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Gerhard Grimeisen

Approximation of the Bochner integral by means of
Riemann sums

Dedicated to professor Harry Poppe on his 65th birthday

The natural way to approximate the integral (of some kind) of a function f on a measure

space T into a Banach space E via the values of f is - in the author’s opinion - that by

Riemann sums. The Bochner integral does not offer this possible way of approximation

in an immediate way. The goal of this paper is to investigate in which sense the desired

approximation is nevertheless possible for the Bochner integral of f .

More precisely, we consider a Banach space E endowed with its norm topology and a measure

space (T, µ) with a finite measure µ. There are essentially two ways to introduce the Bochner

integral: one extends the natural integral of step functions having finite range (i.e. of simple

functions), the other extends the natural integral of step functions having countable range.

We denote the first type of Bochner integral by D
∫
· dµ, the second type by B

∫
· dµ. Each

integral defined on a subset of ET and ranging in E is interpreted as T -ary partial operation

in E, thus as a subset of ET ×E. (Every function is considered as a relation.) Obviously, one

has D
∫
· dµ ⊆ B

∫
· dµ (see Theorem 2.1) and, if µ is complete, one obtains D

∫
· dµ = B

∫
· dµ

(see Theorem 3.2). (Although these facts must be well-known, the author could not find

them explicitly in the literature.)

In the papers [6] and [7], Riemann sums were used to introduce, for each ”µ-partition system”

Y (consisting of certain subdivisions of T ), the (µ,Y)-integral Y
∫
· dµ, called now ”(µ,Y)-

subdivision integral”, which maps ET into a set E, having just one element more than E.

(The role of this additional element is played by the empty set ∅.) Y
∫
· dµ is a T -ary operation

in E. Certain T -ary operations in E, for instance Y
∫
· dµ, are algebraic completions of T -

ary partial operations in E, and every T -ary partial operation in E can be extended to a

T -ary operation in E. There is a one-to-one correspondance (·)∧ between all T -ary partial

operations in E and certain T -ary operations in E its inverse being denoted by (·)∨. For

instance, ( Y
∫
· dµ)∨ is a T -ary partial operation in E such that ( Y

∫
· dµ)∨)∧ = Y

∫
· dµ.
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(Actually, we shall consider even an extension of the mapping (·)∧ (denoted the same way)

which assigns, especially, to the generalized partial operation lim defined on certain filtered

families in E a generalized (algebraic) operation lim∧ in E defined on all filtered families in

E. For details, see Section 1 and [11].)

The most important µ-partition systems are: (a) that consisting of all finite ”µ-partitions”

(intuitively: subdivisions) of T , which we denote (later, beginning with Lemma 1.4) by X,

and (b) that consisting of all countable µ-partitions of T , denoted by Ω. (Because of the

implicit occurence of Ω
∫
· dµ in [2], we call this integral Birkhoff integral.) In every case, one

has
B

∫
· dµ ⊆ ( Ω

∫
· dµ)∨ (1)

(see Theorem 2.1); for bounded f : T −→ E, one has

D

∫ ∧
f∼dµ ⊆ Y

∫
f∼dµ if X ⊆ Y (2)

(see Theorem 2.2); for bounded measurable f and complete µ, one obtains

∅ 6= D

∫ ∧
f∼dµ = B

∫ ∧
f∼dµ = Y

∫
f∼dµ if X ⊆ Y (3)

(see Theorem 3.4), where ∼ denotes the natural injective mapping on ET into ET . The inter-

pretation for instance of the latter assertion (3) in the traditional language is the following

one: f is D-Bochner integrable, B-Bochner integrable, and Y-integrable, and the values of

the corresponding integrals of f coincide (if X ⊆ Y). Each of the three assertions contains

the statement that the Bochner integral of Bochner integrable functions can be approxi-

mated by means of Riemann sums either such having countably many summands (assertion

(1)) or such having finitely many summands (assertions (2) and (3)). In the assertion (1),

generally, the inclusion is a proper inclusion; the validity of the sign ”=” implies that E is

finite-dimensional provided there exists an infinite µ-partition of T into sets having positive

measure (see Theorem 3.3/b).

As a byproduct of this comparison of several approaches to integration in Banach spaces

we obtain, for complete µ, a characterization of the ”µ-summation” in the case E = R,

i.e. of the restriction of classical µ-integration to µ-summable functions f : T −→ R (see

Theorem 3.1). This allows us to interpret, for complete µ, the (Y, µ)-subdivision integration

as a strict extension of µ-summation, no matter which approach to the Lebesque integration

one might choose (while originally, in [6], we (the authors of [6]) have restricted ourselves to

the approach to integration presented in [13]).

Finally, we discuss the relationship of the Bochner integral and the (µ,Y)-subdivision integral

with the Riemann integral redefined in the expected way in the Banach space E with a
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compact metric space as domain T being endowed with a measure µ compatible in a precise

sense with the metric of T . As an example for the possible transfer of classical statements

for the Riemann integral into the language of the subdivision integral in Banach spaces we

discuss the rearrangement of the order of integration and uniform convergence of generalized

sequences in ET (compare Proposition 4.7 with Theorem 2.3).

In addition to the references given in [6], the author should mention Henstock’s books [15]

and [16] (both containing numerous references to the Riemann-type integration), his paper

[14], furthermore, for T = [a, b] ⊆ R and a suitable µ-partition system Y ⊆ X, Gordon’s

article [8] on Riemann-type integration in Banach spaces (see Example 4.2 below), where

especially Graves’ article [9] occurs under the references.

The author is grateful to Professor W. Strauss for discussion and critical remarks as well

as for valuable hints to the literature.

This paper is a continuation of the papers [6] and [7]. In order to make this paper selfcon-

tained as much as possible, we collect in Section 1 definitions and some results (used here)

introduced or discussed there already.

1 Terminology and some lemmas

a) Set theory. Sets are special classes. Functions are special (binary) relations. If A and

B are classes, a function (= mapping) h ⊆ A × B is called a function from A into B ,

a function on A into B, if Dmnh = A (symbol h : A −→ B). If h is a function, then

P
i ∈ Dmn h

h(i) or Ph denotes the cartesian product of h. If M is a set, PM denotes Ph with

h = {(m,m) | m ∈ M}, while PM denotes the powerset of M . For the whole paper, we

fix a set E (denoting a Banach space later) and define E to be the set {X | X ⊆ E and

cardX ≤ 1}. For each set I and each h : I −→ E, we define by h∼ the mapping defined by

h∼(i) = {h(i)} for all i ∈ I. Then h∼ : I −→ E. For all X ∈ E\{∅}, eX denotes the element

of X. Then, e−1 maps E one-to-one onto E\{∅}, and h∼ = e−1 ◦h holds for all h : I −→ E.

b) Ordered sets, directed sets. If (E,≤) is an ordered set, then the relation ≤? is defined by

letting, for all X, Y ∈ E, X ≤? Y , if x ≤ y holds for all (x, y) ∈ X × Y. In the case Y = {y},
we write also X ≤? y instead of X ≤? Y. Finally, we write X ≤ Y and X ≤ y instead of

X ≤? Y and X ≤? y, respectively. – Similar agreements hold for < instead of ≤ . – If (M,�)

is a directed set, then F(M,�) or FM denotes the filter on M generated by the sections

{y ∈ M | x � y} with x ∈ M (filter of perfinality of M). The filter FN on N(= {1, 2, · · · })
is called the Fréchet filter.

c) Universal algebra. Let I be a non-empty set. Each mapping Θ from EI into E is called

an I-ary partial operation in E (resp. an I-ary operation in E if Dmn Θ = EI). Let Θ be an
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I-ary partial operation in E (resp. an I-ary operation in E). Then (E,Θ) is called an I-ary

partial algebra (resp. I-ary algebra). We denote by Θ∧ the I-ary operation in E defined by

Θ∧f = {x ∈ E | for some φ ∈ P f, x = Θφ} for all f ∈ EI .

The I-ary algebra (E,Θ∧) is a natural extension of (E,Θ), called 1-point-completion of

(E,Θ).The mapping e−1 is an isomorphism on (E,Θ) into (E,Θ∧), namely onto the trace

(F, Θ∧ ∩ (F I × F )) of (E,Θ∧) in the set F = E\{∅}. For each g ∈ EI ,

g ∈ Dmn Θ if and only if Θ∧g∼ 6= ∅ ,

furthermore

if g ∈ Dmn Θ , then e−1(Θg) = Θ∧g∼ .

Denote, for the moment, by A(E, I) the set of all I-ary partial operations in E and by

B(E, I) the set of all I-ary operations Λ in E such that for all φ ∈ EI

if Λφ 6= ∅ then φ(i) 6= ∅ for all i ∈ I .

