissionsfaktor T‖ für parallele Polarisation. µ1 = µ2
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6.2. Reflexion und Transmission an Grenzflächen

Aufgabe 6.3 Berechnen Sie den Brewster-Winkel αB abhängig von den Eigen-
schaften der Dielektrika! Unterscheiden Sie hierbei die Fälle senkrechter und par-
alleler Polarisation. Betrachten Sie auch die Spezialfälle ε1 = ε2 bei senkrechter
Polarisation und µ1 = µ2 bei paralleler Polarisation.

6.2.3. Reflexion am idealen elektrischen Leiter

Da im idealen elektrischen Leiter kein elektromagnetisches Feld existieren kann,
existiert neben der einfallenden nur die reflektierte ebene homogene Welle. Der
Transmissionsfaktor ist unabhängig von der Polarisation der einfallenden ebenen
homogenen Welle

T = 0. (6.27)

An der Grenzfläche muss die Tangentialkomponente der elektrischen Feldstärke
verschwinden, das heißt an der Grenzfläche müssen sich die Tangentialkompo-
nenten der elektrischen Feldstärken der einfallenden und der reflektierten ebenen
homogenen Welle gegenseitig aufheben. Der Reflexionsfaktor an der Oberfläche ei-
nes idealen elektrischen Leiters ergibt sich somit unabhängig von der Polarisation
der einfallenden ebenen homogenen Welle zu

Γ = −1. (6.28)

6.2.4. Reflexion am idealen magnetischen Leiter

Da im idealen magnetischen Leiter ebenfalls kein elektromagnetisches Feld exis-
tieren kann, existiert auch hier neben der einfallenden nur die reflektierte ebene
homogene Welle. Der Transmissionsfaktor ist unabhängig von der Polarisation
der einfallenden ebenen homogenen Welle

T = 0. (6.29)

An der Grenzfläche muss die Tangentialkomponente der magnetischen Feldstärke
verschwinden, das heißt an der Grenzfläche müssen sich die Tangentialkomponen-
ten der magnetischen Feldstärken der einfallenden und der reflektierten ebenen
homogenen Welle gegenseitig aufheben. Der bezüglich der elektrischen Feldstär-
ken definierte Reflexionsfaktor an der Oberfläche eines idealen magnetischen Lei-
ters ergibt sich somit unabhängig von der Polarisation der einfallenden ebenen
homogenen Welle zu

Γ = 1. (6.30)
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Kapitel 6. Ausbreitung elektromagnetischer Wellen

6.3. Streuung

6.3.1. Streuquerschnitt

Wenn eine elektromagnetische Welle auf einen als Streuer bezeichneten Körper
trifft, so wird die elektromagnetische Welle an diesem gestreut, siehe Abbildung
6.10. Der Streuer selbst strahlt wieder eine elektromagnetische Welle ab. Im Ge-
gensatz zur Reflexion an unendlich ausgedehnten ebenen Grenzflächen breitet
sich die gestreute elektromagnetische Welle in alle Richtungen aus. Der Streuer
befinde sich im Fernfeld des Senders und der Empfänger befinde sich im Fernfeld
des Streuers. Die Antennen seien bezüglich der Raumrichtung optimal auf den
Streuer ausgerichtet und bezüglich der Polarisation optimal angepasst.

rRrT

Streuer

EmpfängerSender

Abbildung 6.10.: Streuung

Mit der Sendeleistung PT ist die auf den Streuer einfallende Strahlungsleis-
tungsdichte

SI =
PT

4πr2
T

GT,

siehe (6.2). Für den Empfänger erscheint der Streuer wie eine omnidirektionale
Sendeantenne am Ort des Streuers mit der zur einfallenden Strahlungsleistungs-
dichte proportionalen Sendeleistung

PS = SIσ =
PT

4πr2
T

σGT. (6.31)
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Der Proportionalitätsfaktor σ hat die Einheit einer Fläche und wird als Streu-
querschnitt bezeichnet. Die so berechnete äquivalente Sendeleistung PS einer om-
nidirektionalen Sendeantenne in (6.6) eingesetzt ergibt die Empfangsleistung

PR =PS

(
λ

4πrR

)2

GR

=
PTλ

2

(4π)3 r2
Tr

2
R

σGTGR.

(6.32)

Der Streuquerschnitt σ hängt neben den Eigenschaften des Streuers von der
Raumrichtung, aus der die elektromagnetische Welle einfällt, der Polarisation
der einfallenden elektromagnetischen Welle und der betrachteten Ausfallsrich-
tung der gestreuten elektromagnetischen Welle ab. Im betrachteten Fernfeld ist
der Streuquerschnitt σ jedoch von den Entfernungen rT und rR unabhängig. Mit
der Strahlungsleistungsdichte S im Fernfeld gemäß (4.53), den Feldstärken ~EI und
~HI der einfallenden elektromagnetischen Welle und den Feldstärken ~ES und ~HS

der gestreuten elektromagnetischen Welle erhält man die zu (6.31) äquivalente
Definition

σ = 4πr2
R

SS

SI
= lim

rR→∞
4πr2

R

∥∥∥ ~ES

∥∥∥
2

∥∥∥ ~EI

∥∥∥
2 = lim

rR→∞
4πr2

R

∥∥∥ ~HS

∥∥∥
2

∥∥∥ ~HI

∥∥∥
2 (6.33)

des Streuquerschnitts.
Streueffekte beeinflussen maßgeblich die Wellenausbreitung in terrestrischen

Mobilfunksystemen, in denen in der Regel keine direkte Sichtverbindung zwischen
Sender und Empfänger besteht. In der Radartechnik wird der oben eingeführte
Streuquerschnitt σ, bei dem sich Sender und Empfänger im Allgemeinen an un-
terschiedlichen Orten befinden, auch als bistatischer Streuquerschnitt bezeichnet.
Von besonderer Bedeutung ist in der Radartechnik jedoch der Spezialfall, dass
sich Sender und Empfänger am selben Ort befinden und die selbe Antenne ver-
wenden, siehe Abbildung 6.11. In diesem Fall spricht man vom monostatischen
Streuquerschnitt. Im hier betrachteten Fall von Polarisationsanpassung und op-
timaler Ausrichtung der Antenne folgt aus (6.32) die Empfangsleistung

PR =
PTλ

2

(4π)3 r4
σG2. (6.34)

Diese Gleichung ist auch unter dem Namen Radargleichung bekannt.
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r

Streuer

Abbildung 6.11.: Radar

6.3.2. Polarimetrische Streumatrix

Im Allgemeinen sind die Antennen weder bezüglich der Raumrichtung optimal auf
den Streuer ausgerichtet noch bezüglich der Polarisation optimal angepasst. Zur
Analyse dieses allgemeinen Szenarios müssen die Polarisationskomponenten der
einfallenden elektromagnetischen Welle und der gestreuten elektromagnetischen
Welle zunächst getrennt betrachtet werden und auch die Phasenlagen müssen
berücksichtigt werden. Die senderseitigen, streuerseitigen und empfängerseitigen
Koordinatensysteme seien auch hier wieder im Raum parallel ausgerichtet, siehe
Abbildung 6.12.

Die Komponenten der elektrischen Feldstärke der einfallenden elektromagneti-
schen Welle am Ort des Streuers ergeben sich gemäß (5.11) zu

EIϑ =
∥∥∥ ~E
∥∥∥

max
CTϑ(ϑT, ϕT) e−jβrT

und
EIϕ = −

∥∥∥ ~E
∥∥∥

max
CTϕ(ϑT, ϕT) e−jβrT .

Man beachte die entgegengesetzt gerichteten Basisvektoren in ϕ-Richtung der
lokalen Koordinatensysteme von Sender und Streuer. In Anlehnung an (6.33) de-
finiert man zum vollständigen Charakterisieren der Streueigenschaften die kom-
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plexen polarimetrischen Streuparameter

Sp,q = lim
rR→∞

rR

ESp

EIq

ejβrR, (6.35)

wobei p und q jeweils für ϑ oder ϕ stehen. Da die Feldstärken der gestreuten
elektromagnetischen Welle im Fernfeld proportional zu e−jβrR /rR sind, vergleiche
(4.48), ergibt sich ein definierter Grenzwert. Damit ergeben sich die Beiträge zu
den Komponenten der elektrischen Feldstärke der gestreuten elektromagnetischen
Welle am Ort des Empfängers in dessen lokalem Koordinatensystem zu

ESϑ = Sϑ,qEIq

e−jβrR

rR

und

ESϕ = −Sϕ,qEIq

e−jβrR

rR
.

Man beachte auch hier wieder die entgegengesetzt gerichteten Basisvektoren in
ϕ-Richtung der lokalen Koordinatensysteme von Streuer und Empfänger. Der
Beitrag der einfallenden Polarisationskomponente q zur Strahlungsleistungsdich-
te der Polarisationskomponente p der gestreuten elektromagnetischen Welle am
Empfangsort ergibt sich mit (4.52) und (6.2) zu

SSp,q =
1

2

1

ZF

∣∣∣ESp

∣∣∣
2

=
1

2

1

ZF

∣∣∣EIq

∣∣∣
2
∣∣∣∣∣Sp,q

e−jβrR

rR

∣∣∣∣∣

2

=
1

2

1

ZF

∥∥∥ ~E
∥∥∥

2

max
︸ ︷︷ ︸

Smax

∣∣∣∣∣Sp,qCTq(ϑT, ϕT) e−jβrT
e−jβrR

rR

∣∣∣∣∣

2

=
PTGT

4π

∣∣∣∣∣Sp,qCTq(ϑT, ϕT)
e−jβrT

rT

e−jβrR

rR

∣∣∣∣∣

2

.

Der Beitrag der einfallenden Polarisationskomponente q zur aus dem Empfang
einer einzigen Polarisationskomponente p resultierenden Empfangsleistung ergibt
sich mit (6.1) und (6.5) unter Berücksichtigen der Richtwirkung der Empfangs-
antenne gemäß (5.11) zu

PRp,q =SSp,q

∣∣∣CRp(ϑR, ϕR)
∣∣∣
2 λ2

4π
GR

︸ ︷︷ ︸
AR

=PT

(
λ

4π

)2

GTGR

∣∣∣∣∣Sp,qCRp(ϑR, ϕR)CTq(ϑT, ϕT)
e−jβrT

rT

e−jβrR

rR

∣∣∣∣∣

2

.
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Zum Darstellen der gesamten Empfangsleistung definiert man die komplexe po-
larimetrische Streumatrix

S =

(
Sϑ,ϑ Sϑ,ϕ
Sϕ,ϑ Sϕ,ϕ

)
. (6.36)

Mit den in Abbildung 6.12 eingeführten parallel ausgerichteten lokalen Koordina-
tensystemen ergibt sich die gesamte Empfangsleistung unter Berücksichtigen der
jeweils entgegengesetzt gerichteten Basisvektoren in ϕ-Richtung zu

PR = PT

(
λ

4π

)2

GTGR

∣∣∣∣∣∣∣∣∣∣

CT
R(ϑR, ϕR) · e−jβrR

rR

·
(

1 0
0 −1

)
· S · e−jβrT

rT

·
(

1 0
0 −1

)

︸ ︷︷ ︸
T

·CT(ϑT, ϕT)

∣∣∣∣∣∣∣∣∣∣

2

.

(6.37)

Die Amplitudenabnahmen, Phasendrehungen und Kopplungen der Polarisations-
komponenten auf dem Ausbreitungspfad können auch hier wieder mit einer Trans-
fermatrix T beschrieben werden.

Für den Spezialfall des monostatischen Radars ist die polarimetrische Streu-
matrix wegen der Reziprozität gemäß (9.9) symmetrisch

Sϑ,ϕ = Sϕ,ϑ.

Für die Empfangsleistung eines monostatischen Radarsystems folgt

PR =PT

(
λ

4πr2

)2

G2

∣∣∣∣∣C
T(ϑ, ϕ) ·

(
1 0
0 −1

)
· S ·

(
1 0
0 −1

)
· C(ϑ, ϕ)

∣∣∣∣∣

2

=PT

(
λ

4πr2

)2

G2

∣∣∣C2
ϑ(ϑ, ϕ)Sϑ,ϑ − 2Cϑ(ϑ, ϕ)Cϕ(ϑ, ϕ)Sϑ,ϕ + C2

ϕ(ϑ, ϕ)Sϕ,ϕ
∣∣∣
2
,

(6.38)

vergleiche (6.34).

6.4. Mehrwegeausbreitung

Insbesondere in terrestrischen Funkkommunikationssystemen befinden sich typi-
scherweise viele Hindernisse in der Funkstrecke zwischen Sender und Empfänger.
Die elektromagnetischen Wellen breiten sich dann auf P Pfaden mit Reflexionen,
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Streuungen und Beugungen an Hindernissen vom Sender zum Empfänger aus,
was man als Mehrwegeausbreitung bezeichnet. Jeder einzelne Ausbreitungspfad
kann durch die Parameter

Ausfallsrichtung: ϑ(p)
T , ϕ(p)

T am Sender,

Transfermatrix: T(p) und

Einfallsrichtung: ϑ(p)
R , ϕ(p)

R am Empfänger

charakterisiert werden.
Das Empfangssignal ergibt sich durch lineares Überlagern der Empfangssignale

aller P Pfade. Damit folgt für die Empfangsleistung

PR = PT

(
λ

4π

)2

GTGR

∣∣∣∣∣∣

P∑

p=1

CT
R

(
ϑ

(p)
R , ϕ

(p)
R

)
· T(p) · CT

(
ϑ

(p)
T , ϕ

(p)
T

)
∣∣∣∣∣∣

2

, (6.39)

vergleiche (6.37). Man beachte, dass diese Gleichung nur für ein schmalbandi-
ges Signal der Wellenlänge λ gilt. Die entfernungsbedingten relativen Phasen-
verschiebungen auf den Ausbreitungspfaden sind jedoch aufgrund der typischer-
weise großen Pfadlängenunterschiede stark frequenzabhängig. Damit ist auch die
Amplitude des Empfangssignals nach Überlagerung der Pfade stark frequenzab-
hängig. Je nach relativer Phasenlage können sich Empfangssignalanteile verschie-
dener Pfade eher destruktiv auslöschen oder auch konstruktiv verstärken. Das
Studium der Eigenschaften derartiger frequenzselektiver Mehrwegefunkkanäle ist
ein wichtiges Thema in der Mobilkommunikation [GW98; Pae12]. Umfangreiche
Programmpakete zur Analyse der Ausbreitung elektromagnetischer Wellen in un-
terschiedlichsten Szenarien und zum Berechnen der zu erwartenden Empfangs-
leistung gemäß (6.39) sind verfügbar.

Aufgabe 6.4 In dem betrachteten Szenario befinden sich ein Sender und ein
Empfänger über einer ideal elektrisch leitenden Ebene, siehe Abbildung 6.13. Die
Funkwellen können sich dann über einen direkten Pfad und über einen an der
ideal elektrisch leitenden Ebene reflektierten Pfad vom Sender zum Empfänger
ausbreiten. Die Höhe des Senders über der ideal elektrisch leitenden Ebene sei hT

und die Höhe des Empfängers über der ideal elektrisch leitenden Ebene sei hR. Der
horizontale Abstand von Sender und Empfänger sei r. Sie können vereinfachend
annehmen, dass der horizontale Abstand viel größer als die Höhen ist:

r ≫ hT, hR.
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6.4. Mehrwegeausbreitung

Es werden der Fall vertikaler und horizontaler linearer Polarisation unterschie-
den. Wenn man weiterhin omnidirektionale Antennen

GT = GR = 1

annimmt, entspricht dies den vektoriellen komplexen Richtcharakteristiken

CT = CR =

(
1
0

)

beziehungsweise

CT = CR =

(
0
1

)
.

Berechnen Sie jeweils die Empfangsleistung PR als Funktion der Sendeleistung
PT, der Wellenlänge λ, des horizontalen Abstands r und der Höhen hT und hR

der Antennen!

r

hT

hR

Sender

Empfänger

idealer elektrischer Leiter

direkter Pfad

reflektierter Pfad

Abbildung 6.13.: Zweiwegeausbreitung
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Kapitel 7.

Leitungstheorie

7.1. Komplexe Wellenamplitude

Bisher wurden Wellen je nach Typ durch die elektrische Feldstärke ~E, die ma-
gnetische Feldstärke ~H, die Spannung U oder den Strom I auf dem Wellenleiter
beschrieben. Das Ziel der folgenden Betrachtungen ist es, Wellenphänomene unab-
hängig vom Typ des Wellenleiters zu untersuchen. Hierzu wird zunächst der auch
in vielen technischen Anwendungen relevante Fall betrachtet, dass sich auf dem
Wellenleiter nur ein einziger Mode ausbreiten kann. Dies ist beispielsweise der
transversalelektromagnetische Mode auf Zweileitersystemen und der TE1,0-Mode
auf Rechteckhohlleitern bei Kreisfrequenzen ω unterhalb der kritischen Kreisfre-
quenz ωc des jeweils nächsthöheren Modes. Es gibt dann im Allgemeinen neben
einer sich in positive z-Richtung ausbreitenden Welle, die im Folgenden als hin-
laufende Welle bezeichnet wird, eine sich in negative z-Richtung ausbreitende
rücklaufende Welle. Die rücklaufende Welle kann beispielsweise durch Reflexion
der hinlaufenden Welle an einem fehlangepassten Abschluss am Wellenleiterende
entstehen.

Falls sich auf dem Wellenleiter nur ein einziger Mode ausbreiten kann, haben
die elektromagnetischen Felder aller denkbaren hinlaufenden Wellen die gleiche
Struktur. Die (vektorielle) komplexe Amplitude einer eine hinlaufende Welle be-
schreibenden physikalischen Größe kann man in der Form

AH(x, y, z) = a0ÃH(x, y, z)

darstellen. Hierbei sind

• a0 die komplexe Wellenamplitude der hinlaufenden Welle bei z = 0, welche
die Amplitude und die Nullphase beschreibt, und

• ÃH(x, y, z) die (vektorielle) komplexe Amplitude der hinlaufenden Bezugs-
welle, welche die prinzipielle Feldstruktur beschreibt.
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Mit der bekannten Ortsabhängigkeit (2.7) und (2.8) von elektromagnetischen Fel-
dern auf zylindrischen Wellenleitern gilt für die sich in positive z-Richtung aus-
breitende hinlaufende Welle

AH(x, y, z) = a0 e−jβz

︸ ︷︷ ︸
a(z)

Ã0(x, y) . (7.1)

Die ortsabhängige komplexe Wellenamplitude der hinlaufenden Welle ergibt sich
zu

a(z) = a0 e−jβz . (7.2)

Die Bezugswelle wird so gewählt, dass der Betrag der von ihr transportierten Leis-
tung 1/2 ist. Der Betrag der von der hinlaufenden Welle transportierten Leistung
ergibt sich dann zu

|Pa| =
1

2
|a(z)|2 =

1

2
|a0|2 . (7.3)

Die komplexe Wellenamplitude a0 hat die Einheit
√

W.
Die durch Ã0(x, y) beschriebene Feldstruktur der Bezugswelle in der Quer-

schnittsebene z = 0 ist unabhängig von der Ausbreitungsrichtung der Welle. Für
eine sich in negative z-Richtung ausbreitende rücklaufende Welle gilt folglich

AR(x, y, z) = b0 e+jβz

︸ ︷︷ ︸
b(z)

Ã0(x, y) . (7.4)

Die ortsabhängige komplexe Wellenamplitude der rücklaufenden Welle ergibt sich
zu

b(z) = b0 e+jβz . (7.5)

Der Betrag der von der rücklaufenden Welle transportierten Leistung ergibt sich
zu

|Pb| =
1

2
|b(z)|2 =

1

2
|b0|2 . (7.6)

7.2. Reflexionsfaktor

Der Reflexionsfaktor

Γ(z) =
b(z)

a(z)
(7.7)

ist als Verhältnis der komplexen Wellenamplitude a(z) der hinlaufenden Welle
und der komplexen Wellenamplitude b(z) der rücklaufenden Welle definiert. Bei
z = 0 ist der Reflexionsfaktor

Γ0 =
b0

a0

. (7.8)
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7.3. Resultierende komplexe Wellenamplitude

Mit (7.2) und (7.5) folgt

Γ(z) =
b0 e+jβz

a0 e−jβz
= Γ0 e+j2βz (7.9)

für den ortsabhängigen Reflexionsfaktor Γ(z). Der Wellenleiter transformiert den
Reflexionsfaktor. Der Betrag des Reflexionsfaktors

|Γ(z)| = |Γ0|

ist bei den hier betrachteten verlustfreien Wellenleitern ortsunabhängig. Falls die
rücklaufende Welle durch Reflexion der hinlaufenden Welle an einem nicht ver-
stärkendem Abschluss entsteht, ist der Betrag |Pb| der Leistung der rücklaufenden
Welle nie größer als der Betrag |Pa| der Leistung der hinlaufenden Welle. Dann
gilt

1

2
|b(z)|2 ≤ 1

2
|a(z)|2

und folglich
|Γ(z)| ≤ 1. (7.10)

Bei perfekter Anpassung gilt |Γ(z)| = 0 und |Γ(z)| = 1 entspricht einer Totalre-
flexion.

7.3. Resultierende komplexe Wellenamplitude

Die Zeiger a(z) und b(z) in der komplexen Ebene drehen sich gemäß (7.2) und (7.5)
mit wachsendem z gegen den beziehungsweise im Uhrzeigersinn, siehe Abbildung
7.1. Die aus der Überlagerung resultierende komplexe Wellenamplitude ist

c(z) = a(z) + b(z) = a(z) (1 + Γ(z)) = a0 e−jβz
(
1 + Γ0 ej2βz

)
. (7.11)

Der ortsabhängige Betrag der resultierenden komplexen Wellenamplitude c(z)
ergibt sich zu

|c(z)| = |a0|
∣∣∣1 + Γ0 ej2βz

∣∣∣ .

Es gibt Orte z minimalen und maximalen Betrags |c(z)| der resultierenden kom-
plexen Wellenamplitude, die sich abwechselnd im Abstand von

∆z =
π

2β
=
λ

4
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befinden, siehe auch (2.38). Man spricht von einer stehenden Welle, siehe Abbil-
dung 7.2. Die absolute Lage der Minima und Maxima hängt vom Argument des
Reflexionsfaktors Γ0 ab. Die Minimalwerte sind

|c|min = |a0| (1 − |Γ(z)|) (7.12)

und die Maximalwerte sind

|c|max = |a0| (1 + |Γ(z)|) . (7.13)

Im

Re

arg(a(z))

arg(b(z))

a(z)

b(z)

b(z)

c(z)

z

z

Abbildung 7.1.: Resultierende komplexe Wellenamplitude c(z)

Der Anpassungsfaktor

m =
|c|min

|c|max

=
1 − |Γ(z)|
1 + |Γ(z)| (7.14)

ist als Verhältnis von Minimalwert |c|min und Maximalwert |c|max des Betrags
|c(z)| der resultierenden komplexen Wellenamplitude c(z) definiert. Für den An-
passungsfaktor gilt

0 ≤ m ≤ 1.
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7.3. Resultierende komplexe Wellenamplitude
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0
|

Γ0 = 1
Γ0 = 0,5
Γ0 = 0

(a) Betragsverlauf

−1 −0,75 −0,5 −0,25 0
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0,5
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))
−
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c 0
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Γ0 = 1
Γ0 = 0,5
Γ0 = 0

(b) Phasenverlauf

Abbildung 7.2.: Stehende Welle
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m = 1 entspricht der perfekten Anpassung und m = 0 einer Totalreflexion. Den
Kehrwert 1/m des Anpassungsfaktors m bezeichnet man als Stehwellenverhält-
nis (Standing Wave Ratio, SWR). Aus dem Anpassungsfaktor m kann man den
Betrag

|Γ(z)| =
1 −m

1 +m
(7.15)

des Reflexionsfaktors Γ(z) berechnen.

Aufgabe 7.1 Durch Überlagern einer hinlaufenden und einer rücklaufenden Wel-
le entsteht eine stehende Welle mit der resultierenden komplexen Wellenamplitude
c(z). Der Reflexionsfaktor bei z = 0 sei Γ0. Berechnen Sie den auf sein Maximum
|c|max normierten Betrag |c(z)| der resultierenden komplexen Wellenamplitude

|c′(z)| =
|c(z)|
|c|max

abhängig von Anpassungsfaktor m, Reflexionsfaktorargument arg(Γ0) und Pha-
senkonstante β!

7.4. Spannung und Strom

Für eine transversalelektromagnetische Welle auf einem Zweileitersystem, das im
Folgenden auch kurz als Leitung bezeichnet wird, lässt sich auf einfache allgemein-
gültige Art und Weise eine Beziehung zwischen der komplexen Wellenamplitude
und der Spannung und dem Strom herstellen. Spannung UH(z) und Strom IH(z)
einer sich in positive z-Richtung ausbreitenden hinlaufenden Welle sind über den
Wellenwiderstand

ZL =
UH(z)

IH(z)

miteinander verknüpft, siehe (3.20). Der Betrag der von einer hinlaufenden Welle
transportierten Leistung (7.3) berechnet sich mit dem Wellenwiderstand ZL zu

|Pa| =
1

2
|a(z)|2 =

∣∣∣∣
1

2
Re(UH(z) I∗

H(z))
∣∣∣∣ =

|UH(z)|2
2ZL

=
1

2
ZL |IH(z)|2 ,

siehe (3.30). Wenn man weiterhin wie allgemein üblich das Argument der kom-
plexen Wellenamplitude a(z) der hinlaufenden Welle gleich dem Argument der
Spannung UH(z) der hinlaufenden Welle wählt, so folgt für die komplexe Wellen-
amplitude der hinlaufenden Welle

a(z) =
UH(z))√

ZL

=
√
ZLIH(z) . (7.16)
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7.4. Spannung und Strom

Spannung UR(z) und Strom IR(z) einer sich in negative z-Richtung ausbreitenden
rücklaufenden Welle sind ebenfalls über den Wellenwiderstand

ZL = −UR(z)

IR(z)

miteinander verknüpft, siehe (3.20). Für die komplexe Wellenamplitude einer sich
in negative z-Richtung ausbreitenden rücklaufenden Welle gilt folglich

b(z) =
UR(z))√

ZL

= −
√
ZLIR(z) . (7.17)

Man beachte das Minuszeichen im letzten Term.
Die hinlaufende und die rücklaufende Welle überlagern sich. Man erhält die aus

der Überlagerung resultierende Spannung

U(z) = UH(z) + UR(z) =
√
ZL (a(z) + b(z))︸ ︷︷ ︸

c(z)

(7.18)

und den aus der Überlagerung resultierenden Strom

I(z) = IH(z) + IR(z) =
1√
ZL

(a(z) − b(z)) . (7.19)

Aufgelöst nach den komplexen Wellenamplituden erhält man

a(z) =
1

2

(
U(z)√
ZL

+
√
ZLI(z)

)
(7.20)

und

b(z) =
1

2

(
U(z)√
ZL

−
√
ZLI(z)

)
. (7.21)

Transversalelektromagnetische Wellen, das heißt Signale auf einem Zweileiter-
system, kann man konventionell durch die resultierende Spannung U(z) und den
resultierenden Strom I(z) oder äquivalent durch die komplexen Wellenamplitu-
den a(z) und b(z) beschreiben. Letztere nicht auf transversalelektromagnetische
Wellen auf Zweileitersystemen beschränkte Variante ist wegen der einfacheren
Ortsabhängigkeiten (7.2) und (7.5) die in der Hochfrequenztechnik zu bevorzu-
gende.
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7.5. Impedanz

Die Impedanz

Z(z) =
U(z)

I(z)
(7.22)

ist als Verhältnis aus der resultierender Spannung U(z) und dem resultierendem
Strom I(z) definiert. Einsetzen von (7.18) und (7.19) ergibt mit (7.7) und (7.9)

Z(z)

ZL

=
a(z) + b(z)

a(z) − b(z)
=

1 + Γ(z)

1 − Γ(z)
=

1 + Γ0 e+j2βz

1 − Γ0 e+j2βz
. (7.23)

Auflösen nach dem Reflexionsfaktor ergibt

Γ(z) =
Z(z)
ZL

− 1
Z(z)
ZL

+ 1
=
Z(z) − ZL

Z(z) + ZL
. (7.24)

Diese Gleichung entspricht formal nicht nur zufällig den Gleichungen (6.18) und
(6.24) zum Berechnen der Reflexionsfaktoren für auf eine ebene Grenzfläche ein-
fallende ebene homogene Wellen.

Bei Kenntnis der normierten Impedanz

Z0

ZL
=

1 + Γ0

1 − Γ0

bei z = 0 lässt sich der Reflexionsfaktor

Γ0 =
Z0

ZL
− 1

Z0

ZL
+ 1

aus (7.23) eliminieren:

Z(z)

ZL
=

(
Z0

ZL
+ 1

)
+
(
Z0

ZL
− 1

)
ej2βz

(
Z0

ZL
+ 1

)
−
(
Z0

ZL
− 1

)
ej2βz

=

Z0

ZL

(
e−jβz + ejβz

)
+
(
e−jβz − ejβz

)

Z0

ZL
(e−jβz − ejβz) + (e−jβz + ejβz)

=
Z0

ZL
cos(βz) − j sin(βz)

−jZ0

ZL
sin(βz) + cos(βz)

=
Z0

ZL
− j tan(βz)

1 − jZ0

ZL
tan(βz)

.

(7.25)
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7.5. Impedanz

Die normierte Impedanz Z0/ZL bei z = 0 wird durch die Leitung in die normierte
Impedanz Z(z) /ZL am Ort z transformiert. Eine Leitung der Länge l transfor-
miert die normierte Abschlussimpedanz Z2/ZL in die normierte Eingangsimpe-
danz

Z1

ZL

=
Z(z = −l)

ZL

=
Z2

ZL
+ j tan(βl)

1 + jZ2

ZL
tan(βl)

, (7.26)

siehe Abbildung 7.3.

l

ZL Z2Z1

Abbildung 7.3.: Transformation der Abschlussimpedanz Z2 in die Eingangsimpe-
danz Z1

Falls der Reflexionsfaktor Γ0 bei z = 0 reell und negativ ist, gilt

Γ0 = − |Γ0| =
m− 1

m+ 1
,

siehe (7.15). Dies in (7.23) eingesetzt ergibt die normierte Impedanz

Z(z)

ZL

=
m− j tan(βz)

1 − jm tan(βz)
(7.27)

am Ort z, vergleiche auch (7.25).
Das Zweileitersystem mit dem Abschluss am Wellenleiterende kann konventio-

nell durch die Impedanz Z(z) oder äquivalent durch den Reflexionsfaktor Γ(z)
beschrieben werden. Letztere nicht auf transversalelektromagnetische Wellen auf
Zweileitersystemen beschränkte Variante ist wegen der wesentlich einfacheren
Transformationsgleichung, vergleiche (7.9) und (7.25), die in der Hochfrequenz-
technik zu bevorzugende.

Aufgabe 7.2 Es wird der im Abbildung 7.4 gezeigte Hohlleiter betrachtet. Der
Hohlleiter ist im Bereich z < 0 leer und im Bereich z > 0 vollständig mit einem
verlustfreien Dielektrikum mit der relativen Permittivität εr = 4 und der relativen
Permeabilität µr ausgefüllt. Im Hohlleiter breite sich eine transversalelektrische
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Welle in positive z-Richtung aus. Die Kreisfrequenz ω sei doppelt so groß wie die
kritische Kreisfrequenz ωc des sich ausbreitenden Wellentyps im leeren Hohlleiter.
Wie muss die relative Permeabilität µr des Dielektrikums gewählt werden, damit
die Stoßstelle von gefülltem und leerem Hohlleiterbereich reflexionsfrei ist? Be-
trachten Sie hierzu die Grenzflächenbedingungen der Tangentialkomponenten der
Feldstärken bei z = 0.

y x

z

z = 0

ε0, µ0 ε0εr, µ0µr

Abbildung 7.4.: Teilweise gefüllter Hohlleiter

Aufgabe 7.3 Berechnen Sie für den Fall reeller Impedanzen Z = R den Anpas-
sungsfaktor m als Funktion des Widerstands R!

7.6. Leistung

Für den Energietransport in Richtung der Längsachse des Wellenleiters, die der z-
Richtung entspricht, ist nur die z-Komponente des komplexen Poynting-Vektors ~S
gemäß (1.79) relevant, die man aus den Transversalkomponenten der Feldstärken
der hinlaufenden und der rücklaufenden Welle wie folgt berechnet:

Sz =
1

2

(
ExH

∗
y − EyH

∗
x

)

=
1

2

(
(EHx + ERx)

(
H∗

Hy +H∗
Ry

)
−
(
EHy + ERy

)
(H∗

Hx +H∗
Rx)

)

=
1

2

(
EHxH

∗
Hy + EHxH

∗
Ry + ERxH

∗
Hy + ERxH

∗
Ry

− EHyH
∗
Hx − EHyH

∗
Rx − ERyH

∗
Hx − ERyH

∗
Rx

)
.
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7.7. Messen des Reflexionsfaktors mit einer Messleitung

Mit dem Feldwellenwiderstand ZF folgt weiterhin1

Sz =
ZF

2

(
HHyH

∗
Hy +HHyH

∗
Ry −HRyH

∗
Hy −HRyH

∗
Ry

+HHxH
∗
Hx +HHxH

∗
Rx −HRxH

∗
Hx −HRxH

∗
Rx

)

=
ZF

2

(
|HHx|2 +

∣∣∣HHy

∣∣∣
2 − |HRx|2 −

∣∣∣HRy

∣∣∣
2

+ 2j Im(HHxH
∗
Rx) + 2j Im

(
HHyH

∗
Ry

))
,

siehe (2.27), (2.28), (2.32) und (2.34). Die transportierte Leistung ergibt sich aus
dem Realteil

Re(Sz) =
ZF

2

(
|HHx|2 +

∣∣∣HHy

∣∣∣
2
)

− ZF

2

(
|HRx|2 +

∣∣∣HRy

∣∣∣
2
)

der z-Komponente Sz des komplexen Poynting-Vektors ~S. Die in positive z-
Richtung transportierte Leistung ist folglich der Betrag |Pa| der von der hin-
laufenden Welle transportierte Leistung weniger dem Betrag |Pb| der von der
rücklaufenden Welle transportierten Leistung. Mit (7.3) und (7.6) erhält man die
transportierte Leistung

P =
1

2
|a(z)|2 − 1

2
|b(z)|2 . (7.28)

7.7. Messen des Reflexionsfaktors mit einer
Messleitung

Eine Messleitung besteht aus einem Wellenleiter und einer verschiebbaren Sonde
mit Detektor. Die Sonde ragt in das Feld des Wellenleiters und am Detektor ergibt
sich eine zum Betrag |c(z)| der resultierenden komplexen Wellenamplitude c(z)
proportionale Gleichspannung.

Mit der Messleitung können die Orte z der scharfen Minima sehr genau be-
stimmt werden. Weiterhin können die minimalen und maximalen Beträge |c(z)|
der resultierenden komplexen Wellenamplitude c(z), bis auf einen unbekannten
gemeinsamen Proportionalitätsfaktor, genau gemessen werden. In Abbildung 7.5
sind typische Verläufe dargestellt.

Zunächst erfolgt eine Referenzmessung bei Abschluss des Wellenleiters mit ei-
nem Kurzschluss. Der Abstand zweier Minima entspricht λ/2, es kann also die

1 Der Imaginärteil einer komplexen Größe berechnet sich zu Im(x) = 1
2j (x− x∗).
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Z0

z

ZL

ZL

z

|c(z)|

∆z ∆z

λ/2

Kurzschluss

Z0

Abbildung 7.5.: Messleitung

Wellenlänge λ bestimmt werden. Weiterhin wird der Ort eines Minimums be-
stimmt. Dort liegt stets der gleiche Reflexionsfaktor wie am Wellenleiterende vor,
da der Abstand vom Wellenleiterende ein ganzzahliges Vielfaches von λ/2 ist,
siehe (7.9) und (2.38).

Im nächsten Schritt werden bei Abschluss des Wellenleiters mit dem zu be-
stimmenden Reflexionsfaktor Γ0 der Abstand ∆z des Minimums in Richtung des
Messobjekts vom zuvor bestimmten Ort des Minimums bei Abschluss mit ei-
nem Kurzschluss und durch Amplitudenmessung der Anpassungsfaktor m gemäß
(7.14) gemessen. Für den Betrag des Reflexionsfaktors folgt mit (7.15)

|Γ0| =
|c|max − |c|min

|c|max + |c|min

. (7.29)

Beim Fortsetzen der Amplitudenverläufe über das Wellenleiterende hinaus be-
fände sich im Abstand ∆z hinter dem Ende des Wellenleiters das nächste Mi-
nimum, das heißt hier wäre das Argument des Reflexionsfaktors π. Den Refle-
xionsfaktor Γ0 am Ende des Wellenleiters erhält man durch Transformation des
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negativen reellen Reflexionsfaktors − |Γ0| im Abstand ∆z hinter dem Ende des
Wellenleiters mit einer Leitung der Länge ∆z. Für das Argument des Reflexions-
faktors folgt

arg(Γ0) = π − 2β∆z = π − 4π
∆z

λ
, (7.30)

siehe (7.9) und (2.38).

7.8. Leitungen als Blindelemente

7.8.1. Kurzgeschlossene Leitung

Die Eingangsimpedanz der kurzgeschlossenen Leitung aus Abbildung 7.6 ergibt
sich mit (7.26) zu

Z1 = jZL tan(βl) , (7.31)

siehe Abbildung 7.7.

l

Z2 = 0Z1 = jX1 ZL

Abbildung 7.6.: Kurzgeschlossene Leitung

βl

X1/Ω = Re(Z1) /Ω

ind. kap. ind.

π
2

π 3π
2

Abbildung 7.7.: Blindwiderstand der kurzgeschlossenen Leitung
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7.8.2. Leerlaufende Leitung

Die Eingangsimpedanz der leerlaufenden Leitung aus Abbildung 7.8 ergibt sich
mit (7.26) zu

Z1 = ZL
1

j tan(βl)
= −jZL cot(βl) , (7.32)

siehe Abbildung 7.9.

l

Z2 = ∞Z1 = jX1 ZL

Abbildung 7.8.: Leerlaufende Leitung

βl

X1/Ω = Re(Z1) /Ω

kap. ind. kap.

π
2

π 3π
2

Abbildung 7.9.: Blindwiderstand der leerlaufenden Leitung

7.9. Autotransformation

Eine Leitung der Länge l = λ/2 transformiert die Abschlussimpedanz Z2 in die
Eingangsimpedanz

Z1 = ZL
Z2 + jZL tan(π)

ZL + jZ2 tan(π)
= Z2, (7.33)

siehe (7.26), (2.38) und Abbildung 7.10. Die Abschlussimpedanz Z2 wird in sich
selbst transformiert. Man bezeichnet dies als Autotransformation.
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l = λ
2

Z2Z1 = Z2 ZL

Abbildung 7.10.: λ/2-Transformator

Aufgabe 7.4 Es wird der in Abbildung 7.11 gezeigte, aus einem an beiden Enden
kurzgeschlossenen Hohlleiter der Breite a, der Höhe b und der Länge l bestehen-
de Hohlraumresonator betrachtet. Bei welchen Kreisfrequenzen treten Resonanzen
auf, das heißt bei welchen Kreisfrequenzen kann in dem Hohlraumresonator ein
nichtverschwindendes elektromagnetisches Feld existieren?

l

b

a
x

y

z

Abbildung 7.11.: Hohlraumresonator

7.10. Dualtransformation

Eine Leitung der Länge l = λ/4 transformiert die Abschlussimpedanz Z2 in die
Eingangsimpedanz

Z1 = ZL

Z2 + jZL tan
(
π
2

)

ZL + jZ2 tan
(
π
2

) =
Z2

L

Z2

(7.34)

siehe (7.26), (2.38) und Abbildung 7.12. Man bezeichnet diese Transformation als
Dualtransformation. Insbesondere kann man jede reelle Abschlussimpedanz Z2 in
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l = λ
4

R2R1 ZL =
√
R1R2

Abbildung 7.12.: λ/4-Transformator

jede beliebige andere reelle Eingangsimpedanz Z1 transformieren, man muss nur
den Wellenwiderstand ZL der Leitung passend wählen.

7.11. Symmetrische Dreileitersysteme

Auf einem symmetrischen Dreileitersystem können sich zwei orthogonale transver-
salelektromagnetische Wellenmoden, der Gegentaktmode und der Gleichtaktmo-
de ausbreiten. Man definiert komplexe Wellenamplituden a(−)(z) und b(−)(z) der
hinlaufenden und der rücklaufenden Gegentaktwelle sowie komplexe Wellenampli-
tuden a(+)(z) und b(+)(z) der hinlaufenden und der rücklaufenden Gleichtaktwelle
analog zu Abschnitt 7.1. Die Bezugswellen sind wieder so normiert, dass der Be-
trag der transportierten Leistungen 1/2 ist. Für die hinlaufenden Wellen erhält
man unter Ausnutzen der Orthogonalität der Moden den Betrag der transportier-
ten Leistung

|Pa| =
∣∣∣Re

(
U

(−)
H (z) I(−)

H

∗
(z)
)

+ Re
(
U

(+)
H (z) I(+)

H

∗
(z)
)∣∣∣

=
1

2

∣∣∣a(−)(z)
∣∣∣
2

+
1

2

∣∣∣a(+)(z)
∣∣∣
2
,

siehe (3.82). Analog erhält man für die rücklaufenden Wellen den Betrag der
transportierten Leistung

|Pb| =
∣∣∣Re

(
U

(−)
R (z) I(−)

R

∗
(z)
)

+ Re
(
U

(+)
R (z) I(+)

R

∗
(z)
)∣∣∣

=
1

2

∣∣∣b(−)(z)
∣∣∣
2

+
1

2

∣∣∣b(+)(z)
∣∣∣
2
.

Analog zu (7.28) erhält man die transportierte Leistung

P = |Pa| − |Pb|

=
1

2

∣∣∣a(−)(z)
∣∣∣
2

+
1

2

∣∣∣a(+)(z)
∣∣∣
2 − 1

2

∣∣∣b(−)(z)
∣∣∣
2 − 1

2

∣∣∣b(+)(z)
∣∣∣
2
.

(7.35)
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Unter Verwenden der Wellenwiderstände (3.72) und (3.73) von Gegentaktmode
und Gleichtaktmode lassen sich die komplexen Wellenamplituden aus den zugehö-
rigen Spannungen und Strömen analog zu (7.16) und (7.17) wie folgt berechnen:

a(−)(z) =

√√√√ 2

Z
(−)
L

U
(−)
H (z) =

√
2Z(−)

L I
(−)
H (z) , (7.36)

b(−)(z) =

√√√√ 2

Z
(−)
L

U
(−)
R (z) = −

√
2Z(−)

L I
(−)
R (z) , (7.37)

a(+)(z) =

√√√√ 2

Z
(+)
L

U
(+)
H (z) =

√
2Z(+)

L I
(+)
H (z) , (7.38)

b(+)(z) =

√√√√ 2

Z
(+)
L

U
(+)
R (z) = −

√
2Z(+)

L I
(+)
R (z) . (7.39)

Die Spannungen und Ströme der hinlaufenden und der rücklaufenden Wellen
überlagern sich. Man erhält analog zu (7.18) und (7.19) die aus der Überlagerung
resultierende Gegentaktspannung

U (−)(z) = U
(−)
H (z) + U

(−)
R (z) =

√√√√Z
(−)
L

2

(
a(−)(z) + b(−)(z)

)
, (7.40)

die aus der Überlagerung resultierende Gleichtaktspannung

U (+)(z) = U
(+)
H (z) + U

(+)
R (z) =

√√√√Z
(+)
L

2

(
a(+)(z) + b(+)(z)

)
, (7.41)

den aus der Überlagerung resultierenden Gegentaktstrom

I(−)(z) = I
(−)
H (z) + I

(−)
R (z) =

√√√√ 1

2Z(−)
L

(
a(−)(z) − b(−)(z)

)
, (7.42)

und den aus der Überlagerung resultierenden Gleichtaktstrom

I(+)(z) = I
(+)
H (z) + I

(+)
R (z) =

√√√√ 1

2Z(+)
L

(
a(+)(z) − b(+)(z)

)
. (7.43)

Die komplexen Wellenamplituden lassen sich aus den resultierenden Spannungen

173



Kapitel 7. Leitungstheorie

und resultierenden Strömen analog zu (7.20) und (7.21) wie folgt berechnen:

a(−)(z) =

√√√√ 1

2Z(−)
L

U (−)(z) +

√√√√Z
(−)
L

2
I(−)(z) , (7.44)

b(−)(z) =

√√√√ 1

2Z(−)
L

U (−)(z) −

√√√√Z
(−)
L

2
I(−)(z) , (7.45)

a(+)(z) =

√√√√ 1

2Z(+)
L

U (+)(z) +

√√√√Z
(+)
L

2
I(+)(z) , (7.46)

b(+)(z) =

√√√√ 1

2Z(+)
L

U (+)(z) −

√√√√Z
(+)
L

2
I(+)(z) . (7.47)

Zunächst sollen nur symmetrische Abschlüsse betrachtet werden, siehe Abbil-
dung 7.13. An symmetrischen Abschlüssen wird jeder Mode nur in sich selbst
reflektiert. An asymmetrischen Abschlüssen kann hingegen auch eine Modenkon-
version auftreten, siehe Abschnitt 9.6. Wegen der im Allgemeinen unterschied-
lichen Wellenwiderstände von Gegentaktmode und Gleichtaktmode und der un-
terschiedlichen für die verschiedenen Moden sichtbaren Impedanzen sind die Re-
flexionsfaktoren an ein und dem selben symmetrischen Abschluss für die beiden
Moden im Allgemeinen unterschiedlich.

Die für den Gegentaktmode wirksame Abschlussimpedanz ergibt sich aus der
Parallelschaltung von Z2,10 und

Z2,12

2
:

Z
(−)
2 = Z2,10‖

Z2,12

2
=

Z2,10
Z2,12

2

Z2,10 +
Z2,12

2

. (7.48)

Aus (7.24) ergibt sich unter Verwenden des Wellenwiderstands Z(−)
L des Gegen-

taktmodes gemäß (3.72) der Reflexionsfaktor

Γ(−)
2 =

Z
(−)
2

Z
(−)
L

− 1

Z
(−)
2

Z
(−)
L

+ 1
(7.49)

des Gegentaktmodes. Die Abschlussimpedanz Z(−)
2 wird durch die Leitung in die

für den Gegentaktmode sichtbare normierte Eingangsimpedanz

Z
(−)
1

Z
(−)
L

=
Z1,10‖Z1,12

2

Z
(−)
L

=

Z
(−)
2

Z
(−)
L

+ j tan(βl)

1 + jZ
(−)
2

Z
(−)
L

tan(βl)
(7.50)
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replacemen

l

ZL, kU 1

U 2

I1

I2

Z2,10

Z2,20 = Z2,10

Z2,12

Kurzschluss

l

Z
(−)
LU

(−)
1

−U (−)
1

I
(−)
1

−I(−)
1

Z2,10

Z2,20 = Z2,10

Z2,12/2

Z2,12/2

Leerlauf

l

Z
(+)
LU

(+)
1

U
(+)
1

I
(+)
1

I
(+)
1

Z2,10

Z2,20 = Z2,10

Z2,12/2

Z2,12/2

U 1

U 2

I1

I2

Z1,10

Z1,20 = Z1,10

Z1,12

Abbildung 7.13.: Impedanztransformation durch ein symmetrisches Dreileitersys-
tem
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transformiert, siehe (7.26).
Für den Gleichtaktmode ist die Abschlussimpedanz

Z
(+)
2 = Z2,10 (7.51)

wirksam, so dass sich aus (7.24) unter Verwenden des Wellenwiderstands ZL(+)
des Gleichtaktmodes gemäß (3.73) der Reflexionsfaktor

Γ(+)
2 =

Z
(+)
2

Z
(+)
L

− 1

Z
(+)
2

Z
(+)
L

+ 1
(7.52)

des Gleichtaktmodes ergibt. Die Abschlussimpedanz Z(+)
2 wird durch die Leitung

in die für den Gleichtaktmode sichtbare normierte Eingangsimpedanz

Z
(+)
1

Z
(+)
L

=
Z

(+)
1,10

Z
(+)
L

=

Z
(+)
2

Z
(+)
L

+ j tan(βl)

1 + jZ
(+)
2

Z
(+)
L

tan(βl)
(7.53)

transformiert, siehe (7.26).

7.12. Rein massegekoppelte symmetrische
Dreileitersysteme

Für rein massegekoppelte symmetrische Dreileitersysteme sind gemäß (3.84) die
Wellenwiderstände der beiden Moden gleich. Damit sind auch die Reflexionsfak-
toren an einem symmetrischen rein massegekoppelten Abschluss für beide Moden
gleich. Der Abschluss in Abbildung 7.13 wäre beispielsweise dann ein rein mas-
segekoppelter Abschluss, wenn Z2,12 = ∞ nicht vorhanden wäre und damit auch

Z
(−)
2 = Z

(+)
2 gelte.

Die hier primär interessierende Besonderheit eines rein massegekoppelten sym-
metrischen Dreileitersystems besteht jedoch darin, dass man es auch als ein Paar
gleichartiger Zweileitersysteme ansehen kann. Die komplexen Wellenamplituden
auf diesen Zweileitersystemen kann man aus den zugehörigen Spannungen und
Strömen auf den Zweileitersystemen berechnen, siehe (7.16) und (7.17). Die Span-
nungen und Ströme auf den Zweileitersystemen kann man durch die Spannungen
und Ströme der Gegentaktwellen und Gleichtaktwellen ausdrücken, siehe (3.74),
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(3.75) (3.78) und (3.79), und diese kann man schließlich aus den komplexen Wel-
lenamplituden der Gegentaktwellen und Gleichtaktwellen berechnen, siehe (7.36),
(7.37), (7.38) und (7.39):

a1(z) =
U 1H(z)√

ZL

=
U

(−)
H (z) + U

(+)
H (z)√

ZL

=
√
ZLI1H(z) =

√
ZL

(
I

(−)
H (z) + I

(+)
H (z)

)

=
a(−)(z) + a(+)(z)√

2
, (7.54)

b1(z) =
U 1R(z)√

ZL

=
U

(−)
R (z) + U

(+)
R (z)√

ZL

= −
√
ZLI1R(z) = −

√
ZL

(
I

(−)
R (z) + I

(+)
R (z)

)

=
b(−)(z) + b(+)(z)√

2
, (7.55)

a2(z) =
U 2H(z)√

ZL

=
−U (−)

H (z) + U
(+)
H (z)√

ZL

=
√
ZLI2H(z) =

√
ZL

(
−I(−)

H (z) + I
(+)
H (z)

)

=
−a(−)(z) + a(+)(z)√

2
, (7.56)

b2(z) =
U 2R(z)√

ZL

=
−U (−)

R (z) + U
(+)
R (z)√

ZL

= −
√
ZLI2R(z) = −

√
ZL

(
−I(−)

R (z) + I
(+)
R (z)

)

=
−b(−)(z) + b(+)(z)√

2
. (7.57)

Durch Auflösen nach den komplexen Wellenamplituden der Gegentaktwellen und
Gleichtaktwellen erhält man:

a(−)(z) =
a1(z) − a2(z)√

2
, (7.58)

b(−)(z) =
b1(z) − b2(z)√

2
, (7.59)

a(+)(z) =
a1(z) + a2(z)√

2
, (7.60)

b(+)(z) =
b1(z) + b2(z)√

2
. (7.61)
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Kapitel 8.

Kreisdiagramme

8.1. Inversionsdiagramm

8.1.1. Herleitung des Inversionsdiagramms

Das Ziel der folgenden Überlegungen ist es, graphische Hilfsmittel zur Analyse
und Synthese von Transformationsschaltungen zu schaffen.

Die Inversion

Z = R + jX =
1

Y
=

1

G+ jB
=

G

G2 +B2
− j

B

G2 +B2
(8.1)

beschreibt eine konforme Abbildung der Admittanzebene auf die Impedanzebene,
siehe Abbildung 8.1. Da es sich um einen Sonderfall der Möbius-Transformation
handelt, werden Kreise auf Kreise abgebildet, wobei Geraden als Sonderfälle
von Kreisen mit unendlichem Radius anzusehen sind. Die senkrechten Geraden
G = const. konstanten Wirkleitwerts der Admittanzebene werden auf Kreise kon-
stanten Wirkleitwerts G mit Mittelpunkt 1

2G
und Radius 1

2G
in der Impedanzebene

abgebildet. Die horizontalen Geraden B = const. konstanten Blindleitwerts der
Admittanzebene werden auf Kreise konstanten Blindleitwerts B mit Mittelpunkt
−j 1

2B
und Radius 1

2B
in der Impedanzebene abgebildet.

Die Umkehrabbildung

Y =
1

Z
(8.2)

der Impedanzebene auf die Admittanzebene ist völlig dual. Die senkrechten Ge-
raden R = const. konstanten Wirkwiderstands der Impedanzebene werden auf
Kreise konstanten Wirkwiderstands R mit Mittelpunkt 1

2R
und Radius 1

2R
in der

Admittanzebene abgebildet. Die horizontalen Geraden X = const. konstanten
Blindwiderstands der Impedanzebene werden auf Kreise konstanten Blindwider-
stands X mit Mittelpunkt −j 1

2X
und Radius 1

2X
in der Admittanzebene abgebil-

det.
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jX/Ω jBΩ

R/Ω GΩ

Z = 1/Y

Y = 1/Z
−j2

−j1

j1

j2

−j2

−j1

j1

j2

1 2 1 2

Abbildung 8.1.: Inversionsdiagramm

Ein universell einsetzbares Inversionsdiagramm erhält man, wenn man die Im-
pedanzen und Admittanzen normiert. Mit dem Bezugswiderstand

RN =
1

GN

(8.3)

folgen die normierte Impedanz

Z

RN
=

R

RN
+ j

X

RN
(8.4)

und die normierte Admittanz

Y

GN
= Y RN =

G

GN
+ j

B

GN
= GRN + jBRN. (8.5)

Wegen der Dualität kann man das gleiche Inversionsdiagramm als Impedanzebene
oder als Admittanzebene nutzen.

Aufgabe 8.1 Zeigen Sie, dass die Orte konstanten Wirkleitwerts G und die Orte
konstanten Blindleitwerts B Kreise in der Impedanzebene sind!
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8.1.2. Transformation mit konzentrierten Bauelementen

8.1.2.1. Serienschaltung im Inversionsdiagramm

Zunächst wird die Serienschaltung konzentrierter Bauelemente betrachtet, siehe
Abbildung 8.2.

Z2 Z2 Z2

RS LS
CS

jX/Ω jBΩ

R/Ω GΩ

−j2

−j1

j1

j2

−j2

−j1

j1

j2

1 2 1 2

Z2 = R2 + jX2

RS

LS

CS

R2 R2 +RS

X2 − 1
ωCS

X2

X2 + ωLS

Y 2 = 1
Z2

= G2 + jB2

RS

LS

CS

R2

R2 +RS

X2

X2 + ωLS

X2 − 1
ωCS

Abbildung 8.2.: Serienschaltung im Inversionsdiagramm

• Die Serienschaltung eines Wirkwiderstands ist eine verlustbehaftete Trans-
formation, mit der sich in der Impedanzebene Punkte rechts von Z2 und
in der Admittanzebene Punkte auf dem Segment des Kreises konstanten
Blindwiderstands X2 durch Y 2 in Richtung Ursprung erreichen lassen.
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• Die Serienschaltung eines Blindwiderstands ist eine verlustfreie Transforma-
tion, mit der sich in der Impedanzebene Punkte oberhalb oder unterhalb
von Z2 und in der Admittanzebene Punkte auf dem Kreis konstanten Wirk-
widerstands R2 durch Y 2 erreichen lassen.

8.1.2.2. Parallelschaltung im Inversionsdiagramm

Nun wird die Parallelschaltung konzentrierter Bauelemente betrachtet, siehe Ab-
bildung 8.3.

Z2 Z2 Z2RP LP CP

jX/Ω jBΩ

R/Ω GΩ

−j2

−j1

j1

j2

−j2

−j1

j1

j2

1 2 1 2

Z2 = 1
Y 2

= R2 + jX2

RP

LP

CP

Y 2 = G2 + jB2

LP

CP
RP

B2

B2 + ωCP

B2 − 1
ωLP

G2

G2 +GP

B2 − 1
ωLP

B2

B2 + ωCP

G2 G2 +GP

Abbildung 8.3.: Parallelschaltung im Inversionsdiagramm

• Die Parallelschaltung eines Wirkleitwerts ist eine verlustbehaftete Transfor-
mation, mit der sich in der Impedanzebene Punkte auf dem Segment des
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Kreises konstanten Blindleitwerts B2 durch Z2 in Richtung Ursprung und
in der Admittanzebene Punkte rechts von Y 2 erreichen lassen.

• Die Parallelschaltung eines Blindleitwerts ist eine verlustfreie Transforma-
tion, mit der sich in der Impedanzebene Punkte auf dem Kreis konstanten
Wirkleitwerts G2 durch Z2 und in der Admittanzebene Punkte oberhalb
oder unterhalb von Y 2 erreichen lassen.

Mit nur einem Blindelement sind nur bestimmte Transformationen möglich.
Zum Lösen beliebiger Transformationsaufgaben werden im Allgemeinen Trans-
formationsschaltungen mit mehreren Blindelementen benötigt.

8.1.2.3. Transformation mit mehreren Blindelementen

Wenn mehr als ein Blindelement verwendet wird, können ausgehend von Z2 flä-
chige Bereiche in der Impedanzebene oder in der Admittanzebene erreicht werden,
siehe Abbildung 8.4.

Z2Z1

LS

CP

jX/Ω

R/Ω

−j1

j1

1 2

Z2

Z1

CP

LS

einfach erreichbar

doppelt erreichbar

Abbildung 8.4.: Transformation mit mehreren Blindelementen

Man kann prinzipiell jede Transformationsaufgabe mit einer verlustfreien Trans-
formationsschaltung aus maximal zwei Blindelementen lösen, man muss hier je-
doch neben den Bauelementewerten auch die Schaltungsstruktur geeignet wäh-
len. Es gibt verlustfreie Transformationsschaltungen aus drei Blindelementen, mit
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denen man bei vorgegebener Schaltungsstruktur allein durch passende Wahl der
Bauelementewerte jede Transformationsaufgabe lösen kann. Die Π-Schaltung, sie-
he Abbildung 8.5, ist eine derartige universelle Transformationsschaltung. Eine
bestimmte Eingangsimpedanz Z1 ist hier ausgehend von der Ausgangsimpedanz
Z2 auf unendlich vielen Transformationswegen erreichbar.

Z2Z1

jX/Ω

R/Ω

−j1

j1

1 2

Z2

Z1

CP1

LS

CP2

LS

CP1CP2

Abbildung 8.5.: Π-Schaltung

Aufgabe 8.2 Die in Abbildung 8.6 dargestellte Schaltung aus der Induktivität
L = 20 µH und den Kapazitäten C1 = 1,25 nF und C2 = 500 pF transformiert den
Widerstand R2 = 100 Ω in die Eingangsimpedanz Z1. Die Schaltung werde bei der
Kreisfrequenz ω = 107 s−1 betrieben. Bestimmen Sie die Eingangsimpedanz Z1 mit
Hilfe des Inversionsdiagramms!

Z1

C1

C2 L R2

Abbildung 8.6.: Transformationsschaltung mit konzentrierten Bauelementen
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8.2. Leitungsdiagramm

8.2.1. Herleitung des Leitungsdiagramms

8.2.1.1. Negativer reeller Reflexionsfaktor

Es werden Leitungstransformationen in der Impedanzebene betrachtet, siehe Ab-
bildung 8.7. Zunächst wird der Spezialfall der Transformation eines negativen
reellen Reflexionsfaktors Γ2 = − |Γ2| betrachtet. Die Impedanz Z2 ist dann re-
ell und kleiner als der Wellenwiderstand ZL, siehe (7.23). Mit (7.14) folgt der
Anpassungsfaktor

m =
1 − |Γ2|
1 + |Γ2|

.