Then, the mapping Θ 7−→ Θ∧(Θ ∈ A(E, I)) is one-to-one onto B(E, I); its inverse mapping

(·)∨ is defined by letting for each Λ ∈ B(E, I)

(ψ, x) ∈ Λ∨ if and only if {x} = Λψ

for all ψ ∈ EI and all x ∈ E. For each f ∈ EI , we write Θf or Θ
i ∈ I

f(i) instead of Θ∧f

without any danger of confusion. For the remainder of this paper, let (E, ‖ · ‖) be a Banach

space. If I is countable, the unconditional summation ΣI in E (see [11],p.119 and p.128) is

an I-ary partial operation in E.

d) Convergence. Let τ be the norm topology of (E, ‖ · ‖). Let ΦM denote, for each set M ,

the class of all filtered families (g,K, b) in M , i.e. with g(K) ⊆ M. Denote by limτ or just

by lim the limit operation induced by τ ; lim is a mapping from ΦE into E. Let M be the

class of all filtered sets (K, b). Then lim is an M-ary partial operation in E (see [11], p.120),

and for the M-ary operation lim∧ in E the following holds for all (g,K, b) ∈ ΦE :

lim∧(g,K, b) = {x ∈ E | ∃B ∈ b (∃φ ∈ P
k ∈ B

g(k) : x = lim(φ,B, bB))} ,

where bB denotes the trace {B ∩ C | C ∈ b} of the filter b in the set B.– The mapping e−1

is an isomorphism on the M-ary partial algebra (E, lim) into the M-ary algebra (E, lim∧),

namely onto the M-ary partial algebra

(F, lim∧ ∩(Φ(F ) × F )) with F = E\{∅} ,
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being called the trace of (E, lim∧) in the set F. This means that, for each

x ∈ E and all (g,K, b) ∈ Φ(E), (1) the statement (g,K, b) ∈ Dmn(lim) holds (i.e., (g,K, b)

converges in E w. r. to the norm topology τ) if and only if lim∧(g∼, K, b) 6= ∅, and (2)

x = lim(g,K, b) holds if and only if {x} = lim∧(g∼, K, b).– In the sequel, we write, for each

(g,K, b) ∈ ΦE, also lim(g,K, b) or b lim
k ∈ K

g(k) instead of lim∧(g,K, b). In the special case

that K = N and b = FN (see b)), we replace b lim
k ∈ K

g(k) by lim
k ∈ N

g(k). (Of course, these

considerations under d) hold in every Hausdorff space E.)

e) Banach spaces. The scalar domain of (E, ‖ · ‖) is denoted by K. The scalar multiplication

in E, (x, α) 7−→ xα((x, α) ∈ E × K), is written in a right-hand notation. If X, Y ∈ E and

α ∈ K, then we define Xα = {xα | x ∈ X}, ‖X‖ = {‖x‖ | x ∈ X}, and (in accordance with

the agreements in a) above for Θ = + or Θ = − ) X ± Y = {x± y | x ∈ X and y ∈ Y }. For

each mapping h on a set T into E, we define ‖h‖ to be the mapping t 7−→ ‖h(t)‖ (t ∈ T ); in

the special case E = R, h∼ is defined as under a) with T instead of I.

f) Integration. In this paper, we assume that a non-empty measure space (T, µ) with a

finite measure µ is given. Each countable partition x of T such that x ⊆ Dmnµ is called a

µ-partition. We recall that Ω(µ) or Ω denotes the class of all µ-partitions of T. Let X ⊆ Ω.

Given x, y ∈ X, we agree that x � y holds, if, for each Y ∈ y, there exists an X ∈ x such

that Y ⊆ X. X is called a µ-partition system, if (X,�) is a directed set. Define the binary

operation ∨ in Ω by letting, for each x, y ∈ Ω, x ∨ y = {X ∩ Y | X ∈ x and Y ∈ y}\{∅}. We

say that X is ∨-closed, if ∨(X×X) ⊆ X. If X is ∨-closed, then X is a µ-partition system; e.g.,

Ω is a µ-partition system, and the set Xfi of all finite µ-partitions is a µ-partition system. Let

X be a µ-partition system of T. Then, we denote by X# the set {(x, φ) | x ∈ X and φ ∈ Px}.
We define �# to be the relation such that, for all (x, φ), (y, ψ) ∈ X#, (x, φ) �# (y, ψ), if

x � y. (X#,�#) is a directed set. By the agreement in b), FX and FX# denote the filters

of perfinality on X and X#. Given f : T −→ E, the Riemann sum R(f, x, φ) of f belonging

to (x, φ) ∈ X# is defined to be the set Σ
X ∈ x

f(φ(X))µX. The (µ,X)-integral X
∫
f dµ of f is

defined to be the set

FX# lim
(x, φ) ∈ X#

R(f, x, φ) .

If h : T −→ R (where R denotes the real line), then, tacitly, X
∫
h∼dµ denotes the (µ,X)-

integral of h∼ for the Banach space (R, | · |) instead of (E, ‖ · ‖). – We call the (µ,X)-integral

also (µ,X)-subdivision integral.

We add some results being proved in [6] and [7], in which f is a mapping on T into E and

X,Y are µ-partition systems of T :
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Lemma 1.1 ([6],Theorem 4). X ⊆ Y implies X
∫
f dµ ⊆ Y

∫
f dµ.

We note a simple consequence of the preceding lemma applied in the Banach space (R, | · |):

If g ∈ ET and X
∫
‖g‖∼dµ = {0} and the function ‖g‖ is µ-measurable, then g(t) = 0 holds

for µ-a.a. t ∈ T .

[Proof: By Lemma 1, one has 0 ∈ Ω
∫
‖g‖∼dµ, thus (by Theorem 12 in [7]) 0 = H

∫
‖g‖ dµ.

Now apply Satz 8 on p.100 in [13]. 2]

f is called an X−step function, if there is an x ∈ X and a mapping χ : x −→ E such that

f(x) = χ(X) for all (X, x) with X ∈ x and x ∈ X. If f is in such a relationship with x and χ,

we say that f is the X-step function determined by (x, χ). The class of all X-step functions

on T into E is denoted by ST (X,E). Similarly, one defines the class ST (X, E) of all X-step

funtions on T into E. Partially, the next lemma follows from Lemma 1.1:

Lemma 1.2 ([6], Theorem 5). Let x ∈ X, χ : x −→ E, and f be the X-step function

determined by (x, χ). Then, one has

X
∫
f dµ = Σ

X ∈ x

χ(X)µX.

Given a µ-partition system X of T and ∅ 6= R ∈ Dmnµ, let XR = {xR | x ∈ X}, where xR =

{R∩X | X ∈ x}\{∅}. Then, XR is a µR-partition system of R, where µR = µ | (Dmnµ∩PR).

Then, one has the

Lemma 1.3 ([7], Theorem 9). Assume X to be ∨-closed and y ∈ X. If y is finite, then,

one has X
∫
f dµ = Σ

Y ∈ y

XY
∫

(f | Y )dµY .

Corollary 1.1 Let g : T −→ E and h : T −→ E. Assume that X is ∨-closed and that

there is a set M ∈ Dmnµ with µM = 0 such that {M,T\M} ∈ X and g(t) = h(t) holds for

all t ∈ T\M. Then X
∫
g∼dµ = X

∫
h∼dµ.

In particular, if X = {x ∈ Ω | x is finite } or X = Ω and g(t) = h(t) holds for µ-almost all

t ∈ T, then X
∫
g∼dµ = X

∫
h∼dµ (cf. Proposition 30 in [7], p.18).

For the remainder of this paper, we reserve the symbol X for the system of all finite µ-

partitions of T and the symbol Y for some (given) µ-partition system of T.

We shall make use of the following link to the integration of bounded and measurable real-

valued functions:
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Lemma 1.4 Let (E, ‖ · ‖) be the Banach space (R, | · |), and assume g : T −→ E to be

µ-measurable. Then, (a)=⇒(c) and (b)=⇒(c) hold true:

(a) g is bounded;

(b) µ is complete and g is bounded µ-a.e.;

(c) Y
∫
g∼dµ 6= ∅, namely e( Y

∫
g∼dµ) = H

∫
g dµ, if X ⊆ Y. (For the terminology, see

[7],p.15.)

Proof: (a)=⇒(c). For abbreviation, put s(x) = Σ
X ∈ x

inf
t ∈ X

g(t)µX and

S(x) = Σ
X ∈ x

sup
t ∈ X

g(t)µX for all x ∈ X, furthermore j(x, φ) = s(x) and J(x, φ) = S(x)

for all (x, φ) ∈ X#. Then,

s(x) ≤ e(R(g∼, x, φ) ≤ S(x) holds for all (x, φ) ∈ X# . (1)

Since g is bounded and µ-measurable and µT < +∞, there is (cf. the proof of Satz 1a, p.95

in [13]) an r ∈ R such that

r = sup
x ∈ X

s(x) = FX# lim
(x, φ) ∈ X#

j(x, φ) and

r = inf
x ∈ X

S(x) = FX# lim
(x, φ) ∈ X#)

J(x, φ)

and therefore, by (1), r ∈ X
∫
g∼dµ. Furthermore, use Lemma 1.1 here and Theorem 12 in

[7].

(b)=⇒(c). There is a set M ∈ Dmnµ such that µM = ∅ and g bounded on T\M . Consider

the non-trivial case M 6= ∅. Define the function f : T −→ E by letting f(t) = g(t) on

T\M and f(t) = 0 on M . Then f is bounded and (µ being complete) µ-measurable. Now,

one applies (a)=⇒(c) to f instead of g occuring there. In view of Corollary 1.1, one has
X
∫
f∼dµ = X

∫
g∼dµ. Thus (c) holds true by Lemma 1.1. 2

In this paper, a function g : T −→ R will be called µ-summable if g ∈ Dmn( H
∫
· dµ) and

| H
∫
g dµ |< +∞.

2 More on the relationship between Bochner integral and subdi-

vision integral

For each set M and each mapping g : M −→ ET , we write in this paper, for each m ∈ M ,

also gm instead of g(m). We use this agreement especially, if g is a sequence in ET , i.e. if

M = N.
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In the next considerations, ET is considered as a linear space w.r. to the pointwise summation

+ : ET × ET −→ ET and the pointwise scalar multiplication · : ET × K −→ ET .

Definition 2.1 (a) A filtered family (g,K, b) in ET is called a (µ,Y)-Cauchy family,

if 0 ∈ b×? b lim
(k, l) ∈ K × K

Y
∫
‖gk − gl‖∼dµ, where b×? b denotes the cardinal product of the

filter b with itself. (Of course, we will speak of a (µ,Y)-Cauchy sequence in the case

K = N and b = FN.)

(b) A linear subspace L of ET is called to be (µ,Y)-absolutely integrable, if f ∈ L implies
Y
∫
f∼dµ 6= ∅ and Y

∫
‖f‖∼dµ 6= ∅.

Obviously, a filtered family (g,K, b) in ET is a (µ,Y)-Cauchy family if and only if, for all

ε > 0, there is a B ∈ b such that ∅ 6= Y
∫
‖gk − gl‖∼dµ < ε holds for all k, l ∈ B.

Definition 2.2 Let S ⊆ T , f : T −→ E, and (h,K, b) be a filtered family in ET .

(a) (h,K, b) converges uniformly on S to f , if for each ε > 0 there is a B ∈ b such that

‖f(t) − hk(t)‖ < ε holds for all k ∈ B and all t ∈ S. If S = T , we omit mostly the

reference ”on S” to S.

(b) (h,K, b) converges uniformly µ-a.e. (on T ) to f , if there is a set M ∈ Dmnµ with

µM = 0 such that (h,K, b) converges uniformly on T\M to f .

(c) (h,K, b) (µ,Y)-converges in mean to f , if 0 ∈ b lim
k ∈ K

Y
∫
‖f − hk‖∼dµ.

Note a possible terminological conflict between the relation ”converges uniformly µ-a.e.”

occuring here and the relation ”converges µ-almost uniformly” appearing in connection with

Egoroff’s theorem (see, e.g., [12], p.88) but not occuring in this paper.

Definition 2.1/b is illustrated and the relationship of the notions introduced in the Defi-

nitions 2.1/a and 2.2/c to the corresponding classical notions is discussed in the following

remark, in which we refer to results and a definition formulated later:

Remark 2.1 A) The linear subspaces L1, L2, · · · , L5 of ET defined in (a)–(d) are (µ,Y)-

absolutely integrable (for a linear subspace of ET which is not (µ,Y)-absolutely integrable

see the remarks after Theorem 3.3):

(a) Let Y = X and L1 = ST (X, E). (See Lemma 1.2.)

(b) Let Y = X and L2 = {f ∈ Dmn ( D
∫
· dµ) | f is bounded µ-a.e.}. (See Definition 2.3,

Theorem 2.2/a, and Proposition 2.10.)
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(c) Let Y = Ω and let L3 be the set of all f ∈ ST (Y, E) such that Ω
∫
‖f‖∼dµ 6= ∅. (In

view of Lemma 1.2, the last condition for f is just a short form for a condition about

the absolute convergence of a certain sum. – See Theorem 14 in [11], p.128.)

(d) Let Y = Ω, let L4 = Dmn( D
∫
· dµ) and L5 = Dmn( B

∫
· dµ). (See Definition 2.3,

Proposition 2.8, Definition 8 in [7], p.20, Theorem 2.1, and Remark 2.3.)

B) Let Z be a µ-partition system of T with Y ⊆ Z. Then, one has by Lemma 1.1: If a linear

subspace L of ET is (µ,Y)-absolutely integrable, it is also (µ,Z)-absolutely integrable.

C) If L is (µ,Y)-absolutely integrable, then the mapping f 7−→ e(Y
∫
‖f‖∼dµ)

(f ∈ L) is a semi-norm (denoted by sn(µ,Y)) on L. (For the terminology, see Section 1/a.)

D) Let (L, sn) be a semi-normed linear space. Denote by σ the topology on L induced in the

usual way by sn. Let (h,K, b) ∈ Φ(L) and x ∈ L. (h,K, b) is called a Cauchy family in the

topological vector space (L, σ), if h(b) is a Cauchy filter (see, e.g., Definition 1 in [18], p.128)

in (L, σ). Then, (h,K, b) is a Cauchy family in (L, σ) if and only if, for each ε > 0, there is

a B ∈ b such that sn(h(k) − h(l)) < ε for all k, l ∈ B. Denote by Limσ : Φ(L) −→ PL the

limit operator belonging to σ (see [10], p.183). Then x ∈ Limσ(h,K, b) holds if and only if,

for all ε > 0, there is a B ∈ b such that sn(h(k)− x) < ε for all k ∈ B. If ∅ 6= Limσ(h,K, b),

then (h,K, b) is a Cauchy family in (L, σ). – Now, let especially L be a linear subspace of ET

being (µ,Y)-absolutely integrable and let sn be the semi-norm sn(µ,Y) on L defined under

C. Then (h,K, b) is a (µ,Y)-Cauchy family if and only if (h,K, b) is a Cauchy family in

(L, σ). Furthermore, (h,K, b) (µ,Y)-converges in mean to x if and only if x ∈ Limσ(h,K, b).

Proposition 2.1 Let L be a linear subspace of ET being (µ,Y)-absolutely integrable.

Let (g,K, b) be a filtered family in L. Then, one has (a), (b), (c), and (d):

(a) If (g,K, b) is a (µ,Y)-Cauchy family, then b lim
k ∈ K

Y
∫
gk

∼dµ 6= ∅.

(b) If there is an f ∈ ET such that (g,K, b) converges uniformly to f , then (g,K, b) is a

(µ,Y)-Cauchy family.

(c) If Y is ∨-closed and, for each set M ∈ Dmnµ having the properties µM = 0, ∅ 6=
M 6= E, the set {M,T\M} is an element of Y, then (b) holds with ”uniformly µ-a.e.”

instead of ”uniformly”.

(d) If there is an f ∈ ET such that (g,K, b) (µ,Y)-converges in mean to f , then (g,K, b)

is a (µ,Y)-Cauchy family.

(Remark: Of course, the premise within the statement (c) is satisfied, e.g., if Y = X.)
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Proof: Ad (a) Let h = (e( Y
∫
gk

∼dµ))k∈K . Then, by the premise within (a), (h,K, b) is a

Cauchy family in the topological vector space (E, τ) (for the terminology, see Remark 2.1/D),

therefore (since (E, τ) is complete) the conclusion within (a) is true.

Ad (b) and (c). We skip the trivial case µT = 0. Assume that (g,K, b) converges uniformly

µ-a.e. to f (∈ ET ). Then, there a set M ∈ Dmnµ with µM = 0 such that (g,K, b) converges

uniformly on T\M to f . Let ε > 0. Then, there is a B ∈ b such that ‖f(t) − gk(t)‖ < ε
3(µT )

for all k ∈ B and all t ∈ T\M . Therefore, with the abbreviation N = T\M , the chain

∅ 6= Y

∫
‖gk − gl‖∼dµ ≤ sup

t ∈ N

(‖gk(t) − gl(t)‖)µN(N) ≤

≤ sup
t ∈ N

(‖f(t) − gk(t)‖ + ‖f(t) − gl(t)‖)µT < ε

holds for all k, l ∈ B in the case M = ∅ without any further assumptions (thus (b) is true),

while, in the case M 6= ∅, it holds for all k, l ∈ B under the assumption made in (c) (use of

Lemma 1.3).

Ad (d). Use Proposition 26 in [7], p.17, the elementary fact that, for each pair of mappings

f, j : T −→ R, f(t) ≤ j(t) for all t ∈ T implies Y
∫
f∼dµ ≤ Y

∫
j∼dµ, furthermore the

linearity of L and the supposition for L. 2

For the remainder of this paper, let f : T −→ E.

By Theorem 12 in [7], p.16, for a sequence g in ET the following is evident: g (µ,Ω)-converges

in mean to f if and only if, for some p ∈ N, the function ‖f − gn‖ is µ-summable for all

n ≥ p, and lim
n ≥ p

H
∫
‖f − gn‖ dµ = 0 holds.

In the general case of (µ,Y)-convergence in mean of filtered families one has the following: If

(g,K, b)(∈ Φ(ET )) (µ,Y)-converges in mean to f , then (by Lemma 1.1) there is a B ∈ b such

that ∅ 6= Y
∫
‖f − gk‖∼dµ = Ω

∫
‖f − gk‖∼dµ, thus (by Theorem 12 in [7]) H

∫
‖f − gk‖ dµ =

e( Ω
∫
‖f − gk‖∼dµ) holds for all k ∈ B, and 0 = c lim

k ∈ B

H
∫
‖f − gk‖ dµ with c = bB (= trace

of the filter b in the set B). – Let L be a linear subspace of ET such that j ∈ L implies

that ‖j‖ is µ-measurable. (If the measure µ is complete, the linear space L = Dmn ( D
∫
· dµ)

(see Definition 2.3) has this property (see Proposition 2.8/b).) Then, the intersection of the

relation ”(µ,Y)-converges in mean to” (between the class Φ(ET ) and the set ET ) with the

class Φ(L)×L is ”µ-almost” a function, i.e., if (g,K, b) ∈ Φ(L), f, j ∈ L, and (g,K, b) (µ,Y)-

converges in mean to f and j, then f(t) = j(t) holds for µ-a.a. t ∈ T . (Use of the preceding

lines, of [13], p.102, 4.3.4, Satz 1, and of the note following to Lemma 1.1.)

The assertion (a)=⇒(b) in the following proposition (cf. [5], p.130, Proposition 14) gen-

eralizes a well-known relationship between the classical mean convergence and pointwise

convergence (see, e.g., [21], p.219, within a proof):
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Proposition 2.2 Assume the measure µ to be complete. Let g be a sequence in ET .

Then (a) implies (b):

(a) g (µ,Y)-converges in mean to f .

(b) There is a subsequence of g converging pointwise µ-a.e. to f .