Die auf den Wellenwiderstand ZL normierte Eingangsimpedanz einer mit dem
negativem reellem Reflexionsfaktor Γ2 abgeschlossenen Leitung der normierten
Länge l/λ ist

Z1

ZL

=
m+ j tan

(
2π l

λ

)

1 + jm tan
(
2π l

λ

) , (8.6)

siehe (7.27) und (2.38).

Z1 Z2ZL

l
λ

Abbildung 8.7.: Leitungstransformation

Die Eingangsimpedanz Z1 kann als Funktion des Anpassungsfaktors m oder
als Funktion von tan

(
2π l

λ

)
betrachtet werden. Es handelt sich um Sonderfäl-

le der Möbius-Transformation. Bei den Orten konstanten Anpassungsfaktors m
oder den Orten konstanter normierter Leitungslänge l/λ, was einem konstanten
tan

(
2π l

λ

)
entspricht, handelt es sich folglich um Kreise in der Impedanzebene,

siehe Abbildung 8.8.
Einen Kreis konstanten Anpassungsfaktors m erhält man bei einem konstantem

negativen reellen Reflexionsfaktor Γ2 = − |Γ2| und Variation der normierten Lei-
tungslänge l/λ. Der Kreis konstanten Anpassungsfaktors m hat den Mittelpunkt
ZL

2

(
1
m

+m
)

und den Radius ZL

2

(
1
m

−m
)
,
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R/ZL

jX/ZL

−j2

−j1

j1

1 2

m = 0,5l
λ

= 1
16

l
λ

= 1
16

+ 1
4

= 5
16

Abbildung 8.8.: Kreis konstanten Anpassungsfaktors m und Kreise konstanter
normierter Leitungslänge l/λ in der auf den Wellenwiderstand
ZL normierten Impedanzebene

Einen Kreis konstanter normierter Leitungslänge l/λ erhält man bei Variation
des Anpassungsfaktors m, das heißt bei Variation des negativen reellen Reflexi-
onsfaktors Γ2 = − |Γ2|. Der Kreis konstanter normierter Leitungslänge l/λ hat

den Mittelpunkt −jZL cot
(
4π l

λ

)
und den Radius

∣∣∣∣
ZL

sin(4π l
λ)

∣∣∣∣. Die Kreisgleichung ist

∣∣∣∣∣Z1 + jZL cot

(
4π

l

λ

)∣∣∣∣∣

2

=


 ZL

sin
(
4π l

λ

)




2

.
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Einsetzen von Z1 = ZL ergibt
∣∣∣∣∣ZL + jZL cot

(
4π

l

λ

)∣∣∣∣∣

2

=Z2
L + Z2

L

(
cot

(
4π

l

λ

))2

=Z2
L

(
sin
(
4π l

λ

))2
+
(
cos
(
4π l

λ

))2

(
sin
(
4π l

λ

))2

=


 ZL

sin
(
4π l

λ

)




2

,

das heißt alle Kreise konstanter normierter Leitungslänge l/λ gehen durch den
Punkt ZL. Beim Durchlaufen des Punktes ZL auf einem der Kreise ändert sich
der Parameter l/λ um 1/4, siehe Abbildung 8.8.

In der Admittanzebene erhält man durch Bilden des Kehrwerts von (8.6)

Y 1ZL =
ZL

Z1

=
1 + jm tan

(
2π l

λ

)

m+ j tan
(
2π l

λ

) =
1
m

+ j tan
(
2π l

λ

)

1 + j 1
m

tan
(
2π l

λ

) . (8.7)

Bis auf die Ersetzung von m durch 1/m ist dies die gleiche Formel wie in der
Impedanzebene, siehe (8.6). Für die Orte konstanten Anpassungsfaktors m oder
die Orte konstanter normierter Leitungslänge l/λ ergeben sich deshalb die formal
gleichen Kreisgleichungen wie in der Impedanzebene, wobei die beiden Äste l/λ
und l/λ±4 der Kreise konstanter normierter Leitungslänge l/λ jedoch vertauscht
sind. Insbesondere befinden sich die Orte negativen reellen Reflexionsfaktors Γ2 =
− |Γ2| jetzt rechts vom Ort perfekter Anpassung.

Aufgabe 8.3 Zeigen Sie, dass die Orte konstanten Anpassungsfaktors m und die
Orte konstanter normierter Leitungslänge l/λ Kreise in der Impedanzebene sind!

8.2.1.2. Komplexer Reflexionsfaktor

Der komplexe Reflexionsfaktor Γ2 kann gemäß (7.9) als Ergebnis der Transfor-
mation eines negativen reellen Reflexionsfaktors − |Γ2| mit einer Leitung der nor-
mierten Länge

l

λ
=
π − arg(Γ2)

4π
aufgefasst werden, siehe auch (2.38). Diese virtuelle normierte Leitungslänge l/λ
ist zur normierten Länge der realen Leitung hinzu zu addieren, um die Ein-
gangsimpedanz Z1 als Ergebnis der Transformation eines negativen reellen Refle-
xionsfaktors − |Γ2| zu erhalten, siehe Abbildung 8.9.
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R/ZL

jX/ZL

−j2

−j1

j1

j2

1 2 3

m = 0,5

l
λ

= 0,35

l
λ

= 0,22

l
λ

Z2

Z1

Abbildung 8.9.: Transformation einer beliebigen Impedanz Z2. Beispiel Z2/ZL =
1,8 + j0,5 und l/λ = 0,13

8.3. Smith-Diagramm

8.3.1. Herleitung des Smith-Diagramms

Das Smith-Diagramm stellt das Innere des Einheitskreises der Reflexionsfaktor-
ebene dar, siehe Abbildung 8.10. Man kann es auch als konforme Abbildung der
rechten Halbebene der auf den Wellenwiderstand ZL normierten Impedanzebene
mittels der Abbildungsvorschrift

Γ =
Z
ZL

− 1
Z
ZL

+ 1
(8.8)

auffassen, siehe (7.24). Alternativ kann man das Smith-Diagramm auch als kon-
forme Abbildung der rechten Halbebene der auf den Kehrwert 1/ZL des Wellen-
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widerstands normierten Admittanzebene mittels der Abbildungsvorschrift

Γ =
1 − Y ZL

1 + Y ZL
(8.9)

auffassen, siehe (8.2). Die beiden konformen Abbildungen unterscheiden sich ma-
thematisch nur im Vorzeichen, das heißt in einer Spiegelung am Ursprung. Da es
sich um Sonderfälle der Möbius-Transformation handelt, werden Kreise auf Kreise
abgebildet, wobei Geraden wieder als Sonderfälle von Kreisen mit unendlichem
Radius anzusehen sind.

Im Smith-Diagramm sind die Kreise konstanten normierten Wirkwiderstands
R/ZL und die Kreise konstanten normierten Blindwiderstands X/ZL eingezeich-
net. Die Kreise konstanten normierten Wirkwiderstands R/ZL sind Kreise mit

Mittelpunkt
R

ZL

1+ R
ZL

und Radius 1
1+ R

ZL

. Die Kreise konstanten normierten Blindwi-

derstands X/ZL sind Kreise mit Mittelpunkt 1 + j 1
X

ZL

und Radius
∣∣∣∣

1
X

ZL

∣∣∣∣.

Die Kreise konstanten normierten Wirkleitwerts GZL und den Kreise konstan-
ten normierten Blindleitwerts BZL fehlen meistens. Da sich die Abbildungsvor-
schriften (8.8) und (8.9) nur im Vorzeichen unterscheiden, entstehen diese Kreis-
systeme aus den Kreisen konstanten normierten Wirkwiderstands R/ZL und den
Kreisen konstanten normierten Blindwiderstands X/ZL durch Spiegeln am Ur-
sprung. Man behilft sich, indem man die zu betrachtenden Punkte und Transfor-
mationswege am Ursprung gespiegelt einträgt.

Die Kreise konstanten Anpassungsfaktors m sind Kreise konstanten Reflexions-
faktorbetrags |Γ| und damit konzentrische Kreise um den Ursprung mit Radius
1−m
1+m

, siehe (7.15). Die Orte konstanter normierter Leitungslänge l/λ sind Geraden
durch den Ursprung in der Reflexionsfaktorebene, siehe (7.9) und (2.38).

Aufgabe 8.4 Zeigen Sie, dass die Orte konstanten normierten Wirkwiderstands
R/ZL und die Orte konstanten normierten Blindwiderstands X/ZL Kreise in der
Reflexionsfaktorebene sind!

8.3.2. Transformation mit konzentrierten Bauelementen

8.3.2.1. Serienschaltung im Smith-Diagramm

Zunächst wird die Serienschaltung konzentrierter Bauelemente betrachtet, siehe
Abbildung 8.11.

• Bei Serienschaltung eines Wirkwiderstands erfolgt die Reflexionsfaktorän-
derung entlang eines Kreises konstanten Blindwiderstands X2 in Richtung
des Punktes Γ = 1.
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Z-Ebene Γ-Ebene Y -Ebene

R
ZL

= const.

X
ZL

= const.

G
ZL

= const.

B
ZL

= const.

m = const.

l
λ

= const.

Abbildung 8.10.: Konforme Abbildung der Impedanzebene und der Admittanze-
bene auf die Reflexionsfaktorebene
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Z2 Z2 Z2

RS LS
CS

Z2 = R2 + jX2

RS

LS

CS

X2

X2 + ωLS

X2 − 1
ωCS R2

R2 +RP

Abbildung 8.11.: Serienschaltung im Smith-Diagramm

• Bei Serienschaltung eines Blindwiderstands erfolgt die Reflexionsfaktorän-
derung entlang eines Kreises konstanten Wirkwiderstands R2.

8.3.2.2. Parallelschaltung im Smith-Diagramm

Nun wird die Parallelschaltung konzentrierter Bauelemente betrachtet, siehe Ab-
bildung 8.12.

• Bei Parallelschaltung eines Wirkleitwerts erfolgt die Reflexionsfaktorände-
rung entlang eines Kreises konstanten Blindleitwerts B2 in Richtung des
Punktes Γ = −1.

• Bei Parallelschaltung eines Blindleitwerts erfolgt die Reflexionsfaktorände-
rung entlang eines Kreises konstanten Wirkleitwerts G2.

Rechts unten in Abbildung 8.12 ist am Beispiel der Transformation durch Par-
allelschaltung einer Induktivität die Konstruktion des am Ursprung gespiegelten
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Z2 Z2 Z2RP LP CP

Z2 = 1
G2+jB2

RP

LP

CP

G2 + 1
RP

G2

B2

B2 + ωCP

B2 − 1
ωLP

Z2 = 1
G2+jB2

LP

Abbildung 8.12.: Parallelschaltung im Smith-Diagramm

Transformationsweges dargestellt. Diese Konstruktion verwendet man, falls die
Kreise konstanten Wirkleitwerts und die Kreise konstanten Blindleitwerts im ver-
wendeten Smith-Diagramm nicht enthalten sind.

8.3.3. Leitungstransformation im Smith-Diagramm

Eine Leitung bewirkt eine Reflexionsfaktoränderung entlang eines Kreises kon-
stanten Anpassungsfaktors m im Uhrzeigersinn, siehe Abbildung 8.13. Der Winkel
der Drehung ist proportional zur normierten Leitungslänge l/λ.

Aufgabe 8.5 Der Widerstand R2 = 50 Ω soll in den Eingangsimpedanz Z1 =
200 Ω transformiert werden. Dazu wird die in Abbildung 8.14 dargestellte Trans-
formationsschaltung verwendet. Die Wellenwiderstände beider Leitungen seien
ZL = 50 Ω. Bestimmen Sie die kürzestmöglichen normierten Leitungslängen l1/λ
und l2/λ!
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Z2ZL

l
λ

Z2 = ZL
1+Γ
1−Γ

l
λ

1
4

+ arg(Γ)
4π

1
4

+ arg(Γ)
4π

+ l
λ

m = 1−|Γ|
1+|Γ|

Abbildung 8.13.: Leitungstransformation im Smith-Diagramm

Z1

ZL

ZL R2

l1
λ

l2
λ

Abbildung 8.14.: Transformationsschaltung mit Leitungen
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Kapitel 9.

Mehrtore

9.1. Streumatrix

In den letzen beiden Kapitel wurden komplexe Wellenamplituden an Eintoren be-
trachtet. Jetzt sollen komplexe Wellenamplituden an Mehrtoren betrachtet wer-
den, siehe Abbildung 9.1.

Bezugsebenen

a1

aN

b1

bN

N -Tor

Tor 1

Tor N

Abbildung 9.1.: Mehrtor

An jedem Tor n definiert man eine komplexe Wellenamplitude an der zulau-
fenden Welle und eine komplexe Wellenamplitude bn der ablaufenden Welle. Die
Bezugswellen sind wieder so gewählt, dass sich der Betrag der auf das Tor n
zulaufende Leistung zu

|Pan| =
1

2
|an|2

ergibt und dass sich der Betrag der von dem Tor n ablaufende Leistung zu

|Pbn| =
1

2
|bn|2
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ergibt, vergleiche (7.3) und (7.6). Die komplexen Wellenamplituden sind in den
Bezugsebenen bezüglich der Bezugswellen auf den verwendeten Wellenleitersyste-
men definiert. Speziell bei Zweileitersystemen sind die komplexen Wellenamplitu-
den bezüglich eines Bezugswiderstands RN definiert, der dem Wellenwiderstand
ZL der Wellenleiter entspricht.

Für die vom Mehrtor aufgenommene Leistung folgt mit (7.28)

P =
N∑

n=1

(
1

2
|an|2 − 1

2
|bn|2

)
.

Mit dem Vektor

a =




a1
...
aN


 (9.1)

der komplexen Wellenamplituden an, n = 1 . . .N , der zulaufenden Wellen und
dem Vektor

b =




b1
...
bN


 (9.2)

der komplexen Wellenamplituden bn, n = 1 . . .N , der ablaufenden Wellen schreibt
man kompakter

P =
1

2
‖a‖2 − 1

2
‖b‖2 =

1

2
a∗T · a − 1

2
b∗T · b. (9.3)

Eine auf ein Tor n zulaufende Welle der komplexen Wellenamplitude an wird
durch das lineare Mehrtor gestreut, so dass im Allgemeinen an allen Toren m =
1 . . .N ablaufende Wellen entstehen, deren komplexe Wellenamplituden bm pro-
portional zur komplexen Wellenamplitude an der zulaufenden Welle an Tor n
sind. Laufen gleichzeitig auf mehrere Tore des linearen Mehrtors Wellen zu, so
überlagern sich die gestreuten Wellen additiv. Der Zusammenhang zwischen den
komplexen Wellenamplituden der zulaufenden und der ablaufenden Wellen an
einem linearen Mehrtor ergibt sich zu

b =




b1
...
bN


 =




S1,1 . . . S1,N
...

...
SN,1 . . . SN,N




︸ ︷︷ ︸
S

·




a1
...
aN


 = S · a. (9.4)

Die Elemente Sm,n der Streumatrix S bezeichnet man als Streuparameter.
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9.2. Signalflussgraph

Der Signalflussgraph dient dem Veranschaulichen der Funktionsweise von Mehr-
toren. Die komplexen Wellenamplituden an, n = 1 . . . N , und bn, n = 1 . . .N ,
entsprechen den Knoten im Signalflussgraphen und die Streuparameter Sm,n,
m,n = 1 . . . N , entsprechen den Kanten im Signalflussgraphen, siehe Abbildung
9.2.

a1 a2

b1 b2

S

a1

b1
a2

b2

S2,1

S1,2

S1,1 S2,2

Tor 1 Tor 2

Abbildung 9.2.: Signalflussgraph

Bei komplizierten, aus mehreren Komponenten zusammengesetzten Netzwer-
ken erhält man den resultierenden Signalflussgraphen durch Verknüpfen der Si-
gnalflussgraphen der einzelnen Komponenten. Abbildung 9.3 zeigt einige einfache
Regeln zum Vereinfachen der entstehenden komplexen Signalflussgraphen. Die
Mason-Regeln sind Verallgemeinerungen dieser Regeln [Mas53; Mas56].

Zum Herleiten der Schleifenregel liest man aus dem Signalflussgraphen

d =c

=Sc,bb

=Sc,b

(
a+ Sb,cc

)

=Sc,b

(
a+ Sb,cd

)

ab. Aufgelöst nach d erhält man

d =
Sc,b

1 − Sc,bSb,c

a.
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a

a

c

c

bSb,a Sc,b

Sb,aSc,b

(a) Serienschaltung

a b

c

d

a

c

d

Sb,a

Sc,b

Sd,b

Sb,aSc,b

Sb,aSd,b

(b) Verzweigung

a

a

b

b

S′
b,a

S ′′
b,a

S ′
b,a + S ′′

b,a

(c) Parallelschaltung

a

a

d

d

Sc,b

Sb,c

Sc,b

1−Sc,bSb,c

1 1

b c

(d) Schleife

Abbildung 9.3.: Vereinfachen von Signalflussgraphen
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9.3. Eigenschaften von Mehrtoren

9.3.1. Eigenreflexionsfreiheit

Man bezeichnet ein Mehrtor als eigenreflexionsfrei, falls alle n = 1 . . . N Diago-
nalelemente der Streumatrix S Null sind:

Sn,n = 0. (9.5)

9.3.2. Passivität und Verlustfreiheit

Man bezeichnet ein Mehrtor als passiv, falls die aufgenommene Leistung P stets
größer oder gleich Null ist. Aus (9.3) folgt mit (9.4) und der Einheitsmatrix E:

P =
1

2
a∗T · a − 1

2
a∗T · S∗T · S · a ≥0,

a∗T ·
(
E − S∗T · S

)
· a ≥0. (9.6)

Diese Ungleichung ist nur dann für alle Vektoren a erfüllt, wenn die Matrix E −
S∗T · S positiv semidefinit ist, das heißt keine negativen Eigenwerte hat [GL13].1

Man bezeichnet ein Mehrtor als verlustfrei, wenn die aufgenommene Leistung
P stets Null ist, das heißt wenn stets

a∗T ·
(
E − S∗T · S

)
· a = 0

gilt. Diese Gleichung ist nur dann für alle Vektoren a erfüllt, wenn

S∗T · S = E ⇔ S−1 = S∗T ⇔ S · S∗T = E (9.7)

gilt, das heißt wenn die Streumatrix S unitär ist.

9.3.3. Reziprozität

Zum Herleiten des Reziprozitätstheorems wird ohne Beschränkung der Allgemein-
heit ein Zweitor betrachtet. Das Zweitor selbst enthalte keine Quellen und bestehe
aus reziproken, das heißt linearen und isotropen Materialien. Die Feldstärken ~E
und ~H beschreiben die Feldkonfiguration wenn sich eine Quelle an Tor 1 befindet
und Tor 2 reflexionsfrei abgeschlossen ist. Dual dazu beschreiben die Feldstärken
~E

′
und ~H

′
die Feldkonfiguration wenn sich eine Quelle an Tor 2 befindet und Tor

1 reflexionsfrei abgeschlossen ist.

1 Die Eigenwerte der hermiteschen Matrix E − S
∗T · S sind stets reell.
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Eine Hülle umschließe das Zweitor und verlaufe durch die Bezugsebenen der
Tore. Nicht verschwindende Feldstärken treten dann nur in den Bereichen der
Tore auf. Mit dem Reziprozitätstheorem (4.61) folgt

x

Tor 1

〈 ~E × ~H
′
, d ~A〉 +

x

Tor 2

〈 ~E × ~H
′
, d ~A〉 =

x

Tor 1

〈 ~E′ × ~H, d ~A〉 +
x

Tor 2

〈 ~E′ × ~H, d ~A〉.

Vereinfachend wird angenommen, dass an beiden Toren gleichartige Wellenlei-

ter verwendet werden. Mit den Feldstärken ~̃E und ~̃H der Bezugswellen folgt mit
(7.1) und (7.4) für die Feldstärken an Tor 1:

~E =a1
~̃E + b1

~̃E = a1

(
1 + S1,1

)
~̃E,

~H =a1
~̃H − b1

~̃H = a1

(
1 − S1,1

)
~̃H,

~E
′
=b1

~̃E = a2S1,2
~̃E,

~H
′
= − b1

~̃H = −a2S1,2
~̃H.

Dual folgt für die Feldstärken an Tor 2:

~E =b2
~̃E = a1S2,1

~̃E,

~H = − b2
~̃H = −a1S2,1

~̃H,

~E
′
=a2

~̃E + b2
~̃E = a2

(
1 + S2,2

)
~̃E,

~H
′
=a2

~̃H − b2
~̃H = a2

(
1 − S2,2

)
~̃H.

Einsetzen in das Reziprozitätstheorem ergibt:

−
x

Tor 1

〈a1

(
1 + S1,1

)
~̃E × a2S1,2

~̃H, d ~A〉

+
x

Tor 2

〈a1S2,1
~̃E × a2

(
1 − S2,2

)
~̃H, d ~A〉

=
x

Tor 1

〈a2S1,2
~̃E × a1

(
1 − S1,1

)
~̃H, d ~A〉

−
x

Tor 2

〈a2

(
1 + S2,2

)
~̃E × a1S2,1

~̃H, d ~A〉,
(
a1

(
1 + S1,1

)
a2S1,2 + a2S1,2a1

(
1 − S1,1

) ) x

Tor 1

〈 ~̃E × ~̃H, d ~A〉

=
(
a1S2,1a2

(
1 − S2,2

)
+ a2

(
1 + S2,2

)
a1S2,1

) x

Tor 2

〈 ~̃E × ~̃H, d ~A〉

S1,2 =S2,1. (9.8)
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Man bezeichnet ein Mehrtor als reziprok (umkehrbar), falls Sm,n = Sn,m für
alle m,n = 1 . . . N gilt, das heißt falls die Streumatrix S symmetrisch ist:

S = ST. (9.9)

Falls ein Mehrtor keine nichtreziproken Materialien (zum Beispiel Ferrite) enthält,
ist es gemäß dem Reziprozitätstheorem immer reziprok. Reziprozität bedeutet
nicht, dass die Tore vertauschbar sind, da immer noch Sm,m 6= Sn,n für n 6= m
gelten kann.

9.4. Impedanzmatrix und Admittanzmatrix

Es werden Mehrtore mit Zweileitersystemen an den Toren betrachtet, siehe Ab-
bildung 9.4. Man definiert den Spannungsvektor

U =




U1
...
UN


 =

√
RN (a + b) (9.10)

und den Stromvektor

I =




I1
...
IN


 =

a − b√
RN

, (9.11)

siehe (7.18) und (7.19).

a1b1

a2 b2

S, Z, Y

Tor 1 Tor 2

U1 U2

I1 I2

RN RN

Abbildung 9.4.: Vierpol mit Spannungen und Strömen an den Toren

In der Elektronik hat sich das Verwenden der Impedanzmatrix Z und der Ad-
mittanzmatrix Y zum Beschreiben der Zusammenhänge zwischen Spannungsvek-
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tor U und Stromvektor I an Mehrtoren etabliert. Es gelten

U =




Z1,1 . . . Z1,N
...

...
ZN,1 . . . ZN,N




︸ ︷︷ ︸
Z

·I (9.12)

und

I =




Y 1,1 . . . Y 1,N
...

...
Y N,1 . . . Y N,N




︸ ︷︷ ︸
Y

·U. (9.13)

Es folgt der Zusammenhang
Y = Z−1 (9.14)

zwischen Impedanzmatrix und Admittanzmatrix.
Wenn man den Spannungsvektor U und den Stromvektor I durch die komplexen

Wellenamplituden a und b ausdrückt, erhält man mit der Einheitsmatrix E:

√
RN (a + b) =Z · a − b√

RN

,

RNE · (a + b) =Z · (a − b) ,

(Z +RNE) · b = (Z − RNE) · a,

b = (Z +RNE)−1 · (Z −RNE) · a. (9.15)

Man erhält die Streumatrix (9.4) als Funktion der Impedanzmatrix zu

S = (Z +RNE)−1 · (Z −RNE) (9.16)

Auflösen nach der Impedanzmatrix ergibt:

(Z +RNE) · S = (Z − RNE) ,

Z · (E − S) =RN (E + S) ,

Z =RN (E + S) · (E − S)−1 . (9.17)

Da die Admittanzmatrix die Inverse der Impedanzmatrix ist, gilt

Y = Z−1 =
1

RN

(E − S) · (E + S)−1 . (9.18)
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9.5. Transmissionsmatrix

Auflösen nach der Streumatrix ergibt:

RNY = (E − S) · (E + S)−1 ,

RNY · (E + S) = (E − S) ,

(E +RNY) · S =E −RNY,

S = (E +RNY)−1 · (E − RNY) . (9.19)

Man kann jeder Streumatrix S formal eine Impedanzmatrix Z und eine Ad-
mittanzmatrix Y zuordnen auch wenn dies physikalisch nicht sinnvoll ist, da sich
die Streumatrix S beispielsweise auf ein Mehrtor in Hohlleitertechnik bezog, bei
dem keine sinnvollen Definitionen für Spannungen U und Ströme I an den Toren
existieren.

Aufgabe 9.1 Massefreie Netzwerke sind dadurch charakterisiert, dass es keiner-
lei elektrische Verbindung zwischen Masse und den übrigen Anschlüssen gibt, sie-
he Abbildung 9.5. Die Summe der in die Tore hineinfließenden Ströme Im = 0,
m = 1 . . . N muss daher stets Null sein. Betrachten Sie weiterhin den speziellen
Betriebszustand, bei dem die Spannungen Un, n = 1 . . . N , an allen Toren gleich
sind. Dann müssen alle Ströme Im, m = 1 . . .N , Null sein. Welche Eigenschaften
hat die Admittanzmatrix Y eines massefreien Mehrtors?

massefreies
Netzwerk

Tor 1 Tor 2

U1 U2

I1 I2

RN RN

Abbildung 9.5.: Massefreier Vierpol

Aufgabe 9.2 Zeigen Sie, dass die Impedanzmatrix Z und die Admittanzmatrix
Y eines reziproken Mehrtors symmetrisch sind! Welche Eigenschaften müssen
die Impedanzmatrix Z und die Admittanzmatrix Y eines reziproken verlustfreien
Mehrtors haben?

9.5. Transmissionsmatrix

Häufig werden Kaskaden von Zweitoren gebildet. Die Aufgabe besteht nun darin,
die Eigenschaften des aus einer Kaskade mehrerer Zweitore bestehenden Zwei-
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tors zu berechnen. Diese Aufgabe lässt sich mit Hilfe von Transmissionsmatrizen
einfach lösen.

Wenn man die komplexen Wellenamplituden a1 und b1 an Tor 1 als die abhän-
gigen Größen wählt, erhält man mit der Transmissionsmatrix

(
a1

b1

)
=

(
T a,b T a,a

T b,b T b,a

)

︸ ︷︷ ︸
T

·
(
b2

a2

)
, (9.20)

siehe Abbildung 9.6. Die Elemente der Transmissionsmatrix T bezeichnet man
als Transmissionsparameter.

a1 a2

b1 b2

Zweitor

Tor 1 Tor 2

Abbildung 9.6.: Zweitor

Transmissionsmatrizen T und Streumatrizen S lassen sich ineinander umrech-
nen. Ausgehend von dem Streuparametermodell

b1 =S1,1a1 + S1,2a2,

b2 =S2,1a1 + S2,2a2,

des Zweitors gemäß (9.4) erhält man durch Auflösen nach a1 und b1:

a1 =
1

S2,1

b2 − S2,2

S2,1

a2,

b1 =
S1,1

S2,1

b2 − S1,1S2,2

S2,1

a2 + S1,2a2.

Hieraus liest man die Transmissionsmatrix

T =

(
T a,b T a,a

T b,b T b,a

)
=

1

S2,1

(
1 −S2,2

S1,1 − det(S)

)
(9.21)

ab, wobei det(·) die Determinante der Matrix ist.2

2 Die Determinante der Matrix S ist det(S) = S1,1S2,2 − S1,2S2,1.
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9.5. Transmissionsmatrix

Ausgehend von dem Transmissionsparametermodell

a1 =T a,bb2 + T a,aa2,

b1 =T b,bb2 + T b,aa2,

des Zweitors erhält man durch Auflösen nach b1 und b2:

b2 =
1

T a,b

a1 − T a,a

T a,b

a2,

b1 =
T b,b

T a,b

a1 − T b,bT a,a

T a,b

a2 + T b,aa2.

Hieraus liest man die Streumatrix

S =

(
S1,1 S1,2

S2,1 S2,2

)
=

1

T a,b

(
T b,b det(T)

1 −T a,a

)
(9.22)

ab, siehe (9.4).
Die Determinante der Transmissionsmatrix ergibt sich zu

det(T) =
1

S2
2,1

(
− det(S) + S1,1S2,2

)
=
S1,2

S2,1

. (9.23)

Insbesondere ist die Determinante der Transmissionsmatrix reziproker Zweitore
eins, siehe (9.9).

Im Folgenden bezeichnen die tiefgestellten Indizes die Tornummer und die hoch-
gestellten Indizes das Zweitor. Aus Abbildung 9.7 liest man
(
a1

b1

)
=

(
a

(1)
1

b
(1)
1

)
= T(1)·

(
b

(1)
2

a
(1)
2

)
= T(1)·

(
a

(2)
1

b
(2)
1

)
= T(1)·T(2)·

(
b

(2)
2

a
(2)
2

)
= T(1)·T(2)·

(
b2

a2

)

ab. Die Transmissionsmatrix einer Kaskade von Zweitoren ergibt sich daher zu

T = T(1) · T(2). (9.24)

Nun wird die Kaskade eines allgemeine Zweitors mit der Transmissionsmatrix
T(1) und eines reziproken Zweitors mit der Transmissionsmatrix T(2) betrachtet.
Die Determinante der resultierenden Transmissionsmatrix ist

det(T) = det
(
T(1) · T(2)

)
= det

(
T(1)

)
det

(
T(2)

)

︸ ︷︷ ︸
=1

= det
(
T(1)

)
. (9.25)

Die Determinante der Transmissionsmatrix von Zweitoren ändert sich beim An-
fügen weiterer reziproker Zweitore nicht.
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T

T(1) T(2)

a1 = a
(1)
1

b1 = b
(1)
1

b
(1)
2 = a

(2)
1

a
(1)
2 = b

(2)
1

b
(2)
2 = b2

a
(2)
2 = a2

a1

b1

b2

a2

Abbildung 9.7.: Kaskade von Zweitoren

Aufgabe 9.3 Ein zur hier eingeführten Transmissionsmatrix T analoges, in der
Elektronik verwendetes Modell von Vierpolen ist die Kettenmatrix (im Englischen
ABCD-Matrix). Mit den in Abbildung 9.4 eingeführten Zählpfeilen gilt

(
U1

I1

)
=

(
A B
C D

)
·
(
U 2

−I2

)
. (9.26)

Üblicherweise wird I2 mit entgegengesetzter Zählpfeilrichtung definiert, so dass
hier aus Konsistenzgründen das Minuszeichen vor I2 erforderlich ist. Berechnen
Sie die Kettenparameter A, B, C und D als Funktionen der Transmissionspara-
meter und der Streuparameter und umgekehrt die Transmissionsparameter und
die Streuparameter als Funktionen der Kettenparameter A, B, C und D!

9.6. Modale Streumatrix

Ein Paar an Toren mit gleichartigen Zweileitersystemen kann man auch als ein
symmetrisches Torpaar mit einem symmetrischen rein massegekoppelten Dreilei-
tersystem ansehen, siehe Abbildung 9.8. Für die Umrechnung der Wellengrößen
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gilt, siehe Abschnitt 7.12:
(
a(−)

a(+)

)
=

1√
2

(
1 −1
1 1

)

︸ ︷︷ ︸
UT

·
(
a1

a2

)

︸ ︷︷ ︸
a

⇔
(
a1

a2

)

︸ ︷︷ ︸
a

=
1√
2

(
1 1

−1 1

)

︸ ︷︷ ︸
U

·
(
a(−)

a(+)

)
,

(
b(−)

b(+)

)
=

1√
2

(
1 −1
1 1

)

︸ ︷︷ ︸
UT

·
(
b1

b2

)

︸ ︷︷ ︸
b

⇔
(
b1

b2

)

︸ ︷︷ ︸
b

=
1√
2

(
1 1

−1 1

)

︸ ︷︷ ︸
U

·
(
b(−)

b(+)

)
.

Die hier auftretende orthogonale Transformationsmatrix U entspricht der 2 × 2-
Hadamard-Matrix.

a1

a2

b1

b2

Tor 1

Tor 2

S M

a(−)

b(−)

a(+)

b(+)
Gleichtakttor

Gegentakttor

Abbildung 9.8.: Symmetrisches Torpaar

Das Zweitor kann durch seine Streumatrix S beschrieben werden, siehe (9.4).
Durch Einsetzen ergibt sich für die Gegentaktwellen und die Gleichtaktwellen

(
b(−)

b(+)

)
= UT · S · U ·

(
a(−)

a(+)

)
=

(
M (−−) M (−+)

M (+−) M (++)

)

︸ ︷︷ ︸
M

·
(
a(−)

a(+)

)
.

Es folgt die modale Streumatrix

M = UT · S · U. (9.27)

Mit (9.4) erhält man die modalen Streuparameter:

M (−−) =
1

2

(
S1,1 − S2,1 − S1,2 + S2,2

)
, (9.28)

M (−+) =
1

2

(
S1,1 − S2,1 + S1,2 − S2,2

)
, (9.29)

M (+−) =
1

2

(
S1,1 + S2,1 − S1,2 − S2,2

)
, (9.30)

M (++) =
1

2

(
S1,1 + S2,1 + S1,2 + S2,2

)
. (9.31)
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Die konventionellen Streuparameter S1,1, S2,1, S1,2 und S2,2 bezeichnet man auch

als nodale Streuparameter. Neben den Eigenparametern M (−−) und M (++) gibt
es die Konversionsparameter M (−+) und M (+−), welche eine eventuell auftretende
Modenkonversion beschreiben. Eine solche Modenkonversion kann auftreten, da
das betrachtete Zweitor selbst nicht zwingend symmetrisch aufgebaut ist. Nur
das angeschlossene Dreileitersystem, bezüglich dessen die Wellengrößen definiert
sind, muss symmetrisch sein. Aufgelöst nach den nodalen Streuparametern erhält
man:

S1,1 =
1

2

(
M (−−) +M (−+) +M (+−) +M (++)

)
, (9.32)

S2,1 =
1

2

(
−M (−−) −M (−+) +M (+−) +M (++)

)
, (9.33)

S1,2 =
1

2

(
−M (−−) +M (−+) −M (+−) +M (++)

)
, (9.34)

S2,2 =
1

2

(
M (−−) −M (−+) −M (+−) +M (++)

)
. (9.35)

Die Ergebnisse lassen sich einfach auf Mehrtore mit einer geraden Anzahl 2N an
Toren erweitern. Wenn man jeweils die Tore n und n+N zu einem symmetrischen
Torpaar zusammenfasst, erhält man mit der N ×N -Einheitsmatrix E und der in
vier N ×N -Blöcke zerlegten Streumatrix S

(
b(−)

b(+)

)
=




b
(−)
1
...

b
(−)
N

b
(+)
1
...

b
(+)
N




=
1√
2

(
E −E

E E

)

︸ ︷︷ ︸
UT

·
(

S1,1 S1,2

S2,1 S2,2

)

︸ ︷︷ ︸
S

· 1√
2

(
E E

−E E

)

︸ ︷︷ ︸
U

·




a
(−)
1
...

a
(−)
N

a
(+)
1
...

a
(+)
N




=

(
M(−−) M(−+)

M(+−) M(++)

)

︸ ︷︷ ︸
M

·
(

a(−)

a(+)

)
.

Die Matrix U ist eine orthogonale Transformationsmatrix. Es folgt die modale
Streumatrix

M = UT · S · U. (9.36)

Die Systembeschreibung mit modalen Streuparametern ist eine gleichwertige Be-
schreibung des Systems bezüglich eines anderen Satzes an Basisvektoren. Für die
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modalen Streuparameter gilt:

M(−−) =
1

2

(
S1,1 − S2,1 − S1,2 + S2,2

)
, (9.37)

M(−+) =
1

2

(
S1,1 − S2,1 + S1,2 − S2,2

)
, (9.38)

M(+−) =
1

2

(
S1,1 + S2,1 − S1,2 − S2,2

)
, (9.39)

M(++) =
1

2

(
S1,1 + S2,1 + S1,2 + S2,2

)
. (9.40)

Aufgelöst nach den nodalen Streuparametern erhält man:

S1,1 =
1

2

(
M(−−) + M(−+) + M(+−) + M(++)

)
, (9.41)

S2,1 =
1

2

(
−M(−−) − M(−+) + M(+−) + M(++)

)
, (9.42)

S1,2 =
1

2

(
−M(−−) + M(−+) − M(+−) + M(++)

)
, (9.43)

S2,2 =
1

2

(
M(−−) − M(−+) − M(+−) + M(++)

)
. (9.44)

Aufgabe 9.4 Welche Eigenschaft hat die modale Streumatrix M eines passiven
Mehrtors? Welche Eigenschaft hat die modale Streumatrix M eines reziproken
Mehrtors?

9.7. Mehrtore mit Quellen

9.7.1. Wellenquellen

Es wird ein lineares Mehrtor betrachtet, das in seinem Inneren eine beliebige
Anzahl an Quellen enthält. Der Antwort S · a auf die zulaufenden Wellen mit den
komplexen Wellenamplituden a sind dann noch die durch die Quellen verursachten
Urwellen mit den komplexen Wellenamplituden

bQ =




bQ1
...

bQN


 (9.45)

gemäß

b =




b1
...
bN


 =




S1,1 . . . S1,N
...

...
SN,1 . . . SN,N


 ·




a1
...
aN


+




bQ1
...

bQN


 = S · a + bQ (9.46)
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zu überlagern, vergleiche (9.4). Unabhängig von der Anzahl der physikalischen
Quellen im Inneren des Mehrtors ist im Modell im Allgemeinen an jedem Tor n
genau eine Urwelle mit der komplexen Wellenamplitude bQn zu berücksichtigen.
Für ein quellenhaltiges Zweitor erhält man beispielsweise den in Abbildung 9.9
dargestellten Signalflussgraphen.

bQ1

bQ2

S2,1

S1,2

S1,1 S2,2

a1

b1
a2

b2

1

1

Abbildung 9.9.: Modell eines Zweitors mit Quellen

9.7.2. Spannungsquellen

Das Berücksichtigen von Quellen durch Spannungsquellen an den Toren gemäß

U = Z · I + UQ (9.47)

ist eine natürliche Erweiterung des Impedanzmatrixmodells (9.12) von Mehrtoren,
siehe Abbildung 9.10.

Es wird ein spezieller Betriebszustand mit a = 0 betrachtet. Dann ist b = bQ

und es folgt mit (7.18) und (7.19) unter Verwenden der Einheitsmatrix E:

bQ

√
RN︸ ︷︷ ︸

U

=Z · −bQ√
RN︸ ︷︷ ︸
I

+UQ,

UQ =
Z +RNE√

RN

· bQ, (9.48)

bQ = (Z +RNE)−1 ·
√
RNUQ. (9.49)
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a1

b1
a2

b2

Z, S

Tor 1 Tor 2

UQ1 UQ2

U 1 U 2

I1 I2

bQ1 bQ2

RN RN

Abbildung 9.10.: Vierpol mit durch Spannungsquellen an den Toren berücksich-
tigten Quellen

Im Betriebszustand I = 0 ist U = UQ und man erhält mit (7.20) und (7.21):

UQ

2
√
RN︸ ︷︷ ︸

b

=S · UQ

2
√
RN︸ ︷︷ ︸

a

+bQ,

bQ =
1

2
√
RN

(E − S) · UQ, (9.50)

UQ =2
√
RN (E − S)−1 · bQ. (9.51)

9.7.3. Stromquellen

Das Berücksichtigen von Quellen durch Stromquellen an den Toren gemäß

I = Y · U + IQ (9.52)

ist eine natürliche Erweiterung des Admittanzmatrixmodells (9.13) von Mehrto-
ren, siehe Abbildung 9.11.

Es wird ein spezieller Betriebszustand mit a = 0 betrachtet. Dann ist b = bQ
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a1

b1
a2

b2

Y, S

Tor 1 Tor 2

IQ1 IQ2

U 1 U 2

I1 I2

bQ1 bQ2

RN RN

Abbildung 9.11.: Vierpol mit durch Stromquellen an den Toren berücksichtigten
Quellen

und es folgt mit (7.18) und (7.19):

−bQ√
RN︸ ︷︷ ︸
I

=Y · bQ

√
RN︸ ︷︷ ︸

U

+IQ,

IQ = − RNY + E√
RN

· bQ, (9.53)

bQ = − (RNY + E)−1 ·
√
RNIQ. (9.54)

Im Betriebszustand U = 0 ist I = IQ und man erhält mit (7.20) und (7.21):

−
√
RN

2
IQ

︸ ︷︷ ︸
b

=S ·
√
RN

2
IQ

︸ ︷︷ ︸
a

+bQ,

bQ = −
√
RN

2
(E + S) · IQ, (9.55)

IQ = − 2√
RN

(E + S)−1 · bQ. (9.56)

9.8. Analyse komplexer Netzwerke mit Quellen

Es werden ausK Mehrtoren mit Quellen zusammengesetzte Netzwerke betrachtet.
Abbildung 9.12 zeigt ein Beispiel. Das k-te Mehrtor habe N (k) Tore und sein
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S(1)

S(2)

S(3)

a
(3)
1 = b

(2)
3

b
(2)
Q3

a
(2)
3 = b

(3)
1

b
(3)
Q1

a
(1)
3 = b

(3)
2

b
(3)
Q2

a
(3)
2 = b

(1)
3

b
(1)
Q3

a
(2)
2 = b

(1)
2

b
(1)
Q2

a
(1)
2 = b

(2)
2

b
(2)
Q2

a
(2)
1 = b

(1)
1

b
(2)
Q1

a
(1)
1 = b

(2)
1

b
(2)
Q1

Tor 1 Tor 2 Tor 3

Tor 1 Tor 2

Tor 3

Tor 1

Tor 2

Abbildung 9.12.: Komplexes Netzwerk mit Quellen

Verhalten wird durch die Streumatrix S(k) und die komplexen Wellenamplituden
b

(k)
Q der Urwellen beschrieben.
Für die folgenden Betrachtungen ist es sinnvoll, dass Streumatrixmodell (9.46)

eines Mehrtors mit Quellen unter Verwenden der Einheitsmatrix E gemäß

(
E −S(k)

)
·
(

b(k)

a(k)

)
= b

(k)
Q

etwas umzuformulieren. Der Zustand an den N (k) Toren wird durch die 2N (k)

in den Vektoren a(k) und b(k) zusammengefassten komplexen Wellenamplituden
beschrieben. Das Mehrtor erzwingt das Einhalten von N (k) inhomogenen linearen
Gleichungen, so dass nur noch N (k) Freiheitsgrade verbleiben. Mehrtore ohne
Quellen sind als Spezialfall mit enthalten. Hier ist der Vektor b

(k)
Q der komplexen

Wellenamplituden der Urwellen gleich dem Nullvektor und es resultieren N (k)

homogene Gleichungen.
In dem Netzwerk gibt es insgesamt

N =
K∑

k=1

N (k)
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Tore. Man definiert den N -dimensionalen Vektor

a =




a(1)

...
a(K)


 (9.57)

der komplexen Wellenamplituden aller zulaufenden Wellen und denN -dimensionalen
Vektor

b =




b(1)

...
b(K)


 (9.58)

der komplexen Wellenamplituden aller ablaufenden Wellen. Weiterhin definiert
man den N -dimensionalen Vektor

bQ =




b
(1)
Q
...

b
(K)
Q


 (9.59)

der komplexen Wellenamplituden aller Urwellen.
Jedes Tor sei mit genau einem anderen Tor verbunden. Dann entspricht jede

komplexe Wellenamplitude [a]n einer zulaufenden Welle genau einer komplexen
Wellenamplitude [b]m einer ablaufenden Welle und umgekehrt. Die Verbindungs-
struktur des Netzwerks kann durch eine N ×N Konnektivitätsmatrix K mit den
Elementen

[K]m,n =





1 falls [b]m = [a]n
0 sonst

, m, n = 1 . . .N, (9.60)

beschrieben werden. [·]m,n bezeichnet hierbei das Element in der m-ten Zeile und
n-ten Spalte der Matrix und [·]n bezeichnet das n-te Element des Vektors. Es gilt

b = K · a. (9.61)

Die Konnektivitätsmatrix K ist eine Permutationsmatrix. Da Permutationsma-
trizen stets orthogonal sind, gilt

KT · K = E. (9.62)

Beim Verbinden zweier Tore sind immer zwei Paare von komplexen Wellenampli-
tuden gleichzusetzen, das heißt aus

[b]m = [a]n
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folgt auch
[a]m = [b]n .

Die Konnektivitätsmatrix ist folglich symmetrisch:

KT = K. (9.63)

Weiterhin folgt mit der Orthogonalität der Konnektivitätsmatrix, dass die Kon-
nektivitätsmatrix selbstinvers ist:

K · K = E. (9.64)

Zusammengefasst erhält man mit

S =




S(1) 0
. . .

0 S(K)


 (9.65)

folgendes aus 2N Gleichungen bestehendes, das Netzwerk beschreibende inhomo-
gene lineare Gleichungssystem:

(
E −S

E −K

)
·
(

b

a

)
=

(
bQ

0

)
. (9.66)

Dieses Gleichungssystem ist die Grundlage von Programmen zur Simulation von
Schaltungen [Hor85].

Es gibt insgesamt 2N zu bestimmende komplexe Wellenamplituden in den Vek-
toren a und b, das heißt es gibt genau so viele Gleichungen wie Unbekannte.
Normalerweise hat das lineare Gleichungssystem (9.66) daher genau eine Lösung

(
b

a

)
=

(
E −S

E −K

)−1

·
(

bQ

0

)
.

Die spezielle Struktur der Matrix ausnutzend, erhält man

a = (K − S)−1 · bQ (9.67)

und
b = K · (K − S)−1 · bQ = (E − S · K)−1 · bQ, (9.68)

was man durch Einsetzen leicht überprüft.
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Kapitel 10.

Komponenten hochfrequenztechnischer
Systeme

10.1. Eintore

10.1.1. Quellenfreies Eintor

Der einzige Streuparameter des Eintors aus Abbildung 10.1 entspricht dem be-
kannten Reflexionsfaktor

S1,1 =
Z − RN

Z +RN
, (10.1)

siehe (7.24).

RN

a
b

Z
a

b
S1,1

a

b

S1,1

Abbildung 10.1.: Eintor

10.1.2. Eintorquelle

Der Reflexionsfaktor der Eintorquelle aus Abbildung 10.2 ist

S1,1 =
ZQ − RN

ZQ +RN

, (10.2)

siehe (7.24). Mit (9.49) ergibt sich die komplexe Wellenamplitude der Urwelle zu

bQ =
UQ

√
RN

ZQ +RN

. (10.3)
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a
b

UQ

ZQ

RN

a

b

a

b

S1,1

1
bQ

Abbildung 10.2.: Eintorquelle

10.2. Zweitore

10.2.1. Symmetrisch aufgebaute Zweitore

Aufgrund des symmetrischen Aufbaus des Zweitors muss für die nodalen Streu-
parameter

S1,1 = S2,2 (10.4)

und
S1,2 = S2,1 (10.5)

gelten, siehe Abbildung 10.3. Insbesondere sind symmetrisch aufgebaute Zweitore
immer reziprok, siehe (9.9).

Interessante weitere Eigenschaften erkennt man, wenn man die beiden Tore
als ein einziges symmetrisches Torpaar auffasst und die modalen Streuparameter
betrachtet. Aus (9.28) bis (9.31) erhält man:

M (−−) =S1,1 − S1,2, (10.6)

M (−+) =0, (10.7)

M (+−) =0, (10.8)

M (++) =S1,1 + S1,2. (10.9)
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a1

a2

b1

b2

Tor 1

Tor 2

a(−)

a(+)

b(−)

b(+)
Gleichtakttor

Gegentakttor

S M

Abbildung 10.3.: Symmetrisch aufgebautes Zweitor

Insbesondere tritt in symmetrisch aufgebauten Zweitoren niemals Modenkonver-
sion auf, das heißt der Gegentaktmode und der Gleichtaktmode sind Eigenmoden
des symmetrisch aufgebauten Zweitors. Mit der für den Gegentaktmode sichtba-
ren Impedanz Z(−) gilt

M (−−) =
Z(−) −RN

Z(−) +RN

und mit der für den Gleichtaktmode sichtbaren Impedanz Z(+) gilt

M (++) =
Z(+) − RN

Z(+) +RN

,

siehe (7.49), (7.52) und (3.84).
Speziell für symmetrisch aufgebaute, eigenreflexionsfreie Zweitore gilt

S1,2 = −M (−−) = M (++),

siehe (9.5). Daraus folgt

Z(−) = RN

1 − S1,2

1 + S1,2

, (10.10)

Z(+) = RN

1 + S1,2

1 − S1,2

(10.11)

und schließlich √
Z(−)Z(+) = RN. (10.12)

Wenn man zusätzlich auch noch Verlustfreiheit fordert, müssen die Streuma-
trizen S und M gemäß (9.7) und Aufgabe 9.4 unitär sein. Daraus folgt

∣∣∣M (−−)
∣∣∣ =

∣∣∣M (++)
∣∣∣ =

∣∣∣S1,2

∣∣∣ = 1. (10.13)

Symmetrisch aufgebaute, eigenreflexionsfreie und verlustfreie Zweitore sind Pha-
senschieber.
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10.2.2. Serienimpedanz

Aus Abbildung 10.4 liest man die Admittanzmatrix

Y =

( 1
Z

− 1
Z

− 1
Z

1
Z

)

der Serienimpedanz Z ab. Mit (9.19) erhält man hieraus die Streumatrix

S =

(
1 + RN

Z
−RN

Z

−RN

Z
1 + RN

Z

)−1

·
(

1 − RN

Z
RN

Z
RN

Z
1 − RN

Z

)

=
1

1 + 2RN

Z

(
1 + RN

Z
RN

Z
RN

Z
1 + RN

Z

)
·
(

1 − RN

Z
RN

Z
RN

Z
1 − RN

Z

)

=
1

Z + 2RN

(
Z 2RN

2RN Z

)
.

(10.14)

a1b1

a2 b2

RN RN

Z

Tor 1 Tor 2

Abbildung 10.4.: Serienimpedanz Z

10.2.3. Paralleladmittanz

Aus Abbildung 10.5 liest man die Impedanzmatrix

Z =

( 1
Y

1
Y

1
Y

1
Y

)
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der Paralleladmittanz Y ab. Mit (9.16) erhält man hieraus die Streumatrix

S =

( 1
Y

+RN
1
Y

1
Y

1
Y

+RN

)−1

·
( 1
Y

− RN
1
Y

1
Y

1
Y

− RN

)

=
1

2RN

Y
+R2

N

( 1
Y

+RN − 1
Y

− 1
Y

1
Y

+RN

)
·
( 1
Y

−RN
1
Y

1
Y

1
Y

− RN

)

=
1

2 + Y RN

(
−Y RN 2

2 −Y RN

)
.

(10.15)

a1b1

a2 b2

RN RNY

Tor 1 Tor 2

Abbildung 10.5.: Paralleladmittanz Y

Aufgabe 10.1 Der in Abbildung 10.6 gezeigte RC-Tiefpass kann als Kaskade
eines Serienwiderstands R und einer Parallelkapazität C aufgefasst werden. Be-
rechnen Sie die Übertragungsfunktion, das heißt den Streuparameter S2,1 des RC-
Tiefpasses, als Funktion der Kreisfrequenz ω, des Widerstands R, der Kapazität
C und des Bezugswiderstands RN!

Tor 1 Tor 2
S(1) S(2)

R

CRN RN

Abbildung 10.6.: RC-Tiefpass
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10.2.4. Dämpfungsglied

Abbildung 10.7 zeigt ein in Π-Schaltung realisiertes Dämpfungsglied. Damit das
Dämpfungsglied eigenreflexionsfrei (9.5) ist, müssen die an einem Tor bei refle-
xionsfreiem Abschluss des jeweils anderen Tors mit dem Bezugswiderstand RN

sichtbaren Impedanzen gemäß (7.23) gleich dem Bezugswiderstand RN sein:

RN =
1

1
R1

+ 1
R2+ 1

1
R1

+ 1
RN

,

R2 =
R1RN

R1 − RN
− R1RN

R1 +RN
.

a1b1

a2 b2

RN RN

Tor 1 Tor 2

R1

R2

R1

a1b1
a2 = 0

b2

Tor 1 Tor 2

RN RNR1

R2

R1

I1 I2

Abbildung 10.7.: Dämpfungsglied. Rechts spezieller Betriebszustand a2 = 0

Wegen der geforderten Eigenreflexionsfreiheit gilt bei reflexionsfreiem Abschluss
von Tor 2 mit dem Bezugswiderstand RN für die komplexen Wellenamplituden
b1 = 0 und a2 = 0. Aus (9.4) folgt mit (7.19) für den Gewinn G des Dämpfungs-
glieds in diesem Betriebszustand

√
G =

∣∣∣S2,1

∣∣∣ =

∣∣∣∣∣
b2

a1

∣∣∣∣∣ =

∣∣∣∣∣
−I2

I1

∣∣∣∣∣ =

1
1

R1
+ 1

RN

RN

1
R2+ 1

1
R1

+ 1
RN

1
RN

=
R1RN

R2 (R1 + RN) +R1RN
,

woraus durch Einsetzen von R2

√
G =

R1 − RN

R1 +RN

folgt. Man erhält schließlich die Widerstände

R1 = RN
1 +

√
G

1 −
√
G

(10.16)
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und

R2 = RN
1 −G

2
√
G
. (10.17)

10.2.5. Leitungsstück

Zunächst wird der Sonderfall, dass der Wellenwiderstand ZL des Leitungsstücks
dem Bezugswiderstand RN entspricht betrachtet. Bei reflexionsfreiem Abschluss
von Tor 2 mit dem Bezugswiderstand RN, siehe (7.23), ist der an Tor 1 sichtbare
Reflexionsfaktor gemäß (7.9)

S1,1 = 0.

Weiterhin gilt wegen (7.5) in diesem Betriebszustand

b2 = e−jβl a1.

Mit (9.4) folgt
S2,1 = e−jβl .

Aufgrund des symmetrischen Aufbaus des Zweitors ergibt sich mit (10.4) und
(10.5) die Streumatrix

S =

(
0 e−jβl

e−jβl 0

)
. (10.18)

Wie man leicht überprüft, ist die Streumatrix S unitär und das Leitungsstück
somit wie erwartet verlustfrei, siehe (9.7).

Nun soll der allgemeine Fall eines vom Bezugswiderstand RN abweichenden
Wellenwiderstands ZL betrachtet werden, siehe Abbildung 10.8. Hierzu führt man
eine Renormalisierung der Streumatrix durch.

a1b1

a2 b2

RN RNZL

l
Tor 1 Tor 2

Abbildung 10.8.: Leitung
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Aus der Streumatrix bezüglich dem Wellenwiderstand ZL gemäß (10.18) be-
rechnet man zunächst mit (9.17) die Impedanzmatrix

Z =ZL

(
1 e−jβl

e−jβl 1

)
·
(

1 − e−jβl

− e−jβl 1

)−1

=ZL

(
1 e−jβl

e−jβl 1

)
· 1

1 − e−j2βl

(
1 e−jβl

e−jβl 1

)

=
ZL

ejβl − e−jβl

(
ejβl + e−jβl 2

2 ejβl + e−jβl

)
= −j

ZL

sin(βl)

(
cos(βl) 1

1 cos(βl)

)
.

Aus dieser Impedanzmatrix Z ergibt sich mit (9.16) die Streumatrix bezüglich
des Bezugswiderstands RN zu

S =

(
cos(βl) + jRN

ZL
sin(βl) 1

1 cos(βl) + jRN

ZL
sin(βl)

)−1

·
(

cos(βl) − jRN

ZL
sin(βl) 1

1 cos(βl) − jRN

ZL
sin(βl)

)

=
1

cos2(βl) + j2RN

ZL
cos(βl) sin(βl) −

(
RN

ZL

)2
sin2(βl) − 1

(
cos(βl) + jRN

ZL
sin(βl) −1

−1 cos(βl) + jRN

ZL
sin(βl)

)

·
(

cos(βl) − jRN

ZL
sin(βl) 1

1 cos(βl) − jRN

ZL
sin(βl)

)

=
1

2RNZL cos(βl) + j (R2
N + Z2

L) sin(βl)
(

−j (R2
N − Z2

L) sin(βl) 2RNZL

2RNZL −j (R2
N − Z2

L) sin(βl)

)
.

(10.19)

Für den λ/4-Transformator erhält man mit βl = π/2, siehe (2.38), die Streu-
matrix

S =
1

Z2
L +R2

N

(
Z2

L −R2
N −2jRNZL

−2jRNZL Z2
L − R2

N

)
. (10.20)

Für den λ/2-Transformator erhält man mit βl = π, siehe (2.38), die Streumatrix

S =

(
0 −1

−1 0

)
. (10.21)

Aufgabe 10.2 Berechnen Sie die Admittanzmatrix Y eines λ/4-Transformators
mit dem vom Bezugswiderstand RN abweichenden Wellenwiderstand ZL!
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10.3. Dreitore

10.3.1. Zirkulator

Die Streumatrix eines eigenreflexionsfreien Dreitors hat die Struktur

S =




0 S1,2 S1,3

S2,1 0 S2,3

S3,1 S3,2 0


 ,

siehe (9.5). Die Streumatrix S eines verlustfreien Dreitors ist gemäß (9.7) unitär.
Hieraus folgt für eigenreflexionsfreie, verlustfreie Dreitore:

S∗
3,1S3,2 =0,

S∗
2,1S2,3 =0,

S∗
1,2S1,3 =0,

∣∣∣S2,1

∣∣∣
2

+
∣∣∣S3,1

∣∣∣
2

=1,
∣∣∣S1,2

∣∣∣
2

+
∣∣∣S3,2

∣∣∣
2

=1,
∣∣∣S1,3

∣∣∣
2

+
∣∣∣S2,3

∣∣∣
2

=1.

Dieses Gleichungssystem kann auf zweierlei Art und Weise entweder durch

S1,2 = S2,3 = S3,1 = 0

und ∣∣∣S2,1

∣∣∣ =
∣∣∣S3,2

∣∣∣ =
∣∣∣S1,3

∣∣∣ = 1

oder durch
S2,1 = S2,3 = S1,3 = 0

und ∣∣∣S1,2

∣∣∣ =
∣∣∣S2,1

∣∣∣ =
∣∣∣S3,1

∣∣∣ = 1

erfüllt werden. Ein an einem Tor eingespeistes Signal wird zum jeweils nächsten
Tor weitergeleitet, wobei sich die beiden Lösungen nur in der Nummerierung der
Tore unterscheiden. Derartige Dreitore bezeichnet man als Zirkulatoren. Abbil-
dung 10.9 zeigt das Symbol und den Signalflussgraphen eines Zirkulators mit der
Streumatrix

S =




0 0 1
1 0 0
0 1 0


 . (10.22)
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a1

a2

a3

b1

b2

b3

a1

b1
a2

b2

a3 b3

1

11
Tor 1

Tor 2

Tor 3

Abbildung 10.9.: Zirkulator

Zirkulatoren sind offensichtlich nicht reziprok, siehe (9.9).
Wenn man einen Zirkulator am dritten Tor reflexionsfrei abschließt, erhält man

eine Einwegleitung, siehe Abbildung 10.10. Die Streumatrix der Einwegleitung ist

S =

(
0 0
1 0

)
. (10.23)

Die Einwegleitung ist wie der Zirkulator nicht reziprok, siehe (9.9).

a1

a2

a3

b1

b2

b3

Tor 1

Tor 2

Tor 3

Γ = 0

a1

b1

a2

b2

Tor 1 Tor 2

a1

b1
a2

b2

1

Abbildung 10.10.: Einwegleitung

228



10.3. Dreitore

10.3.2. Verzweigung

Bei reflexionsfreiem Abschluss von Tor 2 und Tor 3 der in Abbildung 10.11 gezeig-
ten Verzweigung mit dem Bezugswiderstand RN sieht man an Tor 1 eine Impedanz
von RN/2, so dass sich mit (7.24)

S1,1 =
RN

2
− RN

RN

2
+RN

= −1

3

ergibt. Da weiterhin die Spannungen an allen Toren gleich sind, folgt mit (7.18)
und (9.4):

(a1 + b1)
√
RN︸ ︷︷ ︸

U1

= b2

√
RN︸ ︷︷ ︸

U2

,

(
1 + S1,1

)
a1 =b2

S2,1 =1 + S1,1 =
2

3
.

a1b1

a2 b2

a3
b3

RN

RN

RNTor 1

Tor 2

Tor 3

a1b1

a2 = 0
b2

a3 = 0 b3

RN

RN

RNTor 1

Tor 2

Tor 3

U1

U2

U3

Abbildung 10.11.: Verzweigung. Rechts spezieller Betriebszustand a2 = a3 = 0
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Unter Berücksichtigen des symmetrischen Aufbaus der Verzweigung erhält man
schließlich die Streumatrix

S =
1

3




−1 2 2
2 −1 2
2 2 −1


 . (10.24)

Die Verzweigung ist verlustfrei und reziprok, aber keines der Tore ist eigenrefle-
xionsfrei, siehe (9.7), (9.9) und (9.5). Die Verzweigung hat daher in der Hochfre-
quenztechnik keine praktische Bedeutung.

10.3.3. Allseitig angepasster Teiler

Es wird der in Abbildung 10.12 gezeigte allseitig angepasste Teiler betrachtet.
Um Eigenreflexionsfreiheit (9.5) zu erreichen, muss die bei reflexionsfreiem Ab-
schluss von Tor 2 und Tor 3 mit dem Bezugswiderstand RN die an Tor 1 sichtbare
Impedanz gemäß (7.23) gleich dem Bezugswiderstand RN sein:

R +
1

2
(R +RN) =RN,

R =
RN

3
.

Dann gilt
S1,1 = 0.

Aus Symmetriegründen teilt sich der in Tor 1 hineinfließende Strom gleichmäßig
auf Tor 2 und Tor 3 auf. Mit (7.19) und (9.4) folgt:

a1√
RN︸ ︷︷ ︸
I1

= − 2
−b2√
RN︸ ︷︷ ︸
I2

,

b2 =
1

2
a1,

S2,1 =
1

2
.

Unter Berücksichtigen des symmetrischen Aufbaus des allseitig angepassten
Teilers erhält man schließlich die Streumatrix

S =
1

2




0 1 1
1 0 1
1 1 0


 . (10.25)
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a1b1

a2 b2

a3
b3

RN

RN

RNTor 1

Tor 2

Tor 3

R

R

R a1b1

a2 = 0
b2

a3 = 0 b3

RN

RN

RNTor 1

Tor 2

Tor 3

R
R

R

I1

I2

I3

Abbildung 10.12.: Allseitig angepasster Teiler. Rechts spezieller Betriebszustand
a2 = a3 = 0

Der allseitig angepasste Teiler ist eigenreflexionsfrei und reziprok aber nicht ver-
lustfrei, siehe (9.5), (9.9) und (9.7).

Aufgabe 10.3 Es wird der in Abbildung 10.13 gezeigte eingangsseitig angepasste
Teiler betrachtet. Wie muss der Widerstand R gewählt werden, damit S1,1 = 0
gilt? Berechnen Sie die Streumatrix S des bei dieser speziellen Wahl des Wider-
stands R erhaltenen eingangsseitig angepassten Teilers!
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a1b1

a2 b2

a3
b3

RN

RN

RNTor 1

Tor 2

Tor 3

R

R

Abbildung 10.13.: Eingangsseitig angepasster Teiler

10.4. Viertore

10.4.1. Symmetrisch aufgebaute Viertore

Aufgrund des symmetrischen Aufbaus des Viertors gilt für die nodalen Streupa-
rameter

S1,1 =S3,3,

S2,2 =S4,4,

S1,3 =S3,1,

S2,4 =S4,2,

S1,2 =S3,4,

S2,1 =S4,3,

S1,4 =S3,2,

S4,1 =S2,3,

siehe Abbildung 10.14.
Man kann wieder symmetrische Torpaare bilden und die modalen Streupara-
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replacemen

a1 a2

b1 b2

a3 a4

b3 b4

Tor 1 Tor 2

Tor 3 Tor 4

a
(−)
1 a

(−)
2

b
(−)
1 b

(−)
2

a
(+)
1 a

(+)
2

b
(+)
1 b

(+)
2

Gegentakttore

Gleichtakttore

Abbildung 10.14.: Einfach symmetrisch aufgebautes Viertor

meter betrachten. Aus (9.37) bis (9.40) erhält man:

M(−−) =

(
S1,1 − S1,3 S1,2 − S1,4

S2,1 − S2,3 S2,2 − S2,4

)
, (10.26)

M(++) =

(
S1,1 + S1,3 S1,2 + S1,4

S2,1 + S2,3 S2,2 + S2,4

)
, (10.27)

M(−+) = M(+−) =

(
0 0
0 0

)
. (10.28)

Insbesondere tritt in einem symmetrisch aufgebauten Viertor niemals Modenkon-
version auf.

In einem nächsten Schritt sollen doppelt symmetrisch aufgebaute Viertore be-
trachtet werden, siehe Abbildung 10.15. Für die nodalen Streuparameter folgen
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weitere Übereinstimmungen:

S1,1 = S3,3 =S2,2 = S4,4,

S1,3 = S3,1 =S2,4 = S4,2,

S1,2 = S3,4 =S2,1 = S4,3,

S1,4 = S3,2 =S4,1 = S2,3.

Insbesondere sind doppelt symmetrisch aufgebaute Viertore immer reziprok, siehe
(9.9). Für die modalen Streuparameter folgt:

M(−−) =

(
S1,1 − S1,3 S1,2 − S1,4

S1,2 − S1,4 S1,1 − S1,3

)
, (10.29)

M(++) =

(
S1,1 + S1,3 S1,2 + S1,4

S1,2 + S1,4 S1,1 + S1,3

)
, (10.30)

M(−+) = M(+−) =

(
0 0
0 0

)
. (10.31)

a1 a2

b1 b2

a3 a4

b3 b4

Tor 1 Tor 2

Tor 3 Tor 4

Abbildung 10.15.: Doppelt symmetrisch aufgebautes Viertor

Aufgabe 10.4 Es wird der in Abbildung 10.16 gezeigte allseitig angepasste Teiler
mit vier Toren betrachtet. Wie muss der Widerstand R gewählt werden, damit der
Teiler eigenreflexionsfrei ist? Berechnen Sie die sich bei dieser speziellen Wahl des
Widerstands R ergebende Streumatrix S!
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RN

RN

RN

RN

a1b1

Tor 1

a2

b2

Tor 2

a3 b3

Tor 3a4

b4

Tor 4

R
R

R

R

Abbildung 10.16.: Allseitig angepasster Teiler mit vier Toren

10.4.2. Richtkoppler

Die Streumatrix eines doppelt symmetrisch aufgebauten, eigenreflexionsfreien Vier-
tors hat die Struktur

S =




0 S1,2 S1,3 S1,4

S1,2 0 S1,4 S1,3

S1,3 S1,4 0 S1,2

S1,4 S1,3 S1,2 0


 ,

siehe (9.5) Die Streumatrix S eines verlustfreien Viertors ist gemäß (9.7) unitär.
Hieraus folgt für doppelt symmetrisch aufgebaute, eigenreflexionsfreie, verlustfreie
Viertore:

∣∣∣S1,2

∣∣∣
2

+
∣∣∣S1,3

∣∣∣
2

+
∣∣∣S1,4

∣∣∣
2

=0,

S∗
1,3S1,4 + S∗

1,4S1,3 =0,

S∗
1,2S1,4 + S∗

1,4S1,2 =0,

S∗
1,2S1,3 + S∗

1,3S1,2 =0.
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Aus der letzten Gleichung folgt:1

Re
(
S∗

1,2S1,3

)
=0,

arg
(
S1,2

)
− arg

(
S1,3

)
= ± π

2
.

Analoges gilt auch für die beiden anderen Paare von Streuparametern:

arg
(
S1,2

)
− arg

(
S1,4

)
= ± π

2
,

arg
(
S1,3

)
− arg

(
S1,4

)
= ± π

2
.

Alle drei Streuparameter S1,2, S1,3 und S1,4 müssen in der komplexen Ebene paar-
weise senkrecht zueinander sein. Dies erfordert, dass einer der drei Streuparameter
S1,2, S1,3 und S1,4 Null ist. Willkürlich wird die Variante

S1,4 = 0

weiter betrachtet. Es folgen

arg
(
S1,2

)
− arg

(
S1,3

)
= ±π

2
(10.32)

und ∣∣∣S1,2

∣∣∣
2

+
∣∣∣S1,3

∣∣∣
2

= 1. (10.33)

Die resultierende Streumatrix hat die Gestalt

S =




0 S1,2 S1,3 0
S1,2 0 0 S1,3

S1,3 0 0 S1,2

0 S1,3 S1,2 0


 , (10.34)

das heißt doppelt symmetrisch aufgebaute, eigenreflexionsfreie, verlustfreie Vier-
tore sind stets Richtkoppler. Abbildung 10.17 zeigt Symbol und Signalflussgraph
eines Richtkopplers.

10.4.3. Parallelleitungskoppler

Der Parallelleitungskoppler ist ein doppelt symmetrisches Dreileitersystem mit
Koppelfaktor k, siehe Abbildung 10.18. Der Wellenwiderstand Z

(−)
L des Gegen-

taktmodes und der Wellenwiderstand Z
(+)
L des Gleichtaktmodes weichen im All-

gemeinen vom Bezugswiderstand RN ab. Mit (10.19) erhält man die modalen

1 Der Realteil einer komplexen Größe berechnet sich zu Re(x) = 1
2 (x+ x∗).
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Tor 1

Tor 3

Tor 2

Tor 4

b1

a1

b4

a4

b2

a2

a3

b3

a1

b1

a4

b4

b2

a2

b3

a3

S1,2

S1,2

S1,2

S1,2

S1,3

S1,3 S1,3

S1,3

Abbildung 10.17.: Richtkoppler

237



Kapitel 10. Komponenten hochfrequenztechnischer Systeme

Streuparameter:

M
(−−)
1,1 =

−j
(
R2

N − Z
(−)
L

2
)

sin(βl)

2RNZ
(−)
L cos(βl) + j

(
R2

N + Z
(−)
L

2
)

sin(βl)
, (10.35)

M
(++)
1,1 =

−j
(
R2

N − Z
(+)
L

2
)

sin(βl)

2RNZ
(+)
L cos(βl) + j

(
R2

N + Z
(+)
L

2
)

sin(βl)
, (10.36)

M
(−−)
1,2 =

2RNZ
(−)
L

2RNZ
(−)
L cos(βl) + j

(
R2

N + Z
(−)
L

2
)

sin(βl)
, (10.37)

M
(++)
1,2 =

2RNZ
(+)
L

2RNZ
(+)
L cos(βl) + j

(
R2

N + Z
(+)
L

2
)

sin(βl)
. (10.38)

Wegen des symmetrischen Aufbaus gilt für den Eigenreflexionsfaktor

S1,1 =
M

(−−)
1,1 +M

(++)
1,1

2
, (10.39)

siehe (10.29) und (10.30). Der Parallelleitungskoppler ist gemäß (9.5) eigenrefle-
xionsfrei, falls die Bedingung

0 = 2S1,1 =M (−−)
1,1 +M

(++)
1,1

=
−j
(
R2

N − Z
(−)
L

2
)

sin(βl)

2RNZ
(−)
L cos(βl) + j

(
R2

N + Z
(−)
L

2
)

sin(βl)

+
−j
(
R2

N − Z
(+)
L

2
)

sin(βl)

2RNZ
(+)
L cos(βl) + j

(
R2

N + Z
(+)
L

2
)

sin(βl)

erfüllt ist. Diese Bedingung ist erfüllt, falls die Leitungslänge l ein ganzzahliges
Vielfaches von λ/2 ist, siehe (2.38), oder

0 =
(
R2

N − Z
(−)
L

2
)(

2RNZ
(+)
L cos(βl) + j

(
R2

N + Z
(+)
L

2
)

sin(βl)
)

+
(
R2

N − Z
(+)
L

2
)(

2RNZ
(−)
L cos(βl) + j

(
R2

N + Z
(−)
L

2
)

sin(βl)
)
,

=2RN cos(βl)
(
Z

(−)
L + Z

(+)
L

) (
R2

N − Z
(−)
L Z

(+)
L

)
+ j2 sin(βl)

(
R4

N − Z
(−)
L

2
Z

(+)
L

2
)
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(−)
2 = 0

b
(−)
2

Tor 1

Tor 3

Tor 2

Tor 4

RN

RN

l

Z
(+)
L

a
(+)
1b

(+)
1

a
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b
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Abbildung 10.18.: Parallelleitungskoppler. Spezieller Betriebszustand a2 = a4 = 0
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gilt. Dies ist der Fall, falls

RN =
√
Z

(−)
L Z

(+)
L (10.40)

gilt. Im Folgenden wird nur dieser spezielle Wert des Bezugswiderstands RN weiter
betrachtet. Mit (3.71), (3.72) und (3.73) folgen die modalen Streuparameter:

M
(−−)
1,1 =

−jk sin(βl)√
1 − k2 cos(βl) + j sin(βl)

, (10.41)

M
(−+)
1,1 =0, (10.42)

M
(+−)
1,1 =0, (10.43)

M
(++)
1,1 =

jk sin(βl)√
1 − k2 cos(βl) + j sin(βl)

, (10.44)

M
(−−)
1,2 =

√
1 − k2

√
1 − k2 cos(βl) + j sin(βl)

, (10.45)

M
(−+)
1,2 =0, (10.46)

M
(+−)
1,2 =0, (10.47)

M
(++)
1,2 =

√
1 − k2

√
1 − k2 cos(βl) + j sin(βl)

. (10.48)

Die nodalen Streuparameter ergeben sich mit (9.41) bis (9.44) zu:

S1,1 =
M

(−−)
1,1 +M

(++)
1,1

2
= 0, (10.49)

S1,2 =
M

(−−)
1,2 +M

(++)
1,2

2
=

√
1 − k2

√
1 − k2 cos(βl) + j sin(βl)

, (10.50)

S1,3 =
−M (−−)

1,1 +M
(++)
1,1

2
=

jk sin(βl)√
1 − k2 cos(βl) + j sin(βl)

, (10.51)

S1,4 =
−M (−−)

1,2 +M
(++)
1,2

2
= 0. (10.52)

Die restlichen nodalen Streuparameter sind aus Symmetriegründen gleich zu den
berechneten.

Es folgen
∣∣∣S1,2

∣∣∣
2

=
1 − k2

1 − k2 cos2(βl)
(10.53)

und
∣∣∣S1,3

∣∣∣
2

=
k2 sin(βl)2

1 − k2 cos2(βl)
. (10.54)
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Das Nahnebensprechen

S1,3 =
jk sin(βl)√

1 − k2 cos(βl) + j sin(βl)
=

k

1 − j
√

1 − k2 cot(βl)
(10.55)

wird für l = λ/4 maximal, siehe (2.38). Der bei dieser Leitungslänge erzielte
Maximalwert des Nahnebensprechens ist S1,3 = k. Das Fernnebensprechen S1,4

ist unabhängig von der Leitungslänge l immer Null.
Zum Veranschaulichen der Ergebnisse wird der in Abbildung 10.18 gezeigte

spezielle Betriebszustand mit reflexionsfreiem Abschluss an Tor 2 und Tor 4 be-
trachtet. Man beachte, dass der Abschluss bezüglich der an den Toren angeschlos-
senen Zweileitersysteme, nicht aber bezüglich des gekoppelten Dreileitersystems
im Inneren des Viertors reflexionsfrei ist. Nur an Tor 1 liege eine zulaufende Welle
an, das heißt an Tor 1 überlagern sich zulaufende Gegentaktwelle und zulaufende
Gleichtaktwelle konstruktiv und an Tor 3 löschen sich zulaufende Gegentaktwelle
und zulaufende Gleichtaktwelle destruktiv aus. Für Gegentaktmode und Gleicht-
aktmode ist die gleiche Abschlussimpedanz RN sichtbar. Diese Abschlussimpedanz
RN wird jedoch aufgrund der unterschiedlichen Wellenwiderstände von Gegen-
taktmode und Gleichtaktmode in unterschiedliche Eingangsimpedanzen transfor-
miert, so dass auch die eingangsseitigen Reflexionsfaktoren für Gegentaktmode
und Gleichtaktmode unterschiedlich sind. Die ablaufende Gegentaktwelle und die
ablaufende Gleichtaktwelle löschen sich daher an Tor 3 nicht mehr vollständig aus.
Es kommt zu Nahnebensprechen. Nur wenn die Leitungslänge ein ganzzahliges
Vielfaches von λ/2 ist, wird unabhängig vom Wellenwiderstand die Abschlussim-
pedanz RN stets in sich selbst transformiert und es treten keine Reflexionen und
insbesondere kein Nahnebensprechen auf. Speziell für

RN =
√
Z

(−)
L Z

(+)
L (10.56)

unterscheiden sich die Reflexionsfaktoren von Gegentaktmode und Gleichtaktmo-
de nur im Vorzeichen. Dann löschen sich die ablaufende Gegentaktwelle und die
ablaufende Gleichtaktwelle an Tor 1, nicht aber an Tor 3 gegenseitig aus.
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Kapitel 11.

Vektorielle Netzwerkanalyse

11.1. Reflektometer

11.1.1. Aufbau eines Reflektometers

Das Reflektometer dient dem Messen des Reflexionsfaktors ΓDUT eines Messob-
jekts (Device under Test, DUT). Da nicht nur der Betrag des Reflexionsfaktors
ΓDUT, sondern auch das Argument gemessen wird, spricht man von einer vekto-
riellen Messung. Wenn es gelänge, die komplexe Wellenamplitude a der auf das
Messobjekt zulaufenden Welle und die komplexe Wellenamplitude b der ablaufen-
den Welle getrennt zu erfassen, so könnte man den Reflexionsfaktor mit

ΓDUT =
b

a
(11.1)

direkt berechnen, siehe (7.7).
Für eine praktische Realisierung des Reflektometers sind direktive Elemente

wie Richtkoppler verfügbar, die im Idealfall zu den gesuchten Wellen proportio-
nale Wellen an getrennten Toren auskoppeln. Zum Messen der komplexen Wellen-
amplituden kann man beispielsweise Quadraturdemodulatoren verwenden, siehe
Anhang A.6.5. Die resultierenden Gleichspannungen in den Inphasekanälen und
Quadraturkanälen entsprechen den Realteilen beziehungsweise den Imaginärtei-
len der zu messenden komplexen Wellenamplituden. Zum Unterdrücken von Rau-
schen führt man eine Mittelung über eine gewisse Integrationsdauer durch, was im
Frequenzbereich einer Filterung mit einer zur Integrationsdauer umgekehrt pro-
portionalen Auflösebandbreite (Resolution Bandwidth, RBW) entspricht. Wegen
der unbekannten Nullphase des Oszillatorsignals geht die absolute Phaseninfor-
mation zunächst verloren. Wenn man in beiden Messkanalempfängern das selbe
Oszillatorsignal verwendet, bleibt die hier relevante relative Phaseninformation
jedoch erhalten. Man erhält im Idealfall zu den komplexen Wellenamplituden
proportionale Messgrößen

a′ ∼ a
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und
b′ ∼ b.

Die Proportionalitätsfaktoren des direktiven Elements und die Verstärkungen und
Phasenverschiebungen der Messkanalempfänger sind im Idealfall für beide Mess-
größen gleich, so dass man den Reflexionsfaktor des Messobjekts direkt als Ver-
hältnis der Messgrößen berechnen kann:

ΓDUT =
b′

a′ . (11.2)

In der Realität treten signifikante Fehler auf. Neben Imperfektionen des direk-
tiven Elements sind dies insbesondere Phasenverschiebungen und Dämpfungen
der Verbindungsleitungen zwischen Messgerät und Messobjekt. Man modelliert
dieses reale Reflektometer durch ein Viertor an dessen vier Toren

1. das Messobjekt mit Reflexionsfaktor ΓDUT,

2. die Testsignalquelle,

3. die Messstelle für die komplexe Wellenamplitude a′ der hinlaufenden Welle
mit Reflexionsfaktor Γa und

4. die Messstelle für die komplexe Wellenamplitude b′ der rücklaufenden Welle
mit Reflexionsfaktor Γb

angeschlossen sind, siehe Abbildung 11.1.
Mit den Reflexionsfaktoren der Messstellen folgen

a4 = Γaa
′ (11.3)

und
a3 = Γbb

′, (11.4)

siehe (7.7). Das Viertor kann gemäß (9.4) durch seine Streuparameter beschrieben
werden:

a =S1,1b+ S1,2a2 + S1,3a3 + S1,4a4, (11.5)

b2 =S2,1b+ S2,2a2 + S2,3a3 + S2,4a4, (11.6)

b′ =S3,1b+ S3,2a2 + S3,3a3 + S3,4a4, (11.7)

a′ =S4,1b+ S4,2a2 + S4,3a3 + S4,4a4. (11.8)

Diese Gleichungen stellen ein lineares Gleichungssystem mit sechs Gleichungen
und den sechs Unbekannten a, b′, a2, a3, a4 und b2 dar, das heißt man kann a
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Tor 1
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Abbildung 11.1.: Reflektometer

und b′ als Funktionen von b und a′ berechnen. Unter Verwenden von (11.3) und
(11.4) erhält man aus (11.8)

a2 =
1

S4,2

a′ − S4,1

S4,2

b− S4,3

S4,2

a3 − S4,4

S4,2

a4

=

(
1

S4,2

− S4,4Γa

S4,2

)
a′ − S4,1

S4,2

b− S4,3Γb

S4,2

b′.

(11.9)

Mit (11.3), (11.4) und (11.9) eliminiert man a2, a3 und a4 in (11.5) und (11.7)
und erhält schließlich a und b′ als lineare Funktionen von b und a′ gemäß

(
a
b′

)
=

(
F 0,0 F 0,1

F 1,0 F 1,1

)

︸ ︷︷ ︸
F

·
(
b
a′

)
. (11.10)

Abbildung 11.2 zeigt das so erhaltene Modell des imperfekten Reflektometers.
Die Fehler werden durch ein zwischen virtuelles ideales Reflektometer und Mes-
sobjekt geschaltetes Fehlerzweitor mit der Streumatrix F berücksichtigt. Dieses
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Fehlerzweitor entspricht keinem direkt physikalisch vorhandenem Zweitor und ist
daher im Allgemeinen auch nicht reziprok. Das hier geschilderte Vorgehen wird
als Viertor-Zweitor-Reduktion bezeichnet [ES91].
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Abbildung 11.2.: Modell des imperfekten Reflektometers

Aufgabe 11.1 Berechnen Sie die Streuparameter F 0,0, F 0,1, F 1,0 und F 1,1 des
Fehlerzweitors als Funktionen der Streuparameter des Viertors und der Refle-
xionsfaktoren der Messstellen! Wie vereinfachen sich die Ergebnisse, wenn das
Viertor ein Richtkoppler ist, siehe Abschnitt 10.4.2? Wie vereinfachen sich die
Ergebnisse im Falle reflexionsfreier Messstellen Γa = 0 und Γb = 0?

11.1.2. Reflektometerfehlerkorrektur

Mit der Transmissionsmatrix (9.21) des Fehlerzweitors mit den Streuparametern
gemäß (11.10), siehe Abbildung 11.2, kann man die am Messobjekt anliegenden
komplexen Wellenamplituden aus den vom virtuellen idealen Reflektometer ge-
messenen komplexen Wellenamplituden berechnen:

(
a
b

)
=

1

F 1,0

(
− det(F) F 0,0

−F 1,1 1

)
·
(
a′

b′

)
. (11.11)

Man beachte, dass die Vektorelemente und entsprechend auch die Matrixelemente
gegenüber der Definition der Transmissionsmatrix in (9.20) vertauscht sind, was
sich später in (11.24) als vorteilhaft erweisen wird.

Für den Reflexionsfaktor (11.1) des Messobjekts folgt

ΓDUT =
b

a
=

b′ − F 1,1a
′

F 0,0b
′ − det(F) a′ =

Γ′
DUT − F 1,1

F 0,0Γ′
DUT − det(F)

, (11.12)
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das heißt bei Kenntnis der drei Fehlerterme det(F), F 0,0 und F 1,1 kann man den
Reflexionsfaktor ΓDUT des Messobjekts aus den gemessenen komplexen Wellen-
amplituden a′ und b′ oder dem gemessenen Reflexionsfaktor Γ′

DUT gemäß (11.2)
berechnen. Man spricht daher auch vom 3-Term-Fehlermodell. In der Literatur
[Hie11] wird der Anschauung wegen üblicherweise statt det(F) der unter Verwen-
den der übrigen Fehlerterme F 0,0 und F 1,1 daraus berechenbare Fehlerterm

F 0,1F 1,0 = F 0,0F 1,1 − det(F)

verwendet. Die Fehlerterme werden dann wie folgt bezeichnet:

Reflexionsgleichlauf: F 0,1F 1,0

Direktivität: F 1,1

Messtoranpassung: F 0,0

Bemerkenswert ist, dass nur das Produkt F 0,1F 1,0, nicht aber F 0,1 und F 1,0 für
die Korrekturrechnung (11.12) benötigt werden.

Die drei Fehlerterme bestimmt man durch Messungen an drei Kalibrierstan-
dards exakt bekannten Reflexionsfaktors. Beim OSM-Verfahren verwendet man
folgende Kalibrierstandards:

Leerlauf (OPEN): wahrer Reflexionsfaktor ΓO, gemessener Reflexionsfaktor Γ′
O

Kurzschluss (SHORT): wahrer Reflexionsfaktor ΓS, gemessener Reflexionsfak-
tor Γ′

S

Abschluss (MATCH): wahrer Reflexionsfaktor ΓM, gemessener Reflexionsfaktor
Γ′

M

Reale Kalibrierstandards haben in nicht vernachlässigbarer Weise von den Re-
flexionsfaktoren eines idealen Leerlaufs, Kurzschlusses beziehungsweise Abschlus-
ses abweichende Reflexionsfaktoren. Neben einer gewissen Leitungslänge zwischen
der Referenzebene im Steckverbinder und dem eigentlichen Kalibrierstandard sind
insbesondere Streukapazitäten des offenen Leitungsendes im Leerlauf signifikant.
Hersteller von Kalibrierstandards legen daher für jeden Kalibrierstandard indivi-
duell mit geeichten Messgeräten bei verschiedenen Kreisfrequenzen ω gemessene
Kalibrierdaten bei. Das im Folgenden beschriebene Verfahren zum Ermitteln der
Fehlerterme ist von den konkreten Kalibrierstandards unabhängig und kann somit
Imperfektionen der Kalibrierstandards berücksichtigen.

Aus (11.12) folgt
Γ′ΓF 0,0 − Γ det(F) = Γ′ − F 1,1. (11.13)
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Dies ist eine lineare Gleichung für die drei Fehlerterme det(F), F 0,0 und F 1,1,
in welcher der wahre Reflexionsfaktor Γ und der zugehörige gemessene Reflexi-
onsfaktor Γ′ vorkommen. Durch Einsetzen der drei Paare wahrer und gemessener
Reflexionsfaktoren der drei Kalibrierstandards erhält man ein eindeutig lösbares
lineares Gleichungssystem




Γ′
O

Γ′
S

Γ′
M


 =




1 Γ′
OΓO −ΓO

1 Γ′
SΓS −ΓS

1 Γ′
MΓM −ΓM


 ·




F 1,1

F 0,0

det(F)


 .

Die Lösung ist




F 1,1

F 0,0

det(F)


 =




1 Γ′
OΓO −ΓO

1 Γ′
SΓS −ΓS

1 Γ′
MΓM −ΓM




−1

·




Γ′
O

Γ′
S

Γ′
M


 . (11.14)

Falls mehr als die minimal erforderlichen drei Kalibrierstandards verwendet wer-
den, kann man die zusätzlichen Messwerte im Rahmen einer Ausgleichsrechnung
zur Messfehlerreduktion nutzen [Kay93; MS00].

Aufgabe 11.2 Wie vereinfachen sich die Gleichungen (11.14) zum Berechnen
der drei Fehlerterme det(F), F 0,0 und F 1,1, falls ideale Kalibrierstandards ΓO = 1,
ΓS = −1 und ΓM = 0 verwendet werden?

11.2. Vektornetzwerkanalysator

11.2.1. Aufbau eines Vektornetzwerkanalysators

Ein Vektornetzwerkanalysator zum Messen der Streuparameter eines Zweitors be-
steht im Wesentlichen aus zwei Reflektometern mit insgesamt vier Messstellen,
siehe Abbildung 11.3. Man spricht von einem vollwertigen Vektornetzwerkanaly-
sator. Es gibt auch vereinfachte Vektornetzwerkanalysatoren mit weniger Mess-
stellen [Mar97]. Hier ergeben sich jedoch Einschränkungen bei den Fehlerkorrek-
turmöglichkeiten. Zunächst wird nur der vollwertige Vektornetzwerkanalysator
mit zwei Messtoren betrachtet. Heutige Vektornetzwerkanalysatoren enthalten
darüber hinaus einen Rechner, der die Messwerte verarbeitet. Außer einer gra-
phischen Darstellung der Messergebnisse wird insbesondere die Fehlerkorrektur
vollautomatisch durchgeführt. Auch weiterführende Messwertverarbeitungen wie
Berechnen der modalen Streuparameter und Berechnen der Impedanzmatrizen
und der Admittanzmatrizen, siehe Kapitel 9, sind heute Standard.
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Abbildung 11.3.: Vollwertiger Vektornetzwerkanalysator mit zwei Messtoren und
vier Messstellen
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Der Umschalter in Abbildung 11.3 dient dazu, zwei verschiedene Testsignale
zu erzeugen. Im Idealfall würde in der gezeigten Schalterstellung I nur an Mess-
tor 1 ein Testsignal anliegen und nach Umschalten in Stellung II würde nur an
Messtor 2 ein Testsignal anliegen. Das heißt man würde das Messobjekt einmal
in Vorwärtsrichtung und einmal in Rückwärtsrichtung messen. Wären neben dem
Umschalter auch die direktiven Elemente perfekt, so könnte man aus den Ergeb-
nissen der Messung in Vorwärtsrichtung

S1,1 =
b′

I1

a′
I1

und

S2,1 =
b′

I2

a′
I1

berechnen, siehe (9.4). Dual erhielte man aus den Ergebnissen der Messung in
Rückwärtsrichtung

S2,2 =
b′

II2

a′
II2

und

S1,2 =
b′

II1

a′
II2

.

In der Realität gibt es ein Übersprechen am Umschalter, so dass immer an
beiden Messtoren Testsignale anliegen. Für das im Folgenden beschriebene Mess-
verfahren ist dies kein Problem, da keine speziellen Annahmen über die Art der
Testsignale gemacht werden. Weiterhin sind die direktiven Elemente nicht per-
fekt. Für jedes Reflektometer kann man wieder wie in Abschnitt 11.1.1 beschrie-
ben eine Viertor-Zweitor-Reduktion durchführen. Man erhält als Ergebnis das in
Abbildung 11.4 dargestellte Modell des imperfekten Vektornetzwerkanalysators.
Zwischen die beiden Messtore eines virtuellen idealen Vektornetzwerkanalysators
und die Tore des Messobjekts ist jeweils ein Fehlerzweitor geschaltet.

Die Determinanten der Streumatrizen der Fehlerzweitore sind

det(FA) = F 0,0F 1,1 − F 0,1F 1,0

und
det(FB) = F 2,2F 3,3 − F 2,3F 3,2.

Mit den Transmissionsmatrizen der Fehlerzweitore erhält man
(
a1

b1

)
=

1

F 1,0

(
− det(FA) F 0,0

−F 1,1 1

)

︸ ︷︷ ︸
A

·
(
a′

1

b′
1

)
(11.15)
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Abbildung 11.4.: Modell des imperfekten Vektornetzwerkanalysators

und (
b2

a2

)
=

1

F 3,2

(
1 −F 3,3

F 2,2 − det(FB)

)

︸ ︷︷ ︸
B

·
(
b′

2

a′
2

)
, (11.16)

vergleiche (11.11). Die Fehlerzweitore entsprechen wieder keinen direkt physika-
lisch vorhandenen Zweitoren und sind daher im Allgemeinen auch nicht reziprok.

Das Verhalten des Messobjekts wird gemäß (9.4) durch seine Streumatrix be-
schrieben: (

b1

b2

)
=

(
S1,1 S1,2

S2,1 S2,2

)

︸ ︷︷ ︸
SDUT

·
(
a1

a2

)
. (11.17)

11.2.2. Vektornetzwerkanalysatorfehlerkorrektur

Mit Hilfe der Transmissionsmatrizen kann man die am Messobjekt anliegenden
komplexen Wellenamplituden aus den vom virtuellen idealen Vektornetzwerkana-
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lysator gemessenen komplexen Wellenamplituden berechnen. Nach Multiplikation
aller Gleichungen in (11.15) und (11.16) mit F 1,0 erhält man:

F 1,0a1 = − det(FA) a′
1 + F 0,0b

′
1, (11.18)

F 1,0b1 = − F 1,1a
′
1 + b′

1, (11.19)

F 1,0b2 =
F 1,0

F 3,2

b′
2 − F 1,0F 3,3

F 3,2

a′
2, (11.20)

F 1,0a2 =
F 1,0F 2,2

F 3,2

b′
2 − F 1,0 det(FB)

F 3,2

a′
2. (11.21)

Beim Messen in Schalterstellung I erhält man die Messwerte a′
I1, b′

I1, a′
I2 und b′

I2

und beim Messen in Schalterstellung II erhält man die Messwerte a′
II1, b′

II1, a
′
II2

und b′
II2. Aus diesen Messwerten berechnet man die zugehörigen, am Messobjekt

anliegenden und mit F 1,0 skalierten komplexen Wellenamplituden F 1,0aI1, F 1,0bI1,
F 1,0aI2, F 1,0bI2, F 1,0aII1, F 1,0bII1, F 1,0aII2 und F 1,0bII2. Durch Kombination der
Ergebnisse aus beiden Messungen erhält man mit (11.17)

(
F 1,0bI1 F 1,0bII1

F 1,0bI2 F 1,0bII2

)
= SDUT ·

(
F 1,0aI1 F 1,0aII1

F 1,0aI2 F 1,0aII2

)
(11.22)

und schließlich

SDUT =

(
F 1,0bI1 F 1,0bII1

F 1,0bI2 F 1,0bII2

)
·
(
F 1,0aI1 F 1,0aII1

F 1,0aI2 F 1,0aII2

)−1

. (11.23)

Zum Berechnen der Streumatrix SDUT des Messobjekts aus den Messergebnissen
werden die sieben Fehlerterme det(FA), F 0,0, F 1,1, F 1,0 det(FB) /F 3,2, F 1,0F 2,2/F 3,2,
F 1,0F 3,3/F 3,2 und F 1,0/F 3,2 benötigt. Man spricht auch vom 7-Term-Fehlermodell.
In der Literatur [Hie11] werden der Anschauung wegen die folgenden sieben äqui-
valenten Fehlerterme verwendet:

Reflexionsgleichlauf: F 0,1F 1,0 und F 2,3F 3,2

Transmissionsgleichlauf: F 0,1F 3,2

Direktivität: F 1,1 und F 2,2

Messtoranpassung: F 0,0 und F 3,3

Sofern die Transmissionsmatrix TDUT des Messobjekts gemäß (9.21) existiert,
das heißt S2,1 nicht Null ist, sind die Messwerte an Messtor 1 und an Messtor 2
durch (

a′
1

b′
1

)
=
F 1,0

F 3,2

A−1 · TDUT · B

︸ ︷︷ ︸
T

′
DUT

·
(
b′

2

a′
2

)
(11.24)
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miteinander verknüpft, siehe (11.15), (11.16) und (9.20). Kombinieren der Ergeb-
nisse beider Messungen ergibt

(
a′

I1 a′
II1

b′
I1 b′

II1

)
= T′

DUT ·
(
b′

I2 b′
II2

a′
I2 a′

II2

)
.

Hieraus kann man die gemessene Transmissionsmatrix

T′
DUT =

(
a′

I1 a′
II1

b′
I1 b′

II1

)
·
(
b′

I2 b′
II2

a′
I2 a′

II2

)−1

(11.25)

berechnen. Bei Kenntnis der Fehlerterme kann man die korrigierte Messung mit-
tels Deembedding berechnen:

TDUT =
F 3,2

F 1,0

A · T′
DUT · B−1. (11.26)

Die Fehlerterme sind durch Messungen an bekannten Kalibrierstandards zu be-
stimmen. Eine Messung an einem Zweitor bekannter Streumatrix S ergibt gemäß
(11.22) vier lineare Gleichungen




−F 1,1a
′
I1 + b′

I1 −F 1,1a
′
II1 + b′

II1
F 1,0

F 3,2
b′

I2 − F 1,0F 3,3

F 3,2
a′

I2

F 1,0

F 3,2
b′

II2 − F 1,0F 3,3

F 3,2
a′

II2




= S ·



− det(FA) a′
I1 + F 0,0b

′
I1 − det(FA) a′

II1 + F 0,0b
′
II1

F 1,0F 2,2

F 3,2
b′

I2 − F 1,0 det(FB)
F 3,2

a′
I2

F 1,0F 2,2

F 3,2
b′

II2 − F 1,0 det(FB)
F 3,2

a′
II2




(11.27)

für die unbekannten Fehlerterme. Eine Messung an einem Eintor bekannten Re-
flexionsfaktors Γ an Messtor 1 oder Messtor 2 ergibt eine lineare Gleichung

− F 1,1a
′
I1 + b′

I1 = Γ
(
− det(FA) a′

I1 + F 0,0b
′
I1

)
(11.28)

beziehungsweise

F 1,0

F 3,2

b′
II2 − F 1,0F 3,3

F 3,2

a′
II2 = Γ

(
F 1,0F 2,2

F 3,2

b′
II2 − F 1,0 det(FB)

F 3,2

a′
II2

)
(11.29)

für die unbekannten Fehlerterme. Man beachte, dass (11.28) exakt der Grund-
gleichung (11.13) der Reflektometerkalibrierung entspricht. Durch Messungen an
hinreichend vielen bekannten Kalibrierstandards sind sieben linear unabhängi-
ge Gleichungen zu gewinnen. Aus dem so erhaltenen linearen Gleichungssystem
können dann die Fehlerterme berechnet werden. Falls mehr als die minimal er-
forderliche Anzahl an Gleichungen gewonnen wird, kann man die zusätzlichen
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Messwerte im Rahmen einer Ausgleichsrechnung zur Messfehlerreduktion nutzen
[Kay93; MS00]. Je nach der Art der verwendeten Kalibrierstandards erhält man so
eine Vielfalt unterschiedlicher Kalibrierverfahren. Ein bekanntes Beispiel ist das
TOSM-Verfahren. Hier werden zunächst durch OSM-Messungen an beiden Toren
insgesamt sechs Gleichungen gewonnen. Durch Messungen in Vorwärtsrichtung
und in Rückwärtsrichtung an einem bekannten

Verbindungsstück (THROUGH): mit der wahren Streumatrix ST

können vier weitere Gleichungen gewonnen werden.

11.2.3. Verwenden teilweise unbekannter Kalibrierstandards

Unter dem Schlagwort Selbstkalibrierung sind in der Literatur Verfahren mit teil-
weise unbekannten Kalibrierstandards bekannt. Vorteilhafterweise setzt man nur
die zuverlässig reproduzierbaren Eigenschaften der Kalibrierstandards als bekannt
voraus.

Ein bekanntes Verfahren mit teilweise unbekannten Kalibrierstandards ist das
UOSM-Verfahren [FP92]. Zunächst bestimmt man mit einer Reflektometerkali-
brierung an Messtor 1 die in (11.15) eingeführte Matrix A. Als nächstes bestimmt
man mit einer Reflektometerkalibrierung an Messtor 2 die in (11.16) eingeführte
Matrix B. Zum Berechnen der korrigierten Messung mit (11.26) fehlt jetzt nur
noch die Kenntnis des Fehlerterms F 1,0/F 3,2. Zum Bestimmen dieses Fehlerterms
F 1,0/F 3,2 führt man eine Kalibriermessung mit einem weiteren, teilweise unbe-
kannten aber reziproken Kalibrierstandard durch:

Unbekanntes Verbindungsstück (UNKNOWN THROUGH): Für die wahre Trans-
missionsmatrix gilt aufgrund der Reziprozität det(TU) = 1, siehe (9.23). Die
gemessene Transmissionsmatrix ist T′

U.

Mit (11.26) folgt1

1 = det(TU) = det

(
F 3,2

F 1,0

A · T′
U · B−1

)

=

(
F 3,2

F 1,0

)2

det(A) det(T′
U) det

(
B−1

)

=

(
F 3,2

F 1,0

)2
det(A) det(T′

U)

det(B)

1 Für quadratische Matrize A und B gilt det(A · B) = det(A) det(B).
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und schließlich der Fehlerterm

F 1,0

F 3,2

= ±
√√√√det(A) det(T′

U)

det(B)
.

Damit folgt für die korrigierte Messung des Kalibrierstandards

TU = ±
√√√√det(A) det(T′

U)

det(B)
A · T′

U · B−1. (11.30)

Das Vorzeichen des Fehlerterms F 1,0/F 3,2 kann man anhand einer groben Kennt-
nis des für die Kalibriermessung verwendeten Verbindungsstücks ermitteln. Aus
(9.21) folgt

S2,1 =
1

T a,b

= ±
√√√√ det(B)

det(A) det(T′
U)

1[
A · T′

U · B−1
]

1,1

. (11.31)

Wenn man nun weiß, dass das Verbindungsstück kurz ist und die Phasenverschie-
bung somit gering sein sollte, so muss das Vorzeichen so gewählt werden, dass der
Realteil von S2,1 positiv ist.

11.2.4. Vereinfachter Vektornetzwerkanalysator

Abbildung 11.5 zeigt eine häufig eingesetzte vereinfachte Vektornetzwerkanaly-
satorarchitektur mit zwei Messtoren und drei Messstellen. Dem reduzierten Auf-
wand durch Entfall einer Messstelle, des Umschalters und des zweiten direktiven
Elements steht der Nachteil gegenüber, dass das Messobjekt zwischen Messung in
Vorwärtsrichtung und Messung in Rückwärtsrichtung manuell umgedreht werden
muss. Ohne eine Messung in Vorwärtsrichtung und eine Messung in Rückwärts-
richtung können nicht alle Streuparameter bestimmt werden und insbesondere ist
keine vollständige Fehlerkorrektur möglich. Das heißt, selbst wenn man sich nur
für die Streuparameter S1,1 und S2,1 in Vorwärtsrichtung interessiert, ist für die
vollständige Fehlerkorrektur trotzdem auch eine Messung in Rückwärtsrichtung
erforderlich.

Mit der Viertor-Zweitor-Reduktion erhält man die in Abbildung 11.6 gezeigten
Modelle. In der Abbildung ist sowohl das Modell für die Messung in Vorwärts-
richtung als auch das Modell für die Messung in Rückwärtsrichtung gezeigt. Man
beachte, dass die Modelle bei der Messung in Vorwärtsrichtung und bei der Mes-
sung in Rückwärtsrichtung die selben sind.

255



Kapitel 11. Vektorielle Netzwerkanalyse

T
or

A
2a

A
2

b A
2

T
or

A
1

M
es

st
or

1

a
A

1
=
b 1

b A
1

=
a

1

T
or

A
4 a

A
4

b A
4

=
a

′ 1

Γ
A

a

T
or

A
3

a
A

3

b A
3

=
b′ 1

Γ
A

b

S
F

eh
le

r-
zw

ei
-

to
r

T
or

B
1

a
B

1
=
b 2

b B
1

=
a

2

M
es

st
or

2

T
or

B
2

a
B

2 b B
2

=
b′ 2

Γ
B

b
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und drei Messstellen
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F 0,1

F 1,0

F 1,1 F 0,0

S2,1

S1,2

S1,1 S2,2

F 3,2

F 2,2

Fehlerzweitor A Fehlerzweitor BMessobjekt

idealer Vektornetzwerkanalysator

a′
I1

b′
I1

aI1

bI1
aI2

bI2 b′
I2

(a) Messung in Vorwärtsrichtung

F 2,2

F 3,2

S2,1

S1,2

S1,1 S2,2

F 1,0

F 0,1

F 0,0F 1,1
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(b) Messung in Rückwärtsrichtung

Abbildung 11.6.: Modell des imperfekten vereinfachten Vektornetzwerkanalysa-
tors
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Aus (11.18), (11.19), (11.20) und (11.21) erhält man durch Nullsetzen von a′
2

die am Messobjekt anliegenden komplexen Wellenamplituden für die Messung in
Vorwärtsrichtung:

F 1,0aI1 = − det(FA) a′
I1 + F 0,0b

′
I1,

F 1,0bI1 = − F 1,1a
′
I1 + b′

I1,

F 1,0bI2 =
F 1,0

F 3,2

b′
I2,

F 1,0aI2 =
F 1,0F 2,2

F 3,2

b′
I2.

Dual dazu erhält man für die Messung in Rückwärtsrichtung:

F 1,0aII2 = − det(FA) a′
II2 + F 0,0b

′
II2,

F 1,0bII2 = − F 1,1a
′
II2 + b′

II2,

F 1,0bII1 =
F 1,0

F 3,2

b′
II1,

F 1,0aII1 =
F 1,0F 2,2

F 3,2

b′
II1.

Bei Kenntnis der fünf Fehlerterme det(FA), F 0,0, F 1,1, F 1,0F 2,2/F 3,2, und F 1,0/F 3,2

kann man die Streumatrix SDUT des Messobjekts wieder mit (11.23) berechnen.
Man spricht vom 5-Term-Fehlermodell. In der Literatur [Hie11] werden abwei-
chend die folgenden fünf Fehlerterme verwendet:

Reflexionsgleichlauf: F 0,1F 1,0

Transmissionsgleichlauf: F 1,0F 3,2

Direktivität: F 1,1

Quelltoranpassung: F 0,0

Lasttoranpassung: F 2,2

Es gibt auch hier nicht weiter betrachtete Vektornetzwerkanalysatoren mit drei
Messstellen und einem internen Messrichtungsumschalter, bei denen in Vorwärts-
richtung und in Rückwärtsrichtung unterschiedliche Fehlermodelle zu berücksich-
tigen sind. Dies führt zu einem 10-Term-Fehlermodell [Hie11].
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Die Fehlerterme sind wieder durch Messungen an bekannten Kalibrierstandards
zu bestimmen. Eine Messung in Vorwärtsrichtung an einem Zweitor bekannter
Streumatrix S ergibt nach (11.27) zwei lineare Gleichungen




−F 1,1a
′
I1 + b′

I1
F 1,0

F 3,2
b′

I2


 = S ·




− det(FA) a′
I1 + F 0,0b

′
I1

F 1,0F 2,2

F 3,2
b′

I2


 (11.32)

für die unbekannten Fehlerterme, wobei a′
2 wieder zu Null gesetzt wurde. Eine

Messung in Rückwärtsrichtung entspricht hier einem Umdrehen des Zweitors und
ergibt nur bei nicht vertauschbaren Toren neue Gleichungen, die formal den Glei-
chungen der Messung in Rückwärtsrichtung entsprechen. Eine Messung an einem
Eintor bekannten Reflexionsfaktors Γ an Messtor 1 ergibt eine lineare Gleichung

− F 1,1a
′
I1 + b′

I1 = Γ
(
− det(FA) a′

I1 + F 0,0b
′
I1

)
(11.33)

für die unbekannten Fehlerterme, siehe (11.28). Die Messung eines Eintors an
Messtor 2 ist wegen des fehlenden Testsignals sinnlos. Durch Messungen an hinrei-
chend vielen bekannten Kalibrierstandards sind fünf linear unabhängige Gleichun-
gen zu gewinnen. Beim TOSM-Verfahren werden der Zweitorstandard Durchver-
bindung und die Eintorstandards Leerlauf, Kurzschluss und Abschluss verwendet.
Man erhält so exakt fünf linear unabhängige Gleichungen.

Aufgabe 11.3 Berechnen Sie mit (11.32) und (11.33) die fünf Fehlerterme det(FA),
F 0,0, F 1,1, F 1,0F 2,2/F 3,2, und F 1,0/F 3,2 für den Fall, dass ideale Kalibrierstan-
dards

ST =

(
0 1
1 0

)
,

ΓO = 1, ΓS = −1 und ΓM = 0 verwendet werden!
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Kapitel 12.

Hochfrequenzverstärker

12.1. Aufbau von Hochfrequenzverstärkern

Hochfrequenzverstärker werden heute überwiegend mit Transistoren realisiert [Bae02;
Gon97]. Es stehen eine Vielzahl von Transistortypen in verschiedenen Grund-
schaltungen zu Verfügung. Es gibt viele hier nicht diskutierte Möglichkeiten der
Arbeitspunkteinstellung und Arbeitspunktstabilisierung.

Der in Abbildung 12.1 dargestellte Signalpfad eines Hochfrequenzverstärkers
besteht aus dem Transistor und den eingangsseitigen und ausgangsseitigen An-
passnetzwerken. Im hier betrachteten Kleinsignalbetrieb können die Eigenschaften
des dann näherungsweise linearen Transistors durch eine Streumatrix S beschrie-
ben werden. Die Streumatrix S eines Transistors hängt unter anderem von dem
Transistortyp, der gewählten Grundschaltung, dem Arbeitspunkt und der Kreis-
frequenz ω ab.

Tor 1 Tor 2

a1

b1

a2

b2

Eingangs-
anpass-

netzwerk

Ausgangs-
anpass-

netzwerk

Transistor

Abbildung 12.1.: Signalpfad eines Hochfrequenzverstärkers

Idealerweise wäre ein Hochfrequenzverstärker eigenreflexionsfrei S1,1 = S2,2 =
0, siehe (9.5), und rückwirkungsfrei S1,2 = 0. Die Streumatrix S eines Transistors
weicht üblicherweise von diesem Idealfall ab. Die Aufgabe der Anpassnetzwerke
ist es, die Reflexionsfaktoren derart zu transformieren, dass das Gesamtsystem
ein günstigeres Verhalten aufweist. Neben der möglichst guten eingangsseitigen
und ausgangsseitigen Anpassung, das heißt dem Minimieren der an den Toren
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des Gesamtsystems sichtbaren Reflexionsfaktoren, ist die Stabilität ein wichtiger
Aspekt. Im Gegensatz zur Anpassung, die nur bei der Kreisfrequenz ω des zu ver-
stärkenden Signals von Interesse ist, muss die Stabilität bei allen Kreisfrequenzen
ω gewährleistet sein. Die Anpassung hat einen Einfluss auf den Leistungsgewinn.
Abhängig davon, wie Fehlanpassungen berücksichtigt werden, ergeben sich unter-
schiedliche Definitionen des Leistungsgewinns.

Aufgabe 12.1 Einen Transistor kann man zunächst als Dreitor modellieren, sie-
he Abbildung 12.2. Durch Kurzschließen eines der Tore, zum Beispiel Tor 3, erhält
man eine der drei möglichen Grundschaltungen. Ermitteln Sie die Admittanzma-
trix des so erhaltenen Zweitors als Funktion der Admittanzmatrix Y des Dreitors!
Kann man aus der Admittanzmatrix des Zweitors wieder die Admittanzmatrix Y

des Dreitors berechnen, wenn man berücksichtigt, dass der als Dreitor betrachtete
Transistor ein massefreies Netzwerk ist?

U1

U2

U3

I1

I2

I3

RN

RN

RNTor 1

Tor 2

Tor 3

Abbildung 12.2.: Transistor als Dreitor

12.2. Leistungsabgabe von Eintorquellen

Als Vorbereitung für die Betrachtung von Zweitoren soll hier die Leistungsab-
gabe einer Quelle mit dem Quellenreflexionsfaktor ΓQ an eine passive Last mit
dem Lastreflexionsfaktor ΓL analysiert werden. Wegen der Passivität gilt für den
Betrag des Lastreflexionsfaktors |ΓL| < 1.
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Aus dem Signalflussgraphen in Abbildung 12.3 liest man mit der Schleifenregel

b =
bQ

1 − ΓQΓL

ab, siehe Abbildung 9.3d. Weiterhin gilt

a = ΓLb.

Die von der Quelle an die Last abgegebene Leistung berechnet sich mit (7.28) zu

P =
1

2

∣∣∣bQ

∣∣∣
2 1 − |ΓL|2
∣∣∣1 − ΓQΓL

∣∣∣
2 . (12.1)

ΓQ ΓL

a

b1
bQ

Abbildung 12.3.: Zusammenschalten von Quelle und Last

Für eine reflexionsfreie Last ΓL = 0 ist die von der Quelle abgegebene Leistung
P gleich der Leistung der Urwelle

P0 =
1

2

∣∣∣bQ

∣∣∣
2
. (12.2)

Die abgegebene Leistung P wird unendlich, wenn der Nenner
∣∣∣1 − ΓQΓL

∣∣∣
2

Null
wird. In diesem Fall ist das aus Quelle und Last bestehende System instabil. Man
bezeichnet die Quelle als stabil, wenn das System für keine passive Last |ΓL| < 1
instabil wird. Dies ist genau dann der Fall, wenn für den Quellenreflexionsfaktor

∣∣∣ΓQ

∣∣∣ < 1 (12.3)

gilt. Die Stabilität einer Quelle sollte für alle Kreisfrequenzen ω gewährleistet sein
und wird im Folgenden vorausgesetzt.
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Im Folgenden sollen die Orte konstanter Leistungsabgabe P in der Ebene des
Lastreflexionsfaktors ΓL bestimmt werden. Aus (12.1) erhält man durch quadra-
tische Ergänzung:

2
(
1 − ΓQΓL

) (
1 − ΓQΓL

)∗
P =

∣∣∣bQ

∣∣∣
2

(1 − ΓLΓ∗
L) ,

ΓLΓ∗
L

(
2PΓQΓ∗

Q +
∣∣∣bQ

∣∣∣
2
)

− ΓL2PΓQ − Γ∗
L2PΓ∗

Q =
∣∣∣bQ

∣∣∣
2 − 2P,

∣∣∣∣∣∣∣
ΓL − 2PΓ∗

Q

2PΓQΓ∗
Q +

∣∣∣bQ

∣∣∣
2

∣∣∣∣∣∣∣

2

=
4P 2ΓQΓ∗

Q(
2PΓQΓ∗

Q +
∣∣∣bQ

∣∣∣
2
)2

+

∣∣∣bQ

∣∣∣
2 − 2P

2PΓQΓ∗
Q +

∣∣∣bQ

∣∣∣
2 ,

∣∣∣∣∣∣∣∣∣∣∣∣∣

ΓL − 2PΓ∗
Q

2P
∣∣∣ΓQ

∣∣∣
2

+
∣∣∣bQ

∣∣∣
2

︸ ︷︷ ︸
M

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

=

∣∣∣bQ

∣∣∣
2
(∣∣∣bQ

∣∣∣
2

+ 2P
(∣∣∣ΓQ

∣∣∣
2 − 1

))

(
2P

∣∣∣ΓQ

∣∣∣
2

+
∣∣∣bQ

∣∣∣
2
)2

︸ ︷︷ ︸
R2

.

Dies ist die Gleichung eines Kreises mit Mittelpunkt

M =
2PΓ∗

Q

2P
∣∣∣ΓQ

∣∣∣
2

+
∣∣∣bQ

∣∣∣
2 (12.4)

und Radius

R =

∣∣∣bQ

∣∣∣
√∣∣∣bQ

∣∣∣
2

+ 2P
(∣∣∣ΓQ

∣∣∣
2 − 1

)

2P
∣∣∣ΓQ

∣∣∣
2

+
∣∣∣bQ

∣∣∣
2 (12.5)

in der Ebene des Lastreflexionsfaktors ΓL, siehe Abbildung 12.4. Der Mittelpunkt
M liegt auf der Geraden durch Γ∗

Q und den Ursprung, da die Argumente aller
Mittelpunkte gleich sind:

arg(M) = arg
(
Γ∗

Q

)
.

Die abgegebene Leistung P wird für genau einen optimalen Lastreflexionsfaktor
ΓLopt maximal. Durch Nullsetzen des Radius R erhält man die dann abgegebene
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0
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0.5 1
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0
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-1 Re(ΓL)Im(ΓL)

P
/P

A

Abbildung 12.4.: Ausnutzungsfaktor als Funktion des Lastreflexionsfaktors ΓL.
Der Quellenreflexionsfaktor ist ΓQ = 0,5 + j0,5. Die Höhenlinien
sind Kreise konstanter Leistungsabgabe

verfügbare Leistung:

0 =
∣∣∣bQ

∣∣∣
2

+ 2PA

(∣∣∣ΓQ

∣∣∣
2 − 1

)
,

PA =
1

2

∣∣∣bQ

∣∣∣
2 1

1 −
∣∣∣ΓQ

∣∣∣
2 . (12.6)

Der Mittelpunkt M des zur verfügbaren Leistung PA gehörenden Kreises ent-
spricht dem optimalen Lastreflexionsfaktor

ΓLopt =
2PAΓ∗

Q

2PA

∣∣∣ΓQ

∣∣∣
2

+
∣∣∣bQ

∣∣∣
2 = Γ∗

Q. (12.7)

Dieses Ergebnis ist als Leistungsanpassung bekannt. Die bei einem beliebigen
Lastreflexionsfaktor ΓL abgegebene, als Ausnutzungsfaktor bezeichnete, normierte
Leistung ergibt sich mit (12.1) zu

P

PA
=

(
1 − |ΓL|2

)(
1 −

∣∣∣ΓQ

∣∣∣
2
)

∣∣∣1 − ΓQΓL

∣∣∣
2 . (12.8)
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12.3. Stabilität von Zweitoren

12.3.1. Stabilitätskreise

In Anlehnung an (12.3) bezeichnet man ein Zweitor als an seinem Eingang stabil,
wenn für den am Eingang sichtbaren Reflexionsfaktor

|Γ1| < 1 (12.9)

gilt. Weiterhin bezeichnet man ein Zweitor als an seinem Ausgang stabil, wenn
für den am Ausgang sichtbaren Reflexionsfaktor

|Γ2| < 1 (12.10)

gilt. Man bezeichnet das Zweitor als stabil, wenn es sowohl am Eingang als auch
am Ausgang stabil ist.