If, additionally, for almost all (i.e. eventually all) n ∈ N, f − gn is bounded µ-a.e., then (a)

implies (c):

(c) g (µ,X)-converges in mean to f .

Proof: Assume (a). Then, by Lemma 1.1, g (µ,Ω)-converges in mean to f , thus (by

Theorem 12 in 3.Satz in [13], p.96), for some p ∈ N, the function ‖f − gn‖ is µ-summable,

therefore (by 3.Satz in [13], p.96) µ-measurable (since µ is complete) for all n ≥ p, and one

has lim
n ≥ p

H
∫
‖f − gn‖ dµ = 0. Now, formally, we have the same situation as in the proof of

Proposition 14 in [5], p.130, and we can continue formally almost word by word like there:

For each k ∈ N there exists an nk ∈ N with nk ≥ p such that

H

∫
‖f − gnk

‖ dµ < (1/(22k) , (1)

and, of course, one can reach that nk < nk+1 holds for each k ∈ N. The sequence (gnk
)

converges pointwise µ-a.e. to f .

In order to show this, one observes that, for each k ∈ N, the set Ek defined by

Ek = {t ∈ T | 1/(2k) ≤ ‖f(t) − gnk
(t)‖} (2)

is a member of Dmnµ for all k ∈ N, because ‖f −gnk
‖ is µ-measurable. Using 4.Satz in [13],

p.100, one obtains (by means of (1) and (2)) that

µ(Ek) ≤ 1/(2k) holds for all k ∈ N . (3)

Let, now, F =
⋂

k∈N
⋃∞

i=k Ei. Then, one has (in view of (3) and of the completeness of µ)

µF = 0. Using (2), one obtains that on T\F the sequence (gnk
) converges pointwise to f .

We have showed (b).

Now assume f − gn to be bounded µ-a.e. for almost all n ∈ N, say for all n ≥ q for some

q ≥ p. Let n ≥ q. The function ‖f − gn‖ being bounded µ-a.e. and µ-measurable, one

obtains (by Lemma 1.4) H
∫
‖f − gn‖ dµ ∈ X

∫
‖f − gn‖∼dµ = Ω

∫
‖f − gn‖∼dµ. Therefore,

since g (µ,Ω)-converges in mean to f , one has (c). 2

(Note: For the relationship between the relation ”(µ,Ω)-converges in mean to” and the strict

specialization of the relation ”converges in mean to” in the space L1
E(m) defined in [5],p.127,

to the present situation of a positive scalar measure, see Remark 2.4 below.)
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Lemma 2.1 (Proposition 32 in [7]). Assume that (a) E is finite-dimensional or (b)

Y ⊆ X. Let (h,K, b) be a filtered family in ET . Then, one has: If (h,K, b) (µ,Y)-converges

in mean to f, then b lim
k ∈ K

Y
∫
hk

∼dµ ⊆ Y
∫
f∼dµ.

Proposition 2.3 Let µ be complete and f be bounded µ-a.e. Let g be a sequence in

ST (X, E).

Then (a) implies (b):

(a) g (µ,Ω)-converges in mean to f .

(b) lim
n ∈ N

X
∫
gn

∼dµ ⊆ X
∫
f∼dµ.

Proof: By Proposition 2.2, (a) implies that g (µ,X)-converges in mean to f , thus, by

Lemma 2.1, one has (b). 2

Remark 2.2 As an immediate consequence of Proposition 31 in [7], one obtains the fol-

lowing statement: If Y
∫
f∼dµ 6= ∅ and the filtered family (h,K, b) in ET (µ,Y)-converges in

mean to f , then b lim
k ∈ K

Y
∫
hk

∼dµ ⊆ Y
∫
f∼dµ.

The next considerations assure that our setting of convergence in mean (using the subdivision

integral, in particular the Birkhoff integral Ω
∫
· dµ, in its definition) fits in the usual approach

to convergence in mean occuring in a natural way in the theory of completion of certain semi-

normed spaces (see, e.g., [13], p.137, [21], p.218–220, [5], p.127–133).

Lemma 2.2 Let g be a (µ,Y)-Cauchy sequence in ST (Y, E). Then there are a (µ,Y)-

Cauchy sequence h in ST (Y, E), a strictly increasing mapping φ : N −→ N, and a mapping

j : T −→ E such that the statements (1)–(7) defined next hold true:

(1) hn(t) = gn(t) for all n ∈ N and for µ-a.a. t ∈ T .

(2) j(t) = lim
k ∈ N

hφ(k)(t) for all t ∈ T .

(3) (j − gn)(t) = (j − hn)(t) for all n ∈ N and for µ-a.a. t ∈ T .

(4) ‖j‖ and all functions ‖j − hn‖ (with n ∈ N) are µ-measurable.

(5) g and h (µ,Ω)-converge in mean to j.

(6) If µ is complete, then ‖j − gn‖ is µ-measurable for all n ∈ N.

(7) If j − gn is bounded µ-a.e. for almost all (i.e. for eventually all) n ∈ N, then g and h

(µ,X)-converge in mean to j.
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(Remark: Within the scope of the lemma, the four implications

(1)=⇒(3); (2)=⇒(4); (1)∧(2)=⇒(6); (3)∧(4)∧(5)=⇒(7)

hold true.)

Proof: (We adapt the main part of the proof of Theorem 1 in [21], p.218–219, where the

Daniell integration for measurable real-valued functions instead of H
∫
· dµ is used and, up

to the different terminology, our case Y = X for complete measure µ is covered; cf. also the

proof of Satz 1 in [13], p.137.) Without any danger of confusion, the sign cΣ denotes the

conditional summation either in R or in E, depending on its application (for the terminology,

see [10], p.187, or [11], p.119, respectively). Tacitly, we will use of Theorem 12 in [7].

Since g ist a (µ,Y)-Cauchy sequence (thus, by Lemma 1.1, a (µ,Ω)-Cauchy sequence), there

is a stricly increasing mapping φ : N −→ N such that

cΣ
k ∈ N

H
∫
‖gφ(k+1) − gφ(k)‖ dµ < +∞ . (a)

For remainder of the proof, we put φ(k) = nk for all k ∈ N. Since, for each k ∈ N , the

function ‖gnk+1
− gnk

‖ is µ-measurable, one has by (a) and Levi’s theorem on monotone

convergence (see 3.Satz, p.105 in [13])

H
∫

( cΣ
k ∈ N

‖gnk+1
(t) − gnk

(t)‖)
t∈T

dµ < +∞ . (b)

Define the function G : T −→ R by

G(t) = ‖gn1(t)‖ + cΣ
k ∈ N

‖gnk+1
(t) − gnk

(t)‖

for all t ∈ T . By (b) (cf. [13], p.96, 2.Satz), there is a set M ∈ Dmnµ such that µM = 0

and G(t) < +∞ for all t ∈ T\M . Define the sequence h in ST (Y, E) by letting, for each

n ∈ N, hn(t) = gn(t) for all t ∈ T\M and hn(t) = 0 for all t ∈ M (where 0 denotes the zero

element of E). (Thus, one has (1). Since g is a (µ,Y)-Cauchy sequence in ST (Y, E), so

also h.) Then, for each t ∈ T , the set L(t), defined by

L(t) = {hn1(t)} + cΣ
k ∈ N

{hnk+1
(t) − hnk

(t)} ,
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is non-empty, since absolute convergence of a series in E implies its conditional convergence

(for the notation, see Theorem 14 in [11], p.128). Define the mapping j : T −→ E by

letting j(t) = eL(t) for all t ∈ T . Then, (2) and, therefore, also (4) holds, since one has, e.g.,

‖j(t) − hn(t)‖ = lim
k ∈ N

‖hnk
(t) − hn(t)‖ for all t ∈ T and all n ∈ N. Furthermore, one has,

for each q ∈ N and each t ∈ T , j(t) − hnq(t) = cΣ
k ≥ q

(hnk+1
(t) − hnk

(t)), thus

lim
q ∈ N

H
∫
‖j − hnq‖ dµ = 0 . (c)

[We have used the following: By the definition of h, the statement (a) and therefore (b)

holds for h instead of g. Consequently, for each q ∈ N, the function Hq, defined by Hq(t) =
cΣ
k ≥ q

‖hnk+1
(t) − hnk(t)‖ for all t ∈ T , is µ-summable. Now apply Fatou’s lemma (see 2.Satz,

p.105 in [13]) to the sequence (Hq) and use (4).] – Since

H
∫
‖j − hn‖ dµ ≤ H

∫
‖hn − hnq‖ dµ+ H

∫
‖hnq − j‖ dµ

holds for all n, q ∈ N, one obtains (using (c) and the fact that h is a (µ,Y)-Cauchy sequence)

that h (µ,Ω)-converges in mean to j, therefore, using (3) and Corollary 1.1, the statement

(5). Assume the premise within the statement (7) and choose a p ∈ N such that the function

j − gn is bounded µ-a.e. for all n ≥ p. Let n ≥ p. Then, in view of (3), (4), Corollary 1.1,

and Lemma 1.4, the statement (d) formulated next holds true:

∅ 6= X
∫
‖j − hn‖∼dµ = X

∫
‖j − gn‖∼dµ = Ω

∫
‖j − gn‖∼dµ . (d)

Combining (d) with (5), one obtains the conclusion within (7). 2

In the following remark, where we slightly generalize Proposition 33 and Theorem 13 in [7],

p.21, the preceding lemma is applied for Y = Ω:

Remark 2.3 In order to have the µ-partition system X available, we have the measure µ

assumed to be finite in this paper. For this remark, we replace this assumption by requiring

µ to be (only) σ-finite. Then, e.g., Definitions 2.1 and 2.2 need not be changed and the

parts (a) and (d) of Proposition 2.1 keep to be valid. Also, Lemma 2.2, reformulated with

the words ”and if µ is finite” added to the premise within (7), remains true. We assume

these modifications, now, tacitly: In Definition 8 in [7], p.20, the statements (a) and (b)

imply (by Proposition 2.1/d) that the sequence (gn), occuring there, is a (µ,Ω)-Cauchy

sequence. (Observe that, by (a), gn ∈ L3 (see Remark 2.1) holds for all n ∈ N.) Therefore

(by Lemma 2.2 and Corollary 1.1) the T -ary partial operation B
∫
· dµ in E is the set of

all (j, x) ∈ ET × E such there exists a (µ,Ω)-Cauchy sequence h in ST (Ω, E) having the

properties (α), (β), and (γ) defined next:
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(α) Ω
∫
‖hn‖∼dµ 6= ∅ for all n ∈ N.