Die Analyse ist für beide Tore formal gleich. Hier wird zunächst die Trans-
formation des Lastreflexionsfaktors ΓL durch das Zweitor in den eingangsseitig
sichtbaren Reflexionsfaktor Γ1 betrachtet. Aus dem Signalflussgraphen in Abbil-
dung 12.5 liest man unter Verwenden der Vereinfachungsregeln aus Abbildung
9.3

Γ1 = S1,1 +
S2,1S1,2ΓL

1 − S2,2ΓL

=
S1,1 − det(S) ΓL

1 − S2,2ΓL

(12.11)

ab. Dual erhält man für die Transformation des Quellenreflexionsfaktors ΓQ in
den ausgangsseitig sichtbaren Reflexionsfaktor

Γ2 = S2,2 +
S1,2S2,1ΓQ

1 − S1,1ΓQ

=
S2,2 − det(S) ΓQ

1 − S1,1ΓQ

. (12.12)

ΓL

a1

b1
a2

b2 a1

b1

a1

b1

S2,1

S1,2

S1,1 S2,2 S1,1
S2,1S1,2ΓL

1−S2,2ΓL
S1,1 +

S2,1S1,2ΓL

1−S2,2ΓL

Abbildung 12.5.: Transformation des Lastreflexionsfaktors ΓL durch das Zweitor

Es stellt sich nun die Frage, in welchen Bereichen der Quellenreflexionsfaktor
ΓQ und der Lastreflexionsfaktor ΓL liegen dürfen, so dass das Zweitor stabil ist.
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Es handelt sich wieder um zwei mathematisch gleichartige Probleme. Zunächst
wird der Lastreflexionsfaktor ΓL betrachtet. An den Orten der Stabilitätsgrenze
|Γ1| = 1 gilt:

∣∣∣∣∣
S1,1 − det(S) ΓL

1 − S2,2ΓL

∣∣∣∣∣ = 1,

(
S1,1 − det(S) ΓL

) (
S1,1 − det(S) ΓL

)∗
=
(
1 − S2,2ΓL

) (
1 − S2,2ΓL

)∗
,

ΓLΓ∗
L

(
S2,2S

∗
2,2 − det(S) det(S∗)

)

+ΓL

(
S∗

1,1 det(S) − S2,2

)
+ Γ∗

L

(
S1,1 det(S∗) − S∗

2,2

)
= S1,1S

∗
1,1 − 1.

Durch quadratische Ergänzung erhält man

∣∣∣∣∣∣∣∣∣∣∣

ΓL − S∗
2,2 − S1,1 det(S∗)

S2,2S
∗
2,2 − det(S) det(S∗)

︸ ︷︷ ︸
ML

∣∣∣∣∣∣∣∣∣∣∣

2

=
S1,1S

∗
1,1 − 1

S2,2S
∗
2,2 − det(S) det(S∗)

+

(
S∗

2,2 − S1,1 det(S∗)
) (
S∗

2,2 − S1,1 det(S∗)
)∗

(
S2,2S

∗
2,2 − det(S) det(S∗)

)2

=
S2,1S

∗
2,1S1,2S

∗
1,2(

S2,2S
∗
2,2 − det(S) det(S∗)

)2

︸ ︷︷ ︸
R2

L

.

Man erkennt, dass die Orte der Stabilitätsgrenze |Γ1| = 1 auf einem Stabilitäts-
kreis mit Mittelpunkt

ML =
S∗

2,2 − S1,1 det(S∗)
∣∣∣S2,2

∣∣∣
2 − |det(S)|2

(12.13)

und Radius

RL =

∣∣∣∣∣∣∣

S2,1S1,2∣∣∣S2,2

∣∣∣
2 − |det(S)|2

∣∣∣∣∣∣∣
(12.14)

in der Ebene des Lastreflexionsfaktors ΓL liegen. Abbildung 12.6 zeigt einen ex-
emplarischen Stabilitätskreis in der Ebene des Lastreflexionsfaktors ΓL. Ob das
Innere oder das Äußere des Stabilitätskreises der stabile Bereich ist, überprüft
man am einfachsten anhand eines markanten Punktes. Aus ΓL = 0 folgt für den
eingangsseitig sichtbaren Reflexionsfaktor Γ1 = S1,1. Das heißt für

∣∣∣S1,1

∣∣∣ < 1 liegt
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der Ursprung der Ebene des Lastreflexionsfaktors ΓL im stabilen Bereich und für∣∣∣S1,1

∣∣∣ > 1 liegt der Ursprung der Ebene des Lastreflexionsfaktors ΓL im instabilen
Bereich. Da die Streuparameter im Allgemeinen frequenzabhängig sind, ist auch
der Stabilitätskreis frequenzabhängig.

RL

ML

Abbildung 12.6.: Exemplarischer Stabilitätskreis mit eingefärbten instabilen Be-
reich in der Ebene des Lastreflexionsfaktors ΓL.

∣∣∣S1,1

∣∣∣ < 1

Dual erhält man den Mittelpunkt

MQ =
S∗

1,1 − S2,2 det(S∗)
∣∣∣S1,1

∣∣∣
2 − |det(S)|2

(12.15)

und den Radius

RQ =

∣∣∣∣∣∣∣

S1,2S2,1∣∣∣S1,1

∣∣∣
2 − |det(S)|2

∣∣∣∣∣∣∣
(12.16)

des Stabilitätskreises in der Ebene des Quellenreflexionsfaktors ΓQ. Für
∣∣∣S2,2

∣∣∣ < 1
liegt der Ursprung der Ebene des Quellenreflexionsfaktors ΓQ im stabilen Bereich

und für
∣∣∣S2,2

∣∣∣ > 1 liegt der Ursprung der Ebene des Quellenreflexionsfaktors ΓQ

im instabilen Bereich.
Sowohl der Quellenreflexionsfaktor ΓQ als auch der Lastreflexionsfaktor ΓL sol-

len im jeweils stabilen Bereich liegen. Da der Quellenreflexionsfaktor ΓQ und der
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Lastreflexionsfaktor ΓL auf jeden Fall innerhalb des Einheitskreises liegen, inter-
essieren primär die Schnittmengen der instabilen Bereiche mit dem Inneren des
Einheitskreises, siehe Abbildung 12.6.

12.3.2. Unbedingte Stabilität

Wünschenswert ist es, dass ein Zweitor für alle passiven Abschlüsse stabil ist.
Diese Eigenschaft bezeichnet man als unbedingte Stabilität. Im Folgenden sollen
einfach überprüfbare Kriterien für die unbedingte Stabilität hergeleitet werden.

Zunächst wird wieder der eingangsseitig sichtbare Reflexionsfaktor Γ1 als Funk-
tion des Lastreflexionsfaktors ΓL betrachtet. Auflösen von (12.11) nach dem Las-
treflexionsfaktor ergibt

ΓL =
S1,1 − Γ1

det(S) − S2,2Γ1

.

Der Einheitskreis |ΓL| = 1 ist der Rand des Bereichs passiver Lasten. Dort gilt:
∣∣∣∣∣

S1,1 − Γ1

det(S) − S2,2Γ1

∣∣∣∣∣ = 1,

(
S1,1 − Γ1

) (
S1,1 − Γ1

)∗
=
(
det(S) − S2,2Γ1

) (
det(S) − S2,2Γ1

)∗
,

Γ1Γ
∗
1

(
1 − S2,2S

∗
2,2

)
+ Γ1

(
S2,2 det(S∗) − S∗

1,1

)

+Γ∗
1

(
S∗

2,2 det(S) − S1,1

)
= det(S) det(S∗) − S1,1S

∗
1,1.

Durch quadratische Ergänzung erhält man
∣∣∣∣∣∣∣∣∣∣∣

Γ1 − S1,1 − S∗
2,2 det(S)

1 − S2,2S
∗
2,2︸ ︷︷ ︸

M1

∣∣∣∣∣∣∣∣∣∣∣

2

=
det(S) det(S∗) − S1,1S

∗
1,1

1 − S2,2S
∗
2,2

+

(
S1,1 − S∗

2,2 det(S)
) (
S1,1 − S∗

2,2 det(S)
)∗

(
1 − S2,2S

∗
2,2

)2

=
S2,1S

∗
2,1S1,2S

∗
1,2(

1 − S2,2S
∗
2,2

)2

︸ ︷︷ ︸
R2

1

.

Es handelt sich offensichtlich um einen Kreis mit Mittelpunkt

M 1 =
S1,1 − S∗

2,2 det(S)

1 −
∣∣∣S2,2

∣∣∣
2 (12.17)
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und Radius

R1 =

∣∣∣∣∣∣∣

S2,1S1,2

1 −
∣∣∣S2,2

∣∣∣
2

∣∣∣∣∣∣∣
(12.18)

in der Γ1-Ebene. Ob das Innere oder das Äußere des Kreises das Bild des Bereichs
der passiven Lasten |ΓL| < 1 ist, überprüft man wieder am einfachsten anhand
eines markanten Punktes. Aus ΓL = 0 folgt für den eingangsseitig sichtbaren
Reflexionsfaktor Γ1 = S1,1. Es stellt sich nun die Frage, ob S1,1 innerhalb oder
außerhalb des Kreises liegt. Für den Abstand zum Mittelpunkt gilt

∣∣∣S1,1 −M 1

∣∣∣ =

∣∣∣∣∣∣∣

−S1,1

∣∣∣S2,2

∣∣∣
2

+ S∗
2,2 det(S)

1 −
∣∣∣S2,2

∣∣∣
2

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

S∗
2,2S2,1S1,2

1 −
∣∣∣S2,2

∣∣∣
2

∣∣∣∣∣∣∣
=
∣∣∣S2,2

∣∣∣R1.

Offensichtlich ist genau dann das Innere des Kreises das Bild des Bereichs der
passiven Lasten |ΓL| < 1, wenn

∣∣∣S2,2

∣∣∣ < 1 gilt.
Damit nicht zwingend Teile des Bildes des Bereichs passiver Lasten |ΓL| < 1

außerhalb des Einheitskreises in der Γ1-Ebene liegen, muss das Innere des Kreises
in der Γ1-Ebene das Bild des Bereichs der passiven Lasten |ΓL| < 1 sein und der
Kreis muss vollständig im Inneren des Einheitskreises liegen, das heißt es müssen∣∣∣S2,2

∣∣∣ < 1 und
|M 1| +R1 < 1

gelten. Einsetzen von Mittelpunkt M 1 und Radius R1 ergibt
∣∣∣S1,1 − S∗

2,2 det(S)
∣∣∣+

∣∣∣S2,1S1,2

∣∣∣
∣∣∣∣1 −

∣∣∣S2,2

∣∣∣
2
∣∣∣∣

< 1.

Man erhält die unter dem Namen µ-Test bekannte Bedingung

µ1 =
1 −

∣∣∣S2,2

∣∣∣
2

∣∣∣S1,1 − S∗
2,2 det(S)

∣∣∣+
∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣
> 1 (12.19)

für unbedingte Stabilität [ES92]. Ausgehend von der Betrachtung des ausgangs-
seitig sichtbaren Reflexionsfaktors Γ2 als Funktion des Quellenreflexionsfaktors
ΓQ erhält man dual die Bedingung

µ2 =
1 −

∣∣∣S1,1

∣∣∣
2

∣∣∣S2,2 − S∗
1,1 det(S)

∣∣∣+
∣∣∣S1,2

∣∣∣
∣∣∣S2,1

∣∣∣
> 1 (12.20)
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für unbedingte Stabilität.
Ein alternatives Stabilitätskriterium erhält man durch Umformen des Stabili-

tätsfaktors µ1. Ausgehend von (12.19) erhält man zunächst

∣∣∣S1,1 − S∗
2,2 det(S)

∣∣∣ < 1 −
∣∣∣S2,2

∣∣∣
2 −

∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣ .

Diese Ungleichung kann nur dann erfüllt sein, wenn die rechte Seite größer Null
ist. Man erhält die Nebenbedingung

∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣ < 1 −
∣∣∣S2,2

∣∣∣
2
. (12.21)

Durch Quadrieren der Ungleichung erhält man weiterhin:

∣∣∣S1,1 − S∗
2,2 det(S)

∣∣∣
2
<
(

1 −
∣∣∣S2,2

∣∣∣
2 −

∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣
)2

,

∣∣∣S1,1

∣∣∣
2 − S1,1S2,2 det(S∗)

−S∗
1,1S

∗
2,2 det(S) +

∣∣∣S2,2

∣∣∣
2 |det(S)|2 <

(
1 −

∣∣∣S2,2

∣∣∣
2 −

∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣
)2

,
∣∣∣S1,1

∣∣∣
2 − |det(S)|2 +

∣∣∣S2,1

∣∣∣
2 ∣∣∣S1,2

∣∣∣
2

−
∣∣∣S2,2

∣∣∣
2 ∣∣∣S1,1

∣∣∣
2

+
∣∣∣S2,2

∣∣∣
2 |det(S)|2 <

(
1 −

∣∣∣S2,2

∣∣∣
2
)(

1 −
∣∣∣S2,2

∣∣∣
2 − 2

∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣
)

+
∣∣∣S2,1

∣∣∣
2 ∣∣∣S1,2

∣∣∣
2
,

(
1 −

∣∣∣S2,2

∣∣∣
2
)(∣∣∣S1,1

∣∣∣
2 − |det(S)|2

)
<
(

1 −
∣∣∣S2,2

∣∣∣
2
)(

1 −
∣∣∣S2,2

∣∣∣
2 − 2

∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣
)
,

∣∣∣S1,1

∣∣∣
2 − |det(S)|2 < 1 −

∣∣∣S2,2

∣∣∣
2 − 2

∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣ .

Eine Bedingung für unbedingte Stabilität ist somit, dass die Nebenbedingung
(12.21) erfüllt ist und der nach Rollett benannte Stabilitätsfaktor größer als eins
ist [Rol62]:

K =
1 −

∣∣∣S2,2

∣∣∣
2 −

∣∣∣S1,1

∣∣∣
2

+ |det(S)|2

2
∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣
> 1. (12.22)

Ausgehend vom Stabilitätsfaktor µ2 hätte man auf dualem Weg die Nebendingung

∣∣∣S1,2

∣∣∣
∣∣∣S2,1

∣∣∣ < 1 −
∣∣∣S1,1

∣∣∣
2

(12.23)

und den gleichen Ausdruck für den Stabilitätsfaktor K gefunden. Aus diesen Ne-
benbedingungen folgt für den Betrag der Determinante der Streumatrix S eines
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unbedingt stabilen Zweitors unter Verwenden der Dreiecksungleichung:

|det(S)| =
∣∣∣S1,1S2,2 − S1,2S2,1

∣∣∣ ≤
∣∣∣S1,1S2,2

∣∣∣+
∣∣∣S1,2S2,1

∣∣∣

<

√
1 −

∣∣∣S1,2

∣∣∣
∣∣∣S2,1

∣∣∣
√

1 −
∣∣∣S1,2

∣∣∣
∣∣∣S2,1

∣∣∣+
∣∣∣S1,2S2,1

∣∣∣ = 1.
(12.24)

Ein verlustfreies Eingangsanpassnetzwerk oder Ausgangsanpassnetzwerk bildet
das Innere des Einheitskreises in der Reflexionsfaktorebene auf das vollständi-
ge Innere des Einheitskreises ab. Verlustfreie Anpassnetzwerke beeinflussen die
Eigenschaft der unbedingten Stabilität daher nicht.

12.4. Gewinn von Zweitoren

12.4.1. Klemmenleistungsgewinn

Der Klemmenleistungsgewinn (Power Gain)

G =
PL

PQ
(12.25)

ist als das Verhältnis aus der an die Last abgegebenen Leistung PL und der von
der Quelle an das Zweitor abgegebenen Leistung PQ definiert. Der Klemmenleis-
tungsgewinn G hängt vom Lastreflexionsfaktor ΓL, nicht aber vom Quellenrefle-
xionsfaktor ΓQ ab.

Aus dem Signalflussgraphen in Abbildung 12.7 folgt analog zu (12.1) für die
von der Quelle an das Zweitor abgegebene Leistung

PQ =
1

2

∣∣∣bQ

∣∣∣
2 1 − |Γ1|2∣∣∣1 − ΓQΓ1

∣∣∣
2

=
1

2

∣∣∣bQ

∣∣∣
2

∣∣∣1 − S2,2ΓL

∣∣∣
2 −

∣∣∣S1,1 − det(S) ΓL

∣∣∣
2

∣∣∣1 − S2,2ΓL − S1,1ΓQ + det(S) ΓQΓL

∣∣∣
2 ,

(12.26)

wobei in der letzten Zeile (12.11) eingesetzt wurde.
Aus dem Signalflussgraphen in Abbildung 12.8 liest man mit der Schleifenregel

b2 = bQ

1

1 − ΓQΓ1

S2,1

1

1 − S2,2ΓL

ab, siehe Abbildung 9.3d. Weiterhin gilt

a2 = ΓLb2.
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bQ

a1

b1

ΓQ Γ1

1

Abbildung 12.7.: Betrachtung des Zweitoreingangs

Die an die Last abgegebene Leistung berechnet sich mit (7.28) und (12.11) zu

PL =
1

2

∣∣∣bQ

∣∣∣
2

∣∣∣S2,1

∣∣∣
2 (

1 − |ΓL|2
)

∣∣∣1 − ΓQΓ1

∣∣∣
2 ∣∣∣1 − S2,2ΓL

∣∣∣
2

=
1

2

∣∣∣bQ

∣∣∣
2

∣∣∣S2,1

∣∣∣
2 (

1 − |ΓL|2
)

∣∣∣1 − S2,2ΓL − S1,1ΓQ + det(S) ΓQΓL

∣∣∣
2 .

(12.27)

bQ

S2,1

S1,2

S1,1 S2,2

a1

b1
a2

b2

ΓQ ΓL

1

bQ

S2,1

Γ1 S2,2

a1

b1
a2

b2

ΓQ ΓL

1

Abbildung 12.8.: Betrachtung des Zweitorausgangs
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Durch Einsetzen von (12.26) und (12.27) in (12.25) erhält man den Klemmen-
leistungsgewinn

G =

∣∣∣S2,1

∣∣∣
2 (

1 − |ΓL|2
)

∣∣∣1 − S2,2ΓL

∣∣∣
2 −

∣∣∣S1,1 − det(S) ΓL

∣∣∣
2 . (12.28)

12.4.2. Einfügungsgewinn

Der Einfügungsgewinn (Insertion Power Gain)

GI =
PL

P
(12.29)

ist als das Verhältnis aus der an die Last abgegebenen Leistung PL und der von
der Quelle bei direkter Verbindung an die Last abgegebenen Leistung P definiert.
Der Einfügungsgewinn GI hängt vom Lastreflexionsfaktor ΓL und vom Quellen-
reflexionsfaktor ΓQ ab.

Durch Einsetzen von (12.27) und (12.1) in (12.29) erhält man den Einfügungs-
gewinn

GI =

∣∣∣S2,1

∣∣∣
2 ∣∣∣1 − ΓQΓL

∣∣∣
2

∣∣∣1 − S2,2ΓL − S1,1ΓQ + det(S) ΓQΓL

∣∣∣
2 . (12.30)

12.4.3. Übertragungsgewinn

Der Übertragungsgewinn (Transducer Power Gain)

GT =
PL

PQA
. (12.31)

ist als das Verhältnis aus der an die Last abgegebenen Leistung PL und der von
der Quelle verfügbaren Leistung PQA definiert. Der Übertragungsgewinn GT hängt
vom Lastreflexionsfaktor ΓL und vom Quellenreflexionsfaktor ΓQ ab.

Durch Einsetzen von (12.27) und (12.6) in (12.31) erhält man den Übertra-
gungsgewinn

GT =

(
1 −

∣∣∣ΓQ

∣∣∣
2
) ∣∣∣S2,1

∣∣∣
2 (

1 − |ΓL|2
)

∣∣∣1 − S2,2ΓL − S1,1ΓQ + det(S) ΓQΓL

∣∣∣
2 . (12.32)
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12.4.4. Verfügbarer Leistungsgewinn

Der verfügbare Leistungsgewinn (Available Power Gain)

GA =
PLA

PQA
(12.33)

ist als das Verhältnis aus der vom Zweitor verfügbaren Leistung PLA und der von
der Quelle verfügbaren Leistung PQA definiert. Der verfügbare Leistungsgewinn
GA hängt vom Quellenreflexionsfaktor ΓQ, nicht aber vom Lastreflexionsfaktor
ΓL ab.

Bei Leistungsanpassung ΓL = Γ∗
2, vergleiche (12.7), folgt aus (12.27)

PLA =
1

2

∣∣∣bQ

∣∣∣
2

∣∣∣S2,1

∣∣∣
2 (

1 − |Γ2|2
)

∣∣∣1 − S2,2Γ∗
2 − S1,1ΓQ + det(S) ΓQΓ∗

2

∣∣∣
2

=
1

2

∣∣∣bQ

∣∣∣
2

∣∣∣S2,1

∣∣∣
2 (

1 − |Γ2|2
)

∣∣∣
(
1 − S1,1ΓQ

)
−
(
S2,2 − det(S) ΓQ

)
Γ∗

2

∣∣∣
2 .

Einsetzen von (12.12) ergibt

PLA =
1

2

∣∣∣bQ

∣∣∣
2

∣∣∣S2,1

∣∣∣
2
(∣∣∣1 − S1,1ΓQ

∣∣∣
2 −

∣∣∣S2,2 − det(S) ΓQ

∣∣∣
2
)

∣∣∣∣
∣∣∣1 − S1,1ΓQ

∣∣∣
2 −

∣∣∣S2,2 − det(S) ΓQ

∣∣∣
2
∣∣∣∣
2

=
1

2

∣∣∣bQ

∣∣∣
2

∣∣∣S2,1

∣∣∣
2

∣∣∣1 − S1,1ΓQ

∣∣∣
2 −

∣∣∣S2,2 − det(S) ΓQ

∣∣∣
2 .

(12.34)

Durch Einsetzen von (12.6) und (12.34) in (12.33) erhält man den verfügbaren
Leistungsgewinn

GA =

∣∣∣S2,1

∣∣∣
2
(

1 −
∣∣∣ΓQ

∣∣∣
2
)

∣∣∣1 − S1,1ΓQ

∣∣∣
2 −

∣∣∣S2,2 − det(S) ΓQ

∣∣∣
2 . (12.35)

Der verfügbare Leistungsgewinn einer Kaskade aus zwei Zweitoren, siehe Ab-
bildung 12.9, ergibt sich zu

GA =
PA3

PA1

=
PA2

PA1

PA3

PA2

= GA1GA2. (12.36)
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Tor 1 Tor 2 Tor 3

GA1 GA2

PA1 PA2 PA3

Abbildung 12.9.: Leistungsgewinn einer Kaskade von Zweitoren

12.4.5. Vergleich der Gewinndefinitionen

Durch sinngemäßes Anwenden von (12.8) erhält man den Ausnutzungsfaktor an
Tor 1

GT

G
=

PL

PQA

PQ

PL
=

PQ

PQA
=

(
1 −

∣∣∣ΓQ

∣∣∣
2
)(

1 − |Γ1|2
)

∣∣∣1 − ΓQΓ1

∣∣∣
2 . (12.37)

Auf gleichem Wege erhält man Ausnutzungsfaktor an Tor 2

GT

GA
=

PL

PQA

PQA

PLA
=

PL

PLA
=

(
1 − |ΓL|2

) (
1 − |Γ2|2

)

|1 − ΓLΓ2|2
. (12.38)

Für den Fall, dass sowohl die Quelle an den Eingang angepasst ist ΓQ = Γ∗
1

als auch die Last an den Ausgang angepasst ist ΓL = Γ∗
2, vergleiche (12.7),

sind die drei hier definierten Gewinne Klemmenleistungsgewinn G, Übertragungs-
gewinn GT und verfügbarer Leistungsgewinn GA gleich. Wenn zusätzlich auch
noch der Quellenreflexionsfaktor konjugiert komplex zum Lastreflexionsfaktor ist
ΓQ = Γ∗

1 = Γ∗
L = Γ2, sind alle vier hier definierten Gewinne Klemmenleistungs-

gewinn G, Einfügungsgewinn GI, Übertragungsgewinn GT und verfügbarer Leis-
tungsgewinn GA gleich.

12.4.6. Maximaler verfügbarer Leistungsgewinn

Der verfügbare Leistungsgewinn GA hängt vom Quellenreflexionsfaktor ΓQ ab.
Nun soll der bei einem optimalen Quellenreflexionsfaktor ΓQ erzielbare maxima-
le verfügbare Leistungsgewinn (Maximum Available Power Gain, MAG) GMAG
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ermittelt werden. Aus (12.35) folgt

GA

(
1 − S1,1ΓQ − S∗

1,1Γ∗
Q +

∣∣∣S1,1

∣∣∣
2 ∣∣∣ΓQ

∣∣∣
2

−
∣∣∣S2,2

∣∣∣
2

+ S2,2 det(S∗) Γ∗
Q + S∗

2,2 det(S) ΓQ − |det(S)|2
∣∣∣ΓQ

∣∣∣
2
)

=
∣∣∣S2,1

∣∣∣
2
(

1 −
∣∣∣ΓQ

∣∣∣
2
)
.

Für die Orte konstanten verfügbaren Leistungsgewinns GA in der Ebene des Quel-
lenreflexionsfaktors ΓQ gilt

∣∣∣ΓQ

∣∣∣
2
(∣∣∣S2,1

∣∣∣
2

+GA

(∣∣∣S1,1

∣∣∣
2 − |det(S)|2

))

+ ΓQGA

(
S∗

2,2 det(S) − S1,1

)
+ Γ∗

QGA

(
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)

=
∣∣∣S2,1

∣∣∣
2

+GA

(∣∣∣S2,2

∣∣∣
2 − 1

)
.

Mittels quadratischer Ergänzung erhält man

∣∣∣∣∣∣∣∣
ΓQ +

GA

(
S2,2 det(S∗) − S∗

1,1

)

∣∣∣S2,1

∣∣∣
2

+GA

(∣∣∣S1,1
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)
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=
G2

A

∣∣∣S2,2 det(S∗) − S∗
1,1

∣∣∣
2

(∣∣∣S2,1

∣∣∣
2

+GA

(∣∣∣S1,1

∣∣∣
2 − |det(S)|2

))2

+
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∣∣∣
2
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∣∣∣
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∣∣∣
2

+GA
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∣∣∣
2 − |det(S)|2

) .

Dies ist die Gleichung eines Kreises in der Ebene des Quellenreflexionsfaktors ΓQ.
Beim maximalen verfügbaren Leistungsgewinn GMAG wird der Radius des Krei-

ses Null:

0 =G2
MAG

∣∣∣S2,2 det(S∗) − S∗
1,1

∣∣∣
2

+
(∣∣∣S2,1

∣∣∣
2

+GMAG

(∣∣∣S2,2

∣∣∣
2 − 1

))(∣∣∣S2,1

∣∣∣
2

+GMAG

(∣∣∣S1,1

∣∣∣
2 − |det(S)|2

))

=G2
MAG

(∣∣∣S2,2 det(S∗) − S∗
1,1

∣∣∣
2

+
(∣∣∣S2,2

∣∣∣
2 − 1

)(∣∣∣S1,1

∣∣∣
2 − |det(S)|2

))

+GMAG

∣∣∣S2,1

∣∣∣
2
(∣∣∣S1,1

∣∣∣
2 − |det(S)|2 +

∣∣∣S2,2

∣∣∣
2 − 1

)
+
∣∣∣S2,1

∣∣∣
4
.
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Mit
∣∣∣S2,2 det(S∗) − S∗

1,1

∣∣∣
2

+
(∣∣∣S2,2

∣∣∣
2 − 1

)(∣∣∣S1,1

∣∣∣
2 − |det(S)|2

)

=
∣∣∣S2,2

∣∣∣
2 |det(S)|2 − S2,2 det(S∗)S1,1 − S∗

2,2 det(S)S∗
1,1 +

∣∣∣S1,1

∣∣∣
2

+
∣∣∣S2,2

∣∣∣
2 ∣∣∣S1,1

∣∣∣
2 −

∣∣∣S2,2

∣∣∣
2 |det(S)|2 −

∣∣∣S1,1

∣∣∣
2

+ |det(S)|2

= −
∣∣∣S1,1

∣∣∣
2 ∣∣∣S2,2

∣∣∣
2

+ S1,1S2,2S
∗
1,2S

∗
2,1︸ ︷︷ ︸

−S2,2 det(S∗)S1,1

−
∣∣∣S1,1

∣∣∣
2 ∣∣∣S2,2

∣∣∣
2

+ S∗
1,1S

∗
2,2S1,2S2,1

︸ ︷︷ ︸
−S∗

2,2 det(S)S∗
1,1

+
∣∣∣S2,2

∣∣∣
2 ∣∣∣S1,1

∣∣∣
2

+
∣∣∣S2,2

∣∣∣
2 ∣∣∣S1,1

∣∣∣
2 − S1,1S2,2S

∗
1,2S

∗
2,1 − S∗

1,1S
∗
2,2S1,2S2,1 +

∣∣∣S1,2

∣∣∣
2 ∣∣∣S2,1

∣∣∣
2

︸ ︷︷ ︸
|det(S)|2

=
∣∣∣S1,2

∣∣∣
2 ∣∣∣S2,1

∣∣∣
2

und ∣∣∣S1,1

∣∣∣
2 − |det(S)|2 +

∣∣∣S2,2

∣∣∣
2 − 1 = −2

∣∣∣S1,2

∣∣∣
∣∣∣S2,1

∣∣∣K,

wobei der K der Stabilitätsfaktor gemäß (12.22) ist, vereinfacht sich die quadra-
tische Gleichung für den maximalen verfügbaren Leistungsgewinn GMAG zu

∣∣∣S1,2

∣∣∣
2 ∣∣∣S2,1

∣∣∣
2
G2

MAG − 2S1,2S
3
2,1KGMAG +

∣∣∣S2,1

∣∣∣
4

= 0.

Diese quadratische Gleichung hat die Lösungen

GMAG =

∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣

(
K ±

√
K2 − 1

)
. (12.39)

Für die hier betrachteten unbedingt stabilen Zweitore ist der Term unter Wurzel
gemäß (12.22) immer positiv. Bezüglich des Vorzeichens vor der Wurzel betrachtet
man den Grenzfall des rückwirkungsfreien Zweitors S1,2 → 0. Aus (12.22) folgt
im Grenzfall eines rückwirkungsfreien Zweitors S1,2 → 0 für den Stabilitätsfaktor

K →

(∣∣∣S1,1

∣∣∣
2 − 1

)(∣∣∣S2,2

∣∣∣
2 − 1

)

2S2,1S1,2

, (12.40)

das heißt der Stabilitätsfaktor K wird unendlich groß. Ein physikalisch sinnvoller
endlich großer maximaler verfügbarer Leistungsgewinn GMAG kann sich nur dann
ergeben, wenn in (12.39) das negative Vorzeichen gilt.
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Aufgabe 12.2 Es wird ein Leitungsstück der Länge l mit der Phasenkonstante β
betrachtet. Der Wellenwiderstand sei gleich dem Bezugswiderstand ZL = RN, so
dass sich die Streumatrix S gemäß (10.18) ergibt. Berechnen Sie den Klemmen-
leistungsgewinn G, den Einfügungsgewinn GI, den Übertragungsgewinn GT, den
verfügbaren Leistungsgewinn GA und den maximalen verfügbaren Leistungsgewinn
GMAG des Leitungsstücks jeweils als Funktion der Länge l, der Phasenkonstante
β, des Quellenreflexionsfaktors ΓQ und des Lastreflexionsfaktors ΓmathrmL!

12.4.7. Maximaler stabiler Leistungsgewinn

Ein nicht unbedingt stabiles Zweitor kann man zum Beispiel durch Serienschalten
oder Parallelschalten von Wirkwiderständen an Eingang oder Ausgang unbedingt
stabil machen. Wie aus (9.25) ersichtlich ist, ändert sich das Verhältnis S2,1/S1,2

durch Anfügen eines derartigen reziproken Zweitors nicht. Man kann die Wirk-
widerstände nun so groß wählen, dass der Stabilitätsfaktor gerade eins wird. In
diesem Grenzfall erhält man durch Einsetzen von K = 1 in (12.39) den maximalen
stabilen Leistungsgewinn (Maximum Stable Power Gain, MSG)

GMSG =

∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣
. (12.41)

Der maximale stabile Leistungsgewinn GMSG ist für nicht unbedingt stabile Zwei-
tore definiert.

12.4.8. Unilateraler Übertragungsgewinn

Bei Hochfrequenzverstärkern ist die Rückwirkung S1,2 häufig relativ klein. Wenn
man die Rückwirkung S1,2 vernachlässigt, vereinfachen sich die Gewinnberech-
nungen beträchtlich. Aus (12.32) erhält man mit S1,2 = 0 den unilateralen Über-
tragungsgewinn

GTU =

(
1 −

∣∣∣ΓQ

∣∣∣
2
) ∣∣∣S2,1

∣∣∣
2 (

1 − |ΓL|2
)

∣∣∣1 − S1,1ΓQ − S2,2ΓL + S1,1S2,2ΓQΓL

∣∣∣
2

=
1 −

∣∣∣ΓQ

∣∣∣
2

∣∣∣1 − S1,1ΓQ

∣∣∣
2

︸ ︷︷ ︸
GQ

∣∣∣S2,1

∣∣∣
2

︸ ︷︷ ︸
G0

1 − |ΓL|2
∣∣∣1 − S2,2ΓL

∣∣∣
2

︸ ︷︷ ︸
GL

,

(12.42)

der sich offensichtlich als ein Produkt aus

279



Kapitel 12. Hochfrequenzverstärker

• Gewinn

GQ =
1 −

∣∣∣ΓQ

∣∣∣
2

∣∣∣1 − S1,1ΓQ

∣∣∣
2 (12.43)

der Eingangsanpassung,

• unilateralen Zweitorgewinn

G0 =
∣∣∣S2,1

∣∣∣
2

(12.44)

und

• Gewinn

GL =
1 − |ΓL|2

∣∣∣1 − S2,2ΓL

∣∣∣
2 (12.45)

der Ausgangsanpassung

darstellen lässt.
Zunächst werde der Gewinn GQ der Eingangsanpassung genauer untersucht.

Für die Orte konstanten Gewinns GQ der Eingangsanpassung gilt:

GQ

∣∣∣1 − S1,1ΓQ

∣∣∣
2

= 1 −
∣∣∣ΓQ

∣∣∣
2
,

ΓQΓ∗
Q

(
GQS1,1S

∗
1,1 + 1

)

−ΓQGQS1,1 − Γ∗
QGQS

∗
1,1 = 1 −GQ,

∣∣∣∣∣∣∣∣∣∣∣∣∣

ΓQ − GQS
∗
1,1

1 +GQ

∣∣∣S1,1

∣∣∣
2

︸ ︷︷ ︸
MQ

∣∣∣∣∣∣∣∣∣∣∣∣∣

2

=
1 −GQ

1 +GQ

∣∣∣S1,1

∣∣∣
2 +

G2
Q

∣∣∣S1,1

∣∣∣
2

(
1 +GQ

∣∣∣S1,1

∣∣∣
2
)2

=
1 −GQ +GQ

∣∣∣S1,1

∣∣∣
2

(
1 +GQ

∣∣∣S1,1

∣∣∣
2
)2

︸ ︷︷ ︸
R2

Q

.

Die Orte konstanten Gewinns GQ der Eingangsanpassung bilden einen Kreis mit
Mittelpunkt

MQ =
GQS

∗
1,1

1 +GQ

∣∣∣S1,1

∣∣∣
2 (12.46)
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und Radius

RQ =

√
1 −GQ +GQ

∣∣∣S1,1

∣∣∣
2

1 +GQ

∣∣∣S1,1

∣∣∣
2 (12.47)

in der Ebene des Quellenreflexionsfaktors ΓQ.
Beim maximalen Gewinn GQmax der Eingangsanpassung wird der Radius R

Null. Es folgt:

√
1 −GQmax +GQmax

∣∣∣S1,1

∣∣∣
2

=0,

GQmax =
1

1 −
∣∣∣S1,1

∣∣∣
2 . (12.48)

Dieser maximale Gewinn GQmax der Eingangsanpassung wird für den dem zuge-
hörigen Mittelpunkt MQ entsprechenden optimalen Quellenreflexionsfaktor

ΓQmax =
GQmaxS

∗
1,1

1 +GQmax

∣∣∣S1,1

∣∣∣
2 = S∗

1,1, (12.49)

das heißt bei Leistungsanpassung erreicht, vergleiche (12.7).
Abbildung 12.10 zeigt einen exemplarischen Kreis konstanten Gewinns der Ein-

gangsanpassung GQ. Der Mittelpunkt MQ liegt auf der Geraden durch ΓQmax und
den Ursprung, da die Argumente aller Mittelpunkte gleich sind:

arg
(
MQ

)
= arg

(
ΓQmax

)
= arg

(
S∗

1,1

)
.

Dual erhält man den Kreis konstanten Gewinns GL der Ausgangsanpassung
mit Mittelpunkt

ML =
GLS

∗
2,2

1 +GL

∣∣∣S2,2

∣∣∣
2 (12.50)

und Radius

RL =

√
1 −GL +GL

∣∣∣S2,2

∣∣∣
2

1 +GL

∣∣∣S2,2

∣∣∣
2 (12.51)

in der Ebene des Lastreflexionsfaktors ΓL. Bei Leistungsanpassung

ΓLmax = S∗
2,2 (12.52)
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RQ

MQ

ΓQmax

Abbildung 12.10.: Exemplarischer Kreis konstanten Gewinns der Eingangsanpas-
sung GQ = 0,5. S1,1 = 0,5 − j0,5

erhält man den maximalen erzielbaren Gewinn

GLmax =
1

1 −
∣∣∣S2,2

∣∣∣
2 (12.53)

der Ausgangsanpassung.
Der sich bei eingangsseitiger und ausgangsseitiger Anpassung ergebende maxi-

male unilaterale Übertragungsgewinn ist

GTUmax =
1

1 −
∣∣∣S1,1

∣∣∣
2

∣∣∣S2,1

∣∣∣
2 1

1 −
∣∣∣S2,2

∣∣∣
2 . (12.54)

Aufgabe 12.3 Berechnen Sie den Übertragungsgewinn GT, den Klemmenleis-
tungsgewinn G, den verfügbaren Leistungsgewinn GA und den Einfügungsgewinn
GI der Einwegleitung mit der Streumatrix S gemäß (10.23) jeweils als Funktion
des Quellenreflexionsfaktors ΓQ und des Lastreflexionsfaktors ΓmathrmL!

Aufgabe 12.4 Zeigen Sie, dass für den Grenzfall eines rückwirkungsfreien Zwei-
tors S1,2 → 0 der maximale verfügbare Leistungsgewinn GMAG gegen den maxi-
malen unilateralen Übertragungsgewinn GTUmax konvergiert!
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Kapitel 13.

Rauschen

13.1. Rauschende Eintore

13.1.1. Modellierung rauschender Eintore

Es wird ein rauschendes Eintor mit dem Reflexionsfaktor Γ betrachtet, siehe Ab-
bildung 13.1. Im Folgenden wird stets das Rauschen innerhalb einer sehr kleinen
vorgegebenen Bandbreite B betrachtet.1 Bei sehr kleiner Bandbreite B ist das
Rauschen näherungsweise sinusförmig mit zufälliger Amplitude und Nullphase,
das heißt die komplexe Wellenamplitude bR der Rauschurwelle ist eine Zufallsva-
riable. Mit (12.6) ergibt sich die verfügbare Rauschleistung zu

PRA =
1

2
E
{
|bR|2

} 1

1 − |Γ|2
. (13.1)

E{·} bezeichnet den Erwartungswert.

b

a

Γ

b

a

bR
1

Γ

Abbildung 13.1.: Modell eines rauschenden Eintors

Rauschsignale mit größeren Bandbreiten B, wie sie beispielsweise in der Nach-
richtentechnik vorkommen, können im Sinne einer Frequenzbereichsmodellierung
durch ihr Leistungsdichtespektrum beschrieben werden [PP02].

1 Üblicherweise interessiert von dem an sich breitbandigen Rauschen nur der Anteil innerhalb
der kleinen Bandbreite B des Nutzsignals.
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13.1.2. Thermisches Rauschen von Widerständen

Eine häufige Quelle von Rauschen im Bereich der Hochfrequenztechnik ist das
thermische Rauschen von Widerständen, siehe Abbildung 13.2. Mit der Boltzmann-
Konstante

k = 1,38 · 10−23 W s K−1 (13.2)

ergibt sich die innerhalb der Bandbreite B verfügbare Rauschleistung bei einer
Temperatur T zu

PRA = kTB . (13.3)

Insbesondere ist das thermische Rauschen innerhalb der in der Hochfrequenztech-
nik interessierenden Frequenzbereiche weiß. Die verfügbare Rauschleistung PRA

hängt nicht vom Widerstand R ab. Bei der üblicherweise verwendeten Bezugstem-
peratur

T0 = 290 K (13.4)

ergibt sich die verfügbare Rauschleistungsdichte

PRA

B
= kT0 = 4 · 10−21 W Hz−1. (13.5)

R, T

Abbildung 13.2.: Thermisch rauschender Widerstand R

13.1.3. Thermisch rauschende Eintore homogener Temperatur

Ein thermisch rauschender Widerstand R der Temperatur T ist mit einer ther-
misch rauschenden Impedanz Z gleicher Temperatur T verbunden, siehe Abbil-
dung 13.3. Für die komplexen Wellenamplituden gilt

a = b′
R + Γ′b

und
b = bR + Γ a.
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Aufgelöst nach den komplexen Wellenamplituden erhält man

a =
b′

R + Γ′bR

1 − Γ Γ′

und

b =
bR + Γ b′

R

1 − Γ Γ′ .

R, T Z, T

b
a

b

a

bR

b′
R

1

1

Γ′ = Z−RN

Z+RN
Γ = R−RN

R+RN

Abbildung 13.3.: Verbinden eines thermisch rauschenden Widerstands Rmit einer
thermisch rauschenden Impedanz Z gleicher Temperatur T

Im hier betrachteten thermodynamischen Gleichgewicht muss die Leistungsbi-
lanz, vergleiche (9.3), ausgeglichen sein:

1

2
E
{
|a|2

}
=

1

2
E
{
|b|2

}
,

1

2
E
{∣∣∣b′

R + Γ′bR

∣∣∣
2
}

=
1

2
E
{
|bR + Γ b′

R|2
}
.

Da es sich um räumlich getrennte unabhängige Rauschquellen handelt, sind die
komplexen Wellenamplituden der Rauschurwellen unkorreliert und es gilt

1

2
E{bRb

′∗
R} =

1

2
E{b∗

Rb
′
R} = 0.

Mit (13.1) folgt:

1

2
E
{
|b′

R|2
}

+
∣∣∣Γ′
∣∣∣
2 1

2
E
{
|bR|2

}
=

1

2
E
{
|bR|2

}
+ |Γ|2 1

2
E
{
|b′

R|2
}
,

1

2
E
{

|bR|2
} 1

1 − |Γ|2︸ ︷︷ ︸
PRA

=
1

2
E
{
|b′

R|2
} 1

1 −
∣∣∣Γ′
∣∣∣
2

︸ ︷︷ ︸
P ′

RA

.
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Schließlich erhält man mit (13.3) die innerhalb der Bandbreite B verfügbare
Rauschleistung

P ′
RA =

1

2
E
{
|b′

R|2
} 1

1 −
∣∣∣Γ′
∣∣∣
2 = kTB. (13.6)

Die verfügbare Rauschleistung P ′
RA aller thermisch rauschenden Eintore homoge-

ner Temperatur T und nicht nur die von Wirkwiderständen R ist daher kTB.
Auch andere Rauschquellen modelliert man in der Hochfrequenztechnik häufig

als thermisch rauschende Impedanzen Z, wobei die Rauschtemperatur T entspre-
chend der jeweils verfügbaren Rauschleistung P ′

RA zu wählen ist.

13.2. Rauschende Mehrtore

13.2.1. Modellierung rauschender Mehrtore

Im Modell eines rauschenden Mehrtors ist an jedem Tor n eine Rauschurwelle mit
der komplexen Wellenamplitude bRn zu berücksichtigen, siehe Abbildung 13.4.

a1

b1

a2

b2

Tor 1 Tor 2

bR1

bR2

S2,1

S1,2

S1,1 S2,2

a1

b1
a2

b2

1

1

S

Abbildung 13.4.: Modell eines rauschenden Zweitors

Mit dem Vektor

bR =




bR1
...

bRN


 (13.7)
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der komplexen Wellenamplituden der Rauschurwellen und der Streumatrix S er-
hält man den Zusammenhang

b = S · a + bR (13.8)

zwischen den komplexen Wellenamplituden, vergleiche (9.46).
Die komplexen Wellenamplituden bRn der Rauschurwellen sind im Allgemeinen

korreliert, da sie zumindest teilweise auf gemeinsame physikalische Rauschquellen
im Inneren des Mehrtors zurückgehen. Man definiert die Rauschwellenkorrelati-
onsmatrix

R =
1

2
E
{
bR · b∗T

R

}
. (13.9)

Die Korrelationen sind bei Rauschleistungsberechnungen zu berücksichtigen, da
man die Beiträge der einzelnen Rauschurwellen zur Gesamtleistung nicht einfach
aufaddieren darf.

13.2.2. Analyse komplexer rauschender Netzwerke

Die Analyse komplexer rauschender Netzwerke beruht auf dem in Abschnitt 9.8
geschilderten Ansatz. An Stelle des Vektors bQ der komplexen Wellenamplitu-
den der Urwellen tritt nun der Vektor bR der komplexen Wellenamplituden der
Rauschurwellen mit der Rauschwellenkorrelationsmatrix R.

Einsetzen der komplexen Wellenamplituden bR der Rauschurwellen in (9.67)
ergibt die komplexen Wellenamplituden der zulaufenden Wellen

a = (K − S)−1 · bR.

Die zulaufenden Rauschleistungen entsprechen den Diagonalelementen der Kor-
relationsmatrix

1

2
E
{
a · a∗T

}
= (K − S)−1 · R ·

(
K − S∗T

)−1
, (13.10)

wobei (9.63) und (13.9) verwendet wurde. Analog erhält man aus (9.68) die kom-
plexen Wellenamplituden der ablaufenden Wellen

b = (E − S · K)−1 · bR

und als Diagonalelemente der Korrelationsmatrix

1

2
E
{
b · b∗T

}
= (E − S · K)−1 · R ·

(
E − K · S∗T

)−1
(13.11)

die ablaufenden Rauschleistungen.
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13.2.3. Thermisch rauschende Mehrtore homogener
Temperatur

Die Tore eines thermisch rauschenden Mehrtors homogener Temperatur T seien
mit thermisch rauschenden Abschlüssen gleicher Temperatur T abgeschlossen,
siehe Abbildung 13.5. Im betrachteten thermodynamischen Gleichgewicht muss an
jedem Tor n die zulaufende Rauschleistung gleich der ablaufenden Rauschleistung
sein, das heißt unabhängig von den Reflexionsfaktoren Γ′

l der Abschlüsse an den
Toren gilt an jedem Tor n

1

2
E
{
|an|2

}
=

1

2
E
{

|bn|2
}
,

vergleiche (9.3).

bR1

bR2

S2,1

S1,2

S1,1 S2,2

a1

b1
a2

b2

Γ′
1 Γ′

2

1

1

b′
R1

1

b′
R21

Abbildung 13.5.: Rauschendes Zweitor mit rauschenden Abschlüssen

Die Leistung der Rauschurwelle eines reflexionsfreien Abschlusses Γ′
l = 0 ist

1

2
E
{

|b′
Rl|

2
}

= kTB,

siehe (13.6). Bei reflexionsfreiem Abschluss Γ′
n = 0 an Tor n gilt weiterhin

an = b′
Rn.

Für die von Tor n ablaufende Rauschleistung folgt

1

2
E
{

|bn|2
}

=
1

2
E
{
|an|2

}
=

1

2
E
{
|b′

Rn|2
}

= kTB.
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Zunächst wird der Betriebszustand mit reflexionsfreien Abschlüssen Γ′
l = 0 an

allen Toren l = 1 . . . N betrachtet. An Tor n gilt dann

bn = bRn +
∑

l

Sn,lal = bRn +
∑

l

Sn,lb
′
Rl.

Die Rauschquellen der Abschlüsse sind untereinander und mit den Rauschquellen
des Mehrtors unkorreliert. Für ein beliebiges Paar verschiedener Tore n 6= m gilt

1

2
E{b′

Rnb
′∗
Rm} =

1

2
E{b′∗

Rnb
′
Rm} = 0

und für beliebige Tore n und m gilt

1

2
E{bRnb

′∗
Rm} =

1

2
E{b∗

Rnb
′
Rm} = 0.

Es folgt die von Tor n ablaufende Rauschleistung

1

2
E
{

|bn|2
}

︸ ︷︷ ︸
kTB

=
1

2
E
{
|bRn|2

}
+
∑

l

∣∣∣Sn,l
∣∣∣
2 1

2
E
{
|b′

Rl|
2
}

︸ ︷︷ ︸
kTB

.

Schließlich erhält man im thermodynamischen Gleichgewicht die Leistung der
Rauschurwelle an Tor n

1

2
E
{
|bRn|2

}
= kTB

(
1 −

∑

l

∣∣∣Sn,l
∣∣∣
2
)

= kTB
(

1 −
[
S · S∗T

]
n,n

)
. (13.12)

Damit ist ein Zusammenhang zwischen den Leistungen der Rauschurwellen und
den Streuparametern thermisch rauschender Mehrtore homogener Temperatur T
hergestellt.

Das Ziel der folgenden Betrachtungen ist es, Zusammenhänge zwischen den
Kreuzleistungen der Rauschurwellen und den Streuparametern thermisch rau-
schender Mehrtore homogener Temperatur T zu finden. Bei reflexionsfreiem Ab-
schluss Γl = 0 an den Toren l 6= m erhält man

al = b′
Rl

und mit den Vereinfachungsregeln aus Abbildung 9.3

am =
∑

l 6=m

Γ′
m

1 − Sm,mΓ′
m

Sm,lb
′
Rl +

1

1 − Sm,mΓ′
m

b′
Rm +

Γ′
m

1 − Sm,mΓm
bRm.
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An Tor n 6= m gilt dann allgemein

bn =
∑

l 6=m
Sn,lal + Sn,nam + bRn

=
∑

l 6=m
Sn,lb

′
Rl +

∑

l 6=m
Sn,m

Γ′
m

1 − Sm,mΓ′
m

Sm,lb
′
Rl

+ Sn,m
1

1 − Sm,mΓ′
m

b′
Rm + Sn,m

Γ′
m

1 − Sm,mΓm
bRm + bRn.

Zunächst wird der Reflexionsfaktor Γ′
m des Abschlusses an Tor m so gewählt,

dass

Sn,m
Γ′
m

1 − Sm,mΓ′
m

= 1

gilt.2 Der erforderliche Reflexionsfaktor ergibt sich zu

Γ′
m =

1

Sn,m + Sm,m
.

Mit (13.6) ergibt sich die Leistung der Rauschurwelle des Abschlusses zu

1

2
E
{
|b′

Rm|2
}

= kTB


1 − 1

∣∣∣Sn,m + Sm,m
∣∣∣
2


 .

Da die Rauschquellen der Abschlüsse untereinander und mit den Rauschquellen
des Mehrtors unkorreliert sind, folgt für die von Tor n ablaufende Rauschleistung

1

2
E
{
|bn|2

}

︸ ︷︷ ︸
kTB

=
∑

l 6=m

∣∣∣Sn,l + Sm,l
∣∣∣
2 1

2
E
{
|b′

Rl|
2
}

︸ ︷︷ ︸
kTB

+
∣∣∣Sn,m + Sm,m

∣∣∣
2 1

2
E
{
|b′

Rm|2
}

︸ ︷︷ ︸

kTB

(
1− 1

|Sn,m+Sm,m|2

)

+
1

2
E
{
|bRm|2

}

︸ ︷︷ ︸

kTB

(
1−
∑

l

|Sm,l|2

)
+

1

2
E
{

|bRn|2
}

︸ ︷︷ ︸

kTB

(
1−
∑

l

|Sn,l|2

)
+

1

2
E{bRmb

∗
Rn} +

1

2
E{b∗

RmbRn} .

2Dies ist abhängig von den Streuparametern nicht immer mit einem passiven Abschluss
∣∣Γ′

m

∣∣ ≤
1 möglich, was aber für die folgenden Berechnungen irrelevant ist.
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Schließlich erhält man mit (13.12) im thermodynamischen Gleichgewicht

1

2
E{bRmb

∗
Rn} +

1

2
E{b∗

RmbRn}

= − kTB

(
∑

l

∣∣∣Sn,l + Sm,l
∣∣∣
2 −

∑

l

∣∣∣Sm,l
∣∣∣
2 −

∑

l

∣∣∣Sn,l
∣∣∣
2
)

= − kTB

(
∑

l

Sn,lS
∗
m,l +

∑

l

S∗
n,lSm,l

)

= − kTB
([

S · S∗T
]
n,m

+
[
S · S∗T

]
m,n

)
.

(13.13)

Nun wird der Reflexionsfaktor Γ′
m des Abschlusses an Tor m so gewählt, dass

Sn,m
Γ′
m

1 − Sm,mΓ′
m

= −j

gilt. Der erforderliche Reflexionsfaktor ergibt sich zu

Γ′
m =

1

jSn,m + Sm,m
.

Mit (13.6) ergibt sich die Leistung der Rauschurwelle des Abschlusses zu

1

2
E
{
|b′

R|2
}

= kTB


1 − 1

∣∣∣jSn,m + Sm,m
∣∣∣
2


 .

Da die Rauschquellen der Abschlüsse untereinander und mit den Rauschquellen
des Mehrtors unkorreliert sind, folgt für die von Tor n ablaufende Rauschleistung

1

2
E
{

|bn|2
}

︸ ︷︷ ︸
kTB

=
∑

l 6=m

∣∣∣Sn,l − jSm,l
∣∣∣
2 1

2
E
{
|b′

Rl|
2
}

︸ ︷︷ ︸
kTB

+
∣∣∣jSn,m + Sm,m

∣∣∣
2 1

2
E
{
|b′

Rm|2
}

︸ ︷︷ ︸

kTB

(
1− 1

|jSn,m+Sm,m|2

)

+
1

2
E
{

|bRm|2
}

︸ ︷︷ ︸

kTB

(
1−
∑

l

|Sm,l|2

)
+

1

2
E
{

|bRn|2
}

︸ ︷︷ ︸

kTB

(
1−
∑

l

|Sn,l|2

)
−j

1

2
E{bRmb

∗
Rn} + j

1

2
E{b∗

RmbRn} .
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Schließlich erhält man mit (13.12) im thermodynamischen Gleichgewicht

1

2
E{bRmb

∗
Rn} − 1

2
E{b∗

RmbRn}

= − jkTB

(
∑

l

∣∣∣Sn,l − jSm,l
∣∣∣
2 −

∑

l

∣∣∣Sm,l
∣∣∣
2 −

∑

l

∣∣∣Sn,l
∣∣∣
2
)

= − kTB

(
−
∑

l

Sn,lS
∗
m,l +

∑

l

S∗
n,lSm,l

)

= − kTB
(

−
[
S · S∗T

]
n,m

+
[
S · S∗T

]
m,n

)
.

(13.14)

Durch Addition von (13.13) und (13.14) erhält man

1

2
E{bRmb

∗
Rn} = −kTB

[
S · S∗T

]
m,n

.

Die in (13.9) eingeführte Rauschwellenkorrelationsmatrix ergibt sich schließlich
zu

R = kTB
(
E − S · S∗T

)
. (13.15)

Die durch die Streumatrix S beschriebene Fähigkeit eines Mehrtors Leistung auf-
zunehmen und die durch die Rauschwellenkorrelationsmatrix R beschriebene Fä-
higkeit eines Mehrtors Rauschleistung abzugeben sind für thermisch rauschende
Mehrtore homogener Temperatur T eng miteinander verknüpft.

Die Streumatrix S eines entkoppelten Mehrtors ist eine Diagonalmatrix. Die
Rauschquellen entkoppelter thermisch rauschender Mehrtore homogener Tempe-
ratur T sind somit unkorreliert. Bei eigenreflexionsfreien thermisch rauschenden
Zweitoren homogener Temperatur T , das heißt bei S1,1 = S2,2 = 0 gemäß (9.5),
sind die Rauschquellen ebenfalls unkorreliert. Verlustfreie thermisch rauschende
Mehrtore homogener Temperatur T sind rauschfrei, da ihre Streumatrix S unitär
ist, siehe (9.7).

Aufgabe 13.1 Es wird die in Abbildung 13.6 gezeigte thermisch rauschende Par-
alleladmittanz homogener Temperatur T betrachtet. Berechnen Sie den normierten
Korrelationskoeffizienten

C =
1
2

E{bR1b
∗
R2}√

1
2

E
{
|bR1|2

}
1
2

E
{
|bR2|2

}

der Rauschurwellen!
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RN RNY

Tor 1 Tor 2

Abbildung 13.6.: Thermisch rauschende Paralleladmittanz

13.3. Rauschende Zweitore

13.3.1. Effektive Rauschtemperatur und Rauschzahl

Zweitore sind von besonderer Bedeutung beim Verarbeiten nachrichtentechnischer
Signale. Eine intensivere Beschäftigung mit den Rauscheigenschaften von Zwei-
toren ist somit angebracht. Hierzu wird der in Abbildung 13.7 gezeigte Signal-
flussgraph eines eingangsseitig an Tor 1 mit einer rauschfreien Quelle mit dem
Quellenreflexionsfaktor ΓQ abgeschlossenen und ausgangsseitig an Tor 2 mit ei-
ner reflexionsfreien Last abgeschlossenen rauschenden Zweitors betrachtet.

bR1

bR2

bRErsatz

S2,1

S1,2

S1,1 S2,2

a1

b1 a2 = 0

b2

ΓQ

1

1

1

Abbildung 13.7.: Modell eines an eine rauschfreie Quelle und eine reflexionsfreie
Last angeschlossenen rauschenden Zweitors

Die komplexe Wellenamplitude der ausgangsseitig von Tor 2 ablaufenden Welle
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bei reflexionsfreier Last erhält man unter Verwenden der Vereinfachungsregeln
aus Abbildung 9.3 zu

b2 = bR1

ΓQS2,1

1 − ΓQS1,1

+ bR2 =
S2,1

1 − ΓQS1,1

(
bR1ΓQ +

1 − ΓQS1,1

S2,1

bR2

)
,

das heißt die Rauschquellen im Zweitor wirken wie eine Ersatzrauschquelle mit
der komplexen Wellenamplitude der Rauschurwelle

bRErsatz = bR1ΓQ +
1 − ΓQS1,1

S2,1

bR2 = ΓQ

(
bR1 − S1,1

S2,1

bR2

)
+

1

S2,1

bR2

am Zweitoreingang. Die verfügbare Eingangsrauschleistung der Ersatzrauschquel-
le an Tor 1 ist

∆PRA1 =
1

2
E
{
|bRErsatz|2

} 1

1 −
∣∣∣ΓQ

∣∣∣
2 ,

siehe (13.1).
Ein thermisch rauschendes Eintor müsste gemäß (13.6) die effektive Rauschtem-

peratur

Teff =
∆PRA1

kB
=

1
2

E

{∣∣∣∣ΓQ

(
bR1 − S1,1

S2,1
bR2

)
+ 1

S2,1
bR2

∣∣∣∣
2
}

kB
(

1 −
∣∣∣ΓQ

∣∣∣
2
)

haben, um diese verfügbare Eingangsrauschleistung ∆PRA1 zu erzeugen. Mit den
Rauschparametern

R1,1 =
1

2
E





∣∣∣∣∣bR1 − S1,1

S2,1

bR2

∣∣∣∣∣

2


 , (13.16)

R1,2 = R∗
2,1 =

1

2
E

{(
bR1 − S1,1

S2,1

bR2

)(
1

S2,1

bR2

)∗}
, (13.17)

R2,2 =
1

2
E





∣∣∣∣∣
1

S2,1

bR2

∣∣∣∣∣

2


 (13.18)

folgt für die effektive Rauschtemperatur

Teff =

∣∣∣ΓQ

∣∣∣
2
R1,1 + ΓQR1,2 + Γ∗

QR
∗
1,2 +R2,2

kB
(

1 −
∣∣∣ΓQ

∣∣∣
2
) . (13.19)
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Die effektive Rauschtemperatur Teff ist offensichtlich eine Funktion des Quellen-
reflexionsfaktors ΓQ.

Mit dem verfügbaren Leistungsgewinn GA des Zweitors ergibt sich die vom
Zweitor erzeugte verfügbare Ausgangsrauschleistung

∆PRA2 = GA∆PRA1 (13.20)

an Tor 2, siehe (12.33). Es folgt

Teff =
∆PRA2

GAkB
(13.21)

für die effektive Rauschtemperatur. Mit der Bezugstemperatur T0 definiert man
weiterhin die zusätzliche Rauschzahl

FZ =
Teff

T0
. (13.22)

In der Realität ist die am Zweitoreingang angeschlossene Quelle nicht rausch-
frei. Das Rauschen des Zweitors wirkt wie eine Erhöhung der Rauschtemperatur
der Quelle um die effektive Rauschtemperatur Teff . Falls die Rauschtemperatur
der Quelle der Bezugstemperatur T0 entspricht, ergibt sich die Systemrauschtem-
peratur

TS = T0 + Teff . (13.23)

Man definiert die Rauschzahl

F =
TS

T0

= 1 +
Teff

T0

= 1 + FZ. (13.24)

Die Rauschzahl F ist ebenso wie die effektive Rauschtemperatur Teff und die zu-
sätzliche Rauschzahl FZ vom Quellenreflexionsfaktor ΓQ abhängig. Man beachte,
dass die Rauschzahl F immer bezüglich einer Bezugstemperatur T0 definiert ist.
Für die Rauschzahl F ′ bei einer anderen Bezugstemperatur T ′

0 ergibt sich

F ′ = (F − 1)
T0

T ′
0

+ 1. (13.25)

Man kann die Rauschzahl auch als Verhältnis der verfügbaren Ausgangsrausch-
leistung

PRA2 = GAkTSB = GAk (T0 + Teff)B (13.26)

an Tor 2 und der verstärkten von der thermisch rauschenden Quelle der Bezug-
stemperatur T0 stammenden verfügbaren Eingangsrauschleistung

PRA1 = kT0B (13.27)
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gemäß (13.6) darstellen [Fri44]:

F =
PRA2

GAPRA1
. (13.28)

Falls die Rauschtemperatur der Quelle der Bezugstemperatur T0 entspricht,
ergibt sich das Signal-Rausch-Abstand am Zweitoreingang mit der verfügbaren
Nutzsignalleistung PSA zu

γ1 =
PSA

PRA1

=
PSA

kT0B
.

Am Zweitorausgang erhält man mit dem verfügbaren Leistungsgewinn GA des
Zweitors das Signal-Rausch-Abstand

γ2 =
GAPSA

PRA2

=
GAPSA

GAkTSB
=

PSA

kTSB
.

Das Verhältnis dieser Signal-Rausch-Abstände entspricht der Rauschzahl

γ1

γ2
=
TS

T0
= F. (13.29)

Die Rauschzahl F ist somit ein Maß für die Verschlechterung des Signal-Rausch-
Abstands infolge des Rauschens des Zweitors.

Aufgabe 13.2 Es wird eine an eine Quelle mit dem Quellenreflexionsfaktor ΓQ

angeschlossene thermisch rauschende Einwegleitung homogener Temperatur T be-
trachtet, siehe Abbildung 13.8. Berechnen Sie die Rauschzahl F der Einwegleitung
als Funktion des Quellenreflexionsfaktors ΓQ, der Temperatur T der Einweglei-
tung und der Bezugstemperatur T0!!

ΓQ

Tor 1 Tor 2

Abbildung 13.8.: An eine Quelle mit Quellenreflexionsfaktor ΓQ angeschlossene
thermisch rauschende Einwegleitung
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13.3.2. Thermisch rauschende Zweitore homogener
Temperatur

Es werden thermisch rauschende Zweitore homogener Temperatur T wie zum
Beispiel Dämpfungsglieder betrachtet, siehe Abbildung 13.9. Die Temperatur T
entspreche der Bezugstemperatur T0.

T0 T = T0

Tor 1 Tor 2

PRA1 PRA2

Abbildung 13.9.: An eine thermisch rauschende Quelle der Bezugstemperatur T0

angeschlossenes thermisch rauschendes Zweitor homogener Tem-
peratur T = T0

Die von der thermisch rauschenden Quelle der Temperatur T0 stammende ver-
fügbare Eingangsrauschleistung ergibt sich mit (13.6) zu

PRA1 = kT0B.

Vom Ausgang her gesehen entspricht das thermisch rauschende Zweitor homoge-
ner Temperatur T0 mit dem eingangsseitigen thermisch rauschenden Abschluss der
gleichen Temperatur T0 einem thermisch rauschendem Eintor homogener Tempe-
ratur T0. Die verfügbare Ausgangsrauschleistung ist gemäß (13.6)

PRA2 = kT0B.

Mit (13.28) folgt die Rauschzahl

F =
PRA2

GAPRA1
=

1

GA
, (13.30)

die dem Kehrwert des verfügbaren Leistungsgewinns GA entspricht, siehe (12.33).

13.3.3. Kaskade rauschender Zweitore

Bei einer rauschfreien Quelle am Eingang der beiden in Serie geschalteten Zweitore
ergäbe sich die verfügbare Rauschleistung am Ausgang der Kaskade als Summe
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der vom ersten Zweitor erzeugten und anschließend vom zweiten Zweitor ver-
stärkten Rauschleistung und der vom zweiten Zweitor erzeugten Rauschleistung,
siehe Abbildung 13.10. Mit (13.21) folgt für die effektive Rauschtemperatur der
Kaskade

Teff =
GA2GA1kTeff1B +GA2kTeff2B

GAkB
= Teff1 +

Teff2

GA1
. (13.31)

Wichtig hierbei ist, dass jeweils die bei dem für den Eingang sichtbaren Reflexi-
onsfaktor gültige effektive Rauschtemperatur des Zweitors verwendet wird. Die
zusätzliche Rauschzahl der Kaskade ergibt sich gemäß (13.22) zu

FZ =
Teff1

T0
+

Teff2

GA1T0
= FZ1 +

FZ2

GA1
(13.32)

und die Rauschzahl der Kaskade ergibt sich schließlich mit (13.24) zu

F = 1 + FZ1 +
FZ2

GA1
= F1 +

F2 − 1

GA1
. (13.33)

Die effektive Rauschtemperatur Teff , die zusätzliche Rauschzahl FZ und die
Rauschzahl F einer Hochfrequenzverstärkerkaskade werden typischerweise im We-
sentlichen durch die effektive Rauschtemperatur Teff1, die zusätzliche Rauschzahl
FZ1 beziehungsweise die Rauschzahl F1 des ersten Hochfrequenzverstärkers in der
Kaskade bestimmt.

13.3.4. Messen der Rauschzahl mit der Y -Faktor-Methode

Ziel ist es, zunächst die vom Messobjekt erzeugte verfügbare Ausgangsrauschleis-
tung ∆PRA2 und den verfügbaren Leistungsgewinn GADUT zu bestimmen. Daraus
lässt sich die Rauschzahl

F = 1 +
∆PRA2

GADUTkT0B

prinzipiell berechnen, siehe (13.21) und (13.24). Beim Durchführen der Messung
treten zwei Probleme auf, siehe Abbildung 13.11:3

• Zum direkten Messen der vom Messobjekt erzeugten verfügbaren Ausgangs-
rauschleistung ∆PRA2 wäre es erforderlich, das Messobjekt eingangsseitig
rauschfrei abzuschließen, was praktisch nicht möglich ist. Statt dessen führt

3 Zum frequenzselektiven Messen von Rauschleistungen verwendet man üblicherweise einen
Spektralanalysator, siehe Anhang B.2.2.
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GA1

Teff1

F1

GA2

Teff2

F2

T0

T0

GA

Teff

F

kT0B

kTeff1B

1
GA1

kTeff2B

GA1kT0B

GA1kTeff1B

kTeff2B

GA1GA2kTeffB

GA1GA2kTeff1B

GA2kTeff2B

kT0B

kTeffB
GAkT0B

GAkTeffB

Abbildung 13.10.: Kaskade rauschender Zweitore
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PRA1

kTHBkTKB

PRA2K

∆PRA2

PRA2H

PRA2

Steigung GADUT

Abbildung 13.11.: Messen der Rauschzahl

man zwei Messungen mit eingangsseitigen Abschlüssen mit unterschiedli-
chen bekannten Rauschtemperaturen durch. Man kann hierzu eine Rausch-
diode verwenden, die durch eine Steuerspannung zwischen einem kalten Zu-
stand mit der Rauschtemperatur TK und einem heißen Zustand mit der
Rauschtemperatur TH umgeschaltet werden kann. Für die verfügbaren Aus-
gangsrauschleistungen des Messobjekts gilt gemäß (13.26):

PRA2K =GADUTk (TK + Teff)B,

PRA2H =GADUTk (TH + Teff)B.

Für die Differenz der verfügbaren Ausgangsrauschleistungen gilt

PRA2H − PRA2K = GADUTk (TH − TK)B. (13.34)

Aus dem als Y -Faktor bezeichneten Verhältnis der gemessenen verfügbaren
Ausgangsrauschleistungen

Y =
PRA2H

PRA2K
=
TH + Teff

TK + Teff
(13.35)

lässt sich nun einfach die effektive Rauschtemperatur

Teff =
TH − Y TK

Y − 1

berechnen. Mit (13.24) folgt die Rauschzahl

F =
TH/T0 − 1 + Y (1 − TK/T0)

Y − 1
. (13.36)
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Speziell wenn die Rauschtemperatur TK im kalten Zustand gleich der Be-
zugstemperatur T0 ist, gilt vereinfachend

F =
TH−T0

T0

Y − 1
.

Die als bekannt vorausgesetzten relevanten Eigenschaften der Rauschdiode
werden hier durch das als Übertemperaturverhältnis (Excess Noise Ratio,
ENR) bezeichnete Verhältnis TH−T0

T0
vollständig spezifiziert.

• Man misst zunächst nur die Rauschzahl F der Kaskade aus Messobjekt und
Leistungsmessgerät, siehe Abbildung 13.12. Zur Elimination des Einflus-
ses des Leistungsmessgeräts ist eine Fehlerkorrektur erforderlich. Zur Ka-
libriermessung wird die Rauschquelle direkt mit dem Leistungsmessgerät
verbunden. Man misst die verfügbaren Ausgangsrauschleistungen PRA2HM

und PRA2KM im heißen beziehungsweise kalten Zustand der Rauschquelle.
Man erhält das Verhältnis

YM =
PRA2HM

PRA2KM
=
TH + TeffM

TK + TeffM
(13.37)

der gemessenen verfügbaren Rauschleistungen und schließlich die Rausch-
zahl

FM =
TH/T0 − 1 + YM(1 − TK/T0)

YM − 1
(13.38)

des Leistungsmessgeräts. Wichtig hierbei ist, dass die Rauschquelle den glei-
chen Reflexionsfaktor hat wie der Ausgang des Messobjekts, da die Rausch-
zahl des Leistungsmessgeräts vom Reflexionsfaktor abhängt. Aus der Diffe-
renz der am Ausgang der Rauschquelle gemessenen verfügbaren Rauschleis-
tungen

PRA2H − PRA2K = k (TH − TK)B

kann man unter Verwenden von (13.34) den verfügbaren Leistungsgewinn
des Messobjekts

GADUT =
PRA2H − PRA2K

PRA2HM − PRA2KM
(13.39)

berechnen. Auch hierbei ist es wieder wichtig, dass die Rauschquelle den glei-
chen Reflexionsfaktor hat wie der Ausgang des Messobjekts, da sonst unter-
schiedliche Fehlanpassungen des Leistungsmessgeräts resultieren. Schließlich
führt man basierend auf (13.33) die Korrekturrechnung durch und erhält die
Rauschzahl

FDUT = F − FM − 1

GADUT
(13.40)
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des Messobjekts. Diese theoretisch mögliche Fehlerkorrektur gelingt prak-
tisch nur unvollkommen. Um den Fehler von vornherein klein zu halten
ist es daher wichtig, ein Leistungsmessgerät mit kleiner Rauschzahl FM zu
verwenden. Praktisch erreicht man dies durch Einsatz eines rauscharmen
Vorverstärkers, siehe (13.33).

TK

TH

Messobjekt
GADUT

TeffDUT

FDUT

Leistungsmessgerät
TeffM

FM

Abbildung 13.12.: System zum Messen der Rauschzahl FDUT

13.3.5. Rauschanpassung

Die vom Quellenreflexionsfaktor ΓQ abhängige effektive Rauschtemperatur Teff

eines Zweitors wurde in (13.19) berechnet. Für die Orte konstanter effektiver
Rauschtemperatur Teff folgt

kTeffB
(
1 − ΓQΓ∗

Q

)
=ΓQΓ∗

QR1,1 + ΓQR1,2 + Γ∗
QR

∗
1,2 +R2,2,

∣∣∣∣∣∣∣∣∣∣∣

ΓQ − −R∗
1,2

R1,1 + kTeffB︸ ︷︷ ︸
MQ

∣∣∣∣∣∣∣∣∣∣∣

2

=
kTeffB − R2,2

R1,1 + kTeffB
+

R1,2R
∗
1,2

(R1,1 + kTeffB)2

︸ ︷︷ ︸
R2

Q

.

Es handelt sich offensichtlich um einen Kreis mit Mittelpunkt

MQ = − R∗
1,2

R1,1 + kTeffB
(13.41)

und Radius

RQ =

√√√√kTeffB − R2,2

R1,1 + kTeffB
+

R1,2R
∗
1,2

(R1,1 + kTeffB)2

=

√
k2T 2

effB
2 − R2,2kTeffB + kTeffBR1,1 − R2,2R1,1 +

∣∣∣R1,2

∣∣∣
2

R1,1 + kTeffB

(13.42)
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in der Ebene des Quellenreflexionsfaktors ΓQ.
Bei der minimalen effektiven Rauschtemperatur Teffmin wird der Radius Null:

k2T 2
effminB

2 − R2,2kTeffminB + kTeffminBR1,1 −R2,2R1,1 +
∣∣∣R1,2

∣∣∣
2

= 0.

Da es nur positive effektive Rauschtemperaturen gibt, hat diese quadratische Glei-
chung eine einzige physikalisch sinnvolle Lösung

Teffmin =
1

2kB


R2,2 − R1,1 +

√√√√√(R2,2 −R1,1)2 + 4R1,1R2,2 − 4
∣∣∣R1,2

∣∣∣
2

︸ ︷︷ ︸
≥0




=
1

2kB

(
R2,2 − R1,1 +

√
(R2,2 +R1,1)2 − 4

∣∣∣R1,2

∣∣∣
2
)
.

(13.43)

Der zur minimalen effektiven Rauschtemperatur Teffmin gehörende Kreismittel-
punkt entspricht dem optimalen Quellenreflexionsfaktor

ΓQopt = − 2R∗
1,2

R2,2 +R1,1 +
√

(R2,2 +R1,1)2 − 4
∣∣∣R1,2

∣∣∣
2
. (13.44)

Unter Verwenden der minimalen effektiven Rauschtemperatur Teffmin, des op-
timalen Quellenreflexionsfaktors ΓQopt und der sich bei reflexionsfreier Quelle
ΓQ = 0 aus (13.19) ergebenden effektiven Rauschtemperatur

Teff0 =
R2,2

kB
(13.45)

kann man die Korrelationskoeffizienten

R2,2 = kTeff0B (13.46)

R1,2 =
(R2,2 +R1,1)

2 −
(

(R2,2 +R1,1)2 − 4
∣∣∣R1,2

∣∣∣
2
)

4R∗
1,2

=
R2,2 +R1,1 −

√
(R2,2 +R1,1)

2 − 4
∣∣∣R1,2

∣∣∣
2

4R∗
1,2

R2,2+R1,1+

√
(R2,2+R1,1)2−4|R1,2|2

=k
Teffmin − Teff0

ΓQopt

B

(13.47)

303



Kapitel 13. Rauschen

und

R1,1 =
R2,2 +R1,1 +

√
(R2,2 +R1,1)2 − 4

∣∣∣R1,2

∣∣∣
2

2

−
R2,2 − R1,1 +

√
(R2,2 +R1,1)2 − 4

∣∣∣R1,2

∣∣∣
2

2

= − R1,2

Γ∗
Qopt

− kTeffminB = k
Teff0 − Teffmin∣∣∣ΓQopt

∣∣∣
2 B − kTeffminB

=k
Teff0 − Teffmin

(∣∣∣ΓQopt

∣∣∣
2

+ 1
)

∣∣∣ΓQopt

∣∣∣
2 B

(13.48)

aus obigen Gleichungen eliminieren. Aus (13.41) folgt der Mittelpunkt

MQ = −
R∗

1,2

kB
R1,1

kB
+ Teff

= −
Teffmin−Teff0

Γ∗
Qopt

Teff0−Teffmin

(
|ΓQopt|2

+1

)

|ΓQopt|2 + Teff

=
(Teff0 − Teffmin) ΓQopt

Teff0 − Teffmin + (Teff − Teffmin)
∣∣∣ΓQopt

∣∣∣
2

(13.49)

und aus (13.42) folgt der Radius

RQ =

√
Teff

(
Teff − R2,2

kB

)
+
(
Teff − R2,2

kB

)
R1,1

kB
+

|R1,2|2

k2B2

R1,1

kB
+ Teff

=

√√√√Teff (Teff − Teff0) + (Teff − Teff0)
Teff0−Teffmin

(
|ΓQopt|2

+1

)

|ΓQopt|2 + (Teffmin−Teff0)2

|ΓQopt|2

Teff0−Teffmin

(
|ΓQopt|2

+1

)
+Teff|ΓQopt|2

|ΓQopt|2

=
∣∣∣ΓQopt

∣∣∣

√
(Teff − Teffmin)

(
Teff0 − Teffmin + (Teff − Teff0)

∣∣∣ΓQopt

∣∣∣
2
)

Teff0 − Teffmin + (Teff − Teffmin)
∣∣∣ΓQopt

∣∣∣
2 .

(13.50)
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Die effektive Rauschtemperatur berechnet man mit (13.19) zu

Teff =

∣∣∣ΓQ

∣∣∣
2 R1,1

kB
+ ΓQ

R1,2

kB
+ Γ∗

Q

R∗
1,2

kB
+ R2,2

kB

1 −
∣∣∣ΓQ

∣∣∣
2

=

∣∣∣ΓQ

∣∣∣
2 Teff0−Teffmin

(
|ΓQopt|2

+1

)

|ΓQopt|2 + ΓQ
Teffmin−Teff0

ΓQopt
+ Γ∗

Q
Teffmin−Teff0

Γ∗
Qopt

+ Teff0

1 −
∣∣∣ΓQ

∣∣∣
2

=Teffmin + (Teff0 − Teffmin)

∣∣∣ΓQ

∣∣∣
2 −

(
ΓQΓ∗

Qopt + Γ∗
QΓQopt

)
+
∣∣∣ΓQopt

∣∣∣
2

∣∣∣ΓQopt

∣∣∣
2
(

1 −
∣∣∣ΓQ

∣∣∣
2
)

=Teffmin + (Teff0 − Teffmin)

∣∣∣ΓQ − ΓQopt

∣∣∣
2

∣∣∣ΓQopt

∣∣∣
2
(

1 −
∣∣∣ΓQ

∣∣∣
2
) .

(13.51)

Abbildung 13.13 zeigt einige exemplarische Kreise konstanter effektiver Rauschtem-
peratur Teff . Die Mittelpunkte MQ aller Kreise liegen auf einer Geraden durch den
optimalen Quellenreflexionsfaktor ΓQopt und den Ursprung, da die Argumente al-
ler Mittelpunkte gleich sind:

arg
(
MQ

)
= arg

(
ΓQopt

)
.

Für sehr große effektive Rauschtemperaturen Teff konvergieren die Kreise gegen
den Einheitskreis. Beim Entwurf eines Hochfrequenzverstärkers gilt es einen von
der Anwendung abhängigen günstigen Kompromiss zwischen Leistungsanpassung
und Rauschanpassung, das heißt zwischen Gewinn und effektiver Rauschtempe-
ratur Teff des Hochfrequenzverstärkers zu finden.

Wenn man alternativ von der minimalen Rauschzahl

Fmin = 1 +
Teffmin

T0
(13.52)

und der Rauschzahl

F0 = 1 +
Teff0

T0

(13.53)

bei Abschluss mit einer reflexionsfreien Quelle ausgeht, erhält man für den Kreis
konstanter Rauschzahl F den Mittelpunkt

MQ =
(F0 − Fmin) ΓQopt

F0 − Fmin + (F − Fmin)
∣∣∣ΓQopt

∣∣∣
2 (13.54)
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Abbildung 13.13.: Effektive Rauschtemperatur Teff als Funktion des Quellenrefle-
xionsfaktors ΓQ mit ΓQopt = 0,5 − j0,5, Teffmin = 0,5T0 und
Teff0 = 2T0.

und den Radius

RQ =
∣∣∣ΓQopt

∣∣∣

√
(F − Fmin)

(
F0 − Fmin + (F − F0)

∣∣∣ΓQopt

∣∣∣
2
)

F0 − Fmin + (F − Fmin)
∣∣∣ΓQopt

∣∣∣
2 , (13.55)

siehe (13.24). Für die Rauschzahl folgt

F = Fmin + (F0 − Fmin)

∣∣∣ΓQ − ΓQopt

∣∣∣
2

∣∣∣ΓQopt

∣∣∣
2
(

1 −
∣∣∣ΓQ

∣∣∣
2
) . (13.56)

Aufgabe 13.3 Es werden thermisch rauschende Zweitore homogener Temperatur
T betrachtet. Vereinfachend entspreche die Temperatur T der Bezugstemperatur
T0. Berechnen Sie die bei Rauschanpassung erzielbare minimale Rauschzahl Fmin

als Funktion der Streuparameter und des Stabilitätsfaktors K!
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13.3.6. Messen der Rauschparameter

Zum vollständigen Charakterisieren des Rauschverhaltens eines Zweitors ist es
nicht ausreichend, nur die effektive Rauschtemperatur Teff an einer einzigen Quel-
le mit Quellenreflexionsfaktor ΓQ zu kennen. Man muss vielmehr die Rausch-
parameter minimale effektive Rauschtemperatur Teffmin, optimaler Quellenrefle-
xionsfaktor ΓQopt und effektive Rauschtemperatur Teff0 bei Abschluss mit einer
reflexionsfreien Quelle kennen, zu deren messtechnischem Bestimmen Rauschzahl-
messungen bei verschiedenen Quellenreflexionsfaktoren erforderlich sind. Intuitiv
würde man

• zunächst experimentell den optimalen Quellenreflexionsfaktor ΓQopt bestim-
men,

• dann die minimale effektive Rauschtemperatur Teffmin an einer Quelle mit
dem optimalen Quellenreflexionsfaktor ΓQopt messen und

• schließlich die effektive Rauschtemperatur Teff0 bei Abschluss mit einer re-
flexionsfreien Quelle ΓQ = 0 messen.

Eleganter ist es von (13.19) auszugehen. Man erhält eine in den vier reellen
Rauschparametern R1,1, Re

(
R1,2

)
, Im

(
R1,2

)
und R2,2 lineare Gleichung

kTeffB
(

1 −
∣∣∣ΓQ

∣∣∣
2
)

=
∣∣∣ΓQ

∣∣∣
2
R1,1 +2 Re

(
ΓQ

)
Re
(
R1,2

)
−2 Im

(
ΓQ

)
Im
(
R1,2

)
+R2,2.

Durch Messen der Rauschtemperaturen Teff1, Teff2, Teff3 und Teff4 an vier ver-
schiedenen Quellenreflexionsfaktoren ΓQ1, ΓQ2, ΓQ3 und ΓQ4 gewinnt man vier
Gleichungen für diese vier Unbekannten




kTeff1B
(

1 −
∣∣∣ΓQ1

∣∣∣
2
)

kTeff2B
(

1 −
∣∣∣ΓQ2

∣∣∣
2
)

kTeff3B
(

1 −
∣∣∣ΓQ3

∣∣∣
2
)

kTeff4B
(

1 −
∣∣∣ΓQ4

∣∣∣
2
)




=




∣∣∣ΓQ1

∣∣∣
2

2 Re
(
ΓQ1

)
−2 Im

(
ΓQ1

)
1

∣∣∣ΓQ2

∣∣∣
2

2 Re
(
ΓQ2

)
−2 Im

(
ΓQ2

)
1

∣∣∣ΓQ3

∣∣∣
2

2 Re
(
ΓQ3

)
−2 Im

(
ΓQ3

)
1

∣∣∣ΓQ4

∣∣∣
2

2 Re
(
ΓQ4

)
−2 Im

(
ΓQ4

)
1




·




R1,1

Re
(
R1,2

)

Im
(
R1,2

)

R2,2



,

(13.57)
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aus denen sich die Rauschparameter leicht berechnen lassen. Falls mehr als die
minimal erforderliche Anzahl an Messungen durchgeführt wird, kann man die
zusätzlichen Messwerte im Rahmen einer Ausgleichsrechnung zur Messfehlerre-
duktion nutzen [Kay93; MS00]. Mit (13.43), (13.44) und (13.45) kann man dann
auch die Rauschparameter minimale effektive Rauschtemperatur Teffmin, optimaler
Quellenreflexionsfaktor ΓQopt und effektive Rauschtemperatur Teff0 bei Abschluss
mit einer reflexionsfreien Quelle berechnen.
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Anhang A.

Nichtlineare Systeme

A.1. Potenzreihenansatz

Schwerpunkt des vorliegenden Buchs ist die Theorie der linearen Systeme. Reale
Systeme wie beispielsweise Verstärker sind aber typischerweise zumindest leicht
nichtlinear. Im Ausgangssignal nichtlinearer Systeme können Signalanteile bei
Kreisfrequenzen auftreten, die im Eingangssignal nicht vorhanden waren. Derar-
tige nichtlineare Effekte sind häufig störend und ihre Minimierung motiviert viele
der teilweise komplexen Architekturen hochfrequenztechnischer Systeme. Ande-
rerseits können nichtlineare Systeme gewinnbringend zur Signaldetektion und zum
Umsetzen von Signalen in andere Frequenzbereiche genutzt werden. Im Folgenden
sollen die Grundzüge der Theorie nichtlinearer Systeme vorgestellt werden. Die
Notation weicht zwangsläufig von der zum Beschreiben linearer Systeme verwen-
deten Notation ab. Auch aus diesem Grund wurde die Behandlung nichtlinearer
Systeme in den Anhang ausgegliedert.

Im Folgenden sollen nur statische nichtlineare Systeme mit einem einzigen Ein-
gang und einem einzigen Ausgang betrachtet werden. Statische nichtlineare Syste-
me haben kein Gedächtnis, so dass das Ausgangssignal y(t) zu einem bestimmten
Zeitpunkt t eine nichtlineare Funktion des Eingangssignals x(t) zum selben Zeit-
punkt t ist:

y(t) = f(x(t)) . (A.1)

Diese Kennlinie kann graphisch dargestellt werden, siehe Abbildung A.1.
Für die Analyse statischer nichtlinearer Systeme entwickelt man die Kennlinie

in eine Taylor-Reihe und erhält so die Potenzreihe

y(t) =
∞∑

n=0

cnx
n(t) . (A.2)

Wenn man vereinfachend den Nullpunkt x(t) = 0 als Entwicklungspunkt verwen-
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x(t)

y(t) = f(x(t))

Abbildung A.1.: Nichtlineare Kennlinie

det, ergeben sich die Koeffizienten zu

cn =





f(0) für n = 0
1

n!

∂nf(x)

∂xn

∣∣∣∣∣
x=0

für n ≥ 1
. (A.3)

A.2. Eintonanregung

A.2.1. Analyse der Eintonanregung

Zunächst werde der Fall harmonischer, das heißt sinusförmiger Anregung der
Kreisfrequenz ω0 und der Eingangsamplitude X betrachtet. Die Nullphase ist
keine physikalische Eigenschaft, sondern ergibt sich im Rahmen der Modellbil-
dung durch Wahl des Nullpunktes der Zeitmessung. Es genügt daher, nur eine
einzige willkürliche Nullphase zu betrachten. Es wird das Eingangssignal

x(t) = X cos(ω0t) = X
1

2

(
ejω0t + e−jω0t

)
(A.4)

betrachtet. Die Grundwelle der Kreisfrequenz ω0 wird auch als erste Harmonische
bezeichnet.

Für die zweite Potenz folgt

x2(t) =X2 1

4

(
ejω0t + e−jω0t

)2
= X2 1

4

(
ej2ω0t +2 + e−j2ω0t

)

=X2 1

2
+X2 1

2
cos(2ω0t) .
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Neben einem Gleichanteil entsteht eine erste Oberwelle der Kreisfrequenz 2ω0, die
auch als zweite Harmonische bezeichnet wird.

Allgemein gilt für die n-te Potenz1

xn(t) =Xn 1

2n

(
ejω0t + e−jω0t

)n
= Xn 1

2n

n∑

m=0

(
n

m

)
ejmω0t e−j(n−m)ω0t
︸ ︷︷ ︸

ej(2m−n)ω0t

=Xn 1

2n

n∑

m=0

(
n

m

)
1

2

(
ej(2m−n)ω0t + e−j(2m−n)ω0t

)

=Xn 1

2n

n∑

m=0

(
n

m

)
cos((2m− n)ω0t) .

Die höchste entstehende Oberwelle ist die (n− 1)-te Oberwelle, die auch als n-te
Harmonische bezeichnet wird.

Einsetzen der Potenzen in die Potenzreihe (A.2) ergibt das Ausgangssignal

y(t) =
∞∑

n=0

cnX
n 1

2n

n∑

m=0

(
n

m

)
cos((2m− n)ω0t)

=
−1∑

l=−∞

∞∑

m=0

c2m−lX
2m−l 1

22m−l

(
2m− l

m

)
cos(lω0t)

+
∞∑

m=0

c2mX
2m 1

22m

(
2m

m

)

+
∞∑

l=1

∞∑

m=l

c2m−lX
2m−l 1

22m−l

(
2m− l

m

)
cos(lω0t)

=
∞∑

l=1

∞∑

m=0

c2m+lX
2m+l 1

22m+l

(
2m+ l

m

)
cos(−lω0t)

+
∞∑

m=0

c2mX
2m 1

22m

(
2m

m

)

+
∞∑

l=1

∞∑

m=0

c2m+lX
2m+l 1

22m+l

(
2m+ l

m

)
cos(lω0t)

=
∞∑

m=0

c2mX
2m 1

22m

(
2m

m

)

︸ ︷︷ ︸
Gleichanteil

+
∞∑

l=1

∞∑

m=0

c2m+lX
2m+l 1

22m+l−1

(
2m+ l

m

)
cos(lω0t)

︸ ︷︷ ︸
l-te Harmonische

.

(A.5)

1 Für den Binomialkoeffizienten gilt
(

n
m

)
=
(

n
n−m

)
.
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A.2.2. Kompressionspunkt

Mit der aus (A.5) abgelesenen Amplitude

Y1 =

∣∣∣∣∣

∞∑

m=0

c2m+1X
2m+1 1

22m

(
2m+ 1

m

)∣∣∣∣∣

der Grundwelle ergibt sich der Amplitudengewinn zu

Y1

X
=

∣∣∣∣∣

∞∑

m=0

c2m+1X
2m 1

22m

(
2m+ 1

m

)∣∣∣∣∣ . (A.6)

Der Amplitudengewinn ist im Allgemeinen von der Eingangsamplitude X abhän-
gig, das heißt aussteuerungsabhängig. Nur bei linearen Systemen wäre der Am-
plitudengewinn von der Eingangsamplitude X unabhängig. Bei realen Systemen
ergibt sich bei hinreichend großen Eingangsamplituden X aufgrund von Begren-
zungseffekten eine Reduktion des Amplitudengewinns. Abbildung A.2 zeigt einen
typischen Verlauf des von der Eingangsamplitude X abhängigen Amplitudenge-
winns.

20 log
(
Y1

X

)
/dB

20 log(X)

1 dB

20 log(XKP)

Abbildung A.2.: Amplitudengewinn als Funktion der Eingangsamplitude X an
einem Beispiel

Bei kleinen Eingangsamplituden X ist der Amplitudengewinn |c1|. Beim 1 dB-
Kompressionspunkt ist der Amplitudengewinn um −1 dB=̂0,891 abgefallen. Die
Eingangsamplitude, bei der diese Amplitudengewinnreduktion eintritt, bezeichnet
man als Eingangskompressionspunkt XKP. Die zugehörige Ausgangsamplitude

YKP = 0,891 |c1|XKP (A.7)
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bezeichnet man als Ausgangskompressionspunkt.
Für nichtlineare Systeme dritter Ordnung, das heißt für

cn =




cn für n ≤ 3

0 für n ≥ 4
,

ergibt sich der Amplitudengewinn zu

Y1

X
=
∣∣∣∣c1 +

3

4
c3X

2
∣∣∣∣ . (A.8)

c3 hat normalerweise entgegengesetztes Vorzeichen wie c1, so dass der Amplitu-
dengewinn bei steigenden Eingangsamplituden X zunächst abnimmt. Für den
Eingangskompressionspunkt erhält man:

0,891c1 =c1 +
3

4
c3X

2
KP,

XKP =

√
4 (0,891 − 1) c1

3c3

=

√
−0,145

c1

c3

. (A.9)

A.2.3. Harmonischenabstand

Bei kleinen Eingangsamplituden X sind die höheren Potenzen von X vernachläs-
sigbar und das Ausgangssignal (A.5) kann durch die Kleinsignalnäherung

y(t) ≈ c0 +
c2

2
X2

︸ ︷︷ ︸
Gleichanteil

+
∞∑

n=1

cn
2n−1

Xn cos(nω0t)
︸ ︷︷ ︸

n-te Harmonische

(A.10)

approximiert werden.
Im Gültigkeitsbereich der Kleinsignalnäherung ist die Amplitude

Yn =
|cn|
2n−1

Xn (A.11)

der n-ten Harmonischen proportional zur n-ten Potenz der Eingangsamplitude
X. Bei kleinen Eingangsamplituden X haben die Oberwellen relativ kleine Am-
plituden Yn, n ≥ 2. Die Amplituden Yn, n ≥ 2, der Oberwellen nehmen jedoch bei
steigender Eingangsamplitude X stärker zu als die Amplitude Y1 der Grundwel-
le und würden bei hinreichend großen Eingangsamplituden X, wenn die Klein-
signalnäherung bei derartig großen Eingangsamplituden X noch gelten würde,
sogar größer als die Amplitude Y1 der Grundwelle werden.
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Der n-te Harmonischenabstand wird als das Verhältnis der Amplitude Y1 der
Grundwelle zur Amplitude Yn der n-ten Harmonischen definiert:

Hn =
Y1

Yn
. (A.12)

Im Gültigkeitsbereich der Kleinsignalnäherung ist der n-te Harmonischenabstand

Hn =
|c1|X
|cn|

2n−1Xn
=
∣∣∣∣
c1

cn

∣∣∣∣
2n−1

Xn−1
. (A.13)

Der erste Harmonischenabstand H1 ist definitionsgemäß eins, das heißt 0 dB. Die
Harmonischenabstände Hn nehmen mit steigender Eingangsamplitude X ab, siehe
Abbildung A.3. In doppellogarithmischer Darstellung ist der Graph des n-ten
Harmonischenabstands Hn eine Gerade mit der Steigung −n.

H2, Steigung −1
H3, Steigung −2

0 20 log(X)

20 log(Hn) /dB

20 log(XIPH,2)20 log(XIPH,3)

Abbildung A.3.: Harmonischenabstände Hn als Funktionen der Eingangsamplitu-
de X an einem Beispiel

Am Interceptpunkt der Harmonischen wird der unter Verwenden der Klein-
signalnäherung berechnete Harmonischenabstand Hn eins, das heißt 0 dB. Der
eingangsseitige Interceptpunkt der n-ten Harmonischen ergibt sich zu

XIPH,n = 2 n−1

√∣∣∣∣
c1

cn

∣∣∣∣. (A.14)

Aus dem n-ten Harmonischenabstand Hn bei einer Eingangsamplitude X kann
man den eingangsseitigen Interceptpunkt der n-ten Harmonischen gemäß

XIPH,n = n−1
√
HnX (A.15)
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berechnen. Der ausgangsseitige Interceptpunkt der n-ten Harmonischen ergibt
sich zu

YIPH,n = |c1|XIPH,n = 2 |c1| n−1

√∣∣∣∣
c1

cn

∣∣∣∣. (A.16)

Die bei Eintonanregung eines nichtlinearen Systems auftretenden Effekte wer-
den in der Hochfrequenztechnik unter anderem in Signaldetektoren und Frequenz-
vervielfachern genutzt. Unerwünschte auftretende Oberwellen können in der Regel
einfach durch Filter unterdrückt werden, da die Bandbreiten der Nutzsignale ty-
pischerweise wesentlich kleiner als eine Oktave sind.

A.3. Zweitonanregung

A.3.1. Analyse der Zweitonanregung

Im Allgemeinen wird das Eingangssignal Signalanteile bei vielen verschiedenen
Kreisfrequenzen enthalten. Zum Studium der grundsätzlichen Effekte wird der
einfachste Fall, dass das Eingangssignal aus der Überlagerung zweier harmoni-
scher Signale gleicher Amplitude X aber unterschiedlicher Kreisfrequenzen be-
steht, studiert. Die Nullphasen sind auch hier keine physikalische Eigenschaft,
sondern ergeben sich im Rahmen der Modellbildung durch Wahl des Nullpunktes
der Zeitmessung. Mit den Kreisfrequenzen ω1 und ω2 der beiden Anteile gelte für
das Eingangssignal:

x(t) = X (cos(ω1t) + cos(ω2t)) = X
1

2

(
ejω1t + ejω2t + e−jω2t + e−jω1t

)
. (A.17)

Für die zweite Potenz folgt

x2(t) =X2 1

4

(
ejω1t + ejω2t + e−jω2t + e−jω1t

)2

=X2 1

4

(
4 + ej2ω1t +2 ej(ω1+ω2)t +2 ej(ω1−ω2)t + ej2ω2t

+ e−j2ω1t +2 e−j(ω1+ω2)t +2 e−j(ω1−ω2)t + e−j2ω2t
)

=X2 +X2 1

2
cos(2ω1t) +X2 cos((ω1 + ω2) t)

+X2 cos((ω1 − ω2) t) +X2 1

2
cos(2ω2t) .

Es entstehen Intermodulationsprodukte zweiter Ordnung.
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Allgemein gilt für die n-te Potenz2

xn(t) =Xn 1

2n

(
ejω1t + ejω2t + e−jω2t + e−jω1t

)n

=Xn 1

2n
∑

m1+m2+m3+m4=n

(
n

m1, m2, m3, m4

)
ejm1ω1t ejm2ω2t e−jm3ω2t e−jm4ω1t .

Es entstehen Intermodulationsprodukte n-ter Ordnung.
Einsetzen der Potenzen in die Potenzreihe (A.2) ergibt unter Verwenden der

Kleinsignalnäherung die Approximation

y(t) ≈c0 + c2X
2 +

∞∑

n=1

cnX
n 1

2n

n∑

m=0

(
n

m

)(
ejmω1t ej(n−m)ω2t

+ ejmω1t e−j(n−m)ω2t + e−jmω1t ej(n−m)ω2t + e−jmω1t e−j(n−m)ω2t
)

=c0 + c2X
2 +

∞∑

n=1

n∑

m=0

cn
2n−1

(
n

m

)
Xn

(
cos((mω1 + (n −m)ω2) t)

+ cos((mω1 − (n −m)ω2) t)
)

(A.18)

des Ausgangssignals. Die Intermodulationsprodukte haben im Gültigkeitsbereich
der Kleinsignalnäherung die Amplituden

Yn,m =
|cn|
2n−1

(
n

m

)
Xn. (A.19)

A.3.2. Intermodulationsabstand

Der Intermodulationsabstand wird als Verhältnis der Amplitude Y1 der Grund-
welle zur Amplitude Yn,m des Intermodulationsproduktes definiert:

In,m =
Y1

Yn,m
. (A.20)

Im Gültigkeitsbereich der Kleinsignalnäherung ist der Intermodulationsabstand

In,m =
|c1|X

|cn|
2n−1

(
n
m

)
Xn

=
|c1|

|cn|
2n−1

(
n
m

)
Xn−1

=
∣∣∣∣
c1

cn

∣∣∣∣
2n−1

(
n
m

)
Xn−1

. (A.21)

Es besteht der Zusammenhang

Hn =

(
n

m

)
In,m (A.22)

2 Der Multinomialkoeffizient ist als
(

n
m1,...,mk

)
= n!

m1!···mK ! definiert, wobei
K∑

k=1

mk = n gilt.
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I2,0 = I2,2 = H2

I2,1

I3,0 = I3,3 = H3

I3,1 = I3,2

20 log(X)

20 log(In,m) /dB

4,77 dB

9,54 dB

6,02 dB

6,02 dB

Abbildung A.4.: Intermodulationsabstände In,m als Funktionen der Eingangsam-
plitude X an einem Beispiel

zwischen den Harmonischenabständen Hn gemäß (A.13) und den Intermodulati-
onsabständen In,m, siehe Abbildung A.4.

In vielen Anwendungen sind die Intermodulationsprodukte dritter Ordnung be-
sonders kritisch. Beispielsweise erzeugen Störsignale der sich bei kleinem ∆ω nur
geringfügig von der Kreisfrequenz ω0 eines Nutzsignals unterscheidenden Kreis-
frequenzen ω1 = ω0 +∆ω und ω2 = ω0 +2∆ω ein Intermodulationsprodukt dritter
Ordnung der gleichen Kreisfrequenz 2ω1 − ω2 = ω0 wie das Nutzsignal. Der hier
relevante Intermodulationsabstand dritter Ordnung ist

I3,2 = I3,1 =
1

3︸︷︷︸
=̂−9,54 dB

H3.

Am Interceptpunkt wird der unter Verwenden der Kleinsignalnäherung berech-
nete Intermodulationsabstand In,m eins, das heißt 0 dB. Der eingangsseitige In-
terceptpunkt ergibt sich zu

XIP,n,m = 2 n−1

√√√√
∣∣∣∣
c1

cn

∣∣∣∣
1(
n
m

) . (A.23)

Speziell für den in der Praxis häufig zum quantitativen Beurteilen der Nichtlinea-
rität verwendeten eingangsseitigen Interceptpunkt dritter Ordnung gilt

XIP,3,1 =

√∣∣∣∣
4c1

3c3

∣∣∣∣. (A.24)
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Aus dem Intermodulationsabstand In,m bei einer Eingangsamplitude X kann man
den eingangsseitigen Interceptpunkt gemäß

XIP,n,m = n−1

√
In,mX (A.25)

berechnen.
Es besteht der Zusammenhang

XIPH,n = n−1

√√√√
(
n

m

)
XIP,n,m (A.26)

zwischen den eingangsseitigen Interceptpunkten der Harmonischen XIPH,n gemäß
(A.14) und den eingangsseitigen Interceptpunkten XIP,n,m, siehe Abbildung A.4.

Der ausgangsseitige Interceptpunkt ergibt sich zu

YIP,n,m = |c1|XIP,n,m = 2 |c1| n−1

√√√√
∣∣∣∣
c1

cn

∣∣∣∣
1(
n
m

) . (A.27)

Speziell für den in der Praxis häufig zum quantitativen Beurteilen der Nichtlinea-
rität verwendeten ausgangsseitigen Interceptpunkt dritter Ordnung gilt

YIP,3,1 =

√√√√
∣∣∣∣∣
4c3

1

3c3

∣∣∣∣∣. (A.28)

Für nichtlineare Systeme dritter Ordnung folgt aus (A.9) der Zusammenhang

XKP =
√

0,1087︸ ︷︷ ︸
=̂−9,64 dB

XIP,3,1 (A.29)

zwischen dem Eingangskompressionspunkt XKP und dem eingangsseitigen Inter-
ceptpunkt dritter Ordnung XIP,3,1.

A.4. Dynamikbereich

Ziel ist es, ein Eingangssignal in einem System möglichst störungsfrei, das heißt
linear zu verarbeiten. Neben den durch das nichtlineare Verhalten des Systems er-
zeugten Störungen in Form von Intermodulationsprodukten gibt es in der Praxis
auch noch Störungen in Form von additivem Rauschen. Die störende Wirkung der
Intermodulationsprodukte wird durch die Intermodulationsabstände Im,n quanti-
fiziert. Die Amplitude YR des dem Ausgangssignal überlagerten Rauschsignals ist
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eine Zufallsvariable. Da die störende Wirkung auf der zum Quadrat der Amplitu-
de YR proportionalen Leistung des Rauschsignals beruht, ist es sinnvoll die Wurzel
des zweiten Moments der Rauschamplitude YR als mittlere Rauschamplitude in
der quantitativen Bewertung zu verwenden. Man definiert den Rauschabstand

R =
Y1√

E{Y 2
R}
. (A.30)

Der Rauschabstand nimmt mit wachsender Eingangsamplitude X zu, siehe Ab-
bildung A.5.

R
I2,0 = I2,2 = H2

I2,1

I3,0 = I3,3 = H3

I3,1 = I3,2

S

0 20 log(X)

20 log(In,m) /dB

20 log(Xmin) 20 log(Xmax)
20 log(D)

20 log(Smax)

Abbildung A.5.: Rauschabstand R und Intermodulationsabstände In,m als Funk-
tionen der Eingangsamplitude X an einem Beispiel

Die störende Wirkung resultiert im Wesentlichen aus dem stärksten Störsignal.
Es ist daher sinnvoll, den Störabstand als das Minimum von Rauschabstand R
und allen Intermodulationsabständen In,m zu definieren:

S = min{R, I2,0, I2,1, I2,2, I3,0, I3,1, I3,3, . . .} . (A.31)

Da der Rauschabstand R und die Intermodulationsabstände In,m von der Eingang-
samplitude X abhängen, hängt der Störabstand S auch von der Eingangsampli-
tude X ab. Bei einer bestimmten Eingangsamplitude Xmax wird der maximale
Störabstand Smax erzielt. Für Eingangsamplituden X die größer als die maximale
Eingangsamplitude Xmax sind, gibt es Intermodulationsprodukte die stärker als
das Rauschen sind. Die maximale Eingangsamplitude Xmax ist daher die größt-
mögliche Eingangsamplitude X, bei der das System noch in guter Näherung linear
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ist. Bei der Eingangsamplitude Xmin wird der Rauschabstand R eins, das heißt
0 dB. Für Eingangsamplituden X, die kleiner als die minimale Eingangsamplitu-
de Xmin sind, ist das Rauschen stärker als das Ausgangssignal. Für die minimale
Eingangsamplitude gilt

Xmin =
Xmax

Smax
,

siehe Abbildung A.5. Man definiert den Dynamikbereich3

D =
Xmax

Xmin
= Smax. (A.32)

Wenn das Rauschen im Wesentlichen im nichtlinearen System selbst erzeugt
wird und nicht bereits im Eingangssignal enthalten war, ändert sich die mittle-
re Rauschamplitude bei Vorschalten eines linearen Dämpfungsglieds nicht. Man
kann nun eine Eingangsamplitude X, die in einer konkreten Anwendung größer als
die maximale Eingangsamplitude Xmax des nichtlinearen Systems ist, durch das
Vorschalten eines Dämpfungsglieds auf die maximale Eingangsamplitude Xmax

reduzieren und so einen maximalen Störabstand Smax erzielen.

A.5. Kaskade nichtlinearer Systeme

Einsetzen der Kennlinie des ersten Systems

y(1)(t) = f (1)
(
x(1)(t)

)
=

∞∑

l=0

c
(1)
l

(
x(1)(t)

)l
(A.33)

in die Kennlinie des zweiten Systems

y(2)(t) = f (2)
(
x(2)(t)

)
=

∞∑

m=0

c(2)
m

(
x(2)(t)

)m
(A.34)

ergibt die Kennlinie der Kaskade

y(t) = f(x(t)) = f (2)
(
f (1)(x(t))

)
=

∞∑

n=0

cnx
n(t) , (A.35)

siehe Abbildung A.6. Falls die Systeme wie in der Hochfrequenztechnik üblich
wechselspannungsgekoppelt sind, sind die Koeffizienten der konstanten Terme

c
(2)
0 = c

(1)
0 = 0.

3 Genauer handelt es sich bei dieser Definition um den sogenannten Spurious Free Dynamic
Range (SFDR).
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Dann ergeben sich die Koeffizienten der Kaskade wie folgt:

c0 =0

c1 =c(2)
1 c

(1)
1 ,

c2 =c(2)
1 c

(1)
2 + c

(2)
2 c

(1)
1

2
,

c3 =c(2)
1 c

(1)
3 + c

(2)
3 c

(1)
1

3
+ 2c(2)

2 c
(1)
2 c

(1)
1 ,

....

f(·)
XIP,3,1

YIP,3,1

f (1)(·)
X

(1)
IP,3,1

Y
(1)

IP,3,1

f (2)(·)
X

(2)
IP,3,1

Y
(2)

IP,3,1

x(t) = x(1)(t) y(1)(t) = x(2)(t) y(2)(t) = y(t)

x(t) y(t)

Abbildung A.6.: Kaskade nichtlinearer Systeme

Im Folgenden soll als wichtiges Maß zum quantitativen Beurteilen der Nichtli-
nearität der Interceptpunkt dritter Ordnung der Kaskade bestimmt werden. Der
eingangsseitige Interceptpunkt dritter Ordnung der Kaskade ist

XIP,3,1 =

√∣∣∣∣
4c1

3c3

∣∣∣∣ =

√√√√√√√

∣∣∣∣∣∣∣∣

4c(2)
1 c

(1)
1

3
(
c

(2)
1 c

(1)
3 + c

(2)
3 c

(1)
1

3
+ 2c(2)

2 c
(1)
2 c

(1)
1

)

∣∣∣∣∣∣∣∣
,
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siehe (A.24). Es folgt

1

XIP,3,1
=

√√√√√

∣∣∣∣∣∣
3c(1)

3

4c(1)
1

+
3c(2)

3 c
(1)
1

2

4c(2)
1

+ 2
3c(2)

2 c
(1)
2

4c(2)
1

∣∣∣∣∣∣

≈

√√√√√

∣∣∣∣∣∣
3c(1)

3

4c(1)
1

∣∣∣∣∣∣
+

∣∣∣∣∣∣
3c(2)

3 c
(1)
1

2

4c(2)
1

∣∣∣∣∣∣

=

√√√√√
1

X
(1)
IP,3,1

2 +
c

(1)
1

2

X
(2)
IP,3,1

2 .

Diese Approximation entspricht der Vorstellung, dass keine weiteren Intermodula-
tionsprodukte durch Wechselwirkungen zwischen den vom ersten System erzeug-
ten Intermodulationsprodukten im zweiten System entstehen. Aufgelöst nach dem
eingangsseitigen Interceptpunkt dritter Ordnung der Kaskade erhält man

XIP,3,1 ≈

√√√√√
1

X
(1)
IP,3,1

2 +
c

(1)
1

2

X
(2)
IP,3,1

2

−1

. (A.36)

Für den ausgangsseitigen Interceptpunkt dritter Ordnung der Kaskade folgt mit
(A.28)

YIP,3,1 = |c1|XIP,3,1 =
∣∣∣c(2)

1

∣∣∣
∣∣∣c(1)

1

∣∣∣XIP,3,1

≈

√√√√√√
1

c
(2)
1

2
c

(1)
1

2




1

X
(1)
IP,3,1

2 +
c

(1)
1

2

X
(2)
IP,3,1

2




−1

=

√√√√√√
1

c
(2)
1

2
c

(1)
1

2




c
(1)
1

2

Y
(1)

IP,3,1

2 +
c

(2)
1

2
c

(1)
1

2

Y
(2)

IP,3,1

2




−1

=

√√√√
1

c
(2)
1

2
Y

(1)
IP,3,1

2 +
1

Y
(2)

IP,3,1

2

−1

.

(A.37)

In einer Hochfrequenzverstärkerkaskade dominiert im allgemeinen der Intercept-
punkt des letzten Hochfrequenzverstärkers der Kaskade. Die Anforderungen an
die Großsignalfestigkeit steigen zum Ende der Hochfrequenzverstärkerkaskade hin
an. Im Gegensatz dazu steigen die Anforderungen bezüglich der Rauscharmut
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zum Anfang der Hochfrequenzverstärkerkaskade hin an, siehe (13.33). Weiterhin
erkennt man, dass man den eingangsseitigen Interceptpunkt durch Vorschalten ei-
nes linearen Dämpfungsgliedes erhöhen kann. Der ausgangsseitige Interceptpunkt
bleibt dabei jedoch unverändert.

A.6. Mischer

A.6.1. Idealer Mischer

Aufgabe eines Mischers ist es, ein Eingangssignal in einen anderen Frequenzbe-
reich umzusetzen. Mischer werden beispielsweise in Sendern und in Empfängern
eingesetzt. Ein idealer Mischer entspricht einem Multiplizierer, den man als nicht-
lineares Dreitor modellieren kann, siehe Abbildung A.7. Das Ausgangssignal

y(t) = xE(t) xO(t) (A.38)

ist das Produkt aus Eingangssignal xE(t) und Oszillatorsignal xO(t).

xE(t)

xO(t)

y(t)

Abbildung A.7.: Idealer Mischer

Die Wirkungsweise eines idealen Mischers soll anhand eines harmonischen Ein-
gangssignals

xE(t) = X cos(ωEt) = X
1

2

(
ejωEt + e−jωEt

)

und eines harmonischen Oszillatorsignals

xO(t) = 2 cos(ωOt) = ejωOt + e−jωOt

untersucht werden. Das Ausgangssignal ergibt sich in diesem Fall zu

y(t) =X
1

2

(
ejωEt + e−jωEt

) (
ejωOt + e−jωOt

)

=X
1

2

(
ej(ωE+ωO)t + ej(ωE−ωO)t + e−j(ωE+ωO)t + e−j(ωE−ωO)t

)

=X cos((ωE + ωO) t) +X cos((ωE − ωO) t) .

Es entstehen Signalanteile bei der Summe ωE + ωO und bei der Differenz ωE −
ωO der Kreisfrequenzen. Üblicherweise wird nur einer der beiden entstehenden
Signalanteile weiter genutzt und der andere durch Filter unterdrückt.
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A.6.2. Additiver Mischer

Analoge Multiplizierer für hochfrequente Signale lassen sich nur schwer realisieren.
Man behilft sich mit Mischern, die neben weiteren durch Filter zu unterdrücken-
den störenden Signalanteilen auch den gewünschten Signalanteil erzeugen. Der
in Abbildung A.8 gezeigte additive Mischer ist ein solcher Mischer. Er besteht
aus der Kaskade eines Addierers und eines nichtlinearen Systems mit quadrati-
scher Kennlinie. Als nichtlineare Bauelemente zum näherungsweisen Realisieren
eines nichtlinearen Systems mit quadratischer Kennlinie kann man beispielsweise
Dioden verwenden.

xE(t)

xO(t)

y(t)(·)2

Abbildung A.8.: Additiver Mischer

Das Ausgangssignal ergibt sich zu

y(t) = (xE(t) + xO(t))2 = x2
E(t) + 2xE(t) xO(t) + x2

O(t)

und enthält offensichtlich auch den gewünschten Signalanteil xE(t) xO(t). Falls das
nichtlineare System keine perfekt quadratische Kennlinie hat, entstehen weitere
Signalanteile.

A.6.3. Multiplikativer Mischer

Die Idee des multiplikativen Mischers besteht darin, dass eine Multiplikation mit
einer Rechteckschwingung einem periodischen Umpolen des Signals entspricht und
dies lässt sich relativ einfach mit Schaltern realisieren, siehe Abbildung A.9. Auf-
grund der charakteristischen Schaltungsstruktur wird der multiplikative Mischer
auch als Ringmischer bezeichnet. In der Hochfrequenztechnik können Schalter mit
Dioden realisiert werden.

Die Rechteckschwingung kann man als Fourier-Reihe darstellen:

xO(t) =
π

4

(
cos(ωOt) − 1

3
cos(3ωOt) +

1

5
cos(5ωOt) − . . .

)
.

Das Eingangssignal xE(t) wird nicht nur mit einem harmonischen Oszillatorsignal
der gewünschten Kreisfrequenz ωO multipliziert, sondern es entstehen auch noch
Mischprodukte mit allen ungeraden Oberwellen des Oszillatorsignals.
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xE(t)

xO(t)

y(t)

Abbildung A.9.: Multiplikativer Mischer

A.6.4. Quadraturmodulator

Ein Quadraturmodulator dient dem Erzeugen eines Bandpasssignals a(t) aus dem
äquivalenten komplexwertigen Tiefpasssignal u(t) [OL10; PS08]. Für die Tiefpass-
Bandpass-Transformation gilt

a(t) = Re
(
u(t) ejω0t

)
= Re(u(t)) cos(ω0t) − Im(u(t)) sin(ω0t) . (A.39)

Den Realteil Re(u(t)) des äquivalenten komplexwertigen Tiefpasssignals bezeich-
net man auch als Inphasekomponente und den Imaginärteil Im(u(t)) als Quadra-
turkomponente. Die Bezugskreisfrequenz ω0 der Tiefpass-Bandpass-Transforma-
tion entspricht in der Regel der Mittenkreisfrequenz des Bandpasssignals.

Die Realisierung eines Quadraturmodulators erfordert zwei Mischer, siehe Ab-
bildung A.10. Die beiden um π/2 gegeneinander phasenverschobenen Oszillator-
signale kann man aus einem einzigen Oszillatorsignal unter Verwenden eines Pha-
senschiebers erzeugen. Der Phasenschieber besteht im einfachsten Fall aus einem
Leitungsstück passender Länge.

Re(u(t))

Im(u(t))

cos(ωOt)

− sin(ωOt)

a(t)

Abbildung A.10.: Quadraturmodulator

Moderne nach dem sogenannten direktumsetzenden Prinzip arbeitende Sen-
der bestehen im Wesentlichen aus einem Quadraturmodulator. Das äquivalente
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komplexwertige Tiefpasssignal u(t) wird digital erzeugt.

A.6.5. Quadraturdemodulator

Ein Quadraturdemodulator dient dem Erzeugen des zu einem Bandpasssignal a(t)
äquivalenten komplexwertigen Tiefpasssignals u(t). Das Bandpasssignal gemäß
(A.39) kann man umformen in4

a(t) =
1

2
u(t) ejω0t +

1

2
u∗(t) e−jω0t .

Multiplizieren des Bandpasssignals a(t) mit

2 cos(ω0t) − j2 sin(ω0t) = 2 e−jω0t

ergibt (
1

2
u(t) ejω0t +

1

2
u∗(t) e−jω0t

)
2 e−jω0t = u(t) + u∗(t) e−j2ω0t .

Nach Unterdrücken der Signalanteile u∗(t) e−j2ω0t bei der doppelten Kreisfrequenz
2ω0 mit einem Tiefpass verbleibt das gesuchte äquivalente komplexwertige Tief-
passsignal u(t). Man erhält den in Abbildung A.11 gezeigten Quadraturdemodu-
lator.

Re(u(t))

Im(u(t))

2 cos(ωOt)

−2 sin(ωOt)

a(t)

Abbildung A.11.: Quadraturdemodulator

Moderne nach dem sogenannten direktumsetzenden Prinzip arbeitende Emp-
fänger bestehen im Wesentlichen aus einem Quadraturdemodulator. Das äquiva-
lente komplexwertige Tiefpasssignal u(t) wird digital weiterverarbeitet.

4 Der Realteil einer komplexen Größe berechnet sich zu Re(x) = 1
2 (x+ x∗).
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Anhang B.

Fourier-Analyse

B.1. Zeitbereichsanalyse

B.1.1. Anwendungsbeispiel der Zeitbereichsanalyse

Die Fourier-Analyse ist ein wichtiger Bestandteil vieler Messverfahren in der
Hochfrequenztechnik. Im Folgenden sollen einige diesbezügliche Signalverarbei-
tungsaspekte diskutiert werden, die neben hochfrequenztechnischen Aspekten beim
Konzipieren von Messsystemen und beim Interpretieren von Messergebnissen zu
berücksichtigen sind.