(β) h converges pointwise µ-a.e. to j.

(γ) x ∈ lim
n ∈ N

Ω
∫
hn

∼dµ.

The elements of Dmn( B
∫
· dµ) are now called to be B-Bochner integrable. We assert: If

f is B-Bochner integrable, then ‖f‖ is B-Bochner integrable in the Banach space (R, | · |),
and one has B

∫
‖f‖ dµ ∈ Ω

∫
‖f‖∼dµ, thus ‖f‖ is µ-summable. [Proof. Choose x ∈ E and

a (µ,Ω)-Cauchy sequence h in ST (Ω, E) having the properties (α), (β) with f instead of

j, and (γ). Then, the sequence (‖hn‖) is a (µ,Ω)-Cauchy sequence in ST (Ω,R) (use of

Lemma 1.2 for E = R) with the property (α), thus (by Proposition 2.1/a, applied to L = L3

(see Remark 2.1) with E = R) ∅ 6= lim
n ∈ N

Ω
∫
‖hn‖∼dµ. If one combines this with (α),

the modified (β), and the continuity of ‖ · ‖, one obtains that ‖f‖ is B-Bochner integrable

in R. Since R is finite-dimensional and (‖hn‖) (µ,Ω)-converges in mean to ‖f‖ (use of

Lemma 2.2 and Corollary 1.1, one has (by Lemma 2.1) lim
n ∈ N

Ω
∫
‖hn‖∼dµ ⊆ Ω

∫
‖f‖∼dµ,

thus the remainder of the assertion is proven (use of Theorem 12 in [7],p.16).2] Therefore,

in Proposition 33 in [7], p.21, consequently in Theorem 13 in [7], p.21,(which uses this

proposition) the supposition of the completeness of µ is allowed to be deleted. (In the proof

of the latter theorem, the second occurence of ”h?” should be replaced by ”h” (printing

error).)

We apply Lemma 2.2 for Y = X:

Proposition 2.4 Let g be a (µ,X)-Cauchy sequence in ST (X, E) converging pointwise

µ-a.e. to f . Then, one has (a) and (b):

(a) g (µ,Ω)-converges in mean to f and ∅ 6= lim
n ∈ N

X
∫
gn

∼dµ. If the linear space E is

finite-dimensional, then, additionally, lim
n ∈ N

X
∫
gn

∼dµ = Ω
∫
f∼dµ.

(b) If f − gn is bounded µ-a.e. for almost all (i.e. for eventually all) n ∈ N, then g

(µ,X)-converges in mean to f, and ∅ 6= lim
n ∈ N

X
∫
gn

∼dµ = Y
∫
f∼dµ holds, provided

that X ⊆ Y.

Proof: Choose a (µ,X)-Cauchy sequence h in ST (X, E), a strictly increasing mapping

φ : N −→ N, and a mapping j : T −→ E such that the statements (1)–(7) in Lemma 2.2

hold true. Then, by (1) and (2), f(t) = j(t) holds for µ-a.a. t ∈ T , therefore, by the
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Corollary 1.1 and by (5), the sequence g (µ,Ω)-converges in mean to f . By Proposition 2.1/a,

one has ∅ 6= lim
n ∈ N

X
∫
gn

∼dµ. Therefore, if the linear space E is finite-dimensional, then, by

Lemma 2.1, lim
n ∈ N

X
∫
gn

∼dµ = Ω
∫
f∼dµ. (Observe that in any case X

∫
gn

∼dµ = Ω
∫
gn

∼dµ

by Lemma 1.2.) This settles the proof of (a). Combining (a) with (7) and Lemma 1.1, one

obtains (b). 2

We adapt now the following definition of the Bochner integral using only finite µ-partitions

of T :

Definition 2.3 (cf. Definition 1 in [5], p.120, there for vector measures). We define

the relation D
∫
· dµ between ET and E to be the set of all (j, x) ∈ ET × E such that there

is a (µ,X)-Cauchy sequence g in ST (X, E) converging pointwise µ-a.e. to j and having

the property x ∈ lim
n ∈ N

X
∫
gn

∼dµ. We call D
∫
· dµ the D-Bochner integral. (Remark: The

relation D
∫
· dµ is a T -ary partial operation in E (use, e.g., Proposition 2.7). The elements

of Dmn ( D
∫
· dµ) are called to be D-Bochner integrable. Instead of ( D

∫
· dµ)∧ we write also

D
∫ ∧ · dµ (see Section 1/c).

Proposition 2.5 If f is an X-step function determined by (x, χ) with x ∈ X and χ :

x −→ E, then f is D-Bochner integrable, and one has D
∫
f dµ = Σ

X ∈ x

f(χ(X))µX =

e( X
∫
f∼dµ).

Proof: Ad (a). The sequence (f, f, · · · ) is a (µ,X)-Cauchy sequence. Use, furthermore,

Lemma 1.2 and the finiteness of x. 2

We denote by el
∫
· dµ the set of all (f, x) ∈ ST (X, E) × E such that x = Σ

X ∈ x

χ(X)µX

holds true for some pair (x, λ) with x ∈ X and λ : x −→ E which determines f . The relation
el
∫
· dµ is a function on ST (X, E) into E being called the elementary integral for (µ,E).

By Proposition 2.5, one has ( X
∫
· dµ)∨|ST (X, E) = el

∫
· dµ.

Avoiding the use of X
∫
· dµ, but using the elementary integral el

∫
· dµ twice (first in the

Banach space R, secondly in E)), one can describe the mapping D
∫
· dµ in the following way:

Proposition 2.6 D
∫
· dµ is the set of all (f, x) ∈ ET × E such there exists a sequence

g in ST (X, E) such that (a), (b), and (c) hold true:

(a) 0 = lim
n ∈ N

m ∈ N

el
∫
‖gn − gm‖ dµ;

(b) g converges pointwise µ-a.e. to f ;
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(c) x = lim
n ∈ N

el
∫
gn dµ.

Proof: Use of Lemma 1.2. 2.

The following characterization of the D-Bochner integral provides its description via mean

convergence, which becomes more familiar for measurable integrands j (see Proposition 3.2

below and [4]).

Proposition 2.7 In every case (resp. in the case of complete µ) D
∫
· dµ is the set of

all (j, x) ∈ ET ×T such there exists a sequence g in ST (X, E) having the properties (a), (b),

and (c) (resp. the properties (b) and (c)) defined next:

(a) g converges to j pointwise µ-a.e..

(b) g (µ,Ω)-converges in mean to j.

(c) x = lim
n ∈ N

el
∫
gn dµ.

Proof: Observe first that, for each sequence g in ST (X, E), g is a (µ,X)-Cauchy sequence

if and only if g is a (µ,Ω)-Cauchy sequence. Now, apply the Propositions 2.4 and 2.1/d in

the general case, and, additionally, Proposition 2.2 in the special case of a complete µ. 2

Recall that the T -ary partial operation ( Ω
∫
· dµ)∨ in E (being also denoted by Ω

∫ ∨ · dµ) is

defined to be the function {(g, x) ∈ ET ×E | x ∈ Ω
∫
g∼dµ} (see Corollary to Proposition 18

and Section 0/a in [6]).

The Bochner integral B
∫
· dµ, as it has been described in [7], Definition 8 there, is related to

D
∫
· dµ and to Ω

∫
· dµ in the following way:

Theorem 2.1 The following chain holds true:

D
∫
· dµ ⊆ B

∫
· dµ ⊆ ( Ω

∫
· dµ)∨ .

Proof: For the first inclusion, use Proposition 2.7, for the second one use Theorem 13 in

[7], where the completeness of µ need not be supposed (see Remark 2.3). 2

As a consequence, one has: If f is D-Bochner integrable, then D
∫
f dµ is the limit of a

filtered family of Riemann sums which are constructed by means of f . In Theorem 2.2, it

will be assured that, if f is bounded µ- a.e., those Riemann sums can be chosen as finite

sums. (This remark justifies the title of the paper.)
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Proposition 2.8 (For the first the assertion in (a), see Proposition 4 in [5], p.122.) Let

f be D-Bochner integrable. Then, one has (a) and (b):

(a) ‖f‖ is D-Bochner integrable in the Banach space (R, | · |) and µ-summable; more

precisely, one has the chain

D
∫
‖f‖ dµ = Ω

∫ ∨ ‖f‖ dµ = H
∫
‖f‖ dµ < +∞.

(b) If µ is complete, then ‖f‖ is µ-measurable.