Als Beispiel eines linearen zeitinvarianten Systems wird eine Leitung betrach-
tet, siehe Abbildung B.1. Es wird angenommen, dass die Leitung dispersionsfrei
ist. Die Phasengeschwindigkeit vp ist dann frequenzunabhängig und gleich der
Lichtgeschwindigkeit c, siehe (2.44). Die dem Streuparameter S2,1 gemäß (10.18)
entsprechende Übertragungsfunktion der Leitung ergibt sich mit (2.43) und (1.1)
zu

H(f) = e−j2πf l
c .

a1b1

a2 b2

RNRN RN

l
Tor 1 Tor 2

Abbildung B.1.: Leitung mit Verzögerung t0 = l/c

Durch inverse Fourier-Transformation der Übertragungsfunktion H(f) erhält
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man die Impulsantwort [FB08]

h(t) = F−1(H(f)) =
∞w

−∞
H(f) ej2πft df. (B.1)

Im obigen Beispiel erhält man die Impulsantwort1

h(t) =
∞w

−∞
e−j2πf l

c ej2πft df =
∞w

−∞
ej2πf(t− l

c) df =


 ej2πf(t− l

c)

j2π
(
t− l

c

)




∞

f=−∞

= lim
f→∞

ej2πf(t− l
c) − e−j2πf(t− l

c)

j2π
(
t− l

c

) = lim
f→∞

sin
(
2πf

(
t− l

c

))

π
(
t− l

c

)

= δ

(
t− l

c

)

der Leitung. Insbesondere ist die Fourier-Transformierte des Dirac-Impulses

F(δ(t)) = 1. (B.2)

Die Impulsantwort h(t) der Leitung beschreibt die Verzögerung

t0 =
l

c

eines Signals, das sich mit der Lichtgeschwindigkeit c über die Leitung der Länge l
ausbreitet. Auch in vielen anderen Beispielen besteht ein direkter Zusammenhang
zwischen der Impulsantwort h(t) und der Geometrie des Systems. Es ist daher von
Interesse, aus der messtechnisch einfacher zu ermittelnden Übertragungsfunkti-
on H(f) die Impulsantwort h(t) zu berechnen. Die praktische Umsetzung dieser
Zeitbereichsanalyse wird in den folgenden Abschnitten diskutiert.

Die Fourier-Transformation

H(f) = F(h(t)) =
∞w

−∞
h(t) e−j2πft dt (B.3)

ist die Umkehrtransformation der inversen Fourier-Transformation. Mit der Aus-

1 Es gilt δ(t) = lim
f→∞

sin(2πft)
πt

.
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blendeigenschaft des Dirac-Impulses gilt

F
(
F−1(H(f))

)
=

∞w

−∞

∞w

−∞
H(ϕ) ej2πϕt dϕ e−j2πft dt

=
∞w

−∞
H(ϕ)

∞w

−∞
ej2π(ϕ−f)t dt dϕ

=
∞w

−∞
H(ϕ) δ(ϕ− f) dϕ

=H(f) .

Die Fourier-Transformation ist eine lineare Transformation. Es gelten das Pro-
portionalitätsprinzip

F(h(t)) =
∞w

−∞
ch(t) e−j2πft dt = c

∞w

−∞
h(t) e−j2πft dt = cF(h(t)) (B.4)

und das Superpositionsprinzip

F(g(t) + h(t)) =
∞w

−∞
(g(t) + h(t)) e−j2πft dt

=
∞w

−∞
g(t) e−j2πft dt+

∞w

−∞
h(t) e−j2πft dt

=F(g(t)) + F(h(t)) .

(B.5)

Weiterhin gilt der Ähnlichkeitssatz

F(h(ct)) =
∞w

−∞
h(ct) e−j2πft dt =

1

|c|

∞w

−∞
h(τ) e−j2π f

c
τ dτ =

1

|c|H
(
f

c

)
, (B.6)

wobei von der Substitution τ = ct Gebrauch gemacht wurde.
Aus der Symmetrie der Formeln (B.1) und (B.3) folgt die Dualität der Fourier-

Transformation:

F−1(h(f)) =
∞w

−∞
h(f) ej2πft df =

∞w

−∞
h(f) e−j2πf(−t) df = H(−t) . (B.7)

Hiermit erhält man die Fourier-Transformierte der konstanten Funktion

F(1) = δ(f) . (B.8)
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Mit der Fourier-Transformation

S(f) = F(s(t)) =
∞w

−∞
s(t) e−j2πft dt

von s(t) folgt das Faltungstheorem

F(s(t) h(t)) =
∞w

−∞
s(t) h(t) e−j2πft dt

=
∞w

−∞
s(t)

∞w

−∞
H(ϕ) ej2πϕt dϕ e−j2πft dt

=
∞w

−∞

∞w

−∞
s(t) e−j2π(f−ϕ)t dt

︸ ︷︷ ︸
S(f−ϕ)

H(ϕ) dϕ

=S(f) ∗H(f) = F(s(t)) ∗ F(h(t)) .

(B.9)

Die Multiplikation im Zeitbereich entspricht einer Faltung im Frequenzbereich.
Wegen der Dualität der Fourier-Transformation gilt weiterhin

F−1(S(f)H(f)) = F−1(S(f)) ∗ F−1(H(f)) . (B.10)

Die inverse Fourier-Transformierte der konjugiert komplexen Übertragungs-
funktion H∗(f) ist

F−1(H∗(f)) =
∞w

−∞
H∗(f) ej2πft df =




∞w

−∞
H(f) ej2πf(−t) df




∗

= h∗(−t) . (B.11)

Die Impulsantwort h(t) eines physikalischen Systems ist stets reell, das heißt
es gilt

h(t) = h∗(t) .

Daraus folgt mit (B.6) und (B.11) die Symmetrie

H(f) = H∗(−f) . (B.12)

der Übertragungsfunktion H(f). Der Realteil Re(H(f)) der Übertragungsfunkti-
on H(f) ist eine gerade Funktion der Frequenz f und der Imaginärteil Im(H(f))
der Übertragungsfunktion H(f) ist eine ungerade Funktion der Frequenz f .
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B.1.2. Kausalität

Die Impulsantwort h(t) eines physikalischen Systems ist stets kausal. Mit der
Vorzeichenfunktion

sign(t) =





1 t > 0

−1 t < 0

gilt daher im Zeitbereich
h(t) = sign(t) h(t) .

Die Fourier-Transformierte (B.3) der Vorzeichenfunktion ergibt sich zu

F(sign(t)) =
∞w

−∞
sign(t) e−j2πft dt = −

0w

−∞
e−j2πft dt+

∞w

0

e−j2πft dt

= − 2j
∞w

0

sin(2πft) dt = −2j

[
−cos(2πft)

2πf

]∞

t=0

= − j

πf
.

(B.13)

Mit dem Faltungstheorem (B.9) folgt bei kausaler Impulsantwort h(t) für die
Übertragungsfunktion2

H(f) = F(h(t)) = F(sign(t) h(t)) =

(
− j

πf

)
∗H(f) = − j

π

∞w

−∞

H(ϕ)

f − ϕ
dϕ.

Nach Realteil und Imaginärteil getrennt gilt:

Re(H(f)) =
1

π

∞w

−∞

Im(H(ϕ))

f − ϕ
dϕ,

Im(H(f)) = − 1

π

∞w

−∞

Re(H(ϕ))

f − ϕ
dϕ.

Man kann den Realteil Re(H(f)) der Übertragungsfunktion H(f) aus dem Ima-
ginärteil Im(H(f)) der Übertragungsfunktion H(f) berechnen und umgekehrt.

Unter Ausnutzen der Symmetrie der Übertragungsfunktion H(f) bei reeller

2 Die Hilbert-Transformierte von h(t) ist F−1(−j sign(f)H(f)) = 1
πt

∗ h(t).
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Impulsantwort h(t) gemäß (B.12) folgt

Re(H(f)) =
1

π

0w

−∞

Im(H(ϕ))

f − ϕ
dϕ+

1

π

∞w

0

Im(H(ϕ))

f − ϕ
dϕ

= − 1

π

∞w

0

Im(H(ϕ))

f + ϕ
dϕ+

1

π

∞w

0

Im(H(ϕ))

f − ϕ
dϕ

=
2

π

∞w

0

ϕ Im(H(ϕ))

f 2 − ϕ2
dϕ.

(B.14)

Analog erhält man

Im(H(f)) = − 1

π

0w

−∞

Re(H(ϕ))

f − ϕ
dϕ− 1

π

∞w

0

Re(H(ϕ))

f − ϕ
dϕ

= − 1

π

∞w

0

Re(H(ϕ))

f + ϕ
dϕ− 1

π

∞w

0

Re(H(ϕ))

f − ϕ
dϕ

= − 2

π

∞w

0

f Re(H(ϕ))

f 2 − ϕ2
dϕ.

(B.15)

Dies sind die Kramers-Kronig-Beziehungen [Kra27; Kro26].

B.1.3. Bandbegrenzung

In der Praxis wird man die Messung der Übertragungsfunktion H(f) nur in ei-
nem begrenzten Frequenzbereich mit einer Bandbreite B, das heißt für Frequen-
zen −B/2 < f < B/2 durchführen können. Mathematisch entspricht dies einer
Multiplikation

G(f) = H(f)W (f) (B.16)

mit der Fensterfunktion

W (f) =
1

B
rect

(
f

B

)
=





1
B

−B < f < B

0 sonst
(B.17)

im Frequenzbereich, siehe Abbildung B.2.
Gemäß dem Faltungstheorem (B.10) ergibt sich die Impulsantwort g(t) durch

Faltung mit der Impulsantwort w(t) des Fensters zu

g(t) = F−1(H(f)W (f)) = h(t) ∗ w(t) . (B.18)
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−B
2

0 B
2

0

f

Übertragungsfunktion

|H(f)|
arg(H(f))

0 t0

0

t

h
(t

)

Impulsantwort

−B
2

0 B
2

0

f

Fensterfunktion

|W (f)|
arg(W (f))

B

0 1
B

0

1

t

w
(t

)
Impulsantwort des Fensters

−B
2

0 B
2

0

f

Übertragungsfunktion

|G(f)|
arg(G(f))

0 t0

0

t

g
(t

)

Impulsantwort

Abbildung B.2.: Bandbegrenzung am Beispiel der Übertragungsfunktion G(f)
und der Impulsantwort g(t) einer Leitung
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Die Impulsantwort des Rechteckfensters W (f) ergibt sich mit der inversen Fourier-
Transformation (B.1) zu

w(t) = F−1(W (f)) =
∞w

−∞
W (f) ej2πft df

=
∞w

−∞

1

B
rect

(
f

B

)
ej2πft df =

B
2w

− B
2

1

B
ej2πft df

=

B
2w

− B
2

1

B
cos(2πft) df =

[
1

B

sin(2πft)

2πt

]B
2

f=− B
2

=
sin(πBt)

πBt
= si(πBt) .

(B.19)

Diese unter dem Namen Spaltfunktion bekannte Impulsantwort w(t) hat große
Nebenmaxima, was in manchen Anwendungen störend ist. Man verwendet dann
andere optimierte Fensterfunktionen W (f) [KK12; OS10; SM05]. Die Fensterfunk-
tionW (f), siehe (B.17), wurde so normiert, dass das Maximum der Impulsantwort
w(t) des Fensters eins ist:

1 = w(0) =
∞w

−∞
W (f) df. (B.20)

Falls die Impulsantwort h(t) aus einem einzigen Dirac-Impuls besteht, kann man
das Gewicht des Dirac-Impulses bei derartiger Normierung der Fensterfunktion
W (f) direkt am Maximalwert der einer Spaltfunktion entsprechenden Impuls-
antwort g(t) ablesen.

B.1.4. Tiefpassmodus

Messungen der Übertragungsfunktion H(f) erfolgen typischerweise beginnend bei
einer Startfrequenz fStart bis zu einer Stopfrequenz fStop, das heißt mit einer Mit-
tenfrequenz

f0 =
fStop + fStart

2
und einer Bandbreite

B = fStop − fStart.

Bei bekannter Übertragungsfunktion H(f) bei positiven Frequenzen f kann die
Übertragungsfunktion H(−f) bei negativen Frequenzen −f wegen der Symmetrie
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der Übertragungsfunktion H(f) bei reellen Impulsantworten h(t) gemäß (B.12)
durch konjugiert komplexe Spiegelung leicht ergänzt werden:

H(f) =




H(f) f > 0

H∗(−f) f < 0
. (B.21)

Es bleibt die Bandbegrenzung auf fStart < |f | < fStop. Diese in einer Bandpass-
übertragungsfunktion GBP(f) resultierende Vorgehensweise wird als Tiefpassmo-
dus bezeichnet.

Die Bandpassübertragungsfunktion

GBP(f) = H(f)WBP(f) (B.22)

kann man sich als durch Verwenden einer speziellen Fensterfunktion

WBP(f) =
1

2

1

B
rect

(
f + f0

B

)

︸ ︷︷ ︸
W(f+f0)

+
1

2

1

B
rect

(
f − f0

B

)

︸ ︷︷ ︸
W(f−f0)

(B.23)

entstanden denken, siehe (B.17) und Abbildung B.3. Diese FensterfunktionWBP(f)
ist entsprechend (B.20) normiert.

Durch inverse Fourier-Transformation (B.1) erhält man

F−1(W (f − f0)) =
∞w

−∞
W (f − f0) ej2πft df

=
∞w

−∞
W (ϕ) ej2π(ϕ+f0)t dϕ

=
∞w

−∞
W (ϕ) ej2πϕt dϕ ej2πf0t

=w(t) ej2πf0t,

(B.24)

wobei von der Substitution ϕ = f − f0 Gebrauch gemacht wurde. Die Frequenz-
verschiebung W (f − f0) im Frequenzbereich entspricht einer Multiplikation mit
ej2πf0t im Zeitbereich.

Schließlich folgt mit (B.4), (B.5) und (B.19) die Impulsantwort

wBP(t) =F−1(WBP(f))

=F−1
(1

2
W (f + f0) +

1

2
W (f − f0)

)

=
1

2
w(t) e−j2πf0t +

1

2
w(t) ej2πf0t

=w(t) cos(2πf0t)

= si(πBt) cos(2πf0t)

(B.25)
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des Fensters. Insbesondere bei im Vergleich zur Bandbreite B großer Mittenfre-
quenz f0 ergibt sich eine stark oszillierende Impulsantwort wBP(t) des Fensters,
siehe Abbildung B.3. Die gepunktet gezeichnete Hüllkurve der Impulsantwort
wBP(t) des Fensters entspricht der Impulsantwort w(t) des Rechteckfensters ge-
mäß (B.19).

−fStop −f0 −fStart 0 fStart f0 fStop

0

f

Fensterfunktion

|WBP(f)|
arg(WBP(f))

B B

0 1
B

0

1

t

w
B

P
(t

)

Impulsantwort des Fensters

Abbildung B.3.: Fensterfunktion GBP(f) und Impulsantwort wBP(t) des Fensters
im Tiefpassmodus am Beispiel f0 = 1,75B

B.1.5. Bandpassmodus

Beim Bandpassmodus verschiebt man die im Frequenzbereich fStart < f < fStop

mit einer Mittenfrequenz f0 gemessene Übertragungsfunktion H(f) um f0 zu
kleineren Frequenzen f hin, ohne den konjugiert komplex gespiegelten Anteil
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der Übertragungsfunktion H(f) bei negativen Frequenzen f zu verwenden. Un-
ter Berücksichtigen der Fensterfunktion W (f) gemäß (B.17) erhält man die auf
−B/2 < f < B/2 bandbegrenzte Tiefpassübertragungsfunktion

GTP(f) = H(f + f0)W (f + f0) . (B.26)

Diese Tiefpassübertragungsfunktion GTP(f) erfüllt im Allgemeinen nicht die Sym-
metrieeigenschaften gemäß (B.12). Die aus der Tiefpassübertragungsfunktion GTP(f)
durch inverse Fourier-Transformation (B.1) berechnete Tiefpassimpulsantwort

g
TP

(t) = F−1(GTP(f)) =
∞w

−∞
GTP(f) ej2πft df (B.27)

ist daher im Allgemeinen komplex.
Mit (B.21), (B.22) und (B.23) ergibt sich die Bandpassübertragungsfunktion

als Funktion der Tiefpassübertragungsfunktion zu

GBP(f) =
1

2
GTP(f − f0) +

1

2
G∗

TP(− (f + f0)) .

Durch inverse Fourier-Transformation (B.1) erhält man mit (B.4), (B.5), (B.6)
und (B.11) die reelle Bandpassimpulsantwort3

gBP(t) =F−1(GBP(f))

=F−1
(

1

2
GTP(f − f0) +

1

2
G∗

TP(− (f + f0))
)

=
1

2
gTP(t) ej2πf0t +

1

2
g∗

TP(t) e−j2πf0t

= Re
(
g

TP
(t) ej2πf0t

)
.

(B.28)

Das Verschieben um f0 im Frequenzbereich entspricht der Multiplikation mit
ej2πf0t im Zeitbereich und das Ergänzen des konjugiert komplex gespiegelten An-
teils der Übertragungsfunktion GBP(f) bei negativen Frequenzen f im Frequenz-
bereich entspricht dem Bilden des Realteils im Zeitbereich. Die komplexe Tief-
passimpulsantwort g

TP
(t) und die reelle Bandpassimpulsantwort gBP(t), siehe Ab-

bildung B.4, sind über die Tiefpass-Bandpass-Transformation miteinander ver-
knüpft, vergleiche (A.39).

3 Der Realteil einer komplexen Größe berechnet sich zu Re(x) = 1
2 (x+ x∗).
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0 t0

0

t

g B
P
(t

)
Tiefpassmodus

0 t0

0

t

∣ ∣ ∣g
T

P
(t

)∣ ∣ ∣

Bandpassmodus

Abbildung B.4.: Vergleich von Tiefpassmodus und Bandpassmodus am Beispiel
der Impulsantworten einer Leitung. f0 = 1,75B

B.1.6. Abtastung

In der Praxis wird man die Messung der Übertragungsfunktion G(f) nur bei
einigen diskreten Frequenzen f durchführen können, das heißt die Übertragungs-
funktion G(f) wird im Frequenzbereich abgetastet. Mit der Dirac-Impulsfolge

X(f) =
∞∑

n=−∞
δ(f − n) (B.29)

erhält man die äquidistant mit der Abtastperiode F abgetastete Übertragungs-
funktion4

∞∑

n=−∞
G(nF )F δ(f − nF ) =

∞∑

n=−∞
G(nF )F δ

(
F

(
f

F
− n

))

=
∞∑

n=−∞
G(nF ) δ

(
f

F
− n

)

=G(f)X

(
f

F

)
.

(B.30)

Mit der Ausblendeigenschaft des Dirac-Impulses ergibt sich die inverse Fourier-

4 Für den Dirac-Impuls gilt δ(Ff) = 1
|F | δ(f).
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Transformierte (B.1) der Dirac-Impulsfolge zu

F−1

(
X

(
f

F

))
=F−1

( ∞∑

n=−∞
F δ(f − nF )

)

=
∞∑

n=−∞

∞w

−∞
F δ(f − nF ) ej2πft df

=
∞∑

n=−∞
F ejnFt .

Diese Funktion ist periodisch mit der Periode 1/F . Mit (B.2), dem Faltungstheo-
rem (B.9) und (B.19) gilt

δ(t) =F−1(1) = F−1

( ∞∑

n=−∞
rect

(
f − nF

F

))

=F−1

(
rect

(
f

F

)
∗

∞∑

n=−∞
δ(f − nF )

)

=F−1

(
1

F
rect

(
f

F

)
∗ X

(
f

F

))

= si(πFt) F−1

(
X

(
f

F

))
.

Für die inverse Fourier-Transformierte der Dirac-Impulsfolge gilt daher

F−1

(
X

(
f

F

))
=





δ(t) t = 0

? t = ± 1
F
,± 2

F
, . . .

0 sonst

.

Zusammen mit der 1/F -Periodizität der inversen Fourier-Transformierten der
Dirac-Impulsfolge erhält man

F−1

(
X

(
f

F

))
=

∞∑

n=−∞
δ
(
t− n

F

)
=

∞∑

n=−∞
δ
(

1

F
(Ft− n)

)

=F
∞∑

n=−∞
δ(Ft− n) = FX(Ft) ,

(B.31)

das heißt die inverse Fourier-Transformierte der Dirac-Impulsfolge ist wieder eine
Dirac-Impulsfolge.
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Entsprechend dem Faltungstheorem (B.10) entspricht die als Multiplikation mit
der Dirac-Impulsfolge X

(
f
F

)
beschriebene Abtastung im Frequenzbereich einer

Faltung mit der Dirac-Impulsfolge FX(Ft) im Zeitbereich:

gp(t) = g(t) ∗ FX(Ft) = g(t) ∗
∞∑

n=−∞
δ
(
t− n

F

)
=

∞∑

n=−∞
g
(
t− n

F

)
. (B.32)

Die Faltung mit der Dirac-Impulsfolge FX(Ft) im Zeitbereich entspricht einer
periodischen Wiederholung mit der Periodendauer

D =
1

F
. (B.33)

Falls die Impulsantwort gp(t) auf das Intervall −D/2 < t < D/2 zeitbegrenzt
wäre, das heißt falls das Abtasttheorem erfüllt wäre, wäre eine perfekte Rekon-
struktion der Impulsantwort g(t) durch Multiplikation mit einem Rechteckfenster
möglich:

g(t) = gp(t) rect
(
t

D

)
= gp(t) rect(Ft) . (B.34)

Da die Übertragungsfunktion G(f) bandbegrenzt ist, kann die Impulsantwort
gp(t) allerdings nur näherungsweise zeitbegrenzt sein, so dass bei geschickter Pa-
rametrisierung bestenfalls eine näherungsweise Rekonstruktion möglich ist.

Die Impulsantwort berechnet sich durch inverse Fourier-Transformation (B.1)
aus den Abtastwerten der Übertragungsfunktion G(f) unter Verwenden der Aus-
blendeigenschaft des Dirac-Impulses zu

gp(t) =F−1

( ∞∑

n=−∞
G(nF )F δ(f − nF )

)

=
∞w

−∞

∞∑

n=−∞
G(nF )F δ(f − nF ) ej2πft df

=F
∞∑

n=−∞
G(nF ) ej2πnF t .

(B.35)

Dies ist eine Fourier-Reihe.
Die Übertragungsfunktion G(f) ist aufgrund des Anwendens der Fensterfunk-

tion W (f) bandbegrenzt. Im Folgenden wird vereinfachend nur der Fall einer
ungeraden Anzahl

M = 2N + 1 (B.36)

an nichtverschwindenden Abtastwerten

Gn = G(nF ) , n = −N . . .+N, (B.37)
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weiter betrachtet. Es ergibt sich die Impulsantwort

gp(t) = F
N∑

n=−N
Gn ej2πnF t . (B.38)

Mit (B.18) ergibt sich die Impulsantwort zu

gp(t) = h(t) ∗ w(t) ∗ FX(Ft) .

Mit dem Faltungstheorem (B.10) und (B.31) gilt

w(t) ∗ (FX(Ft)) = F−1(W (f) F(FX(Ft))) = F−1

(
W (f)X

(
f

F

))
.

Falls ein Rechteckfenster (B.17) verwendet wird, folgt analog zu (B.30) mit

B = MF, (B.39)

der inversen Fourier-Transformation (B.1) und der Ausblendeigenschaft des Dirac-
Impulses5

F−1

(
W (f)X

(
f

F

))
=F−1

(
1

B
rect

(
f

B

) ∞∑

n=−∞
F δ(f − nF )

)

=F−1


 1

B

N∑

n=−N
F δ(f − nF )




=
1

M

N∑

n=−N
F−1(δ(f − nF ))

=
1

M

N∑

n=−N

∞w

−∞
δ(f − nF ) ej2πft df

=
1

M

N∑

n=−N
ej2πnF t =

1

M
e−j2πNFt

2N=M−1∑

n=0

ej2πnF t

=
1

M
e−j2πNFt 1 − ej2πMFt

1 − ej2πF t
=

1

M

e−jπMFt − ejπMFt

e−jπF t − ejπF t

=
sin(πMFt)

M sin(πFt)
= diM(2πFt) .

(B.40)

5 Die Summenformel der geometrischen Reihe lautet
M−1∑
m=0

qm = 1−qM

1−q
.
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Das heißt die Bandbegrenzung und die Abtastung zusammen bewirken eine Fal-
tung der Impulsantwort h(t) mit dem Dirichlet-Kern diM(2πFt).

Für die Abtastwerte der mit der Abtastperiode

T =
D

M
=

1

MF
(B.41)

abgetasteten Impulsantwort gp(t) folgt aus (B.38)

gp,m = gp(mT ) =
1

MT

N∑

n=−N
Gn ej2πmn

M , m = −N . . .+N. (B.42)

Dies ist eine inverse diskrete Fourier-Transformation, siehe Abbildung B.5.6 Eine
Periode der Impulsantwort gp(t) enthält M Abtastwerte.

−7 0 7

0

f/F

Frequenzbereich

|Gn|
arg(Gn)

−7 0 7

0

t/T

Zeitbereich

gp,m

g(t)

Abbildung B.5.: Abtastung im Frequenzbereich und im Zeitbereich. Die am linken
Bildrand deutlich sichtbare Abweichung der Abtastwerte gp,m

von der Impulsantwort g(t) resultiert aus der periodischen Wie-
derholung

Mit der schnellen Fourier-Transformation existiert ein aufwandsgünstiger Algo-
rithmus zum Berechnen der inversen diskreten Fourier-Transformation [PTVF07;
CT65]. Die üblichen Implementierungen der inversen diskreten Fourier-Transfor-
mation erwarten abweichend, dass der erste Abtastwert der zur Frequenz f = 0
beziehungsweise der zum Zeitpunkt t = 0 gehörende ist. Mit dem die Abtastwerte
Gn der Übertragungsfunktion G(f) enthaltenden Vektor G und der Abtastperiode
T im Zeitbereich ergibt sich der Matlab-Code

6 Bei der allgemein üblichen Definition der inversen diskreten Fourier-Transformation ist der
Vorfaktor nicht 1

MT
sondern 1

M
. Bei Verwenden eines Rechteckfensters (B.17) kürzt sich der

zusätzliche Vorfaktor 1/T der inversen diskreten Fourier-Transformation mit dem Vorfaktor
1/B = T der Fensterfunktion weg.
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gp = fftshift(ifft(ifftshift(G))) / T;

zum Berechnen des Vektors gp mit den Abtastwerten gp,m der Impulsantwort
gp(t).7

Hinsichtlich der Parametrisierung gilt:

• Die Bandbreite B ist hinreichend groß zu wählen, so dass eine ausreichende
zeitliche Auflösung T der Impulsantwort h(t) erzielt wird.

• Die Abtastperiode F im Frequenzbereich ist hinreichend klein zu wählen,
so dass die Periodendauer D im Zeitbereich deutlich größer als die Dauer
der Impulsantwort h(t) ist.

• Bei Kombination der Abtastung mit dem Tiefpassmodus ist besonders dar-
auf zu achten, dass die Übertragungsfunktion H(f) bei ganzzahligen Viel-
fachen der Abtastperiode F abgetastet wird. Insbesondere muss die Start-
frequenz fStart ein ganzzahliges Vielfaches der Abtastperiode F sein.

Anwenden der diskreten Fourier-Transformation auf die Abtastwerte gp,m, m =
−N . . .+N , der Impulsantwort gp(t) ergibt unter Ausnutzen der Periodizität der
komplexen Exponentialfunktion89

T
N∑

m=−N
gp,m e−j2πmn

M =T
N∑

m=−N

1

MT

N∑

l=−N
Gl e

j2πml
M e−j2πmn

M

=
1

M

N∑

l=−N
Gl

M−1∑

m=0

ej2πm l−n
M

=
1

M

N∑

l=−N
Gl





M l = n

1 − ej2πm(l−n)

1 − ej2πm l−n
M

= 0 l 6= n

=Gn.

(B.43)

Die diskrete Fourier-Transformation ist die exakte Umkehrtransformation der in-
versen diskreten Fourier-Transformation. Die M Abtastwerte gp,m, m = −N . . .+

7 Der angegebene Matlab-Code berücksichtigt neben dem Fall der ungeraden Anzahl M an
Abtastwerten auch den Fall der geraden Anzahl an Abtastwerten. In beiden Fällen gibt es
einen Abtastwert der Übertragungsfunktion G(f) exakt bei der Frequenz f = 0. Per Konven-
tion gibt es dann bei einer geraden Anzahl an Abtastwerten einen zusätzlichen Abtastwert
der Übertragungsfunktion G(f) bei negativen Frequenzen f .

8 Bei der allgemein üblichen Definition der diskreten Fourier-Transformation fehlt der Vorfak-
tor T .

9 Die Summenformel der geometrischen Reihe lautet
M−1∑
m=0

qm = 1−qM

1−q
.
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N , der Impulsantwort gp(t) im Zeitbereich enthalten exakt die selbe Information
wie die M Abtastwerte Gn, n = −N . . .+N , der Übertragungsfunktion G(f) im
Frequenzbereich.

B.1.7. Überabtastung im Zeitbereich

Zur besseren graphischen Darstellung der Impulsantwort gp(t) möchte man die
Verläufe zwischen den Abtastwerten gp,m, m = −N . . . + N , der Impulsantwort
gp(t) mit der Abtastperiode T interpolieren, das heißt man möchte viele Zwischen-
werte bestimmen. Das Resultat ist eine Überabtastung um einen ganzzahligen,
vereinfachend wieder ungeraden Faktor Mz/M im Zeitbereich. Die Abtastperiode
im Zeitbereich ist dann

Tz =
D

Mz

=
1

MzF
, (B.44)

vergleiche (B.41).
Das korrekte Interpolationsverfahren zum Berechnen der

Mz = 2Nz + 1 (B.45)

Abtastwerte
gp,m = gp(mTz) , m = −Nz . . .+Nz, (B.46)

der Impulsantwort gp(t) resultiert aus dem Auswerten der Fourier-Reihe (B.38):

gp,m = gp(mTz) =
1

MT

N∑

n=−N
Gn ej2πmzn

Mz =
1

MzTz

Nz∑

n=−Nz

Gn ej2πmn
Mz . (B.47)

Dies ist wieder eine inverse diskrete Fourier-Transformation. Im Vergleich zu
(B.42) wurden jetzt Mz statt M Abtastwerte berechnet. Das Reduzieren der
Abtastperiode Tz im Zeitbereich entspricht einem Erhöhen der Bandbreite im
Frequenzbereich, wobei allerdings die zusätzlichen berücksichtigten Abtastwerte
Gn der Übertragungsfunktion G(f) außerhalb des Fensters liegen, das heißt alle
Null sind und somit keine zusätzliche Information verwendet wurde. Man spricht
auch von Zero-Padding, siehe Abbildung B.6. Die mit der Periodendauer D im
Zeitbereich verknüpfte Abtastperiode F im Frequenzbereich bleibt unverändert.

Mit dem die M Abtastwerte Gn der Übertragungsfunktion G(f) enthaltenden
Vektor G, der Anzahl N der Abtastwerte Gn der Übertragungsfunktion G(f) bei
negativen Frequenzen f < 0 und der Abtastperiode Tz im Zeitbereich bei Über-
abtastung ergibt sich der Matlab-Code

gp = fftshift(ifft([G(N+1:M); zeros(Mz - M); G(1:N)])) / Tz;
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−7 0 7

0

f/F

Frequenzbereich

|Gn|
arg(Gn)

−7 0 7

0

t/T

Zeitbereich

gp,m

Abbildung B.6.: Zero Padding im Frequenzbereich und Überabtastung im Zeit-
bereich. Dreifache Überabtastung Mz/M = 3. M = 15

zum Berechnen des Vektors gp mit den Mz Abtastwerten gp,m der überabgetasteten
Impulsantwort gp(t).10

Wollte man ausgehend von den M Abtastwerten gp,m, m = −N . . . + N , der
Impulsantwort gp(t) die Zwischenwerte durch Interpolation bestimmen, müsste
man zunächst mit einer diskreten Fourier-Transformation (B.43) die Abtastwerte
Gn, n = −N . . .+N , der Übertragungsfunktion G(f) berechnen.

B.2. Spektralanalyse

B.2.1. Spektralanalyse deterministischer Signale

Die Spektralanalyse deterministischer Signale ist dual zur Zeitbereichsanalyse,
siehe Anhang B.1. Die Gleichungen folgen mit der Dualität der Fourier-Transfor-
mation (B.7) auf einfache Weise aus den entsprechenden Gleichungen der Zeitbe-
reichsanalyse und werden daher im Folgenden nicht nochmals hergeleitet.

Ziel der Spektralanalyse ist das Bestimmen des Spektrums

X(f) = F(x(t)) (B.48)

eines Signals x(t) mit im Allgemeinen unbegrenzter Dauer. Der endlichen zur
Verfügung stehenden Messdauer D entspricht die Multiplikation

y(t) = x(t)w(t) (B.49)

10 Der angegebene Matlab-Code berücksichtigt beliebige ganzzahlige Faktoren Mz/M der Über-
abtastung und somit neben dem Fall der ungeraden Anzahl M an Abtastwerten auch den
Fall der geraden Anzahl an Abtastwerten.
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mit einer Fensterfunktion w(t) im Zeitbereich. Im Frequenzbereich entspricht dies
einer Faltung

Y (f) = X(f) ∗W (f) (B.50)

mit
W (f) = F(w(t)) . (B.51)

Der Abtastung

∞∑

n=−∞
y(nT )T δ(t− nT ) = y(t)X

(
t

T

)
(B.52)

des Signals y(t) mit der Abtastperiode T entspricht eine periodische Wiederholung
des Spektrums Y (f) mit der Periode

B =
1

T
. (B.53)

Falls das Spektrum Y (f) auf −B/2 < f < B/2 bandbegrenzt wäre, würden sich
die periodischen Wiederholungen nicht überlappen und das Abtasttheorem wäre
erfüllt. Da das Signal y(t) zeitbegrenzt ist, kann das Spektrum Y (f) allerdings
nur näherungsweise bandbegrenzt sein, so dass bei geschickter Parametrisierung
bestenfalls eine näherungsweise Rekonstruktion möglich ist. Im Folgenden sei die
Anzahl

M = 2N + 1 (B.54)

der Abtastwerte vereinfachend wieder ungerade. Mit der Abtastperiode

T =
D

M
(B.55)

werden M Abtastwerte

yn = y(nT ) , n = −N . . .+N, (B.56)

des Signals y(t) während der Messdauer D gewonnen.
Anwenden der Fensterfunktion und Abtasten im Zeitbereich zusammen ent-

sprechen bei Verwenden eines Rechteckfensters

w(t) =
1

D
rect

(
t

D

)
(B.57)

einer Faltung
Y p(f) = X(f) ∗ diM(2πfT ) (B.58)
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mit dem Dirichlet-Kern

diM(2πfT ) =
sin(πfMT )

M sin(πfT )
(B.59)

im Frequenzbereich. Die gesamte Information ist in den M mit einer Abtastperi-
ode

F =
B

M
=

1

D
(B.60)

gewonnenen Abtastwerten

Y p,m = Y p(mF ) , m = −N . . .+N, (B.61)

des Spektrums Y p(f) enthalten. Die Abtastperiode F wird auch als Auflöseband-
breite (Resolution Bandwidth, RBW) bezeichnet. Die Messdauer D ist umgekehrt
proportional zur Auflösebandbreite F .

Als Beispiel soll ein harmonisches, das heißt sinusförmiges Signal

x(t) = A cos(2πf0t+ ϕ) (B.62)

betrachtet werden. Das Spektrum dieses Signals x(t) ergibt sich mit (B.4), (B.5)
und (B.24) zu

X(f) =F(A cos(2πf0t+ ϕ))

=F
(
A

2
e−j(2πf0t+ϕ) +

A

2
ej(2πf0t+ϕ)

)

=F
(
A

2
e−j2πf0t e−jϕ +

A

2
ej2πf0t ejϕ

)

=
A

2
δ(f + f0) e−jϕ +

A

2
δ(f − f0) ejϕ .

(B.63)

Mit der Ausblendeigenschaft des Dirac-Impulses folgt das Spektrum

Y p(f) =
(
A

2
δ(f + f0) e−jϕ +

A

2
δ(f − f0) ejϕ

)
∗ diM(2πfT )

=
A

2
diM(2π (f + f0)T ) e−jϕ +

A

2
diM(2π (f − f0)T ) ejϕ

(B.64)

des bandbegrenzten abgetasteten Signals, dessen Betragsquadrat in Abbildung

B.7 dargestellt ist. Dargestellt sind die Betragsquadrate
∣∣∣Y p,m

∣∣∣
2
, m = −N . . .+N ,

der mit der Abtastperiode F gewonnenen Abtastwerte Y p,m, m = −N . . . + N ,

und die Betragsquadrate
∣∣∣Y p(f)

∣∣∣
2

der durch Überabtastung berechneten Zwi-
schenwerte Y p(f). Wegen F ≪ f ≪ B überlappen sich die Beiträge der beiden
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0
0

A2

4

f

∣ ∣ ∣Y
p
(f

)∣ ∣ ∣2
∣∣∣Y p(f)

∣∣∣
2

Sample Detector
Peak Detector

−f0 f0

F F F F

Abbildung B.7.: Spektralanalyse eines harmonischen Signals x(t). Da das Be-

tragsquadrat
∣∣∣Y p(f)

∣∣∣
2

des Spektrums Y p(f) symmetrisch ist,
wird üblicherweise nur der Anteil bei positiven Frequenzen f
dargestellt

gegeneinander verschobenen Dirichlet-Kerne praktisch nicht, und man kann die

Leistung des Signals x(t) direkt am Maximum des Betragsquadrates
∣∣∣Y p(f)

∣∣∣
2

des
Spektrums Y p(f) ablesen.

Ein praktisches Problem der Spektralanalyse besteht darin, dass man häufig
eine große Bandbreite B mit einer kleinen Abtastperiode F abtastet, was eine

sehr große Anzahl M an Abtastwerten
∣∣∣Y p,m

∣∣∣
2
, m = −N . . . + N , zur Folge hat.

Es ist dann nicht mehr möglich, zusätzlich auch eine noch größere Anzahl an

Zwischenwerten
∣∣∣Y p(f)

∣∣∣
2

darzustellen. Man löst dieses Problem, indem man mit
einem Detektor einen einzigen Repräsentanten je Abtastintervall m auswählt:

Sample Detector: Im einfachsten Fall ist dieser Repräsentant das Betragsqua-

drat
∣∣∣Y p,m

∣∣∣
2

des Abtastwertes Y p,m. Diese mit einer vom Signal x(t) un-

abhängigen konstanten Abtastperiode F gewonnen Repräsentanten
∣∣∣Y p,m

∣∣∣
2

eigenen sich als Grundlage für eine weitere Signalverarbeitung, siehe zum
Beispiel Anhang B.2.2.

Peak Detector: Wenn das Ziel jedoch das Bestimmen der Leistung eines har-
monischen Signals x(t) ist, dessen Frequenz f0 in der Regel kein ganzzahli-
ges Vielfaches der Abtastperiode F ist, sollte man als Repräsentanten das

Maximum max
(m− 1

2 )F<f<(m+ 1
2 )F

{∣∣∣Y p(f)
∣∣∣
2
}

des Betragsquadrates
∣∣∣Y p(f)

∣∣∣
2

des
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B.2. Spektralanalyse

Spektrums Y p(f) innerhalb des m-ten Abtastintervalls wählen.

Übliche Spektralanalysatoren stellen die Repräsentanten des Spektrums Y p(f)
logarithmisch dar und beschriften die Achse mit der Leistung, die ein entspre-
chendes harmonisches Signal x(t) hätte.

B.2.2. Spektralanalyse stochastischer Signale

Es werden zufällige Signale x(t) betrachtet, aus denen durch Anwenden einer Fens-
terfunktion und Abtasten zufällige Abtastwerte des Signals yn resultieren. Der
m-te Abtastwert Y p,m des Spektrums Y p(f) ist eine, durch die diskrete Fourier-
Transformation (B.43) beschriebene, lineare Funktion der mittelwertfreien Ab-
tastwerte yn, n = −N . . . + N . Die Aufgabe besteht nun darin, die der Leistung
entsprechende Varianz

σ2
m = E

{∣∣∣Y p,m

∣∣∣
2
}

= E
{∣∣∣Y p(f = mF )

∣∣∣
2
}

(B.65)

des mittelwertfreien Abtastwertes Y p,m des Spektrums Y p(f) zu schätzen.
Falls die Überlappung der periodisch wiederholten Spektren infolge der Abtas-

tung im Zeitbereich vernachlässigbar ist, folgt mit (B.10), (B.11) und (B.49) die
Näherung

E
{∣∣∣Y p(f)

∣∣∣
2
}

≈ E
{
|Y (f)|2

}
= E{Y (f)Y ∗(f)}

= E{F(y(t) ∗ y∗(−t))}

= E



F




∞w

−∞
y(τ + t) y∗(τ) dτ







= E



F




∞w

−∞
x(τ + t)w(τ + t) x∗(τ)w∗(τ) dτ







=F



∞w

−∞
E{x(τ + t)x∗(τ)}w(τ + t)w∗(τ) dτ




Die Autokorrelationsfunktion stationärer Signale x(t) ist von τ unabhängig:

Rxx(t) = E{x(τ + t) x(τ)} . (B.66)

Mit (B.9), (B.10) und (B.11) folgt schließlich die auf die Auflösebandbreite F
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normierte Varianz

1

F
E
{∣∣∣Y p(f)

∣∣∣
2
}

=
1

F
E
{∣∣∣Y p(f)

∣∣∣
2
}

≈ 1

F
F



∞w

−∞
E{x(τ + t)x∗(τ)}w(τ + t)w∗(τ) dτ




=
1

F
F



∞w

−∞
Rxx(t)w(τ + t)w(τ) dτ




=F(Rxx(t)) ∗ F(w(t) ∗ w(−t))
F

= F(Rxx(t))︸ ︷︷ ︸
Leistungsdichtespektrum

∗|F(w(t))|2
F

.

(B.67)

Die Faltung mit |F(w(t))|2 /F bewirkt eine Glättung des Leistungsdichtespek-
trums F(Rxx(t)). Die Frequenzauflösung ist aufgrund der endlichen Messdauer

begrenzt. Die auf die Auflösebandbreite normierte Varianz E
{∣∣∣Y p(f)

∣∣∣
2
}
/F ent-

spricht Näherungsweise der Leistungsdichte.
Realteil Re

(
Y p,m

)
und Imaginärteil Im

(
Y p,m

)
des Abtastwertes Y p,m haben

jeweils die Varianz σ2
m/2. Wenn man die Messung K-mal wiederholt, stehen K

Realisationen Y (k)
p,m, k = 1 . . .K, dieser Zufallsvariablen zum Schätzen der Varianz

σ2
m zur Verfügung. Wenn die Abtastwerte yn, n = −N . . . + N , des Signals mit-

telwertfrei normalverteilt sind, dann ist auch der Abtastwert Y p,m des Spektrums
Y p(f) mittelwertfrei normalverteilt. Da die K Messungen Y (k)

p,m, k = 1 . . .K, sto-
chastisch unabhängig sind, ergibt sich die Verbundwahrscheinlichkeitsdichte als
Produkt der Wahrscheinlichkeitsdichten der Randverteilungen:

p
(
Y (1)

p,m, . . . , Y
(K)
p,m

)
=

K∏

k=1

1√
πσ2

m

e
−

Re2(Y
(k)
p,m)

σ2
m

1√
πσ2

m

e
−

Im2(Y
(k)
p,m)

σ2
m

=
1

(πσ2
m)K

e
−

K∑
k=1

|Y
(k)
p,m|2

σ2
m .

Man kann die Verbundwahrscheinlichkeitsdichte p
(
Y (1)

p,m, . . . , Y
(K)
p,m

)
als Funkti-

on des zu schätzenden Parameters

σ2
m = θ
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auffassen und erhält so die Likelihood-Funktion

p
(
Y (1)

p,m, . . . , Y
(K)
p,m; θ

)
=

1

(πθ)K
e−

K∑
k=1

|Y
(k)
p,m|2

θ .

Die Maximum-Likelihood-Schätzung

σ̂2
m = θ̂ = arg max

θ

{
p
(
Y (1)

p,m, . . . , Y
(K)
p,m; θ

)}

ist derjenige Wert des Parameters θ, für den die Likelihood-Funktion maximal
wird [Kay93]. Zum Bestimmen der Maximum-Likelihood-Schätzung θ̂ setzt man
die Ableitung der Likelihood-Funktion gleich Null:

∂ p
(
Y (1)

p,m, . . . , Y
(K)
p,m; θ̂

)

∂θ̂
=0,

− K

πK θ̂K+1
e−

K∑
k=1

|Y
(k)
p,m|2

θ̂ +
1

πK θ̂K

K∑
k=1

∣∣∣Y (k)
p,m

∣∣∣
2

θ̂2
e−

K∑
k=1

|Y
(k)
p,m|2

θ̂ =0,

−K +

K∑
k=1

∣∣∣Y (k)
p,m

∣∣∣
2

θ̂
=0

σ̂2
m = θ̂ =

1

K

K∑

k=1

∣∣∣Y (k)
p,m

∣∣∣
2
. (B.68)

Die im Sinne des Maximum-Likelihood-Kriteriums optimale Schätzung der Vari-

anz σ̂2
m erhält man durch Mitteln (Averaging) über die Betragsquadrate

∣∣∣Y (k)
p,m

∣∣∣
2
,

k = 1 . . .K der K Messungen Y (k)
p,m, k = 1 . . .K. Diese Vorgehensweise ist auch

als Bartlett-Methode bekannt [KK12].
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Anhang B. Fourier-Analyse

B.3. Fourier-Korrespondenzen

Als weiteres Ergebnis der Herleitungen in diesem Kapitel erhält man die in Tabelle
B.1 zusammengestellten Fourier-Korrespondenzen.

Tabelle B.1.: Zusammenstellung der wichtigsten Fourier-Korrespondenzen

Gleichung Zeitbereich Frequenzbereich

(B.1)
∞r

−∞
X(f) ej2πft df X(f)

(B.3) x(t)
∞r

−∞
x(t) e−j2πft dt

(B.4) cx(t) cX(f)
(B.5) x(t) + y(t) X(f) + Y (f)

(B.6) x(ct) 1
|c|X

(
f
c

)

(B.7) X(−t) x(f)
(B.9) x(t) y(t) X(f) ∗ Y (f)
(B.10) x(t) ∗ y(t) X(f) Y (f)
(B.11) x∗(−t) X∗(f)
(B.12) x(t) = x∗(t) X(f) = X∗(−f )
(B.24) x(t) ej2πf0t X(f − f0)
(B.2) δ(t) 1
(B.8) 1 δ(f)
(B.13) sign(t) − j

πf

(B.19) si(πBt) = sin(πBt)
πBt

1
B

rect
(
f
B

)

(B.31) FX(Ft) X

(
f
F

)

(B.63) A cos(2πf0t+ ϕ) A
2
δ(f + f0) e−jϕ +A

2
δ(f − f0) ejϕ
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Anhang C.

Lösungen der Aufgaben

Aufgabe 1.1 Für das infinitesimale Flächenelement dAz gilt

z

∂ dAz

〈 ~D, ~u〉 ds =
rechts obenw

rechts unten

〈 ~D, ~ux〉 ds+
links obenw

rechts oben

〈 ~D, ~uy〉 ds

−
links untenw

links oben

〈 ~D, ~ux〉 ds−
rechts untenw

links unten

〈 ~D, ~uy〉 ds

=



Dx

(
x0 + dx

2
, y0, z0

)
−Dx

(
x0 − dx

2
, y0, z0

)

dx

+
Dy

(
x0, y0 + dy

2
, z0

)
−Dy

(
x0, y0 − dy

2
, z0

)

dx


 dx dy

=

(
∂Dx

∂x
+
∂Dy

∂y

)
dAz,

siehe Abbildung C.1.

x

y

z x0

y0

dx

dydAz

Abbildung C.1.: Infinitesimales Flächenelement dAz = dx dy
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Anhang C. Lösungen der Aufgaben

Da sich nicht infinitesimale Flächen A in unendlich viele infinitesimale Flä-
chenelemente zerlegen lassen und sich die Linienintegrale entlang der inneren
Begrenzungen wegkürzen, folgt

x

A

(
∂Dx

∂x
+
∂Dy

∂y

)
dA =

z

∂A

〈 ~D, ~u〉 ds.

Aufgabe 1.2 Unter Verwenden von (1.14) und (1.31) erhält man

div
(
rot
(
~H
))

= div

((
∂Hz

∂y
− ∂Hy

∂z

)
~ux +

(
∂Hx

∂z
− ∂Hz

∂x

)
~uy +

(
∂Hy

∂x
− ∂Hx

∂y

)
~uz

)

=
∂

∂x

(
∂Hz

∂y
− ∂Hy

∂z

)
+

∂

∂y

(
∂Hx

∂z
− ∂Hz

∂x

)
+

∂

∂z

(
∂Hy

∂x
− ∂Hx

∂y

)

=0.

Aufgabe 1.3 Für die Differenz der Normalkomponenten der elektrischen Fluss-
dichten erhält man mit der z-Komponente (1.20) des Durchflutungsgesetzes und
(1.31)

〈 ~D1 − ~D2, ~uz〉 =D1z −D2z

=
1

jω

(
∂

∂x

(
H1y −H2y

)
− ∂

∂y
(H1x −H2x)

)
− 1

jω
(J1z − J2z)

=
1

jω
div






H1y −H2y

−H1x +H2x

0





− 1

jω
(J1z − J2z)

=
1

jω
div

((
~H1 − ~H2

)
× ~uz

)
− 1

jω
(J1z − J2z) .

Mit der Grenzflächenbedingung (1.60) der Tangentialkomponenten der magneti-
schen Feldstärken und der Kontinuitätsgleichung (1.41) erhält man schließlich

〈 ~D1 − ~D2, ~uz〉 = − 1

jω
div

(
~JF

)
− 1

jω
(J1z − J2z) = ρ

eF
.

Dies ist die Grenzflächenbedingung (1.57) der Normalkomponenten der elektri-
schen Flussdichten.

Dual erhält man für die Differenz der Normalkomponenten der magnetischen
Flussdichten mit der z-Komponente (1.27) des Induktionsgesetzes, (1.31), der
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Grenzflächenbedingung (1.58) der Tangentialkomponenten der elektrischen Feld-
stärken und der Kontinuitätsgleichung (1.43) die Grenzflächenbedingung (1.59)
der Normalkomponenten der magnetischen Flussdichten:

〈 ~B1 − ~B2, ~uz〉 =B1z −B2z

= − 1

jω

(
∂

∂x

(
E1y −E2y

)
− ∂

∂y
(E1x − E2x)

)
− 1

jω
(M 1z −M 2z)

= − 1

jω
div






E1y − E2y

−E1x + E2x

0





− 1

jω
(M 1z −M 2z)

= − 1

jω
div

((
~E1 − ~E2

)
× ~uz

)
− 1

jω
(M1z −M 2z)

= − 1

jω
div

(
~MF

)
− 1

jω
(M 1z −M2z)

=ρ
mF
.

Aufgabe 1.4 Unter Verwenden von (1.31) und (1.14) und unter Berücksichtigen
der Produktregel der Ableitung erhält man

div
(
~E × ~H

)
= div((EyHz − EzHy) ~ux + (EzHx − ExHz) ~uy + (ExHy − EyHx) ~uz)

=
∂

∂x
(EyHz −EzHy) +

∂

∂y
(EzHx − ExHz) +

∂

∂z
(ExHy −EyHx)

=
∂Ey

∂x
Hz + Ey

∂Hz

∂x
− ∂Ez

∂x
Hy −Ez

∂Hy

∂x

+
∂Ez

∂y
Hx + Ez

∂Hx

∂y
− ∂Ex

∂y
Hz − Ex

∂Hz

∂y

+
∂Ex

∂z
Hy + Ex

∂Hy

∂z
− ∂Ey

∂z
Hx −Ey

∂Hx

∂z

=

(
Hx

∂Ez

∂y
−Hx

∂Ey

∂z
+Hy

∂Ex

∂z
−Hy

∂Ez

∂x
+Hz

∂Ey

∂x
−Hz

∂Ex

∂y

)

−
(
Ex
∂Hz

∂y
−Ex

∂Hy

∂z
+ Ey

∂Hx

∂z
− Ey

∂Hz

∂x
+ Ez

∂Hy

∂x
− Ez

∂Hx

∂y

)

=〈 ~H,
(
∂Ez

∂y
− ∂Ey

∂z

)
~ux +

(
∂Ex

∂z
− ∂Ez

∂x

)
~uy +

(
∂Ey

∂x
− ∂Ex

∂y

)
~uz〉

− 〈 ~E,
(
∂Hz

∂y
− ∂Hy

∂z

)
~ux +

(
∂Hx

∂z
− ∂Hz

∂x

)
~uy +

(
∂Hy

∂x
− ∂Hx

∂y

)
~uz〉

=〈 ~H, rot
(
~E
)
〉 − 〈 ~E, rot

(
~H
)
〉.
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Aufgabe 2.1 Setzt man die aus der magnetischen Feldstärke ~H berechnete elek-
trische Feldstärke ~E in die mit (2.2) umgeformte Helmholtz-Gleichung (2.5) ein, so
erhält man unter Verwenden von (1.44) und der Quellenfreiheit des magnetischen
Feldes im ladungsfreien Raum ρm = 0, siehe (1.39) und (1.50),

∆ ~E + β2
0
~E = grad

(
div

(
~E
))

− rot
(
rot
(
~E
))

+ β2
0
~E

= − j
1

ωε

(
grad

(
div

(
rot
(
~H
)))

− rot
(
rot
(
rot
(
~H
)))

+ β2
0 rot

(
~H
))

= − j
1

ωε
rot
(
− rot

(
rot
(
~H
))

+ grad
(
div

(
~H
))

+ β2
0
~H
)

= − j
1

ωε
rot
(
∆ ~H + β2

0
~H
)

= ~0.

Aufgabe 2.2 Unter Verwenden von (1.31), (1.14) und (2.1) folgt aus (2.2)

∆ ~H = grad
(
div

(
~H
))

− rot
(
rot
(
~H
))

= grad

(
∂Hx

∂x
+
∂Hy

∂y
+
∂Hz

∂z

)

− rot

((
∂Hz

∂y
− ∂Hy

∂z

)
~ux +

(
∂Hx

∂z
− ∂Hz

∂x

)
~uy +

(
∂Hy

∂x
− ∂Hx

∂y

)
~uz

)

=

(
∂2Hx

∂x2
+
∂2Hy

∂x∂y
+
∂2Hz

∂x∂z

)
~ux +

(
∂2Hx

∂y∂x
+
∂2Hy

∂y2
+
∂2Hz

∂y∂z

)
~uy

+

(
∂2Hx

∂z∂x
+
∂2Hy

∂z∂y
+
∂2Hz

∂z2

)
~uz −

(
∂2Hy

∂y∂x
− ∂2Hx

∂y2
− ∂2Hx

∂z2
+
∂2Hz

∂z∂x

)
~ux

−
(
∂2Hz

∂z∂y
− ∂2Hy

∂z2
− ∂2Hy

∂x2
+
∂2Hx

∂x∂y

)
~uy −

(
∂2Hx

∂x∂z
− ∂2Hz

∂x2
− ∂2Hz

∂y2
+
∂2Hy

∂y∂z

)
~uz

=

(
∂2Hx

∂x2
+
∂2Hx

∂y2
+
∂2Hx

∂z2

)
~ux +

(
∂2Hy

∂x2
+
∂2Hy

∂y2
+
∂2Hy

∂z2

)
~uy

+

(
∂2Hz

∂x2
+
∂2Hz

∂y2
+
∂2Hz

∂z2

)
~uz

=
∂2 ~H

∂x2
+
∂2 ~H

∂y2
+
∂2 ~H

∂z2
.

Aufgabe 2.3 Die momentane elektrische Energiedichte ist

we =
1

2
ε
(
E2

x + E2
y

)
,
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siehe (1.45) und (1.74). Die momentane magnetische Energiedichte (1.75) berech-
net sich mit (1.49), (2.28), (1.2), (1.4) und (2.25) zu

wm =
1

2
µ
(
H2

x +H2
y

)
=

1

2
µ

(
E2

y

Z2
F

+
E2

x

Z2
F

)
=

1

2
ε
(
E2

x + E2
y

)
= we.

Die Norm des Poynting-Vektors gemäß (1.77) berechnet sich mit (2.28), (1.2),
(1.4) und (2.25) zu

∥∥∥~S
∥∥∥ = ExHy −EyHx =

√
ε

µ

(
E2

x + E2
y

)
.

Mit (2.30) und (2.44) folgt die Energiegeschwindigkeit

ve =
1√
εµ
.

Aufgabe 2.4 Ableiten der Phasengeschwindigkeit (2.43) nach der Kreisfrequenz
ergibt

∂vp

∂ω
=
β − ω ∂β

∂ω

β2
.

Auflösen nach der Gruppengeschwindigkeit (2.47) ergibt

vg =
ω

β − β2 ∂vp

∂ω

,

was sich mit (2.43) zu

vg =
vp

1 − ω
vp

∂vp

∂ω

vereinfachen lässt.

Aufgabe 2.5 Es handelt sich um eine elliptisch rechtsdrehend polarisierte Welle.
Allgemein gilt für die Momentanwerte der elektrischen Feldkomponenten

E0x = Re
(
E0x ejωt

)
= Re(E0x)︸ ︷︷ ︸

A=1 V m−1

cos(ωt) − Im(E0x)︸ ︷︷ ︸
B=0,5 V m−1

sin(ωt)

und
E0y = Re

(
E0y ejωt

)
= Re

(
E0y

)

︸ ︷︷ ︸
C=1 V m−1

cos(ωt) − Im
(
E0y

)

︸ ︷︷ ︸
D=−0,5 V m−1

sin(ωt) .
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Die Maximalwerte der elektrischen Feldstärkekomponenten sind dann

E0x,max = |E0x| =
√
A2 +B2 =

√
1,25V m−1

und
E0y,max =

∣∣∣E0y

∣∣∣ =
√
C2 +D2 =

√
1,25V m−1.

Der Betrag des momentanen elektrischen Feldstärkevektors ~E0 ergibt sich zu1

∥∥∥ ~E0

∥∥∥ =
√
E2

0x + E2
0y

=

√
A2 +B2 + C2 +D2

2
+
A2 − B2 + C2 −D2

2
cos(2ωt) − (AB + CD) sin(2ωt).

Die den Halbachsen entsprechenden Extremalwerte des Betrags des momentanen
elektrischen Feldstärkevektors ~E0 berechnet man damit zu2

∥∥∥ ~E0

∥∥∥
max,min

=

√√√√A2 +B2 + C2 +D2

2
±
√

(A2 −B2 + C2 −D2)2

4
+ (AB + CD)2

=

√√√√2,5

2
±
√

1,25

4
V m−1

=
√

1,25 ± 0,75V m−1.

Für die Zeitpunkte, zu denen die Extremalwerte erreicht werden, gilt

2 (ωt)max,min + arctan

(
2 (AB + CD)

A2 − B2 + C2 −D2

)
= 0, +π.

Hier ist
2 (AB + CD)

A2 − B2 + C2 −D2
= 0.

Daraus folgt für die Zeitpunkte, zu denen die Extremalwerte erreicht werden

(ωt)max,min = 0,
π

2
.

1 Es werden die Additionstheoreme cos2(α) = 1
2 (1 + cos(2α)), sin2(α) = 1

2 (1 − cos(2α)) und
sin(α) cos(β) = 1

2 (sin(α− β) + sin(α+ β)) verwendet.
2 Die Überlagerung A1 cos(2ωt)−A2 sin(2ωt) einer Kosinusschwingung und einer Sinusschwin-

gung gleicher Kreisfrequenz ergibt eine Kosinusschwingung
√
A2

1 +A2
2 cos(2ωt+ ϕ), für de-

ren Nullphase tan(ϕ) = A2

A1
gilt.
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Für den Winkel α, um den die große Hauptachse der Ellipse bezüglich der x-Achse
verdreht ist, gilt

tan(α) =
E0y ((ωt)max)

E0x ((ωt)max)
=
C cos((ωt)max) −D sin((ωt)max)

A cos((ωt)max) −B sin((ωt)max)
.