Proof: Proving the first assertion in (a), use Proposition 2.5, the continuity of ‖ · ‖, and

the fact that, for each (µ,X)-Cauchy sequence g in ST (X, E), the sequence ‖gn‖n ∈ N is a

(µ,X)-Cauchy sequence in ST (X,R). Proving the µ-summability of f , combine Theorem 12

in [7] with Theorem 2.1. In order to prove (b), apply either additionally 3.Satz, p.96 in [13]

or combine the continuity of ‖ · ‖ with the µ-measurability of each function ‖gn‖. 2

Remark 2.4 Denote, for this remark, the linear space Dmn( D
∫
· dµ) by L and define the

relation ”D-converges in mean to” (= R for abbreviation) to be the set of all (h, g) ∈ LN×L
such that 0 = lim

n ∈ N

D
∫
‖g − hn‖ dµ holds (use of Proposition 2.8). For abbreviation, let

S denote the relation ”(µ,Ω)-converges in mean to”. Then, by Proposition 2.8, one has

the equation R = S ∩ (LN × L) (where, of course, each sequence j in ET is identified

with the filtered family (j,N,FN)). The notion of the ”D-convergence in mean” is a strict

specialization of the notion of ”mean convergence” in L1
E(m) defined in [5], p.127. Now,

reconsider the proof of Proposition 2.2: If we would have supposed f and the functions gn to

be D-Bochner integrable, the greatest part of the proof would have become a strict special

case of the cited proof in [5].

Lemma 2.3 (cf. [5], p.128, Proposition 12). If g is a (µ,X)-Cauchy sequence in

ST (X, E) converging pointwise µ-a.e to f , then

0 = lim
n ∈ N

D
∫
‖f − gn‖ dµ

holds in the Banach space (R, | · |), i.e. ” g D-converges in mean to f ” (see Remark 2.4).

Proof: Formulating the lemma, we have tacitly used Propositions 2.4/a and 2.8. In order

to prove the assertion, just reformulate the proof of the cited Proposition in [5] in our

terminology. 2

Within the preceding lemma, D
∫
‖f − gn‖ dµ ∈ Ω

∫
‖f − gn‖∼dµ holds for all n ∈ N by

Proposition 2.8. Thus, the lemma implies the first assertion of Proposition 2.4/a. [But, in
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view of the implicit dependence of Proposition 2.8 on Proposition 2.4/a, this implication is

not another proof of that assertion.] On the other hand, one can use it in the proof of the

following description of the D-Bochner integral (for complete µ) related to (E, ‖ · ‖) in terms

of the D-Bochner integral related to the Banach space (R, | · |) and the (µ,X)-subdivision

integral of X-step functions:

Proposition 2.9 Let M be the set of all (j, x) ∈ ET × E such that there exists a

sequence g in ST (X, E) having the properties

0 ∈ lim
n ∈ N

D
∫ ∧ ‖j − gn‖∼ dµ and x ∈ lim

n ∈ N

X
∫
gn

∼dµ .

Then D
∫
· dµ ⊆M holds in any case. If µ is complete, then M = D

∫
· dµ.

Proof: Proving D
∫
· dµ ⊆ M , one uses Definition 2.3, Lemma 2.3, and Proposition 2.7.

Proving M ⊆ D
∫
· dµ, one uses Proposition 2.8/b (in the Banach space (R, | · |)), the

completeness of µ, and Proposition 2.7. 2

Now, we raise the question, whether or under which conditions in the statement D
∫ ∧

f∼dµ ⊆
Ω
∫
f∼dµ (in Theorem 2.1) the µ-partition system Ω is allowed to be replaced by X. Here is

a partial answer:

Theorem 2.2 (a) If f is bounded µ-a.e., then D
∫ ∧

f∼dµ ⊆ Y
∫
f∼dµ holds, provided that

X ⊆ Y.

(b) If the sequence g in ST (X, E) converges uniformly µ-a.e. to f , then ∅ 6= lim
n ∈ N

Y
∫
gn

∼dµ =

= D
∫ ∧

f∼dµ = Y
∫
f∼dµ holds, provided that X ⊆ Y.

Proof: Ad (a). Note: If µ is complete, then, one has by Proposition 2.7, Proposition 2.3,

and Lemma 1.1 the validity of (a). In the general case we conclude the following way:

Assume the premise of (a) and the inclusion X ⊆ Y. Let x ∈ D
∫ ∧

f∼dµ. Then, there

exists a (µ,X)-Cauchy sequence g in ST (X, E) converging pointwise µ-a.e. to f such that

x ∈ lim
n ∈ N

X
∫
gn

∼dµ. Choose such a g. Then, by the premise, there is an M ∈ Dmnµ

such that µM = 0 and, for each n ∈ N, the function (f − gn)|T\M is bounded. By

Proposition 2.4/b, one obtains x ∈ Y
∫
f∼dµ.

Ad (b). Assume the premise of (b) and the inclusion X ⊆ Y. Then g is a (µ,X)-Cauchy se-

quence (by Proposition 2.1/b) converging pointwise µ-a.e. to f , thus (by Proposition 2.1/a

and Definition 2.3) ∅ 6= lim
n ∈ N

X
∫
gn

∼dµ = D
∫ ∧

f∼dµ. Because g converges even uni-

formly µ-a.e. to f , there is a p ∈ N and an M ∈ Dmnµ such that µM = 0 and for
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each n ≥ p the function (f − gn)|T\M is bounded. By Proposition 2.4/b, one obtains

∅ 6= lim
n ∈ N

X
∫
gn

∼dµ = Y
∫
f∼dµ. Observe, furthermore, that X

∫
gn

∼dµ = Y
∫
gn

∼dµ holds

for all n ∈ N by Lemma 1.2, since X ⊆ Y. 2

Next, we note a simple consequence of the preceding theorem applied in the Banach space

(R, | · |):

Proposition 2.10 If f is D-Bochner integrable and bounded µ-a.e., then
D
∫
‖f‖ dµ ∈ Y

∫
‖f‖∼dµ, provided that X ⊆ Y.

Proof: By Proposition 2.8/b, ‖f‖ is D-Bochner integrable in the Banach space (R, | · |);
thus, the assertion holds by Theorem 2.2/a and Lemma 1.1. 2

Next, we give another proof of Theorem 2.2/b not using implicitly Lemma 2.2 (via Proposi-

tion 2.4) but based on the following elementary lemma the validity of which is not restricted

to classical sequences as it is the case for Lemma 2.2.

Lemma 2.4 Let (h,K, b) be a filtered family in ET . If (h,K, b) converges uniformly

µ-a.e. to f and X
∫
‖f − hk‖∼dµ 6= ∅ holds for b-almost all k ∈ K (for the terminology, see

[11], p.116), then (h,K, b) (µ,X)-converges in mean to f and one has

b lim
k ∈ K

X
∫
hk

∼dµ ⊆ X
∫
f∼dµ.

(Remark. By the following proof, the lemma is logically equivalent with the statement one

gets from it by canceling the quantifier ”µ-a.e.”)

Proof: We skip the trivial case µT = 0.

1. By the supposition, there is a set M ∈ Dmnµ such that µM = 0 and (h,K, b) converges

uniformly on T\M to f . Define a mapping g : K −→ ET by letting, for each k ∈ K,

gk(t) = hk(t) for all t ∈ T\M and gk(t) = f(t) for all t ∈ M . Then, the filtered family

(g,K, b) converges uniformly to f , and (by Corollary 1.1) the equations X
∫
‖f − hk‖∼dµ =

X
∫
‖f − gk‖∼dµ, X

∫
hk

∼dµ = X
∫
gk

∼dµ hold for all k ∈ K. Therefore, it suffices to prove the

lemma under the supposition that (?) (h,K, b) converges uniformly to f .

2. Assume (?). By the premise, there is a B ∈ b such that

∅ 6= X
∫
‖f − hk‖∼dµ for all k ∈ B . (1)

Let ε > 0. By the assumption (?), there is a C ∈ b such that

‖f(t) − hk(t)‖ <
ε

µT
for all t ∈ T and all k ∈ C .
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Therefore, we have for each (x, φ) ∈ X#

R(‖f − hk‖, x, φ) < ε for all k ∈ C ,

thus, by (1), ∅ 6= X
∫
‖f − hk‖∼dµ ≤ ε for all k ∈ B ∩ C, and therefore, by the choice of ε,

(h,K, b) (µ,X)-converges in mean to f . In view of Lemma 2.1, one obtains blim
k ∈ K

X
∫
hk

∼dµ ⊆

X
∫
f∼dµ. 2

Second proof of Theorem 2.2/b: We skip the trivial case µT = 0. By the premise within

Theorem 2.2/b, there is a set M ∈ Dmnµ such that µM = 0 and

(?) the sequence (gn|(T\M))n∈N converges uniformly to f |(T\M).

For abbreviation, we put Q = T\M , Z = XQ, ν = µQ, j = f |Q, and hn = gn|Q for all n ∈ N.

Observe that Q 6= ∅, since µT > 0. Let m ∈ N. Since ‖hn − hm‖ is ν-measurable for all

n ∈ N and ‖j − hm‖(t) = ‖ lim
n ∈ N

hn(t) − hm(t)‖ = lim
n ∈ N

‖hn(t) − hm(t)‖ holds for all t ∈ Q,

the function ‖j−hm‖ is ν-measurable. Because of (?), there is an n0 ∈ N such that ‖j−hn‖
is bounded for all n ≥ n0. Therefore, by Lemma 1.4, Z

∫
‖j − hn‖∼dν is non-empty for all

those n. Let n ≥ n0. If M = ∅, the inequality X
∫
‖f − gn‖∼dµ 6= ∅ is proved; otherwise, one

has {M,Q} ∈ X, and, therefore, this inequality holds by Lemma 1.3. Now use Lemma 2.4,

Proposition 2.1, Definition 2.3, and Lemma 1.1. 2

Theorem 2.2/b is generalized by the next theorem clearing up the (expected) behavior of

the subdivision integral w.r. to the uniform convergence of filtered families in ET . Observe

that its proof does not take the detour via mean convergence we have taken implicitly in the

special case (by using Lemma 2.2 or Lemma 2.4).