Mit den vorgegebene Werten und (ωt)max = 0 folgt

tan(α) = 1,

das heißt
α =

π

4
.

Man erhält die in Abbildung C.2 gezeigte Polarisationsellipse.

x

y

z

∥∥∥ ~E0

∥∥∥
max

∥∥∥ ~E0

∥∥∥
minα

E0x,max

E0y,max

Abbildung C.2.: Polarisationsellipse für E0x = (1 + j0,5) V m−1 und E0y =
(1 − j0,5) V m−1

Aufgabe 3.1 Mit (3.2) folgt aus (2.36) die kritische Kreisfrequenz

ωc =

√(
mπ
a

)2
+
(
nπ
b

)2

√
ε0µ0

.
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Tabelle C.1.: Kritische Kreisfrequenzen ωc

ωc m
0 1 2

0 1,89 · 1010 s−1 3,77 · 1010 s−1

n 1 3,14 · 1010 s−1 3,66 · 1010 s−1 4,91 · 1010 s−1

2 6,28 · 1010 s−1 6,56 · 1010 s−1 7,33 · 1010 s−1

Mit den Abmessungen a = 50 mm und b = 30 mm und (2.45) ergeben sich die
Zahlenwerte in Tabelle C.1.

Man erkennt, dass bei einer Kreisfrequenz von ω = 2 · 1010 s−1 nur TE1,0-Wellen
ausbreitungsfähig sind. Damit ergeben sich mit (2.46), (2.48), (2.42), (2.38), (2.45)
und (2.43):

vp =
c0√

1 −
(
ωc

ω

)2
= 9,17 · 108 m s−1,

vg =c0

√

1 −
(
ωc

ω

)2

= 0,981 · 108 m s−1,

λ =
2πvp

ω
= 28,8 cm.

Aufgabe 3.2 Mit (1.67), (1.46), (3.3) und (3.4) ergibt sich die elektrische Flä-
chenladungsdichte auf der linken Seitenwand x = 0

ρ
eF

= εEx = j
ωεµH0

β2
c

nπ

b
sin
(
nπy

b

)
e∓jβz,

der rechten Seitenwand x = a

ρ
eF

= − εEx = −j
ωεµH0

β2
c

nπ

b
cos(mπ) sin

(
nπy

b

)
e∓jβz

=





j
ωεµH0

β2
c

nπ

b
sin
(
nπy

b

)
e∓jβz m ungerade

−j
ωεµH0

β2
c

nπ

b
sin
(
nπy

b

)
e∓jβz m gerade

,

dem Boden y = 0

ρ
eF

= εEy = −j
ωεµH0

β2
c

mπ

a
sin
(
mπx

a

)
e∓jβz
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und dem Deckel y = b

ρ
eF

= − εEy = j
ωεµH0

β2
c

mπ

a
sin
(
mπx

a

)
cos(nπ) e∓jβz

=





−j
ωεµH0

β2
c

mπ

a
sin
(
mπx

a

)
e∓jβz n ungerade

j
ωεµH0

β2
c

mπ

a
sin
(
mπx

a

)
e∓jβz n gerade

.

Der Normaleneinheitsvektor auf der linken Seitenwand entspricht dem Einheits-
vektor ~ux in x-Richtung. Dies in (1.68) eingesetzt ergibt mit (3.1) und (3.6) die
elektrische Flächenstromdichte

~JF = − ~H × ~ux = Hy~uz −Hz~uy

= ± j
βH0

β2
c

nπ

b
sin
(
nπy

b

)
e∓jβz ~uz −H0 cos

(
nπy

b

)
e∓jβz ~uy

auf der linken Seitenwand x = 0 des Hohlleiters. Der Normaleneinheitsvektor der
rechten Seitenwand entspricht dem negativen Einheitsvektor −~ux in x-Richtung.
Dies in (1.68) eingesetzt ergibt mit (3.1) und (3.6) die elektrische Flächenstrom-
dichte

~JF = ~H × ~ux = −Hy~uz +Hz~uy

= ∓ j
βH0

β2
c

nπ

b
cos(mπ) sin

(
nπy

b

)
e∓jβz ~uz +H0 cos(mπ) cos

(
nπy

b

)
e∓jβz ~uy

auf der rechten Seitenwand x = a des Hohlleiters. Der Normaleneinheitsvektor
auf dem Boden entspricht dem Einheitsvektor ~uy in y-Richtung. Dies in (1.68)
eingesetzt ergibt mit (3.1) und (3.5) die elektrische Flächenstromdichte

~JF = − ~H × ~uy = Hz~ux −Hx~uz

=H0 cos
(
mπx

a

)
e∓jβz ~ux ∓ j

βH0

β2
c

mπ

a
sin
(
mπx

a

)
e∓jβz ~uz

auf dem Boden y = 0 des Hohlleiters. Der Normaleneinheitsvektor auf dem De-
ckel entspricht dem negativen Einheitsvektor −~uy in y-Richtung. Dies in (1.68)
eingesetzt ergibt mit (3.1) und (3.5) die elektrische Flächenstromdichte

~JF = ~H × ~uy = −Hz~ux +Hx~uz

= −H0 cos
(
mπx

a

)
cos(nπ) e∓jβz ~ux ± j

βH0

β2
c

mπ

a
sin
(
mπx

a

)
cos(nπ) e∓jβz ~uz
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x

y

z

~ H ~ E ~ J

Abbildung C.3.: Sich in positive z-Richtung ausbreitende TE1,0-Welle
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auf dem Deckel y = b des Hohlleiters.
In Abbildung C.3 sind die Ergebnisse für eine TE1,0-Welle graphisch dargestellt.

Die Überprüfung mit Hilfe der Kontinuitätsgleichung (1.41) ergibt mit (2.35)
für die linke Seitenwand x = 0 des Hohlleiters

div
(
~JF

)
=
β2H0

β2
c

nπ

b
sin
(
nπy

b

)
e∓jβz +H0

nπ

b
sin
(
nπy

b

)
e∓jβz

=
ω2εµH0

β2
c

nπ

b
sin
(
nπy

b

)
e∓jβz

= − jωρ
eF
,

für die rechte Seitenwand x = a des Hohlleiters

div
(
~JF

)
= − β2H0

β2
c

nπ

b
cos(mπ) sin

(
nπy

b

)
e∓jβz −H0 cos(mπ)

nπ

b
sin
(
nπy

b

)
e∓jβz

= − ω2εµH0

β2
c

nπ

b
cos(mπ) sin

(
nπy

b

)
e∓jβz

= − jωρ
eF
,

für den Boden y = 0 des Hohlleiters

div
(
~JF

)
= −H0

mπ

a
sin
(
mπx

a

)
e∓jβz −β2H0

β2
c

mπ

a
sin
(
mπx

a

)
e∓jβz

= − ω2εµH0

β2
c

mπ

a
sin
(
mπx

a

)
e∓jβz

= − jωρ
eF

und für den Deckel y = b des Hohlleiters

div
(
~JF

)
=H0

mπ

a
sin
(
mπx

a

)
cos(nπ) e∓jβz +

β2H0

β2
c

mπ

a
sin
(
mπx

a

)
cos(nπ) e∓jβz

=
ω2εµH0

β2
c

mπ

a
sin
(
mπx

a

)
cos(nπ) e∓jβz

= − jωρ
eF
.

Aufgabe 3.3 Mit (1.14) und (2.1) erhält man

rot(grad(φ)) = rot

(
∂φ

∂x
~ux +

∂φ

∂y
~uy +

∂φ

∂z
~uz

)

=

(
∂2φ

∂y∂z
− ∂2φ

∂z∂y

)
~ux +

(
∂2φ

∂z∂x
− ∂2φ

∂x∂z

)
~uy +

(
∂2φ

∂x∂y
− ∂2φ

∂y∂x

)
~uz

=~0.
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Aufgabe 3.4 Mit (1.31) und (2.1) erhält man

div(grad(φ)) = div

(
∂φ

∂x
~ux +

∂φ

∂y
~uy +

∂φ

∂z
~uz

)
=
∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
.

Aufgabe 3.5 Im Fall horizontaler Polarisation gilt mit (2.15) für die elektrischen
Feldstärken der beiden zu überlagernden ebenen homogenen Wellen

~E1 = E0 e−j〈~β1,~r〉 ~ux = E0 e−jβ0(y sin(α)+z cos(α)) ~ux

und
~E2 = E0 e−j〈~β2,~r〉 ~ux = E0 e−jβ0(−y sin(α)+z cos(α)) ~ux.

Es folgt für die Überlagerung der Wellen

~E1 + ~E2 = 2E0 cos(β0y sin(α)) e−jβ0z cos(α) ~ux.

Die magnetischen Feldstärken der zu überlagernden ebenen homogenen Wellen
ergeben sich durch sinngemäßes Anwenden von (2.28) zu

~H1 =
E0

ZF
e−jβ0(y sin(α)+z cos(α)) (cos(α) ~uy − sin(α) ~uz)

und
~H2 =

E0

ZF
e−jβ0(−y sin(α)+z cos(α)) (cos(α) ~uy + sin(α) ~uz) .

Hieraus erhält man für die Überlagerung der Wellen

~H1 + ~H2 =
2E0

ZF
e−jβ0z cos(α)

(cos(α) cos(β0y sin(α)) ~uy + j sin(α) sin(β0y sin(α)) ~uz) .

Das Ergebnis ist eine sich in z-Richtung ausbreitende transversalelektrische Welle
mit der Phasenkonstante

β = β0 cos(α) ,

woraus sich mit (2.12) die kritische Phasenkonstante

βc =
√
β2

0 − β2 = β0 sin(α)

ergibt. In y-Richtung hat die resultierende elektrische Feldstärke Nullstellen im
Abstand von

∆y =
π

β0 sin(α)
=

π

βc
.
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An den Orten der Nullstellen kann man einen elektrischen Leiter parallel zur x-
z-Ebene einfügen, ohne dass dies einen Einfluss auf das elektromagnetische Feld
hätte. Der Leiterabstand muss folglich ein ganzzahliges Vielfaches des Abstands
der Nullstellen sein:

b =
nπ

βc
.

Setzt man weiterhin

E0 = −j
ZFβ0

2βc

H0

ein, so erhält man bis auf eine vertikale Verschiebung in y-Richtung, die aus
Abschnitt 3.2.3.1 bekannte Lösung

~E1 + ~E2 = −j
ZFβ0H0

βc
cos
(
nπy

b

)
e−jβz ~ux

und
~H1 + ~H2 = −j

βH0

βc

cos
(
nπy

b

)
e−jβz ~uy +H0 sin

(
nπy

b

)
e−jβz ~uz.

Die transversalelektrische Welle entsteht durch Überlagern zweier zwischen den
Leitern reflektierter horizontal polarisierter ebener homogener Wellen.

Im Fall vertikaler Polarisation gilt mit (2.14) für die magnetischen Feldstärken
der beiden zu überlagernden ebenen homogenen Wellen

~H1 = H0 e−j〈~β1,~r〉 ~ux = H0 e−jβ0(y sin(α)+z cos(α)) ~ux

und
~H2 = H0 e−j〈~β2,~r〉 ~ux = H0 e−jβ0(−y sin(α)+z cos(α)) ~ux.

Es folgt für die Überlagerung der Wellen

~H1 + ~H2 = 2H0 cos(β0y sin(α)) e−jβ0z cos(α) ~ux.

Die elektrischen Feldstärken der zu überlagernden ebenen homogenen Wellen er-
geben sich durch sinngemäßes Anwenden von (2.27) zu

~E1 = H0ZF e−jβ0(y sin(α)+z cos(α)) (− cos(α) ~uy + sin(α) ~uz)

und
~E2 = H0ZF e−jβ0(−y sin(α)+z cos(α)) (− cos(α)~uy − sin(α) ~uz) .

Hieraus erhält man für die Überlagerung der Wellen

~E1 + ~E2 =2H0ZF e−jβ0z cos(α)

(− cos(α) cos(β0y sin(α)) ~uy − j sin(α) sin(β0y sin(α)) ~uz) .
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Das Ergebnis ist eine sich in z-Richtung ausbreitende transversalmagnetische Wel-
le mit der Phasenkonstante

β = β0 cos(α) ,

woraus sich mit (2.12) wieder die kritische Phasenkonstante

βc =
√
β2

0 − β2 = β0 sin(α)

ergibt. In y-Richtung hat die z-Komponente der resultierenden elektrischen Feld-
stärke Nullstellen im Abstand von

∆y =
π

β0 sin(α)
=

π

βc
.

An den Orten der Nullstellen der z-Komponente könnte man einen elektrischen
Leiter parallel zur x-z-Ebene einfügen. Die nicht verschwindende y-Komponente
der resultierenden elektrischen Feldstärke wäre eine Normalkomponente auf der
Oberfläche dieses Leiters. Der Leiterabstand muss auch hier ein ganzzahliges Viel-
faches des Abstands der Nullstellen sein:

b =
nπ

βc
.

Setzt man weiterhin

H0 = j
β0

2ZFβc
E0

ein, so erhält man die aus Abschnitt 3.2.3.1 bekannte Lösung

~H1 + ~H2 = j
β0E0

ZFβc

cos
(
nπy

b

)
e−jβz ~ux

und
~E1 + ~E2 = −j

βE0

βc
cos
(
nπy

b

)
e−jβz ~uy + E0 sin

(
nπy

b

)
e−jβz ~uz.

Die transversalmagnetische Welle entsteht durch Überlagern zweier zwischen den
Leitern reflektierter vertikal polarisierter ebener homogener Wellen.

Für den Winkel α gilt

sin(α) =
βc

β0
=
nπ

bβ0
.

Aus (2.46) folgt die Phasengeschwindigkeit

vp =
c√

1 −
(
βc

β0

)2

=
c√

1 − (sin(α))2
=

c

cos(α)

368



und aus (2.48) folgt die Gruppengeschwindigkeit

vg =c

√√√√1 −
(
βc

β0

)2

=c
√

1 − (sin(α))2 = c cos(α) ,

siehe Abbildung C.4.

vp

α
z

c

(a) Phasengeschwindigkeit

vg

α
z

c

(b) Gruppengeschwindigkeit

Abbildung C.4.: Ermitteln der Geschwindigkeiten durch Projektion der Lichtge-
schwindigkeit c

Aufgabe 3.6 Für die Kapazitätsbeläge gilt aus Symmetriegründen

C ′
1,0 = C ′

2,0 = C ′
1,2 = C ′,

siehe Abbildung 3.16. Mit (3.63), (3.63) und (3.63) folgen die Influenzbelagskoef-
fizienten:

c′
1,1 = C ′

1,0 + C ′
1,2 = 2C ′,

c′
2,2 = C ′

2,0 + C ′
1,2 = 2C ′,

c′
1,2 = −C ′

1,2 = −C ′.

Mit (3.70) erhält man schließlich den Kopplungsfaktor

k = −−C ′

2C ′ =
1

2
.
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Aufgabe 4.1 Die Tangentialvektoren und die metrischen Größen ergeben sich
entsprechend (4.11), (4.12) und (4.13) wie folgt:

~tr =
∂x

∂r
~ux +

∂y

∂r
~uy +

∂z

∂r
~uz = cos(ϕ) ~ux + sin(ϕ) ~uy,

gr =
∥∥∥~tr
∥∥∥ = 1,

~tϕ =
∂x

∂ϕ
~ux +

∂y

∂ϕ
~uy +

∂z

∂ϕ
~uz = −r sin(ϕ) ~ux + r cos(ϕ) ~uy,

gϕ =
∥∥∥~tϕ

∥∥∥ = r,

~tz =
∂x

∂z
~ux +

∂y

∂z
~uy +

∂z

∂z
~uz = ~uz,

gz =
∥∥∥~tz
∥∥∥ = 1.

Durch Normieren der Tangentialvektoren erhält man die Einheitsvektoren, ver-
gleiche (4.14), (4.15) und (4.16):

~ur = cos(ϕ) ~ux + sin(ϕ) ~uy,

~uϕ = − sin(ϕ) ~ux + cos(ϕ)~uy,

~uz =~uz.

Die Integrationselemente berechnet man entsprechend (4.19), (4.21) und (4.25)
zu:

‖d~s‖2 =g2
r dr2 + g2

ϕdϕ2 + g2
z dz2

=dr2 + r2dϕ2 + dz2,

d ~Ar =gϕgz dϕ dz~ur

=r dϕ dz~ur,

d ~Aϕ =grgz dr dz~uϕ
= dr dz~uϕ,

d ~Az =grgϕ dr dϕ~uz

=r dr dϕ~uz,

dV =grgϕgz dr dϕ dz

=r dr dϕ dϑ.

Schließlich ergeben sich analog zu (4.27), (4.29), (4.31) und (4.33) noch die
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Differentialoperatoren in Zylinderkoordinaten:

grad
(
φ
)

=
1

gr

∂φ

∂r
~ur +

1

gϕ

∂φ

∂ϕ
~uϕ +

1

gz

∂φ

∂z
~uz

=
∂φ

∂r
~ur +

1

r

∂φ

∂ϕ
~uϕ +

∂φ

∂z
~uz,

div
(
~D
)

=
1

grgϕgz

(
∂

∂r
(Drgϕgz) +

∂

∂ϕ

(
Dϕgrgz

)
+

∂

∂z
(Dzgrgϕ)

)

=
1

r

∂

∂r
(rDr) +

1

r

∂Dϕ

∂ϕ
+
∂Dz

∂z
,

rot
(
~H
)

=
1

gϕgz

(
∂

∂ϕ
{Hzgz) − ∂

∂z

(
Hϕgϕ

))
~ur

+
1

grgz

(
∂

∂z
(Hrgr) − ∂

∂r
(Hzgz)

)
~uϕ

+
1

grgϕ

(
∂

∂r

(
Hϕgϕ

)
− ∂

∂ϕ
(Hrgr)

)
~uz

=

(
1

r

∂Hz

∂ϕ
− ∂Hϕ

∂z

)
~ur +

(
∂H r

∂z
− ∂Hz

∂r

)
~uϕ +

(
1

r

∂

∂r

(
rHϕ

)
− 1

r

∂Hr

∂ϕ

)
~uz,

∆φ =
1

grgϕgz

(
∂

∂r

(
gϕgz

gr

∂φ

∂r

)
+

∂

∂ϕ

(
grgz

gϕ

∂φ

∂ϕ

)
+

∂

∂z

(
grgϕ
gz

∂φ

∂z

))

=
1

r

∂

∂r

(
r
∂φ

∂r

)
+

1

r2

∂2φ

∂ϕ2
+
∂2φ

∂z2
.

Aufgabe 4.2 Die Komponenten des vektoriellen Richtungsfaktors (4.42) ergeben
sich, wenn man das Volumen gemäß Abbildung C.5 in zwei Hälften zerlegt, zu3

F xyz =
y

V ′
1

Jxyz

(
~r′
)

ej〈~β,~r′〉 dV ′ +
y

V ′
2

Jxyz

(
~r′
)

ej〈~β,~r′〉 dV ′

=
y

V ′
1

Jxyz

(
~r′
)

ej〈~β,~r′〉 dV ′ +
y

V ′
1

J∗
xyz

(
~r′
)

e−j〈~β,~r′〉 dV ′

=
y

V ′
1

2 Re
(
Jxyz

(
~r′
)

ej〈~β,~r′〉
)

dV ′.

Der Richtungsfaktor F xyz ist hier reell. Damit ist das Argument arg
(
F xyz

)
des

Richtungsfaktors von der Raumrichtung unabhängig.

3 Der Realteil einer komplexen Größe berechnet sich zu Re(x) = 1
2 (x+ x∗).
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V ′
1

V ′
2

+~r′

−~r′

~β

Abbildung C.5.: Zum Berechnen des Phasenzentrums

Aufgabe 4.3 Mit

R =
√
ρ2 + z2

und der Greenschen Funktion

ψ(z) =
e−jβR

4πR

ergibt sich die erste Ableitung der Greenschen Funktion nach z zu

∂ψ(z)

∂z
=
∂ψ(z)

∂R

∂R

∂z

=
−jβ e−jβRR− e−jβR

4πR2

z√
ρ2 + z2

︸ ︷︷ ︸
R

= −e−jβR

4πR3
(jβR+ 1) z.

Die zweite Ableitung der Greenschen Funktion nach z berechnet sich zu

∂2ψ(z)

∂z2
= −

(
−jβ e−jβR (jβR+ 1) + e−jβR jβ

)
R3 − e−jβR (jβR+ 1) 3R2

4πR6

z2

R

− e−jβR

4πR3
(jβR+ 1)

=
(−β2R2 + j3βR+ 3) z2 − jβR3 − R2

4πR5
e−jβR .

Mit
z2 = R2 − ρ2

folgt schließlich

∂2ψ(z)

∂z2
=

(−β2R2 + j3βR+ 3) (R2 − ρ2) − jβR3 − R2

4πR5
e−jβR

=
−β2R4 + j2βR3 + 2R2 + β2R2ρ2 − j3βRρ2 − 3ρ2

4πR5
e−jβR .
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Für stückweise konstante Basisfunktionen fn(z′) vereinfacht sich (4.68) zu

Zm,n = − jZF

zn+ ∆z
2w

zn− ∆z
2

(
1

β

∂2ψ(z − z′)

∂z2

∣∣∣∣∣
zm

+ βψ(zm − z′)

)
2πρ dz′

= − jZF

zn+ ∆z
2w

zn− ∆z
2

e−jβRm

2βR5
m

(
j2βR3

m + 2R2
m + β2R2

mρ
2 − j3βRmρ

2 − 3ρ2
)
ρ dz′

= − jZF

zn+ ∆z
2w

zn− ∆z
2

e−jβRm

2βR5
m

(
(1 + jβRm)

(
2R2

m − 3ρ2
)

+ β2ρ2R2
m

)
ρ dz′.

Aufgabe 4.4 Zweimaliges Anwenden der Produktintegrationsregel ergibt

zlw

zk

(
∂2ψ(z − z′)

∂z2
+ β2ψ(z − z′)

)
fn(z′) dz′

=
zlw

zk

(
∂2ψ(z − z′)

∂z′2 fn(z′) + β2ψ(z − z′) fn(z′)

)
dz′

=

[
∂ψ(z − z′)

∂z′ fn(z′)

]zl

z′=zk

+
zlw

zk

(
−∂ψ(z − z′)

∂z′
∂fn(z′)

∂z′ + β2ψ(z − z′) fn(z′)

)
dz′

=

[
∂ψ(z − z′)

∂z′ fn(z′) − ψ(z − z′)
∂fn(z′)

∂z′

]zl

z′=zk

+
zlw

zk

(
∂2fn(z′)

∂z′2 + β2fn(z′)

)
ψ(z − z′) dz′

= −
[
∂ψ(z − z′)

∂z
fn(z′) + ψ(z − z′)

∂fn(z′)

∂z′

]zl

z′=zk

+
zlw

zk

(
∂2fn(z′)

∂z′2 + β2fn(z′)

)
ψ(z − z′) dz′.

Die Ableitungen der stückweise sinusförmigen Basisfunktionen fn(z′) berechnen
sich zu

∂fn(z′)

∂z′ =





β cos(β (z′ − zn−1))

sin(β∆z)
zn−1 ≤ z′ ≤ zn

−β cos(β (zn+1 − z′))

sin(β∆z)
zn ≤ z′ ≤ zn+1

373



Anhang C. Lösungen der Aufgaben

und

∂2fn(z′)

∂z′2 =





−β2 sin(β (z′ − zn−1))

sin(β∆z)
zn−1 ≤ z′ ≤ zn

−β2 sin(β (zn+1 − z′))

sin(β∆z)
zn ≤ z′ ≤ zn+1

= −β2fn(z′) .

Damit folgen
∂2fn(z′)

∂z′2 + β2fn(z′) = 0

und

zlw

zk

(
∂2ψ(z − z′)

∂z2
+ β2ψ(z − z′)

)
fn(z′) dz′

= −
[
∂ψ(z − z′)

∂z
fn(z′) + ψ(z − z′)

∂fn(z′)

∂z′

]zl

z′=zk

.

Die Impedanzen (4.68) berechnen sich bei Verwenden stückweise sinusförmiger
Basisfunktionen fn(z′) zu

Zm,n = − j
ZF2πρ

β

zn+1w

zn−1

(
∂2ψ(z − z′)

∂z2

∣∣∣∣∣
zm

+ β2ψ(zm − z′)

)
fn(z′) dz′

= − j
ZF2πρ

β

znw

zn−1

(
∂2ψ(z − z′)

∂z2

∣∣∣∣∣
zm

+ β2ψ(zm − z′)

)
fn(z′) dz′

− j
ZF2πρ

β

zn+1w

zn

(
∂2ψ(z − z′)

∂z2

∣∣∣∣∣
zm

+ β2ψ(zm − z′)

)
fn(z′) dz′

=j
ZF2πρ

β

[
∂ψ(z − z′)

∂z

∣∣∣∣∣
zm

fn(z′) + ψ(zm − z′)
∂fn(z′)

∂z′

]zn

z′=zn−1

+ j
ZF2πρ

β

[
∂ψ(z − z′)

∂z

∣∣∣∣∣
zm

fn(z′) + ψ(zm − z′)
∂fn(z′)

∂z′

]zn+1

z′=zn

.

Da die stückweise sinusförmige Basisfunktion fn(z′) für zn−1 und für zn+1 Null
wird, kürzen sich beim Einsetzen der Grenzen die Terme mit der Ableitung der
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Greenschen Funktion weg und man erhält4

Zm,n =j
ZF2πρ

β


ψ(zm − zn)

∂fn(z′)

∂z′

∣∣∣∣∣
zn

− ψ(zm − zn−1)
∂fn(z′)

∂z′

∣∣∣∣∣
zn−1

+ ψ(zm − zn+1)
∂fn(z′)

∂z′

∣∣∣∣∣
zn+1

− ψ(zm − zn)
∂fn(z′)

∂z′

∣∣∣∣∣
zn




=j
ZF2πρ

β


e−jβRm,n

4πRm,n

β cos(β∆z)

sin(β∆z)
− e−jβRm,n−1

4πRm,n−1

β

sin(β∆z)

− e−jβRm,n+1

4πRm,n+1

β

sin(β∆z)
+

e−jβRm,n

4πRm,n

β cos(β∆z)

sin(β∆z)




= − j
1

2
ZFρ


 e−jβRm,n−1

Rm,n−1 sin(β∆z)
− e−jβRm,n sin(2β∆z)

Rm,n sin2(β∆z)
+

e−jβRm,n+1

Rm,n+1 sin(β∆z)


.

Aufgabe 4.5

function J = momentenmethode(l, rho, N)

% MOMENTENMETHODE Strombelegung einer Dipolantenne berechnen.

% Dipolantenne mit auf die Wellenlaenge normierten Radius rho

% und normierter Laenge l.

% Es werden 2 * N + 1 Segmente verwendet.

% Beispielaufruf:

% J = momentenmethode(1.5, 0.005, 100);

ZF = 120 * pi; % Feldwellenwiderstand

beta = 2 * pi; % Phasenkonstante

U = 1; % Fusspunktspannung

deltaz = l / (2 * N + 1); % Segmentlaenge

% Impedanzmatrix berechnen

[zn,zm] = meshgrid((-N:N) * deltaz, (-N:N) * deltaz);

Z = -j * ZF * rho / 2 * ( ...

exp(-j * beta * sqrt(rho^2 + (zm - zn + deltaz).^2)) ...

./ sqrt(rho^2 + (zm - zn + deltaz).^2) / sin(beta * deltaz) ...

- exp(-j * beta * sqrt(rho^2 + (zm - zn).^2)) ...

* sin(2 * beta * deltaz) ...

4 Es wird das Additionstheorem sin(2α) = 2 sin(α) cos(α) verwendet.
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./ sqrt(rho^2 + (zm - zn).^2) / sin(beta * deltaz)^2 ...

+ exp(-j * beta * sqrt(rho^2 + (zm - zn - deltaz).^2)) ...

./ sqrt(rho^2 + (zm - zn - deltaz).^2) / sin(beta * deltaz));

% Strombelegung durch Loesen des linearen Gleichungssystems

E = zeros(2 * N + 1, 1);

E(N + 1) = -U / deltaz;

J = inv(Z) * E;

end

Aufgabe 5.1 Aus der Länge l = λ/2 der Dipolantenne folgt mit (4.43)

βl

2
=
π

2
.

Dies in (5.21) eingesetzt ergibt mit (5.18) den Richtungsfaktor

F ϑ(ϑ) = −2I0

β

cos
(
π
2

cos(ϑ)
)

sin(ϑ)
.

Daraus berechnet man mit (4.48) unter Verwenden von (4.2) und (4.50) die elek-
trische Feldstärke

~E = − j
β2

ωε

e−jβr

4πr
F ϑ~uϑ

=j
β

ωε

e−jβr

4πr
2I0

cos
(
π
2

cos(ϑ)
)

sin(ϑ)
~uϑ = jZF

e−jβr

2πr
I0

cos
(
π
2

cos(ϑ)
)

sin(ϑ)
~uϑ

im Fernfeld und schließlich folgt mit (4.53) die Strahlungsleistungsdichte

S =
ZF

2
|I0|2




cos
(
π
2

cos(ϑ)
)

2πr sin(ϑ)




2

im Fernfeld.
Die abgestrahlte Leistung ergibt sich mit (4.54) zu

P =
πw

ϑ=0

2πw

ϕ=0

ZF

2
|I0|2




cos
(
π
2

cos(ϑ)
)

2π sin(ϑ)




2

sin(ϑ) dϕ dϑ

=ZF
|I0|2
4π

πw

0

cos2
(
π
2

cos(ϑ)
)

sin(ϑ)
dϑ.
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Mit der Substitution z = cos(ϑ) folgt

P =ZF
|I0|2
4π

+1w

−1

cos2
(
π
2
z
)

1 − z2
dz

=ZF
|I0|2
8π

+1w

−1

(
1

1 − z
+

1

1 + z

)
cos2

(
π

2
z
)

dz

=ZF
|I0|2
8π




2w

0

sin2
(
π
2
z
)

z
dz +

2w

0

sin2
(
π
2
z
)

z
dz




=ZF
|I0|2
4π

2w

0

sin2
(
π
2
z
)

z
dz

︸ ︷︷ ︸
≈1,22

.

In der Hauptstrahlrichtung ϑmax = π/2 ergibt sich die maximale Strahlungs-
leistungsdichte

Smax = ZF
|I0|2
8π2r2

.

Mit (5.2) berechnet man den Richtfaktor

D =
2

1,22
= 1,64.

Aufgabe 5.2 Der Gruppenrichtungsfaktor der konstant belegten Dipolantenne
der Länge l = λ/2 ergibt sich gemäß (5.19) als Fourier-Transformierte der Strom-
belegung I(z′):

FG(βz) =I0

+l/2w

−l/2

ejβzz′
dz′ = 2I0

+l/2w

0

cos(βzz
′) dz′ = 2I0

[
sin(βzz

′)

βz

]+l/2

z′=0

=2I0

sin
(
βz

l
2

)

βz
= I0l si

(
l

2
βz

)
.

Einsetzen von (5.18) ergibt

FG(ϑ) = I0l si

(
l

2
β cos(ϑ)

)
.

Mit (5.14) folgt der Richtungsfaktor

F ϑ(ϑ) = − sin(ϑ) I0l si

(
β
l

2
cos(ϑ)

)
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mit dem Betrag

|F ϑ(ϑ)| = |I0| l
∣∣∣∣∣sin(ϑ) si

(
β
l

2
cos(ϑ)

)∣∣∣∣∣ .

In der Hauptstrahlrichtung ϑmax = π/2 ergibt sich der Maximalwert

|F ϑ|max = |I0| l.

Einsetzen in (5.16) ergibt mit (4.43) die Richtcharakteristik

C(ϑ) =

∣∣∣∣∣sin(ϑ) si

(
l

2
β cos(ϑ)

)∣∣∣∣∣ =

∣∣∣∣∣sin(ϑ) si

(
π
l

λ
cos(ϑ)

)∣∣∣∣∣ ,

siehe Abbildung C.6.

π
2

π
3

π
6

ϑ = 011π
6

5π
3

3π
2

4π
3

7π
6 π

5π
6

2π
3

(a) l = λ/2

π
2

π
3

π
6

ϑ = 011π
6

5π
3

3π
2

4π
3

7π
6 π

5π
6

2π
3

(b) l = 4λ

Abbildung C.6.: Richtcharakteristiken C(ϑ) von Dipolantennen mit konstanter
Strombelegung. In Abbildung C.6a zum Vergleich gestrichelt Di-
polantenne der Länge l = λ/2 mit sinusförmiger Strombelegung
und gepunktet idealer elektrischer Dipol

Aufgabe 5.3 Die elektrische Feldstärke der sich im Hohlleiter ausbreitenden
TE1,0-Welle in der Apertur x = 0 ist

~E0 = −j
ωµH0

β2
c

π

a︸ ︷︷ ︸
E0

cos
(
πy

a

)
~uz,

378



siehe (3.4). Man beachte das abweichend von den üblichen Konventionen in Ab-
schnitt 3.1 gewählte Koordinatensystem. Nach dem Äquivalenztheorem strahlt
die magnetischen Flächenstromdichte

~MF = 2 ~E0 × ~ux = 2E0 cos
(
πy

a

)
~uy

in der Apertur x = 0 das gleiche elektromagnetische Feld in den rechten Halbraum
x > 0 ab, siehe Abbildung 4.11.

Dual zu (5.27) berechnet man den Gruppenrichtungsfaktor5

FG(βy, βz) =
x

A′

MFy(y′, z′) ej(βyy′+βzz′) dy′ dz′

= 2E0

+a/2w

−a/2

cos

(
πy′

a

)
ejβyy′

dy′
+b/2w

−b/2

ejβzz′
dz′

= 2E0

+a/2w

−a/2

cos

(
πy′

a

)
cos(βyy

′) dy′
+b/2w

−b/2

cos(βzz
′) dz′

= 4E0

+a/2w

0

(
cos
((

π

a
− βy

)
y′
)

+ cos
((

π

a
+ βy

)
y′
))

dy′
+b/2w

0

cos(βzz
′) dz′

= 4E0







sin
((

π
a

− βy

)
y′
)

π
a

− βy



a/2

z′=0

+




sin
((

π
a

+ βy

)
y′
)

π
a

+ βy



a/2

z′=0



[

sin(βzz
′)

βz

]b/2

z′=0

= E0ab




sin
(
π
2

− βy
a
2

)

π
2

− βy
a
2

+
sin
(
π
2

+ βy
a
2

)

π
2

+ βy
a
2




sin
(
βz

b
2

)

βz
b
2

= E0ab




cos
(
βy

a
2

)

π
2

− βy
a
2

+
cos
(
βy

a
2

)

π
2

+ βy
a
2


 si

(
βz
b

2

)

=
4E0ab

π

cos
(
βy

a
2

)

1 −
(
βya
π

)2 si

(
βz
b

2

)
.

Der Betrag des Gruppenrichtungsfaktors FG(βy, βz) ist

|FG(βy, βz)| =
4 |E0| ab

π

∣∣∣∣∣∣∣

cos
(
βy

a
2

)

1 −
(
βya
π

)2

∣∣∣∣∣∣∣

∣∣∣∣∣si
(
βz
b

2

)∣∣∣∣∣ .

5 Es wird das Additionstheorem cos(α) cos(β) = 1
2 (cos(α− β) + cos(α+ β)) verwendet.
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1
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0.5 1
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0.5
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0
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-1 -1βz/β = cos(ϑ) βy/β = sin(ϕ) sin(ϑ)

C
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(β
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,β

z
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Abbildung C.7.: Gruppenrichtcharakteristik CG(βy, βz) einer Hornantenne. Breite
a = 4λ und Höhe b = 2λ

Die Hauptstrahlrichtung ist βy = 0 und βz = 0, das heißt senkrecht zur Aper-
tur. Der dort erreichte Maximalwert des Betrags des Gruppenrichtungsfaktors
FG(βy, βz) berechnet sich zu

|FG|max =
4 |E0| ab

π
,

so dass man mit (5.24) die Gruppenrichtcharakteristik

CG(βy, βz) =

∣∣∣∣∣∣∣

cos
(
βy

a
2

)

1 −
(
βya
π

)2

∣∣∣∣∣∣∣

∣∣∣∣∣si
(
βz
b

2

)∣∣∣∣∣

erhält, siehe Abbildung C.7.
Für stark bündelnde Hornantennen entspricht die Richtcharakteristik C(βy, βz)

ungefähr der Gruppenrichtcharakteristik CG(βy, βz) und der Richtfaktor kann ge-
mäß (5.36) näherungsweise aus der Gruppenrichtcharakteristik alleine berechnet
werden:

D ≈ 4πβ2

∞r
βz=−∞

∞r
βy=−∞




cos(βy
a
2 )

1−
(

βya

π

)2




2

si2
(
βz

b
2

)
dβy dβz

.
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Die auftretenden Integrale berechnen sich zu6

∞w

−∞
si2
(
βz
b

2

)
dβz =

2π

b

und7

∞w

−∞




cos
(
βy

a
2

)

1 −
(
βya
π

)2




2

dβy =
π4

8

∞w

0




cos
(
βy

a
2

)

(
π
2

)2 −
(
βy

a
2

)2




2

dβy =
π3

4a
.

Mit (4.43) erhält man schließlich für Richtfaktor

D =
8β2ab

π3
= 32

ab

πλ2
.

Aufgabe 5.4 Da die Richtcharakteristik C(ϑ) nur vom Poldistanzwinkel ϑ ab-
hängt, berechnet sich der Richtfaktor entsprechend (5.17) zu

D =
2

πr
0

1
N2

∣∣∣∣∣
N−1∑
n=0

ejn(βd cos(ϑ)−ψ)

∣∣∣∣∣

2

sin(ϑ) dϑ

.

Mit der Substitution
z = βd cos(ϑ) − ψ

vereinfacht sich das Integral zu

D =
2

− 1
βdN2

−βd−ψr
βd−ψ

∣∣∣∣∣
N−1∑
n=0

ejnz

∣∣∣∣∣

2

dz

=
2

1
βdN2

βd−ψr
−βd−ψ

(
N−1∑
n=0

ejnz

)(
N−1∑
m=0

e−jmz

)
dz

.

Ausmultiplizieren ergibt den Richtfaktor

D =
2

1
βdN2

βd−ψr
−βd−ψ

N−1∑
n=0

N−1∑
m=0

ej(n−m)z dz

.

6 Es wird das bestimmte Integral
∞r

−∞

si2(ax) dx = π
|a| verwendet.

7 Es wird das bestimmte Integral
∞r
0

cos2(ax)

( π

2 )2
−(ax)2

dx = 1
π|a| verwendet.
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Da immer Paare mit e±j(n−m)x auftreten, kürzen sich die Sinusanteile weg und
man erhält

D =
2

1
βdN2

βd−ψr
−βd−ψ

N−1∑
n=0

N−1∑
m=0

cos((n −m)z) dz

=
2

1
βdN2

βd−ψr
−βd−ψ


N +

N−1∑
n=0

N−1∑
m=0
m6=n

cos((n−m)z)


 dz

.

Terme mit der Indexdifferenz n−m = ±p kommen in der Summe jeweils N−p-mal
vor. Damit erhält man8

D =
2

1
βdN2

βd−ψr
−βd−ψ




N−1∑

p=1

(N − p) cos(pz)

︸ ︷︷ ︸
n−m=−

+ N︸︷︷︸
n−m=0

+
N−1∑

p=1

(N − p) cos(pz)

︸ ︷︷ ︸
n−m=p




dz

=
2

1
βdN2

[
Nz + 2

N−1∑
p=1

N−p
p

sin(pz)

]βd−ψ

z=−βd−ψ

=
2

1
βdN2

(
2βdN + 2

N−1∑
p=1

(sin(p (βd− ψ)) − sin(p (−βd− ψ)))

)

=
N

1 + 2
N

N−1∑
p=1

(N − p) sin(pβd) cos(pψ)
pβd

,

siehe Abbildung C.8. Man beachte, dass diese Gleichung natürlich nur dann gilt,
wenn die Richtcharakteristik CGN(ϑ) korrekt normiert war, das heißt wenn ir-
gendwo innerhalb des sichtbaren Bereichs der Maximalwert eins erreicht wird.
Dies ist nicht bei allen beliebig gewählten Phasendekrementen ψ der Fall.

Speziell für d = λ/2 ist gemäß (4.43) βd = π und es folgt D = N . Bei anderen
Antenennabständen auftretende abweichende Ergebnisse erklären sich dadurch,
dass Verkopplungen der Antennenelemente nirgends korrekt berücksichtigt wur-
den.

8 Es wird das Additionstheorem sin(α) − sin(β) = 2 sin
(

α−β
2

)
cos
(

α+β
2

)
verwendet.
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Abbildung C.8.: Richtfaktor D einer linearen Gruppenantenne. N = 4

Aufgabe 6.1 Mit (6.5) ergibt sich die Wellenlänge zu

λ =

√
4πAR

GR
= 1,12 m.

Die Strahlungsleistungsdichte am Ort des Empfängers ergibt sich mit (6.2) und
dem Gewinn GT = 1 der Sendeantenne zu

S =
PT

4πr2
= 7,958 µW m−2.

Schließlich erhält man mit (6.1) die Empfangsleistung

PR = SAR = 7,958 µW.

Aufgabe 6.2 Oberhalb der Grenzfläche, das heißt im Gebiet 1, existieren die
einfallende und die reflektierte elektromagnetische Welle mit den Normalkompo-
nenten

SIz =
1

2ZF1

∣∣∣EI0y

∣∣∣
2

cos(αI)

und

SRz = − 1

2ZF1

∣∣∣ER0y

∣∣∣
2

cos(αI) = − Γ2
⊥

2ZF1

∣∣∣EI0y

∣∣∣
2

cos(αI)
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der komplexen Poynting-Vektoren, siehe (2.29). Dies ergibt nach Überlagern eine
Normalkomponente

SIz + SRz =
1 − Γ2

⊥
2ZF1

∣∣∣EI0y

∣∣∣
2

cos(αI) =
2ZF2 cos2(αI) cos(αT)

(ZF2 cos(αI) + ZF1 cos(αT))2

∣∣∣EI0y

∣∣∣
2

des resultierenden komplexen Poynting-Vektors, wobei im letzten Schritt der Re-
flexionsfaktor Γ⊥ für senkrechte Polarisation gemäß (6.19) eingesetzt wurde.

Die Normalkomponente des komplexen Poynting-Vektors der transmittierten
Welle im Gebiet 2 ergibt sich mit dem Transmissionsfaktor T⊥ für senkrechte
Polarisation gemäß (6.21) zu

STz =
1

2ZF2

∣∣∣ET0y

∣∣∣
2

cos(αT) =
T 2

⊥
2ZF2

∣∣∣EI0y

∣∣∣
2

cos(αT)

=
2ZF2 cos2(αI) cos(αT)

(ZF2 cos(αI) + ZF1 cos(αT))2

∣∣∣EI0y

∣∣∣
2
.

Man erkennt, dass die Normalkomponenten der komplexen Poynting-Vektoren
gleich sind.

Aufgabe 6.3 Es wird der Einfallswinkel αI = αB gesucht, für den der Reflexi-
onsfaktor Null wird. Im Fall senkrechter Polarisation folgt durch Nullsetzen des
Zählerterms des Reflexionsfaktors Γ⊥ gemäß (6.19) die folgende Bedingung:

0 =ZF2 cos(αB) − ZF1 cos(αT) ,

Z2
F2

Z2
F1

=
cos2(αT)

cos2(αB)
=

1 − sin2(αT)

1 − sin2(αB)
=

1
sin2(αB)

− sin2(αT)
sin2(αB)

1
sin2(αB)

− 1
,

1

sin2(αB)

(
Z2

F2

Z2
F1

− 1

)
=
Z2

F2

Z2
F1

− sin2(αT)

sin2(αB)
.

Mit dem Snelliusschen Brechungsgesetz (6.14) und dem sich mit den Feldwellen-
widerständen gemäß (2.25) ergebenden Verhältnis

ZF2

ZF1

=

√
ε1µ2

ε2µ1
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folgt:

1

sin2(αB)

(
ε1µ2

ε2µ1

− 1

)
=
ε1µ2

ε2µ1

− ε1µ1

ε2µ2

,

1

sin2(αB)

(
µ2

µ1

− ε2

ε1

)
=
µ2

µ1

− µ1

µ2

,

sin(αB) =

√√√√
µ2

µ1
− ε2

ε1

µ2

µ1
− µ1

µ2

.

Speziell für ε1 = ε2 erhält man:

sin(αB) =

√√√√
µ2

µ1
− 1

µ2

µ1
− µ1

µ2

,

cos(αB) =
√

1 − sin2(αB) =

√√√√ 1 − µ1

µ2

µ2

µ1
− µ1

µ2

,

sin(αB)

cos(αB)
=

√√√√
µ2

µ1
− 1

1 − µ1

µ2

=

√
µ2

µ1

,

αB = arctan

(√
µ2

µ1

)
.

Im Fall paralleler Polarisation folgt durch Nullsetzen des Zählerterms des Re-
flexionsfaktors Γ‖ gemäß (6.25) die folgende Bedingung:

0 =ZF1 cos(αB) − ZF2 cos(αT) ,

Z2
F1

Z2
F2

=
cos2(αT)

cos2(αB)
=

1 − sin2(αT)

1 − sin2(αB)
=

1
sin2(αB)

− sin2(αT)
sin2(αB)

1
sin2(αB)

− 1
,

1

sin2(αB)

(
Z2

F1

Z2
F2

− 1

)
=
Z2

F1

Z2
F2

− sin2(αT)

sin2(αB)
,

1

sin2(αB)

(
ε2µ1

ε1µ2
− 1

)
=
ε2µ1

ε1µ2
− ε1µ1

ε2µ2
,

1

sin2(αB)

(
ε2

ε1

− µ2

µ1

)
=
ε2

ε1

− ε1

ε2

,

sin(αB) =

√√√√
ε2

ε1
− µ2

µ1

ε2

ε1
− ε1

ε2

.
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Speziell für µ1 = µ2 erhält man:

sin(αB) =

√√√√
ε2

ε1
− 1

ε2

ε1
− ε1

ε2

,

cos(αB) =
√

1 − sin2(αB) =

√√√√ 1 − ε1

ε2

ε2

ε1
− ε1

ε2

,

sin(αB)

cos(αB)
=

√√√√
ε2

ε1
− 1

1 − ε1

ε2

=

√
ε2

ε1

,

αB = arctan

(√
ε2

ε1

)
.

Aufgabe 6.4 Die Länge des direkten Pfades ergibt sich zu

r(1) =
√
r2 + (hT − hR)2 ≈ r +

(hT − hR)2

2r
,

siehe Abbildung C.9. Der reflektierte Pfad scheint von einem gespiegelten Sender
auszugehen, siehe Abbildung 4.7. Die Länge des reflektierten Pfades ergibt sich
zu

r(2) =
√
r2 + (hT + hR)2 ≈ r +

(hT + hR)2

2r
,

siehe Abbildung C.9. Die Näherungen gelten jeweils für den betrachteten Fall,
dass der horizontale Abstand viel größer als die Höhen ist, das heißt dass hT/r
und hR/r sehr klein sind.

Mit (6.7) folgt die Transfermatrix

T(1) ≈e
−jβ

(
r+

(hT−hR)2

2

)

r + (hT−hR)2

2r

(
1 0
0 −1

)

≈e−jβr

r
e−jβ

(hT−hR)2

2r

(
1 0
0 −1

)

des direkten Pfades. Beim Spiegeln des Senders ergibt sich gemäß Abbildung 4.7
im Fall horizontaler linearer Polarisation eine zusätzliche Phasendrehung um π,
vergleiche auch (6.28) und Abbildung 6.4. Mit (6.7) folgt die Transfermatrix

T(2) ≈e
−jβ

(
r+

(hT+hR)2

2

)

r + (hT+hR)2

2r

(
1 0
0 1

)

≈e−jβr

r
e−jβ

(hT+hR)2

2r

(
1 0
0 1

)
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hT − hR

hT + hR
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gespiegelter Sender

Empfänger

direkter Pfad

reflektierter Pfad

Abbildung C.9.: Spiegelung des Senders an der ideal elektrisch leitenden Ebene

des gespiegelten Pfades.
Entsprechend (6.39) erhält man mit (4.43) im Fall vertikaler linearer Polarisa-

tion die Empfangsleistung

PR ≈PT

(
λ

4π

)2 ∣∣∣∣∣
e−jβr

r
e−jβ

(hT−hR)2

2r +
e−jβr

r
e−jβ

(hT+hR)2

2r

∣∣∣∣∣

2

=PT

(
λ

4πr

)2 ∣∣∣∣e
jβ

hThR
r + e−jβ

hThR
r

∣∣∣∣
2

=PT

(
λ

2πr

)2

cos2

(
2π
hThR

λr

)

≈PT

(
λ

2πr

)2

.

Die Näherung in der letzten Zeile gilt für sehr große horizontale Abstände r.
Für sehr große horizontale Abstände r überlagern sich im Fall vertikaler linearer
Polarisation die Beiträge der beiden Pfade konstruktiv, so dass sich im Vergleich
zur Freiraumausbreitung (6.6) die doppelte Amplitude und die vierfache Leistung
ergeben. Im Fall horizontaler linearer Polarisation erhält man auf analoge Art und
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Weise die Empfangsleistung

PR ≈PT

(
λ

4π

)2 ∣∣∣∣∣−
e−jβr

r
e−jβ

(hT−hR)2

2r +
e−jβr

r
e−jβ

(hT+hR)2

2r

∣∣∣∣∣

2

=PT

(
λ

4πr

)2 ∣∣∣∣− ejβ
hThR

r + e−jβ
hThR

r

∣∣∣∣
2

=PT

(
λ

2πr

)2

sin2

(
2π
hThR

λr

)

≈PT
h2

Th
2
R

r4
.

Für sehr große horizontale Abstände r überlagern sich im Fall horizontaler linearer
Polarisation die Beiträge der beiden Pfade fast destruktiv, so dass sich eine sehr
stark mit vierter Potenz des horizontalen Abstands r abnehmende Empfangsleis-
tung PR ergibt. Abbildung C.10 zeigt typische Verläufe des Übertragungsfaktors
PR/PT als Funktion des horizontalen Abstands r. Die starken Fluktuationen im
Bereich kleiner horizontaler Abstände r resultieren aus dem raschen Wechsel zwi-
schen konstruktiver und destruktiver Interferenz der beiden Pfade.

101 102 103 104
−150

−100

−50

r/m

10
lo

g(
P

R
/P

T
)
/d

B

vertikal
horizontal
Freiraum

Abbildung C.10.: Übertragungsfaktor PR/PT als Funktion des horizontalen Ab-
stands r bei Zweiwegeausbreitung bei unterschiedlichen linearen
Polarisationen. Gestrichelt zum Vergleich Freiraumausbreitung.
λ = 0,1 m, hT = 10 m, hR = 1 m
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Aufgabe 7.1 Die normierte resultierende komplexe Wellenamplitude lässt sich
mit (7.7) und (7.13) wie folgt umformen:

c′(z) =
a(z) (1 + Γ(z))

|a0| (1 + |Γ0|)

=
a0

(
e−jβz +Γ0 ejβz

)

|a0| (1 + |Γ0|)

=
e−jβz +Γ0 ejβz

1 + |Γ0|
ej arg(a0) .

Der Betrag der normierten resultierenden komplexen Wellenamplitude ergibt
sich zu

|c′(z)| =

∣∣∣e−jβz +Γ0 ejβz
∣∣∣

1 + |Γ0|

=

∣∣∣∣e−jβz

(
1 + |Γ0| ej arg(Γ0) ej2βz

)∣∣∣∣

1 + |Γ0|

=
1

1 + |Γ0|
√

(1 + |Γ0| cos(arg(Γ0) + 2βz))2 + |Γ0|2 sin2(arg(Γ0) + 2βz)

=
1

1 + |Γ0|
√

1 + |Γ0|2 + 2 |Γ0| cos(arg(Γ0) + 2βz),

.

Mit

|Γ0| =
1 −m

1 +m

gemäß (7.15) erhält man den Betrag der normierten resultierenden komplexen
Wellenamplitude als Funktion des Anpassungsfaktors m und des Reflexionsfak-
torarguments arg(Γ0):

9

|c′(z)| =
1 +m

2

√

1 +
(1 −m

1 +m

)2

+ 2
1 −m

1 +m
cos(arg(Γ0) + 2βz)

=
1

2

√
(1 +m)2 + (1 −m)2 + 2 (1 −m2) cos(arg(Γ0) + 2βz)

=
1

2

√

2 + 2m2 + 2 (1 −m2)
(

1 − 2 sin2

(
1

2
arg(Γ0) + βz

))

=

√

1 + (m2 − 1) sin2

(
1

2
arg(Γ0) + βz

)
.

9 Es wird das Additionstheorem cos(2α) = 1 − 2 sin2(α) verwendet.
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Aufgabe 7.2 Mit der kritischen Kreisfrequenz

ωc =
βc√
εµ

=
ωc0√
εrµr

,

siehe (2.36), (1.47) und (1.51), berechnet sich der Feldwellenwiderstand transver-
salelektrischer Wellen gemäß (2.31) zu

ZFTE =
ZF√

1 −
(
ωc

ω

)2
=

ZF0

√
µr

εr√

1 −
( ωc0√

εrµr

ω

)2
,

siehe (2.42) und (2.25).
Unter Verwenden des Reflexionsfaktors

Γ =
ER0y

EH0y

= −HR0x

HH0x

,

siehe (7.1), (7.4) und (7.7), und des Feldwellenwiderstands

ZFTE1 = −EH0y

HH0x

=
ER0y

HR0x

im ungefüllten Teil z < 0 des Hohlleiters ergibt sich die Wellenimpedanz

Z1 = − EH0y + ER0y

HH0x +HR0x

= −EH0y (1 + Γ)

HH0x (1 − Γ)

=ZFTE1
1 + Γ

1 − Γ

im ungefüllten Teil z < 0 des Hohlleiters, siehe (2.32). Unter Verwenden des
Feldwellenwiderstands

ZFTE2 = −ET0y

HT0x

,

im gefüllten Teil z > 0 des Hohlleiters ergibt sich die Wellenimpedanz

Z2 = −ET0y

HT0x

= ZFTE2

im gefüllten Teil z > 0 des Hohlleiters, siehe (2.32). An der Grenzfläche müssen die
resultierenden Tangentialkomponenten der Feldstärken gemäß (1.62) und (1.64)
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stetig sein. Es folgt, dass auch die Wellenimpedanzen gleich sein müssen:

Z1 =Z2,

ZFTE1
1 + Γ

1 − Γ
=ZFTE2

Γ =
ZFTE2 − ZFTE1

ZFTE2 + ZFTE1

.

Damit keine Reflexion auftritt, müssen die Feldwellenwiderstände des ungefüll-
ten und des gefüllten Hohlleiterbereichs gleich sein:

ZFTE1 =ZFTE2,

ZF0√
1 −

(
ωc0

ω

)2
=

ZF0

√
µr

εr√

1 −
( ωc0√

εrµr

ω

)2
,

1 −
( ωc0√

εrµr

ω

)2

=
µr

εr

(
1 −

(
ωc0

ω

)2
)
.

Hier ist ωc0 = ω/2 und es folgt:

1 −
(

1

2
√
εrµr

)2

=
µr

εr

(
1 −

(
1

2

)2
)
,

4 − 1

εrµr

=3
µr

εr

,

3µ2
r − 4εrµr + 1 =0.

Speziell für εr = 4 erhält man eine quadratische Gleichung

3µ2
r − 16µr + 1 = 0

für die Permeabilität µr mit den Lösungen

µr =
8

3
±
√

64

9
− 1

3
=

8

3
±
√

61

9
.

Aufgabe 7.3 Aus (7.24) folgt für den Reflexionsfaktor

Γ =
R − ZL

R + ZL
.
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Der Betrag des Reflexionsfaktors ist

|Γ| = ±R− ZL

R + ZL

,

wobei das obere Vorzeichen für R > ZL gilt. Dies in (7.14) eingesetzt ergibt den
Anpassungsfaktor

m =
1 ∓ R−ZL

R+ZL

1 ± R−ZL

R+ZL

=
R + ZL ∓ R± ZL

R + ZL ± R∓ ZL

=





ZL

R
falls R > ZL

R
ZL

falls R < ZL

.

Aufgabe 7.4 Eine beidseitig kurzgeschlossene Leitung der Länge l ist bei jenen
Kreisfrequenzen in Resonanz, bei denen die Leitungslänge ganzzahliges Vielfaches
der halben Wellenlänge ist, siehe (7.33) und (2.38):

l = p
λ

2
=p

π

β
,

pπ

l
=β.

Zunächst werden TEm,n-Wellen betrachtet, bei denen m oder n von Null ver-
schieden sein muss. Mit (2.35) und (3.2) erhält man:

(
pπ

l

)2

=β2 = β2
0 −

(
mπ

a

)2

−
(
nπ

b

)2

,

β2
0 =

(
mπ

a

)2

+
(
nπ

b

)2

+
(
pπ

l

)2

.

Mit (2.3) folgt für die Resonanzkreisfrequenzen

ωm,n,p =
β0√
εµ

=
1

4π
√
εµ

√(
m

a

)2

+
(
n

b

)2

+
(
p

l

)2

,

wobei p von Null verschieden sein muss.
Die kritischen Phasenkonstanten βc der TMm,n-Wellen berechnen sich mit der

gleichen Formel (3.2), so dass sich auch die gleiche Formel für die Resonanz-
kreisfrequenzen ωm,n,p ergibt, mit dem Unterschied das jetzt m und n von Null
verschieden sein müssen. Dafür darf p Null sein, was einer unendlichen Wellenlän-
ge λ entspricht. Die Resonanzkreisfrequenz ωm,n,0 entspricht dann der kritischen
Kreisfrequenz der TMm,n-Welle.
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Aufgabe 8.1 Es wird behauptet, dass die Orte konstanten Wirkleitwerts G Krei-
se mit Mittelpunkt 1

2G
und Radius 1

2G
in der Impedanzebene sind. Daher muss

für einen beliebigen gegebenen Wirkleitwert G unabhängig vom Blindleitwert B
stets die folgende Kreisgleichung erfüllt sein:

∣∣∣∣Z − 1

2G

∣∣∣∣
2

=
(

1

2G

)2

,
∣∣∣∣∣

1

G+ jB
− 1

2G

∣∣∣∣∣

2

=
( 1

2G

)2

,

|2G− (G+ jB)|2 = |G+ jB|2 ,
G2 +B2 =G2 +B2.

In der zweiten Zeile wurde die Impedanz Z gemäß (8.1) eingesetzt.
Es wird behauptet, dass die Orte konstanten Blindleitwerts B Kreise mit Mit-

telpunkt −j 1
2B

und Radius 1
2B

in der Impedanzebene sind. Daher muss für einen
beliebigen gegebenen Blindleitwert B unabhängig vom Wirkleitwert G stets die
folgende Kreisgleichung erfüllt sein:

∣∣∣∣Z + j
1

2B

∣∣∣∣
2

=
(

1

2B

)2

,

∣∣∣∣∣
1

G+ jB
+ j

1

2B

∣∣∣∣∣

2

=
(

1

2B

)2

,

|2B + j (G+ jB)|2 = |G+ jB|2 ,
B2 +G2 =G2 +B2.

In der zweiten Zeile wurde wieder die Impedanz Z gemäß (8.1) eingesetzt.

Aufgabe 8.2 Man wählt den Bezugswiderstand RN = 100 Ω und erhält so die
in Tabelle C.2 zusammengestellten normierten Bauelementewerte.