Theorem 2.3 Let (g,K, b) be a filtered family in ET converging uniformly µ-a.e. to f .

If (α) f is Y-integrable or (β) Y = X, then (a) and (b) hold true:

(a) b lim
k ∈ K

Y
∫
gk

∼dµ ⊆ Y
∫
f∼dµ.

(b) If there exists a Y-absolutely integrable linear subspace L of ET such that g(K) ⊆ L,

then ∅ 6= b lim
k ∈ K

Y
∫
gk

∼dµ = Y
∫
f∼dµ.

Note: If the quantifier ”µ-a.e.” is canceled, then ”Y = X” is allowed to be replaced by

”Y ⊆ X”.

Proof: (b) follows from (a) by means of Proposition 2.1.

Ad (a). We consider the non-trivial case µT > 0.



24 G. Grimeisen

1. Assume first that (g,K, b) converges uniformly to f . We assume (α) or (γ) Y ⊆ X. ((γ)

replaces (β) above.) Let x ∈ b lim
k ∈ K

Y
∫
gk

∼dµ and ε > 0. Then there is a B ∈ b such that

(1) ∅ 6= ‖ Y
∫
gk

∼dµ− {x}‖ < ε
2

for all k ∈ B

and

(2) ‖f(t) − gk(t)‖ < ε
4µT

for all k ∈ B and all t ∈ T .

Since b is a filter, B is non-empty; choose a k ∈ B. In view of (1), one has ∅ 6= Y
∫
gk

∼dµ.

Thus, there is an x0 ∈ Y such that

(3) ∅ 6= ‖R(g∼k , x, φ) − Y
∫
gk

∼dµ‖ < ε
4

for all x ∈ Y with x0 � x and all φ ∈ Px.

Now the proof branches: Case 1. If (α) is valid, then there is an x1 ∈ Y such that

R(f∼, x, φ) 6= ∅ for all x ∈ Y with x1 � x and all φ ∈ Px; in this case x2 = x1 ∨ x0.

Case 2. If (γ) but not (α) is valid then R(f∼, x, φ) 6= ∅ holds true for all x ∈ Y; in this case

put x2 = x0.

In both branches we continue in the following way: Let x ∈ Y with x2 � x and φ ∈ Px.

Then, in view of R(g∼k , x, φ) 6= ∅ (use of ”6=” in (3)) and of (2), one obtains the chain

(4) ∅ 6= ‖R(f∼, x, φ) − R(g∼k , x, φ)‖ ≤ R(‖f − gk‖∼, x, φ) < ε
4
,

where the third Riemann sum (which is non-empty) is related to the Banach space (R, | · |).
(Cf. Proposition 10 and (0.12) in [6], p.490 and p.487.) The combination of (3) and (4)

provides

(5) ∅ 6= ‖R(f∼, x, φ) − Y
∫
gk

∼dµ‖ < ε
2
.

Combining (5) with (1), one gets ∅ 6= ‖R(f∼, x, φ)−{x}‖ < ε. In view of the choice of (x, φ)

we have proved x ∈ Y
∫
f∼dµ.

2. Since, by the supposition, (g,K, b) converges uniformly µ-a.e. to f , there is a set M ∈
Dmnµ such (g,K, b) converges uniformly on T\M to f . Define a mapping h : K −→ ET

by letting, for each k ∈ K, hk(t) = gk(t) for all t ∈ T\M and hk(t) = f(t) for all t ∈ M .

Then, the filtered family (h,K, b) converges uniformly to f . Under the supposition (α), one

obtains by Lemma 1.1, Corollary 1.1, and Part 1 of this proof

b lim
k ∈ K

Y
∫
gk

∼dµ ⊆ b lim
k ∈ K

Ω
∫
gk

∼dµ = b lim
k ∈ K

Ω
∫
hk

∼dµ ⊆ Ω
∫
f∼dµ = Y

∫
f∼dµ.

Under supposition (β), one has by Corollary 1.1 and Part 1 of this proof

b lim
k ∈ K

Y
∫
gk

∼dµ = b lim
k ∈ K

Y
∫
hk

∼dµ ⊆ Y
∫
f∼dµ . 2
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Note: By Definition 2.3, the statement one gets from Theorem 2.3/b by putting thereK = N,

b = FN, Y = X, and L = ST (X, E) coincides logically with Theorem 2.2/b.

Remark 2.5 The translation of G. Birkhoff´s Theorem 22 in [2], p.372, into our language

is following nice assertion: ”If g is a sequence in ET converging uniformly to f and having

the property that Ω
∫
gn

∼dµ 6= ∅ for all n ∈ N, then ∅ 6= lim
n ∈ N

Ω
∫
gn

∼dµ = Ω
∫
f∼dµ.”

Unfortunately, we cannot follow the arguments of Birkhoff´s proof. On the other hand, we

do not have an example contradicting the assertion. For Y = Ω and (K, b) = (N,FN)

the preceding theorem is contained in Birkhoff´s theorem. For arbitrary Y it contains a

(possibly well-known) analogue for the D- and B-Bochner integral formulated next.

Corollary 2.1 Read the superscript ”C” as ”D” or as ”B”. Let f ∈ Dmn C
∫
· dµ. Let

(g,K, b) be a filtered family in Dmn C
∫
· dµ converging uniformly to f . Then, one has

b lim
k ∈ K

C
∫
g∼k dµ = C

∫
f∼ dµ.

Proof: Since f ∈ Dmn C
∫
· dµ and gk ∈ Dmn C

∫
· dµ for all k ∈ K, one has ∅ 6= C

∫
f∼ dµ =

Ω
∫
f∼dµ and ∅ 6= C

∫
g∼k dµ = B

∫
g∼k dµ = Ω

∫
gk

∼dµ for all k ∈ K by Theorem 2.1. Now

apply Theorem 2.3/b for Y = Ω and the linear subspace L = Dmn B
∫
· dµ of ET (which is

Ω-absolutely integrable (see Remark 2.3). 2

We conclude this section by reconsidering Proposition 2.4/a. For this purpose, we define the

statement (A) by the following lines:

(A) If h : N −→ ST (X,R) is a (µ,X)-Cauchy sequence and j : T −→ R a function such

that h converges pointwise µ-a.e. to j, then j is µ-summable, and one has

lim
n ∈ N

H
∫
| j − hn | dµ = 0 and H

∫
j dµ = lim

n ∈ N

H
∫
hn dµ.

We define the statement (B) to be the statement one obtains from (A) by canceling there

” lim
n ∈ N

H
∫
| j − hn | dµ = 0 and ”.

Then, we obtain

Proposition 2.11 Each of the two statements (A), (B) is logically equivalent to Propo-

sition 2.4/a.

Proof: 1. By Theorem 12 in [7], p.16, Proposition 2.4/a implies (A).

2. Trivially, (A) implies (B).
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3. Assume (B). Assume the premise within Proposition 2.4/a. Define k : N −→ (ST (X,R))N

by k(n) = (‖gn − gm‖)m∈N for all n ∈ N. By the choice of g and f in the premise of Propo-

sition 2.4/a, for each n ∈ N, k(n) turns out to be a (µ,X)-Cauchy sequence in ST (X,R)

converging pointwise µ-a.e. to the function ‖f − gn‖. By (B), one obtains therefore, for all

n ∈ N,

H
∫
‖f − gn‖ dµ = lim

m ∈ N

H
∫

(k(n))(m) dµ < + ∞. (1)

Let ε > 0. By the choice of g, there is a p ∈ N such that H
∫
‖gn−gm‖ dµ ∈ X

∫
‖gn−gm‖∼dµ <

ε holds for all n,m ≥ p, thus, by (1), H
∫
‖f − gn‖ dµ ≤ ε holds for all n ≥ p. (So far, we have

just translated the proof of Proposition 12 in Dinculeanu [5], p.128, into our language.)

Thus, by Theorem 12 in [7], p.16, g (µ,Ω)-converges in mean to f. The remainder of the

assertion of Proposition 2.4/a follows by means of Proposition 2.1/a and Lemma 2.1. 2

Remark 2.6 Let (E, ‖ · ‖) = (R, | · |). Then, one has by Theorem 2.1 here and Theorem

12 in [7], p.16, the chain D
∫
· dµ ⊆ B

∫
· dµ ⊆ ( H

∫
· dµ)|M, where M denotes the set of all

µ-summable functions j : T −→ R. Of course, the inclusion D
∫
· dµ ⊆ ( H

∫
· dµ)|M follows

also from the statement (A) which is true by Proposition 2.11.

3 Summability of real-valued functions and integrability of vector-

valued functions

It is usual (see, e.g., [4], p.41) to call f µ-measurable – for clarity we say also

(µ, ‖ · ‖)-measurable – if there exists a sequence g in ST (X, E) converging pointwise µ-a.e.

to f . [For a generalization of this notion, see Definition 4 in [5], p.89.] If µ is complete, f

is µ-measurable in the sense of Dinculeanu, loc.cit., if and only if f is (µ, ‖ · ‖)-measurable

(use of Theorem 1 in [5], p.94, and Theorem 2 in [5], p.99).] For later use we note that:

(3.1) Every element of ST (Ω, E) is (µ, ‖ · ‖)-measurable. (Use of µT < +∞.)

For the remainder of this section, we assume µ to be complete.

If (E, ‖ · ‖) = (R, | · |), then f is (µ, ‖ · ‖)-measurable if and only if f is µ-measurable.