Tabelle C.2.: Bauelementewerte

R2 = 100 Ω R2/RN = 1 G2RN = 1
XL = ωL = 200 Ω XL/RN = 2 BLRN = −0,5
XC1 = − 1

ωC1
= −80 Ω XC1/RN = −0,8 BC1RN = 1,25

XC2 = − 1
ωC2

= −200 Ω XC2/RN = −2 BC2RN = 0,5

Mit den Bauelementewerten zeichnet man den Transformationsweg im Inversi-
onsdiagramm, siehe Abbildung C.11. und erhält so die Eingangsimpedanz

Z1 = (0,5 − j0,5)RN = (50 − j50) Ω.

393



Anhang C. Lösungen der Aufgaben

jX/RN

R/RN

−j1

−j0,5
−j0,4

j0,4
j0,5

0,5 1

L

R2

C1

C2Z1

BRN = −0,5

BRN = 0,5
BRN = 1

GRN = 1

Abbildung C.11.: Transformationsweg in der Impedanzebene

Aufgabe 8.3 Es wird behauptet, dass die Orte konstanten Anpassungsfaktors
m Kreise mit Mittelpunkt ZL

2

(
1
m

+m
)

und Radius ZL

2

(
1
m

−m
)

in der Impedan-
zebene sind. Daher muss für einen beliebigen gegebenen Anpassungsfaktor m un-
abhängig von der normierten Leitungslänge l/λ stets die folgende Kreisgleichung
erfüllt sein:

∣∣∣∣Z − ZL

2

(
1

m
+m

)∣∣∣∣
2

=
(
ZL

2

(
1

m
−m

))2

,

∣∣∣∣∣∣
ZL

m+ j tan
(
2π l

λ

)

1 + jm tan
(
2π l

λ

) − ZL
1 +m2

2m

∣∣∣∣∣∣

2

=

(
ZL

1 −m2

2m

)2

,

∣∣∣∣∣m
2 + jm tan

(
2π

l

λ

)
− 1 − jm3 tan

(
2π

l

λ

)∣∣∣∣∣

2

=
(
1 −m2

)2
∣∣∣∣∣1 + jm tan

(
2π

l

λ

)∣∣∣∣∣

2

,

(
m2 − 1

)2
∣∣∣∣∣1 − jm tan

(
2π

l

λ

)∣∣∣∣∣

2

=
(
1 −m2

)2
∣∣∣∣∣1 + jm tan

(
2π

l

λ

)∣∣∣∣∣

2

(
m2 − 1

)2
(

1 +m2 tan2

(
2π

l

λ

))
=
(
1 −m2

)2
(

1 +m2 tan2

(
2π

l

λ

))
.
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In der zweiten Zeile wurde die Impedanz Z gemäß (8.6) eingesetzt.
Es wird behauptet, dass die Orte konstanter normierter Leitungslänge l/λ Krei-

se mit Mittelpunkt −jZL cot
(
4π l

λ

)
und Radius

∣∣∣∣
ZL

sin(4π l
λ)

∣∣∣∣ in der Impedanzebene

sind. Daher muss für eine beliebige gegebene normierte Leitungslänge l/λ unab-
hängig vom Anpassungsfaktor m stets die folgende Kreisgleichung erfüllt sein:1011

∣∣∣∣∣Z + jZL cot

(
4π

l

λ

)∣∣∣∣∣

2

=


 ZL

sin
(
4π l

λ

)




2

∣∣∣∣∣∣
ZL

m+ j tan
(
2π l

λ

)

1 + jm tan
(
2π l

λ

) + jZL

1 − tan2
(
2π l

λ

)

2 tan
(
2π l

λ

)

∣∣∣∣∣∣

2

=


ZL

1 + tan2
(
2π l

λ

)

2 tan
(
2π l

λ

)




2

∣∣∣∣∣m tan

(
2π

l

λ

)
+ j tan2

(
2π

l

λ

)
+ j +m tan3

(
2π

l

λ

)∣∣∣∣∣

2

=

(
1 + tan2

(
2π

l

λ

))2 ∣∣∣∣∣1 + jm tan

(
2π

l

λ

)∣∣∣∣∣

2

(
1 + tan2

(
2π

l

λ

))2 ∣∣∣∣∣1 + jm tan

(
2π

l

λ

)∣∣∣∣∣

2

=

(
1 + tan2

(
2π

l

λ

))2 ∣∣∣∣∣1 + jm tan

(
2π

l

λ

)∣∣∣∣∣

2

.

In der zweiten Zeile wurde wieder die Impedanz Z gemäß (8.6) eingesetzt.

Aufgabe 8.4 Es wird behauptet, dass die Orte konstanten Wirkwiderstands R
Kreise mit Mittelpunkt R

ZL+R
und Radius ZL

ZL+R
in der Reflexionsfaktorebene sind.

Daher muss für einen beliebigen gegebenen Wirkwiderstand R unabhängig vom

10 Es wird das Additionstheorem cot(2α) = 1
2

(
1

tan(α) − tan(α)
)

= 1−tan2(α)
2 tan(α) verwendet.

11 Es gilt 1
sin(2α) = 1

2 sin(α) cos(α) = cos2(α)+sin2(α)
2 sin(α) cos(α) =

1+
sin2(α)

cos2(α)

2
sin(α)

cos(α)

= 1+tan2(α)
2 tan(α) .
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Anhang C. Lösungen der Aufgaben

Blindwiderstand X stets die folgende Kreisgleichung erfüllt sein:

∣∣∣∣Γ − R

ZL +R

∣∣∣∣
2

=
(

ZL

ZL +R

)2

,

∣∣∣∣∣
R + jX − ZL

R + jX + ZL

− R

ZL +R

∣∣∣∣∣

2

=
(

ZL

ZL +R

)2

,

|(R + jX − ZL) (ZL +R) −R (R + jX + ZL)|2 =Z2
L |R + jX + ZL|2 ,

∣∣∣jXZL − Z2
L − ZLR

∣∣∣
2

=
∣∣∣ZLR + jZLX + Z2

L

∣∣∣
2
,

(
Z2

L + ZLR
)2

+X2Z2
L =

(
ZLR + Z2

L

)2
+ Z2

LX
2.

In der zweiten Zeile wurde der Reflexionsfaktor Γ gemäß (8.8) eingesetzt.
Es wird behauptet, dass die Orte konstanten Blindwiderstands X Kreise mit

Mittelpunkt 1 + jZL

X
und Radius

∣∣∣ZL

X

∣∣∣ in der Reflexionsfaktorebene sind. Daher
muss für einen beliebigen gegebenen Blindwiderstand X unabhängig vom Wirk-
widerstand R stets die folgende Kreisgleichung erfüllt sein:

∣∣∣∣Γ − 1 − j
ZL

X

∣∣∣∣
2

=
(
ZL

X

)2

,

∣∣∣∣∣
R + jX − ZL

R + jX + ZL
− X + jZL

X

∣∣∣∣∣

2

=
(
ZL

X

)2

,

|(R + jX − ZL)X − (X + jZL) (R + jX + ZL)|2 =Z2
L |R + jX + ZL|2 ,

∣∣∣−ZLX − jZLR− jZ2
L

∣∣∣
2

=
∣∣∣ZLR + jZLX + Z2

L

∣∣∣
2
,

Z2
LX

2 +
(
ZLR + Z2

L

)2
=
(
ZLR + Z2

L

)2
+ Z2

LX
2.

In der zweiten Zeile wurde wieder der Reflexionsfaktor Γ gemäß (8.8) eingesetzt.

Aufgabe 8.5 Mit dem Wellenwiderstand ZL = 50 Ω der Leitungen ergibt sich
der normierte Widerstand

R2

ZL
= 1.

Die parallelgeschaltete kurzgeschlossene Stichleitung wirkt wie ein parallelgeschal-
teter Blindleitwert B. Dieser muss so groß sein, dass das Transformationsergebnis
auf dem Kreis konstanten Anpassungsfaktors m durch die normierte Eingangsim-
pedanz

Z1

ZL
= 4
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liegt. Aus Abbildung C.12 liest man den erforderlichen normierten Blindleitwert

BZL = −1,5

ab. Als minimal erforderliche normierte Länge der kurzgeschlossenen Stichleitung
zum Realisieren dieses Blindleitwerts liest man aus Abbildung C.12

l1
λ

= 0,094

ab. Zur Transformation in die Eingangsimpedanz Z1 wird nun noch eine Leitung
der kürzestmöglichen normierten Länge

l2
λ

= (0,25 − 0,074) = 0,176

benötigt, siehe Abbildung C.12.

Z1R2

l1
λ

l2
λ

GZL = 1

BZL = −1,5

l
λ

= 0,25

l
λ

= 0,094

l
λ

= 0,074

Kurzschluss

m = 0,25

Abbildung C.12.: Transformationsweg im Smith-Diagramm
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Anhang C. Lösungen der Aufgaben

Aufgabe 9.1 Es wird ein Betriebszustand betrachtet, in dem alle Spannungen
bis auf die Spannung Un an Tor n Null sind. Mit (9.13) folgt für die Summe der
in die Tore hineinfließenden Ströme

0 =
N∑

m=1

Im =
N∑

m=1

Y m,nUn = Un

N∑

m=1

Y m,n.

Die Spaltensummen der Admittanzmatrix Y eines massefreien Netzwerks müssen
Null sein. Falls die Spannungen

Un = U, n = 1 . . .N,

an allen Toren gleich sind, ergibt sich der in Tor m hineinfließende Strom mit
(9.13) zu

Im =
N∑

n=1

Y m,nU = U
N∑

n=1

Y m,n.

Die Zeilensummen der Admittanzmatrix Y eines massefreien Netzwerks müssen
Null sein.

Aufgabe 9.2 Da die Streumatrix S eines reziproken Mehrtors gemäß (9.9) sym-
metrisch ist, ergibt sich die transponierte Impedanzmatrix mit (9.17) zu

ZT =RN (E − S)−1 · (E + S)

=RN (E − S)−1 · (2E − (E − S))

=RN

(
2 (E − S)−1 − E

)

=RN (2E − (E − S)) · (E − S)−1

=RN (E + S) · (E − S)−1

=Z,

das heißt die Impedanzmatrix Z eines reziproken Mehrtors ist symmetrisch.
Da die Inverse einer symmetrischen Matrix symmetrisch ist, muss auch die

Admittanzmatrix symmetrisch sein

Y = YT.

Die mit (9.16) aus der Impedanzmatrix Z berechenbare Streumatrix S verlust-
freier Mehrtore muss gemäß (9.7) unitär sein. Man erhält die Bedingung

(Z +RNE)−1 · (Z − RNE) ·
(
Z∗T − RNE

)
·
(
Z∗T +RNE

)−1
= E.
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Da die Impedanzmatrix Z reziproker Mehrtore symmetrisch ist, folgt12

(Z −RNE) · (Z∗ − RNE) = (Z +RNE) · (Z∗ +RNE)

Z · Z∗ − RNZ∗ − RNZ +R2
NE =Z · Z∗ +RNZ∗ +RNZ +R2

NE

Z + Z∗ =0

Re(Z) =0.

Da die Inverse einer rein imaginären Matrix auch rein imaginär ist, muss gleiches
für die Admittanzmatrix gelten:

Re(Y) = 0.

Aufgabe 9.3 Ausdrücken der Spannungen und Ströme durch die komplexen
Wellenamplituden gemäß (7.18) und (7.19) ergibt:

√
RN (a1 + b1)

︸ ︷︷ ︸
U1

=A
√
RN (a2 + b2)︸ ︷︷ ︸

U2

−B a2 − b2√
RN︸ ︷︷ ︸
I2

,

a1 − b1√
RN︸ ︷︷ ︸
I1

=C (a2 + b2)
√
RN︸ ︷︷ ︸

U2

−D a2 − b2√
RN︸ ︷︷ ︸
I2

.

Auflösen nach a1 und b1 ergibt:

a1 =
1

2

(
A+

B

RN
+RNC +D

)

︸ ︷︷ ︸
T a,b

b2 +
1

2

(
A− B

RN
+RNC −D

)

︸ ︷︷ ︸
T a,a

a2,

b1 =
1

2

(
A+

B

RN
−RNC −D

)

︸ ︷︷ ︸
Tb,b

b2 +
1

2

(
A− B

RN
− RNC +D

)

︸ ︷︷ ︸
Tb,a

a2.

Durch Auflösen nach den Kettenparametern erhält man:

A =
1

2

(
T a,b + T a,a + T b,b + T b,a

)
,

B =
RN

2

(
T a,b − T a,a + T b,b − T b,a

)
,

C =
1

2RN

(
T a,b + T a,a − T b,b − T b,a

)
,

D =
1

2

(
T a,b − T a,a − T b,b + T b,a

)
.

12 Der Realteil einer komplexen Größe berechnet sich zu Re(x) = 1
2 (x+ x∗).
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Anhang C. Lösungen der Aufgaben

Jetzt kann man noch gemäß (9.21) die Transmissionsparameter als Funktionen
der Streuparameter einsetzen und erhält:

A =
1

2S2,1

(
1 − S2,2 + S1,1 − det(S)

)
,

B =
RN

2S2,1

(
1 + S2,2 + S1,1 + det(S)

)
,

C =
1

2RNS2,1

(
1 − S2,2 − S1,1 + det(S)

)
,

D =
1

2S2,1

(
1 + S2,2 − S1,1 − det(S)

)
.

Auflösen der Gleichung für a1 nach b2 ergibt die ersten beiden Streuparameter als
Funktionen der Kettenparameter:

b2 =
2

A + B
RN

+RNC +D
︸ ︷︷ ︸

S2,1

a1 +
−A + B

RN
−RNC +D

A+ B
RN

+RNC +D
︸ ︷︷ ︸

S2,2

a2.

Dies in die Gleichung für b1 eingesetzt und aufgelöst nach b1 ergibt die übrigen
beiden Streuparameter:

b1 =
A+ B

RN
−RNC −D

A+ B
RN

+RNC +D
a1

+
1

2

(
A+

B

RN
−RNC −D

) −A+ B
RN

−RNC +D

A + B
RN

+RNC +D
a2

+
1

2

(
A− B

RN
− RNC +D

)
a2

=
A+ B

RN
− RNC −D

A+ B
RN

+RNC +D
︸ ︷︷ ︸

S1,1

a1 +
2A D − 2B C

A+ B
RN

+RNC +D
︸ ︷︷ ︸

S1,2

a2.

Aufgabe 9.4 Aus (9.36) folgt

S = U · M · UT.
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Einsetzen in (9.6) ergibt für ein passives Mehrtor

0 ≤a∗T ·
(

E −
(
UT · S · U

)∗T ·
(
UT · S · U

))
· a

=a∗T ·
(
U · UT − U · M∗T · UT · U · M · UT

)
· a

= a∗T · U︸ ︷︷ ︸
a′∗T

·
(
E − M∗T · M

)
· UT · a︸ ︷︷ ︸

a′

.

Mit passend gewähltem Vektor a′ ergibt sich eine zu (9.6) formal gleichartige
hermitesche Form mit der modalen Streumatrix M statt der Streumatrix S. Diese
Ungleichung ist nur dann für alle Vektoren a′ erfüllt, wenn die Matrix E−M∗T ·M
positiv semidefinit ist, das heißt keine negativen Eigenwerte hat.

Die nodale Streumatrix S reziproker Mehrtore ist gemäß (9.9) symmetrisch. Es
folgt:

(
U · M · UT

)T
=U · M · UT,

U · MT · UT =U · M · UT,

MT =M.

Das heißt die modale Streumatrix M reziproker Mehrtore ist symmetrisch.

Aufgabe 10.1 Die Streumatrix des Serienwiderstands ist

S(1) =
1

R + 2RN

(
R 2RN

2RN R

)

und die Streumatrix der Parallelkapazität ist

S(2) =
1

2 + jωCRN

(
−jωCRN 2

2 −jωCRN

)
,

siehe (10.14) und (10.15). Mit (9.21) erhält man die Transmissionsmatrizen

T(1) =

(
1 + R

2RN
− R

2RN
R

2RN
1 − R

2RN

)

und

T(2) =

(
1 + jωCRN

2
jωCRN

2

− jωCRN

2
1 − jωCRN

2

)
.

Die resultierende Transmissionsmatrix ist

T = T(1) · T(2).
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Anhang C. Lösungen der Aufgaben

Wegen

S2,1 =
1

T a,b

,

siehe (9.22), ist insbesondere

T a,b =T (1)
a,bT

(2)
a,b + T (1)

a,aT
(2)
b,b

=
(

1 +
R

2RN

)(
1 +

jωCRN

2

)
+

R

2RN

jωCRN

2

=
2RN +R + jωCRN (RN +R)

2RN

von Interesse. Es folgt die Übertragungsfunktion

S2,1 =
2RN

2RN +R + jωCRN (RN +R)
.

Aufgabe 10.2 Mit (9.18) und (10.20) erhält man die Admittanzmatrix

Y =
1

RN

((
1 0
0 1

)
− 1

Z2
L +R2

N

(
Z2

L − R2
N −2jRNZL

−2jRNZL Z2
L − R2

N

))

·
((

1 0
0 1

)
+

1

Z2
L +R2

N

(
Z2

L −R2
N −2jRNZL

−2jRNZL Z2
L − R2

N

))−1

=
1

RN

((
Z2

L +R2
N 0

0 Z2
L +R2

N

)
−
(
Z2

L − R2
N −2jRNZL

−2jRNZL Z2
L −R2

N

))

·
((

Z2
L +R2

N 0
0 Z2

L +R2
N

)
+

(
Z2

L − R2
N −2jRNZL

−2jRNZL Z2
L − R2

N

))−1

=
1

RN

(
2R2

N 2jRNZL

2jRNZL 2R2
N

)
·
(

2Z2
L −2jRNZL

−2jRNZL 2Z2
L

)−1

=
1

ZL

(
RN jZL

jZL RN

)
·
(

ZL −jRN

−jRN ZL

)−1

=
1

ZL

(
RN jZL

jZL RN

)
· 1

Z2
L +R2

N

(
ZL jRN

jRN ZL

)
=

1

ZL

(
0 j
j 0

)
.

Aufgabe 10.3 Es werden zwei spezielle Betriebszustände des Teilers betrachtet,
siehe Abbildung C.13.
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RN

RN

RNTor 1

Tor 2

Tor 3

a1b1

a2 = 0
b2

a3 = 0 b3

I1

I2

I3

R

R

RN

RN

RNTor 1

Tor 2

Tor 3

a1 = 0
b1

a2 b2

a3 = 0 b3

I1

I2

I3

R

R

Abbildung C.13.: Spezielle Betriebszustände des eingangsseitig angepassten Tei-
lers

Wegen S1,1 = 0 muss die bei Abschluss von Tor 2 und Tor 3 mit dem Bezugs-
widerstand RN an Tor 1 sichtbare Impedanz RN sein, siehe (9.5) und (7.23):

RN =
1

2
(R +RN) ,

R =RN.

Der aus Tor 2 herausfließende Strom ist in diesem Betriebszustand aus Symme-
triegründen halb so groß wie der in Tor 1 hineinfließende Strom. Mit (7.19) und
(9.4) folgt:

− −b2√
RN︸ ︷︷ ︸
I2

=
1

2

a1 − b1√
RN︸ ︷︷ ︸
I1

,

b2 =
1

2

(
1 + S1,1

)
a1,

S2,1 =
1

2
.
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Anhang C. Lösungen der Aufgaben

Bei Abschluss von Tor 1 und Tor 3 mit dem Bezugswiderstand RN ist die an
Tor 2 sichtbare Impedanz

R2 = RN + (RN‖2RN) =
5

3
RN.

Mit (7.24) folgt:

S2,2 =
R2 −RN

R2 +RN
=

1

4
.

Die Summe der in die Tore hineinfließenden Ströme ist Null. Mit (7.19) und (9.4)
folgt:

−b1√
RN︸ ︷︷ ︸
I1

+
a2 − b2√
RN︸ ︷︷ ︸
I2

+
−b3√
RN︸ ︷︷ ︸
I3

=0,

−S1,2a2 +
(
1 − S2,2

)
a2 =b3.

Unter Ausnutzen der Reziprozität (9.9) folgt mit (9.4):

b3 =
(
−S2,1 + 1 − S2,2

)
a2,

S3,2 =
1

4
.

Unter Berücksichtigen des symmetrischen Aufbaus des eingangsseitig angepass-
ten Teilers und der Reziprozität (9.9) erhält man schließlich die Streumatrix

S =
1

4




0 2 2
2 1 1
2 1 1


 .

Der eingangsseitig angepasste Teiler ist nicht verlustfrei und nur an Tor 1 eigen-
reflexionsfrei, siehe (9.7) und (9.5).

Aufgabe 10.4 Bei Abschluss der Tore 2, 3 und 4 mit dem Bezugswiderstand
RN muss an die Tor 1 sichtbare Impedanz gemäß (9.5) und (7.23) gleich dem
Bezugswiderstand RN sein, damit der Teiler eigenreflexionsfrei ist:

RN =R +
1

3
(R +RN)

=
4

3
R +

1

3
RN,

R =
1

2
RN.

404



Der aus Tor 2 herausfließende Strom ist in diesem Betriebszustand aus Symme-
triegründen ein Drittel so groß wie der in Tor 1 hineinfließende Strom. Mit (7.19)
und (9.4) folgt:

− −b2√
RN︸ ︷︷ ︸
I2

=
1

3

a1√
RN︸ ︷︷ ︸
I1

,

b2 =
1

3
a1,

S2,1 =
1

3
.

Unter Ausnutzen des symmetrischen Aufbaus erhält man schließlich die Streuma-
trix

S =
1

3




0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0


 .

Aufgabe 11.1 Einsetzen von (11.3), (11.4) und (11.9) in (11.7) ergibt

b′ =
S4,2S3,1 − S3,2S4,1

S4,2 + S3,2S4,3Γb − S4,2S3,3Γb︸ ︷︷ ︸
F 1,0

b+
S3,2 − S3,2S4,4Γa + S4,2S3,4Γa

S4,2 + S3,2S4,3Γb − S4,2S3,3Γb︸ ︷︷ ︸
F 1,1

a′.

Man liest

F 1,0 =
S4,2S3,1 − S3,2S4,1

S4,2 + S3,2S4,3Γb − S4,2S3,3Γb

und

F 1,1 =
S3,2 − S3,2S4,4Γa + S4,2S3,4Γa

S4,2 + S3,2S4,3Γb − S4,2S3,3Γb

ab. Einsetzen von (11.3), (11.4) und (11.9) in (11.5) ergibt

a =

(
S1,1 − S1,2S4,1

S4,2

)
b+

(
S1,2

S4,2

− S1,2S4,4Γa

S4,2

+ S1,4Γa

)
a′

+

(
−S1,2S4,3Γb

S4,2

+ S1,3Γb

)
b′.

Mit b′ aus der ersten Gleichung folgen

F 0,0 = S1,1

+
−S1,2S4,1 + S1,2S4,1S3,3Γb − S1,2S4,3ΓbS3,1 + S1,3ΓbS4,2S3,1 − S1,3ΓbS3,2S4,1

S4,2 + S3,2S4,3Γb − S4,2S3,3Γb
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und

F 0,1 =
(
S1,2 − S1,2S3,3Γb − S1,2S4,4Γa + S1,2S4,4ΓaS3,3Γb + S4,2S1,4Γa

+ S1,4ΓaS3,2S4,3Γb − S4,2S1,4ΓaS3,3Γb − S1,2S4,3ΓbS3,4Γa + S1,3ΓbS3,2

− S1,3ΓbS3,2S4,4Γa + S1,3ΓbS4,2S3,4Γa

)/(
S4,2 + S3,2S4,3Γb − S4,2S3,3Γb

)
.

Im Falle eines Richtkopplers mit S1,1 = S1,4 = S2,2 = S2,3 = S3,2 = S3,3 =
S4,1 = S4,4 = 0, S1,2 = S2,1 = S3,4 = S4,3 und S1,3 = S2,4 = S3,1 = S4,2, siehe
(10.34), erhält man:

F 0,0 =
(
S2

1,3 − S2
1,2

)
Γb,

F 0,1 =
S1,2 − S3

1,2ΓbΓa

S1,3

+ S1,2S1,3ΓbΓa,

F 1,0 =S1,3,

F 1,1 =S1,2Γa.

Im Falle reflexionsfreier Messstellen Γa = Γb = 0 erhält man:

F 0,0 =S1,1 − S1,2S4,1

S4,2

,

F 0,1 =
S1,2

S4,2

,

F 1,0 =S3,1 − S3,2S4,1

S4,2

,

F 1,1 =
S3,2

S4,2

.

Aufgabe 11.2 Die Messung am idealen Abschluss ΓM = 0 ergibt

F 1,1 = Γ′
M,

siehe (11.13). Für die Messungen am idealen Leerlauf ΓO = 1 und am idealen
Kurzschluss ΓS = −1 folgen mit (11.13)

Γ′
O = F 1,1 + Γ′

OF 0,0 − det(F)

beziehungsweise
Γ′

S = F 1,1 − Γ′
SF 0,0 + det(F) .
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Durch Addition beider Gleichungen erhält man

Γ′
O + Γ′

S = 2F 1,1 +
(
Γ′

O − Γ′
S

)
F 0,0.

Einsetzen des aus der Messung am idealen Abschluss ΓM = 0 bekannten Fehler-
terms F 1,1 ergibt

F 0,0 =
Γ′

O + Γ′
S − 2F 1,1

Γ′
O − Γ′

S

=
Γ′

O + Γ′
S − 2Γ′

M

Γ′
O − Γ′

S

.

Schließlich erhält man aus der Messung am idealen Kurzschluss ΓS = −1 unter
Verwenden der bereits berechneten Fehlerterme F 1,1 und F 0,0

det(F) =Γ′
S − F 1,1 + Γ′

SF 0,0

=Γ′
S − F 1,1 + Γ′

S

Γ′
O + Γ′

S − 2Γ′
M

Γ′
O − Γ′

S

=
2Γ′

OΓ′
S − Γ′

OΓ′
M − Γ′

SΓ′
M

Γ′
O − Γ′

S

.

Aufgabe 11.3 Aus (11.33) erhält man mit Γ′ = b′
I1/a

′
I1

−F 1,1 + Γ′ = − det(FA) Γ + F 0,0Γ Γ′.

Die Messung am idealen Abschluss ΓM = 0 ergibt

F 1,1 = Γ′
M.

Die Messungen an idealem Leerlauf ΓO = 1 und am idealem Kurzschluss ΓS = −1
ergeben

−F 1,1 + Γ′
O = − det(FA) + F 0,0Γ′

O

beziehungsweise
−F 1,1 + Γ′

S = det(FA) − F 0,0Γ
′
S.

Durch Addition beider Gleichungen erhält man

−2F 1,1 + Γ′
O + Γ′

S = F 0,0

(
Γ′

O − Γ′
S

)
.

Einsetzen des aus der Messung am idealen Abschluss ΓM = 0 bekannten Fehler-
terms F 1,1 ergibt

F 0,0 =
Γ′

O + Γ′
S − 2F 1,1

Γ′
O − Γ′

S

=
Γ′

O + Γ′
S − 2Γ′

M

Γ′
O − Γ′

S

.
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Schließlich erhält man aus der Messung am idealen Leerlauf ΓO = 1 unter Ver-
wenden der bereits berechneten Fehlerterme F 1,1 und F 0,0

det(FA) =F 1,1 − Γ′
O + F 0,0Γ

′
O

=Γ′
M − Γ′

O +
Γ′

O + Γ′
S − 2Γ′

M

Γ′
O − Γ′

S

Γ′
O

=
2Γ′

OΓ′
S − Γ′

OΓ′
M − Γ′

SΓ′
M

Γ′
O − Γ′

S

.

Aus (11.32) erhält man mit S ′
T1,1 = b′

I1/a
′
I1 und S′

T2,1 = b′
I2/a

′
I1 für die Messung

an der idealen Durchverbindung

−F 1,1 + S′
T1,1 =

F 1,0F 2,2

F 3,2

S ′
T2,1

und
F 1,0

F 3,2

S ′
T2,1 = − det(FA) + F 0,0S

′
T1,1.

Einsetzen des aus der Messung am idealen Abschluss ΓM = 0 bekannten Fehler-
terms F 1,1 ergibt

F 1,0F 2,2

F 3,2

=
−F 1,1 + S ′

T1,1

S′
T2,1

=
S ′

T1,1 − Γ′
M

S ′
T2,1

.

Einsetzen der aus den Messungen an den idealen Eintoren bekannten Fehlerterme
det(FA) und F 0,0 ergibt

F 1,0

F 3,2

=
− det(FA) + F 0,0S

′
T1,1

S ′
T2,1

=
Γ′

OΓ′
M + Γ′

SΓ′
M − 2Γ′

OΓ′
S +

(
Γ′

O + Γ′
S − 2Γ′

M

)
S ′

T1,1

S ′
T2,1

(
Γ′

O − Γ′
S

) .

Aufgabe 12.1 Bei Kurzschluss an Tor 3 gilt

U 3 = 0.

Mit (9.13) folgt 

I1

I2

I3


 =



Y 1,1 Y 1,2 Y 1,3

Y 2,1 Z2,2 Y 2,3

Y 3,1 Z3,2 Y 3,3


 ·



U 1

U 2

0


 ,
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das heißt man erhält die Admittanzmatrix des Zweitors durch Streichen der drit-
ten Zeile und der dritten Spalte der Admittanzmatrix Y des Dreitors.

Gemäß Aufgabe 9.1 müssen die Spaltensummen der Admittanzmatrix Y eines
massefreien Netzwerks Null sein. Es folgt:

Y 3,1 =1 − Y 1,1 − Y 2,1,

Y 3,2 =1 − Y 1,2 − Y 2,2.

Gemäß Aufgabe 9.1 müssen die Zeilensummen der Admittanzmatrix Y eines mas-
sefreien Netzwerks Null sein. Es folgt:

Y 1,3 =1 − Y 1,1 − Y 1,2,

Y 2,3 =1 − Y 2,1 − Y 2,2.

Schließlich erhält man noch

Y 3,3 = 1 − Y 3,1 − Y 3,2 = Y 1,1 + Y 2,1 + Y 1,2 + Y 2,2 − 1.

Hiermit ist es möglich, die Admittanzmatrix Y des Dreitors aus der Admittanz-
matrix des Zweitors zu berechnen.

Aufgabe 12.2 Der Klemmenleistungsgewinn ergibt sich mit (10.18) und (12.28)
zu

G =

∣∣∣e−jβl
∣∣∣
2 (

1 − |ΓL|2
)

1 − |e−j2βl ΓL|2
= 1.

Die von der Leitung aufgenommene Leistung muss gleich der von der Leitung
abgegebenen Leistung sein, da die Leitung verlustfrei ist.

Der Einfügungsgewinn ergibt sich mit (10.18) und (12.30) zu

GI =

∣∣∣e−jβl
∣∣∣
2 ∣∣∣1 − ΓQΓL

∣∣∣
2

∣∣∣1 − e−j2βl ΓQΓL

∣∣∣
2 =

∣∣∣1 − ΓQΓL

∣∣∣
2

∣∣∣1 − e−j2βl ΓQΓL

∣∣∣
2 .

An reflexionsfreien Quellen ΓQ = 0 oder reflexionsfreien Lasten ΓL = 0 ist der
Einfügungsgewinn GI = 1.

Der Übertragungsgewinn ergibt sich mit (10.18) und (12.32) zu

GT =

(
1 −

∣∣∣ΓQ

∣∣∣
2
) ∣∣∣e−jβl

∣∣∣
2 (

1 − |ΓL|2
)

∣∣∣1 − e−j2βl ΓQΓL

∣∣∣
2 =

(
1 −

∣∣∣ΓQ

∣∣∣
2
) (

1 − |ΓL|2
)

∣∣∣1 − e−j2βl ΓQΓL

∣∣∣
2 .
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Der verfügbare Leistungsgewinn ergibt sich mit (10.18) und (12.35) zu

GA =

∣∣∣e−jβl
∣∣∣
2
(

1 −
∣∣∣ΓQ

∣∣∣
2
)

1 −
∣∣∣e−j2βl ΓQ

∣∣∣
2 = 1.

Dies ist aufgrund der Verlustfreiheit der Leitung zu erwarten.
Zum Berechnen des maximalen verfügbaren Leistungsgewinns GMAG bestimmt

man zunächst mit (10.18) und (12.22) den Stabilitätsfaktor

K =
1 +

∣∣∣− e−j2βl
∣∣∣
2

2 |e−jβl| |e−jβl| = 1.

Man erhält schließlich mit (10.18) und (12.39) den maximalen verfügbaren Leis-
tungsgewinn

GMAG =

∣∣∣e−jβl
∣∣∣

|e−jβl| = 1.

Aufgabe 12.3 Die Einwegleitung ist wegen S1,2 = 0 rückwirkungsfrei, so dass
der ÜbertragungsgewinnGT dem unilateralen ÜbertragungsgewinnGTU entspricht.
Aus (10.23) und (12.42) folgt

GT = GTU =
(

1 −
∣∣∣ΓQ

∣∣∣
2
)

︸ ︷︷ ︸
GQ

(
1 − |ΓL|2

)

︸ ︷︷ ︸
GL

.

Der Klemmenleistungsgewinn ergibt sich mit (10.23) und (12.28) zu

G = 1 − |ΓL|2 ,

vergleiche auch (12.37). Die Einwegleitung ist nicht verlustfrei.
Der verfügbare Leistungsgewinn ergibt sich mit (10.23) und (12.35) zu

GA = 1 −
∣∣∣ΓQ

∣∣∣
2
,

vergleiche auch (12.38).
Der Einfügungsgewinn ergibt sich mit (10.23) und (12.30) zu

GI =
∣∣∣1 − ΓQΓL

∣∣∣
2
.

An einer reflexionsfreien Quelle ΓQ = 0 oder an einer reflexionsfreien Last ΓL = 0
ist der Einfügungsgewinn GI = 1.

410



Aufgabe 12.4 Mit
(
K −

√
K2 − 1

) (
K +

√
K2 − 1

)
= K2 −

(
K2 − 1

)
= 1

folgt aus (12.39) für den maximalen verfügbaren Leistungsgewinn unter Berück-
sichtigen des korrekten Vorzeichens vor der Wurzel

GMAG =

∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣
1(

K +
√
K2 − 1

) .

Im Grenzfall rückwirkungsfreier Zweitore S1,2 → 0 erhält man mit (12.40)

GMAG →
∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣

∣∣∣S2,1

∣∣∣
∣∣∣S1,2

∣∣∣
(∣∣∣S1,1

∣∣∣
2 − 1

)(∣∣∣S2,2

∣∣∣
2 − 1

) =
∣∣∣S2,1

∣∣∣
2 1(∣∣∣S1,1

∣∣∣
2 − 1

)(∣∣∣S2,2

∣∣∣
2 − 1

) .

Dies entspricht dem maximalen unilateralen Übertragungsgewinn GTUmax gemäß
(12.54).

Aufgabe 13.1 Aus der Streumatrix S der Paralleladmittanz gemäß (10.15) fol-
gen mit (13.15)13

1

2
E
{
|bR1|2

}
=

1

2
E
{
|bR2|2

}
=kTB

(
1 − |Y RN|2

|2 + Y RN|2
− 4

|2 + Y RN|2
)

=kTB
|2 + Y RN|2 − |Y RN|2 − 4

|2 + Y RN|2

=kTB
2Y ∗RN + 2Y RN

|2 + Y RN|2

= − kTB
4 Re(Y RN)

|2 + Y RN|2

und

1

2
E{bR1b

∗
R2} =

1

2
E{bR2b

∗
R1} = − kTB

−2Y ∗RN − 2Y RN

|2 + Y RN|2

=kTB
4 Re(Y RN)

|2 + Y RN|2

=
1

2
E
{

|bR1|2
}

=
1

2
E
{

|bR2|2
}
.

13 Der Realteil einer komplexen Größe berechnet sich zu Re(x) = 1
2 (x+ x∗).
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Für den normierten Korrelationskoeffizienten folgt

C = 1.

Die Rauschquellen sind vollständig korreliert, wie man es aufgrund des Kurz-
schlusses zwischen Tor 1 und Tor 2 auch intuitiv erwartet.

Aufgabe 13.2 Mit (13.15) und (10.23) ergibt sich die Rauschwellenkorrelati-
onsmatrix der thermisch rauschenden Einwegleitung homogener Temperatur T
zu

R =




1
2

E
{

|bR1|2
}

1
2

E{bR1b
∗
R2}

1
2

E{b∗
R1bR2} 1

2
E
{
|bR2|2

}

 = kTB

(
1 0
0 0

)
.

Mit (13.16), (13.17) und (13.18) berechnet man die Rauschparameter:

R1,1 =
1

2
E





∣∣∣∣∣bR1 − S1,1

S2,1

bR2

∣∣∣∣∣

2


 = kTB,

R1,2 = R∗
2,1 =

1

2
E

{(
bR1 − S1,1

S2,1

bR2

)(
1

S2,1

bR2

)∗}
= 0,

R2,2 =
1

2
E





∣∣∣∣∣
1

S2,1

bR2

∣∣∣∣∣

2


 = 0.

Mit (13.19) erhält man die effektive Rauschtemperatur

Teff = T

∣∣∣ΓQ

∣∣∣
2

1 −
∣∣∣ΓQ

∣∣∣
2 .

Hieraus folgt mit (13.24) die Rauschzahl

F = 1 +
T

T0

∣∣∣ΓQ

∣∣∣
2

1 −
∣∣∣ΓQ

∣∣∣
2 .

Falls die Temperatur T der Einwegleitung der Bezugstemperatur T0 entspricht,
erhält man

F =
1

1 −
∣∣∣ΓQ

∣∣∣
2 .

Dies entspricht dem Ergebnis, dass man aufgrund von (13.30) und dem Ergebnis
von Aufgabe 12.3 erwartet.
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Aufgabe 13.3 Aus (13.30) folgt, dass die Rauschzahl F minimal wird, wenn der
verfügbare Leistungsgewinn GA maximal wird. Aus (12.39) folgt

Fmin =
1

GMAG
=

∣∣∣S1,2

∣∣∣
∣∣∣S2,1

∣∣∣
(
K −

√
K2 − 1

) .

Bei thermisch rauschenden Zweitoren homogener Temperatur T entspricht die
Leistungsanpassung der Rauschanpassung.
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3-Term-Fehlermodell, 247
5-Term-Fehlermodell, 258
7-Term-Fehlermodell, 252

ABCD-Matrix, siehe Kettenmatrix
Abschluss, 159

symmetrischer, 174
symmetrischer rein massegekop-

pelter, 176
Abschlussimpedanz, 165
Abstandsfaktor, 83
Abtasttheorem, 125, 342, 348
Abtastung, 125, 340, 348
Admittanzmatrix, 203
Amplitude, 157
Amplitude, komplexe, 3, 157
Amplitudengewinn, 314
Anpassung, 159
Anpassungsfaktor, 160
Antenne, iv
Antenne, lineare, 109
Antenne, omnidirektionale, 105
Antennenelement, 122
Auflösebandbreite, 243, 349, 351
Ausfallswinkel, 137
Ausgangskompressionspunkt, 315
Ausgangssignal, 311

Eintonanregung, 313
Kleinsignalnäherung, 315

Zweitonanregung
Kleinsignalnäherung, 318

Ausnutzungsfaktor, 265, 276
Autokorrelationsfunktion, 112, 351

Autotransformation, 170
Available Power Gain, siehe Leistungs-

gewinn, verfügbarer
Averaging, siehe Mitteln
Azimutwinkel, 73

Bandleitung, 54
Bandpassmodus, 338
Bandpasssignal, 327, 328
Bartlett-Methode, 353
Bezugsebene, 198
Bezugskreisfrequenz, 327
Bezugstemperatur, 284
Bezugswelle, 157, 198
Boltzmann-Konstante, 284
Brechungsgesetz, siehe Snelliussches

Brechungsgesetz
Brewster-Winkel, 143, 145

Deembedding, 253
Detektor, 350
Determinante, 206
Device under Test, siehe Messobjekt
Dielektrikum, 5
Dipol, 79
Dipolantenne, 98, 109
Dipolmoment, elektrisches, 79
Dirac-Impuls, 16, 36, 81
Dirac-Impulses, 330
Dirac-Impulsfolge, 340
Direktivität, 247, 252, 258
Dirichlet-Kern, 127, 344, 349
Dispersion, 37
Divergenz
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Berechnung, 76
Definition, 10
kartesische Koordinaten, 12
Kugelkoordinaten, 76

Dreileitersystem, symmetrisches, 65,
172

rein massegekoppeltes, 69, 176, 208
Dreitor, 227
Dualität, Fourier-Transformation, 331
Dualität, Maxwellsche Gleichungen, 21
Dualtransformation, 171
Durchflutungsgesetz, siehe erste Max-

wellsche Gleichung
Dynamikbereich, 322
Dämpfungsglied, 224, 322
Dämpfungskonstante, 33

Eigenparameter, 210
Eindeutigkeitstheorem, 89
Einfallsebene, 16, 136
Einfallsrichtung, 16, 136
Einfallswinkel, 137
Einfügungsgewinn, 274
Eingangsimpedanz, 165
Eingangskompressionspunkt, 314
Einheitsvektor, 8, 74
Eintor, 219
Eintor, rauschendes, 283
Eintorquelle, 219
Einwegleitung, 228
Elementardipol, 100
Elementrichtcharakteristik, 111, 117,

123
Elementrichtungsfaktor, 110
Empfangsleistung

Freiraumausbreitung, 131
Freiraumausbreitung, polarimetrisch,

135
Mehrwegeausbreitung, 152
Streuung, 147

Streuung, polarimetrisch, 151
Energiedichte

elektrische, 22
magnetische, 22

Energiegeschwindigkeit, 30
Ersatzrauschquelle, 294
Excess Noise Ratio, siehe Übertem-

peraturverhältnis

Faltungstheorem, 332
Fehlerkorrektur

Rauschzahlmessung, 301
Reflektometer, 246–248
Vektornetzwerkanalysator, 251–254

Fehlerzweitor, 245, 250
Feldstärke

elektrische, 3
Dipol, 86
Fernfeldnäherung, 84

magnetische, 4
Dipol, 85
Fernfeldnäherung, 84

Feldtheorie, iv
Feldwellenwiderstand, 85

in z-Richtung, 140, 142
transversalelektrische Welle, 32
transversalelektromagnetische Wel-

le, 30
transversalmagnetische Welle, 33
Vakuum, 30

Fensterfunktion, 125, 334, 348
Fernfeld, 82
Fernnebensprechen, 241
Flussdichte

elektrische, 3
magnetische, 4

Flächenelement
Berechnung, 75
Kugelkoordinaten, 75

Flächenladungsdichte
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elektrische, 16, 20
magnetische, 18, 21

Flächenstromdichte
elektrische, 18, 20
magnetische, 16, 21

Fourier-Korrespondenzen, 354
Fourier-Reihe, 124, 342

Rechteckschwingung, 326
Fourier-Transformation, 3, 36, 112, 117,

329
Fourier-Transformation, diskrete, 344
Freiraumwellenlänge, 34
Frequenz, 3
Frequenzbereich, 3
Frequenzverschiebung, 337
Fresnelsche Formeln, 138
Funkkommunikationssystem, iii
Funknavigationssystem, iii

Gauß, Satz von, 12
Gaußscher Satz in der Ebene, 12
Gegentaktmode, 172
Gegentaktspannung, 67

resultierende, 173
Gegentaktstrom, 67

resultierender, 173
Gegentaktwelle, 66, 172
Gesetz, multiplikatives, 110
Gewinn, 105, 133

Ausgangsanpassung, 280, 281
Dämpfungsglied, 224
Eingangsanpassung, 280

Gitterkeule, 126, 127
Gleichanteil, 313
Gleichgewicht, thermodynamisches, 285,

288
Gleichtaktmode, 172
Gleichtaktspannung, 67

resultierende, 173
Gleichtaktstrom, 67

resultierender, 173
Gleichtaktwelle, 66, 172
Gradient

Berechnung, 75
kartesische Koordinaten, 25
Kugelkoordinaten, 75

Grating Lobe, siehe Gitterkeule
Greensche Funktion, 81

Fernfeldnäherung, 82
Grenzflächenbedingungen

Dielektrika, 19–20
elektrisches Feld, 16–18
idealer elektrischer Leiter, 20
idealer magnetischer Leiter, 20–

21
magnetisches Feld, 18–19

Grundwelle, 312
Gruppenantenne, 122
Gruppenantenne, lineare, 123
Gruppengeschwindigkeit, 36

Mehrleitersystem, 61
Zweileitersystem, 52

Gruppenrichtcharakteristik, 111, 117,
123

konstante Strombelegung, 119
Strombelegung mit konstanten Pha-

sendekrement, 128
Gruppenrichtungsfaktor, 110

Aperturantenne, 116, 117
Dipolantenne, 112
Gruppenantenne, 122
konstante Strombelegung, 119
lineare Antenne, 110, 111
lineare Gruppenantenne, 124
Strombelegung mit konstanten Pha-

sendekrement, 127
Größe, metrische, 74

harmonisch, 3, 312, 349
Harmonische, 313, 315
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Harmonischenabstand, 316
Hauptkeule, 114, 126, 127
Helmholtz-Gleichung

elektrische Feldstärke, 25
magnetische Feldstärke, 25
Vektorpotential, 71

Helmholtz-Gleichung, zweidimensiona-
le

elektrische Feldstärke, 27
magnetische Feldstärke, 27

Hertzscher Dipol, siehe Dipol
Hochfrequenzmesstechnik, iii
Hochfrequenztechnik, iii
Hochfrequenzverstärker, 261
Hohlleiter, 43
Hohlraumresonator, 171
Horizontaldiagramm, 107
Hornantenne, 121
Huygens-Äquivalent, 96
Huygenssches Prinzip, 91

Impedanz, 164
Impedanzmatrix, 203
Impulsantwort, 36, 330

reelle, 332
Induktionsgesetz, siehe zweite Max-

wellsche Gleichung
Induktivitätsbelag, 52

Bandleitung, 55
Koaxialleitung, 59

Induktivitätsbelagsmatrix, 62
Influenzbelagskoeffizientenmatrix, 63
Inphasekomponente, 327
Insertion Power Gain, siehe Einfügungs-

gewinn
Interceptpunkt

ausgangsseitiger, 320
Kaskade, 324

eingangsseitiger, 319
Kaskade, 324

Interceptpunkt der Harmonischen
ausgangsseitiger, 317
eingangsseitiger, 316

Intermodulationsabstand, 318
Intermodulationsprodukt, 318
Interpolation, 346
Inversionsdiagramm, 180
isotrop, 15

Kalibrierstandard, 247
Kapazitätsbelag, 52

Bandleitung, 54
Koaxialleitung, 59

Kaskade, 207, 297
kausal, 333
Kennlinie, 311

Kaskade, 322
Kettenmatrix, 208
Kleinsignalnäherung, 315
Klemmenleistungsgewinn, 272, 274
Koaxialleitung, 58
Komponente, hochfrequenztechnische,

iv
Konnektivitätsmatrix, 216
Kontinuitätsgleichung, 14
Konversionsparameter, 210
Koordinaten

krummlinige, 73
orthogonale, 74

Koordinatenlinie, 73
Kopplungsfaktor, 65
Kramers-Kronig-Beziehungen, 334
Kreisfrequenz, 3, 312
Kreisfrequenz, kritische, 33
Kugelkoordinaten, 73

λ/2-Transformator, 171, 226
λ/4-Transformator, 172, 226
Ladung

elektrische, 10
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magnetische, 13
Ladung, elektrische, 14
Ladungsdichte

elektrische, 4
magnetische, 4

Ladungserhaltung, 14–15
Ladungserhaltungssatz, 14
Laplace-Gleichung, 49
Laplace-Operator

Definition, 25
kartesische Koordinaten, 26

Laplace-Operator, skalarer
Berechnung, 78
Definition, 49
kartesische Koordinaten, 49
Kugelkoordinaten, 78

Laplace-Operator, zweidimensionaler,
27

Lasttoranpassung, 258
Leistung, 167, 351

abgestrahlte, 85
ablaufende Welle, 197
Eintorquelle, 263
hinlaufende Welle, 158
Mehrtor, 198
rücklaufende Welle, 158
symmetrisches Dreileitersystem, 69
verfügbare, 265
zulaufende Welle, 197
Zweileitersystem, 53

Leistungsanpassung, 265
Leistungsdichtespektrum, 352
Leistungsgewinn, maximaler stabiler,

279
Leistungsgewinn, maximaler verfüg-

barer, 276, 278
Leistungsgewinn, verfügbarer, 275

Kaskade, 275
Leiter

idealer elektrischer, 20

idealer magnetischer, 20
Leitfähigkeit, 16
Leitung, koplanare, 60
Leitung, kurzgeschlossene, 169
Leitung, leerlaufende, 170
Leitungsdiagramm, 186
Leitungsgleichungen, 52
Leitungsstrom

elektrischer, 5, 14
magnetischer, 9

Leitungsstück, 225
Leitungstransformation, 195
Lichtgeschwindigkeit, 35
Likelihood-Funktion, 353
Linienelement

Berechnung, 74
Kugelkoordinaten, 74

Longitudinalkomponente, 28

µ-Test, 270
Main Lobe, siehe Hauptkeule
Mason-Regeln, 199
Materialgleichung, 15
Maximum Available Power Gain, sie-

he Leistungsgewinn, maxima-
ler verfügbarer

Maximum Stable Power Gain, siehe
Leistungsgewinn, maximaler sta-
biler

Maximum-Likelihood-Schätzung, 353
Maxwellsche Gleichung

dritte, 10–12
erste, 5–9
vierte, 13
zweite, 9–10

Mehrleitersystem, 60
Mehrtor, 197

eigenreflexionsfreies, 201
entkoppeltes, 292
lineares, 198
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passives, 201
rauschendes, 286
reziprokes, 203
verlustfreies, 201, 292

Mehrwegeausbreitung, 152
Messleitung, 167
Messobjekt, 243, 245, 250, 298
Messtoranpassung, 247, 252
Mikrostreifenleitung, 60
Mischer

additiver, 326
idealer, 325
multiplikativer, 326

Mitteln, 353
Mode, 28
Modenkonversion, 174, 210, 221, 233
Momentenmethode, 97
Multiplizierer, 325

Nahfeld-Fernfeld-Transformation, 96
Nahnebensprechen, 241
Nebenkeule, 114, 126
Netzwerk, 214

massefreies, 205
rauschendes, 287

Norm, 30
Normaleneinheitsvektor, 12, 16
Nullphase, 157

Oberwelle, 313
Ortsbereich, 112
OSM-Verfahren, 247

Π-Schaltung, 185, 224
Paralleladmittanz, 223
Parallelleitungskoppler, 236
Parallelschaltung

Blindleitwert, 184, 194
Wirkleitwert, 183, 194

Permeabilität, 16
absolute, 16

komplexe, 16
relative, 16

Permittivität, 15
absolute, 15
komplexe, 16
relative, 15

Pfadlängenverkürzung, geometriebeding-
te, 110

Phasendekrement, 125
Phasengeschwindigkeit, 35

Mehrleitersystem, 61
Zweileitersystem, 52

Phasenkonstante, 26, 33, 71
Mehrleitersystem, 61
transversalelektromagnetische Wel-

le, 29
Phasenkonstante, kritische, 28

transversalelektrische Welle
Bandleitung, 56, 57
Hohlleiter, 44

transversalmagnetische Welle
Hohlleiter, 47

Phasenschieber, 221
Phasenvektor, 28, 82
Phasenverschiebung, geometriebeding-

te, 83, 110
Phasenzentrum, 84
Poisson-Gleichung, 80
Polarisation, 39

lineare, 40
zirkulare, 40

Polarisationsanpassung, 136
Polarisationsbasen, 40
Poldistanzwinkel, 73
Potenzreihe, 311
Power Gain, siehe Klemmenleistungs-

gewinn
Poynting-Vektor

Dipol, 86
Fernfeldnäherung, 85
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komplexer, 24
reeller, 23
transversalelektromagnetische Wel-

le, 30
Proportionalitätsprinzip, Fourier-Transformation,

331

Quadraturdemodulator, 328
Quadraturkomponente, 327
Quadraturmodulator, 327
Quelle, 211
Quelltoranpassung, 258

Radargleichung, 147
Radartechnik, iii
Rauschabstand, 321
Rauschanpassung, 305
Rauschdiode, 300
Rauschen, iv
Rauschen, thermisches, 284
Rauschleistung, verfügbare, 283, 284,

286
Rauschleistungsdichte, verfügbare, 284
Rauschparameter, 294
Rauschtemperatur, 286
Rauschtemperatur, effektive, 294

Kaskade, 298
minimale, 303

Rauschurwelle, 283, 286
Rauschwellenkorrelationsmatrix, 287,

292
Rauschzahl, 295, 297

Kaskade, 298
minimale, 305

Rauschzahl, zusätzliche, 295
Kaskade, 298

Rechteckfenster, 336, 348
Rechteckhohlleiter, siehe Hohlleiter
Reflektometer, 243

ideales, 245

imperfektes, 245
Reflexionsfaktor, 158, 164, 219

idealer elektrischer Leiter, 145
idealer magnetischer Leiter, 145
parallele Polarisation, 143
senkrechte Polarisation, 140

Reflexionsgleichlauf, 247, 252, 258
Renormalisierung, 225
Resolution Bandwidth, siehe Auflöse-

bandbreite, siehe Auflöseband-
breite

Resonator, siehe Hohlraumresonator
reziprok, 88
Reziprozitätstheorem, 88, 202
Richtcharakteristik, 111, 117, 123

Aperturantenne, 117
Definition, 106
Dipol, 107
Dipolantenne, 114

Richtcharakteristik, vektorielle kom-
plexe, 109

Richtdiagramm, 107
Richtfaktor

Definition, 105
Dipol, 106, 107
Dipolantenne, 114
konstante Strombelegung, 121
lineare Antenne, 111
Strombelegung mit konstanten Pha-

sendekrement, 128
Richtkoppler, 236
Richtungsfaktor, 110

Aperturantenne, 116
lineare Antenne, 109

Richtungsfaktor, vektorieller, 83
Ringmischer, 326
Rollett, siehe Stabilitätsfaktor
Rotation

Berechnung, 77
Definition, 6
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kartesische Koordinaten, 8
Kugelkoordinaten, 77

Schaltungssimulation, 217
Selbstkalibrierung, 254
Serienimpedanz, 222
Serienschaltung

Blindwiderstand, 183, 194
Wirkwiderstand, 182, 191

Side Lobe, siehe Nebenkeule
Signal- und Systemtheorie, iv
Signal-Rausch-Abstand, 296
Signalflussgraph, 199
Skalarprodukt, 5
Smith-Diagramm, 190
Snelliussches Brechungsgesetz, 137
Spaltfunktion, 119, 336
Spannung

resultierende, 163
Zweileitersystem, 50

Spannungsquelle, 212
Spannungsvektor

Mehrleitersystem, 62
Spektralanalysator, 298, 351
Spektralanalyse, iv, 347
Spektrum, 347
Spektrumanalysator, siehe Spektral-

analysator, siehe Spektralana-
lysator

Spiegelung
idealer elektrischer Leiter, 90
idealer magnetischer Leiter, 91

Spiegelungsprinzip, 90–91
Sprungfunktion, 16
Spurious Free Dynamic Range, siehe

Dynamikbereich
Stabilität

Eintorquelle, 263
unbedingte, 269
Zweitor, 266

Stabilitätsfaktor, 271
Stabilitätskreis, 267, 268
Standing Wave Ratio, siehe Stehwel-

lenverhältnis
Stehwellenverhältnis, 162
Stokes, Satz von, 8
Strahlungsleistung, 23
Strahlungsleistungsdichte

Dipol, 86
Fernfeldnäherung, 85
mittlere, 24
momentane, 23

Streifenleitung, 60
Streuer, 146
Streumatrix, 198
Streumatrix, komplexe polarimetrische,

151
Streuparameter, 198

modale, 209, 211, 220, 232
nodale, 210, 211

Streuparameter, komplexer polarime-
trischer, 150

Streuquerschnitt, 147
bistatischer, 147
monostatischer, 147

Streuung, 146
Strom

elektrischer, 5
magnetischer, 9
resultierender, 163
Zweileitersystem, 51

Strombelegung, 82
konstante, 114, 119
sinusförmige, 112

Stromdichte
elektrische, 4
magnetische, 4

Stromquelle, 213
Stromvektor

Mehrleitersystem, 62

427



INDEX

Störabstand, 321
Superpositionsprinzip, Fourier-Transformation,

331
Symmetrie, Übertragungsfunktion, 332
System, nichtlineares, 311

statisches, 311
Systemrauschtemperatur, 295

Teiler, allseitig angepasster, 230
Teiler, eingangsseitig angepasster, 231
Tiefpass-Bandpass-Transformation, 327,

339
Tiefpassmodus, 337
Tiefpasssignal, äquivalentes, 327, 328
TOSM-Verfahren, 254, 259
Totalreflexion, 138, 159
Transducer Power Gain, siehe Über-

tragungsgewinn
Transfermatrix, 136, 151
Transformation

Impedanz, 165
Reflexionsfaktor, 159
symmetrisches Dreileitersystem, 176

Transistor, 261
Transmissionsfaktor

parallele Polarisation, 143
senkrechte Polarisation, 141

Transmissionsgleichlauf, 252, 258
Transmissionsmatrix, 206

Kaskade, 207
Transmissionsparameter, 206
Transversalkomponente, 28

UOSM-Verfahren, 254
Urwelle, 211, 219

Vakuumlichtgeschwindigkeit, 35
Varianz, 351
Vektornetzwerkanalysator, iv, 248

idealer, 250
imperfekter, 250

vereinfachter, 255
vollwertiger, 248

Vektorpotential
elektrisches, 72
magnetisches, 71, 81

Dipol, 85
Fernfeldnäherung, 82

Vektorprodukt, 17
Verlustleistungsdichte, 22
Verschiebungsstrom

elektrischer, 5
magnetischer, 9

Vertikaldiagramm, 107
Verzweigung, 230
Viertor, 232
Viertor-Zweitor-Reduktion, 246
Volumenelement

Berechnung, 75
Kugelkoordinaten, 75

Vorverstärker, rauscharmer, 302
Vorzeichenfunktion, 333

Welle
ablaufende, 197
ebene, 38
ebene homogene, 38
elektromagnetische, 26
hinlaufende, 157
rücklaufende, 157
stehende, 160
transversalelektrische, 31

Bandleitung, 55
Hohlleiter, 44

transversalelektromagnetische, 29
Bandleitung, 54
Zweileitersystem, 49

transversalmagnetische, 32
Bandleitung, 56
Hohlleiter, 46

zulaufende, 197
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Wellenamplitude, komplexe, iv, 157,
163, 197

Rauschurwelle, 283, 286
symmetrisches Dreileitersystem, 173
Urwelle, 211, 219

Wellenamplitude, resultierende kom-
plexe, 159

Wellenimpedanz, 140, 143
Wellenleiter, zylindrischer, 26
Wellenlänge, 33, 83
Wellenlänge, kritische, 34
Wellenwiderstand

Bandleitung, 55
Gegentaktwelle, 67
Gleichtaktwelle, 67
Koaxialleitung, 59
symmetrisches Dreileitersystem, 67
Zweileitersystem, 51, 52

Wellenwiderstandsmatrix, 62
Wellenzahl, 33
Wellenzahlbereich, 112
Wirkfläche, 131, 133
Wirkungsgrad, 105

Y -Faktor, 300

Zeitbereichsanalyse, 330
Zero-Padding, 346
Zirkulator, 227
Zweileitersystem, 48
Zweitor

eigenreflexionsfreies, 292
rauschendes, 293, 297
symmetrisch aufgebautes, 220

Zweitorgewinn, unilateraler, 280
Zylinderkoordinaten, 78

Ähnlichkeitssatz, Fourier-Transformation,
331

Äquivalenztheorem
ebene Grenzfläche, 95

feldfreier Innenraum, 92
idealer Leiter, 93

Überabtastung, 346, 349
Übertemperaturverhältnis, 301
Übertragungsfaktor, 132
Übertragungsfunktion, 36, 329
Übertragungsgewinn, 274
Übertragungsgewinn, unilateraler, 279

maximaler, 282
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