Therefore, there cannot arise any confusion if we just say ”µ-measurable function” instead

of ”(µ, ‖ · ‖)-measurable function”, as we do in the following. We denote by M(µ, T, E) the

set of all µ-measurable functions on T into E.

In the remainder of this section, we rediscuss the relationships between the integrals occuring

in Theorems 2.1 and 2.2. In the sequel, we say that f be B-Bochner integrable resp. Ω-

integrable if f ∈ Dmn B
∫
· dµ resp. Ω

∫
f∼dµ 6= 0.
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For later use, we note a well-known fact:

(3.2) If g is a sequence of µ-measurable functions gn : T −→ E converging pointwise

µ-a.e. to f , then f is µ-measurable.

Preparing the general case of integration of µ-measurable functions on T into E, we consider

the integration of functions on T into R:

For the next considerations, the elementary integral el
∫
· dµ (defined in Section 2) is related

to the Banach space R.

Definition 3.1 A linear mapping J from RT (i.e. defined on a subset of RT ) into R is

called a µ-summation if (J 1) through (J 4) hold true:

(J 1) ST (X,R) ⊆ Dmn J ⊆M(µ, T,R) and J |ST (X,R) = el
∫
· dµ.

(J 2) f ∈ Dmn J and A ∈ Dmnµ implies f · 1A ∈ Dmn J .

(J 3) If f, g ∈ Dmn J then f ≤ g implies J(f) ≤ J(g).

(J 4) If (gn) is an increasing sequence in Dmn J converging pointwise to a function f(∈ RT )

and having the property that the sequence (J(gn)) is bounded, then f ∈ Dmn J and

J(f) = lim
n ∈ N

J(gn).

We recall that in the Banach space E = R the relationship between Ω
∫ ∨ · dµ and the integral

H
∫
· dµ is described by

(1) Ω
∫ ∨ · dµ = H

∫
· dµ ∩ (RT × R)

(see Theorem 12 in [7], p.16). Let Ba
∫
· dµ denote the ”(µ)-Integral” defined in [1], p.64,

Definition 12.1 (being considered here as a mapping from RT
into R, defined on the set of all

”(µ)-integrierbaren Funktionen” g : T −→ R). In analogy to (1) we define now the mapping
su
∫
· dµ by

su
∫
· dµ = Ba

∫
· dµ ∩ (RT × R). (We agree in the definitions f+ = max{f, 0} and f− =

min{f, 0} for f : T −→ R.)

In this terminology, we obtain

Theorem 3.1 Let E = R.There is exactly one µ-summation J , which we denote by

J(µ), and one has J(µ) = su
∫
· dµ = D

∫
· dµ = B

∫
· dµ = Ω

∫ ∨ · dµ. The function f is

µ-summable if and only if f ∈ J(µ).
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Proof: 1. Clearly, there is a µ-summation, for instance the mapping Ω
∫ ∨ · dµ (cf. Theo-

rem 12 in [7], p.16, Lemma 1.2, [13], p.93, Satz 3, p.105, Satz 3, Theorems 7 and 8 in [7],

p.12, and [13], p.105, Satz 3).

2. There is at most one µ-summation. Let J be a µ-summation. We show that J = su
∫
· dµ.

By the way, we show J ⊆ D
∫
· dµ.

2a. Let (f, x) ∈ J . By (J 1), f is µ-measurable, thus (by (J 2)) f+, f− ∈ Dmn J , thus

x = J(f) = J(f+) + J(f−), since f = f+ + f− and J is linear.

2aα. Since f+ is µ-measurable and non-negative, there exists an increasing sequence (gn) in

ST (X,R) with gn ≥ 0 for all n ∈ N converging pointwise to f+. By (J 1) through (J 4) one

has f+ ∈ Dmn ( su
∫
· dµ) and

(2) J(f+) = lim
n ∈ N

el
∫
gn dµ = su

∫
f+ dµ.

Furthermore, (gn) being increasing, one has

el
∫
|gn − gm| dµ = | el

∫
gn dµ− el

∫
gm dµ| −→ 0 as n,m −→∞.

Using this and the first sign = in (2), one obtains (by Definition 2.3 and Proposition 2.8/a)

J(f+) = D
∫
f+ dµ.

2aβ. Since mapping J is linear, one has −f− ∈ Dmn J . Paraphrasing the preceding para-

graph 2aα with −f− replacing f+, one gets J(−f−) = su
∫
−f− dµ = D

∫
−f− dµ.

Combining paragraphs 2aα and 2aβ and the linearity of the mappings J , su
∫
· dµ, and

D
∫
· dµ, one obtains (f, x) ∈ su

∫
· dµ ∩ D

∫
· dµ.

2b. We show su
∫
· dµ ⊆ J . Let (f, x) ∈ su

∫
· dµ. Then, there exists an increasing se-

quence (gn) in ST (X,R) converging pointwise to f+ and having the property su
∫
f+ dµ =

lim
n ∈ N

el
∫
gn dµ. Using (J 1), the boundedness of the sequence ( el

∫
gn dµ), and (J 4), one gets

f+ ∈ Dmn J and su
∫
f+ dµ = J(f+). Analogously, one has su

∫
(−f−) dµ = J(−f−). Since

su
∫
· dµ and J are linear mappings, we have proved (f, x) ∈ J .

3. Combining Part 1 with Part 2 of this proof, we have proved the existence and the

uniqueness of a µ-summation and the chain J(µ) = su
∫
· dµ = Ω

∫ ∨ · dµ ⊆ D
∫
· dµ. The

remainder of the assertion follows by means of Theorem 2.1 and the definition of ” µ-

summable”. 2

The conditions (J 2) and (J 4) in Definition 3.1 are allowed to be replaced by weaker ones:
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Proposition 3.1 A linear mapping J from RT into R is a µ-summation in R if and

only if the above statements (J 1) and (J 3) and the next statements (J 2′) and (J 4′) hold

true:

(J 2′) If f ∈ Dmn J then f+ ∈ Dmn J .

(J 4′) If (gn) is an increasing sequence in ST (X,R) converging pointwise to an element f of

ET and having the property that the sequence (J(gn)) is bounded, then f ∈ Dmn J and

lim
n ∈ N

J(gn) = J(f).

Proof: If a linear mapping J has the properties (J 1), (J 2′), (J 3), and (J 4′), then (para-

phrasing Part 2 of the proof of Theorem 3.1, one gets) J = su
∫
· dµ, thus, by Theorem 3.1,

J = J(µ). 2

We return to the general case of integration in the Banach space E.

Theorem 2.1 and Proposition 2.8/b are supplemented by the next two theorems. [Note:

For the statements (a) ⇐⇒ (b) and (a) ⇐⇒ (c), occuring in the following theorem, cf.

Proposition 20 in [5], p.136, or Theorem 2 in [4], p.45, and Theorem 3.74 in [17], p.80,

respectively.]

Theorem 3.2 The statements (a), (b), (c), (d) defined next are logically equivalent:

(a) f is µ-measurable and ‖f‖ is µ-summable;

(b) f is D-Bochner integrable.

(c) f is B-Bochner integrable;

(d) ∅ 6= D
∫ ∧

f∼dµ = B
∫ ∧

f∼dµ = Ω
∫
f∼dµ.

In particular, (a) implies (e), defined next:

(e) f is Ω-integrable.

In the case (E, ‖ · ‖) = (R, | · |), each of the statements (a) through (d) is equivalent to the

statement (e).

Proof: Trivially, (d) implies (b). By Theorem 2.2, (b) implies (d). For the conclusion from

(a) to (b) we refer to [4], loc. cit. (which we are allowed to in view of Proposition 3.2 below).

(b) implies (c) by Theorem 2.1, while (c) implies (a) by Proposition 33 in [7], p.21, (or by

Remark 2.3) and (2.2). The assertion for E = R follows from Theorem 3.1 by means of

(a) ⇐⇒ (b). 2
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Theorem 3.3 One has (a) and, if there is an infinite x ∈ Ω such that µX > 0 for all

X ∈ x, (b):

(a) D
∫
· dµ = B

∫
· dµ;

(b) if B
∫
· dµ = ( Ω

∫
· dµ)∨ then the Banach space E is finite-dimensional.

Proof: Ad (a). Use Theorem 3.2.

Ad (b). Choose an x ∈ Ω as required to exist above; let x = {X1, X2, · · · }. Assume the

Banach space E to be infinite-dimensional. Then, by the Dvoretzky-Rogers theorem (see,

e.g., [19], p.27,Theorem 6), there is a sequence (an)n∈N in E such that Σ
n ∈ N

{an} 6= ∅ and

Σ
n ∈ N

{‖an‖} = ∅. Define χ : x −→ E by χ(Xn) = an · 1
µXn

for all n ∈ N. Let f be the Ω-step

function determined by (x, χ). Then one obtains, by Lemma 1.2, Ω
∫
f∼dµ = Σ

n ∈ N
{an} 6= ∅

and Ω
∫
‖f‖∼dµ = Σ

n ∈ N
{‖an‖} = ∅, therefore, by Theorem 3.2 or Proposition 33 in [7],p.21

(use of the completeness of µ), B
∫ ∧

f∼dµ = ∅. Thus B
∫
· dµ 6= ( Ω

∫
· dµ)∨. 2

As a consequence of Theorem 3.3 one has: If the Banach space E is infinite-dimensional and

if there is an µ-partition as described in Theorem 3.3, then (by Theorem 3.2) the linear space

L = Dmn( Ω
∫
· dµ)∨) (see Corollary to Proposition 18 in [6], p.495) is not a (µ,Ω)-absolutely

integrable subspace of ET (cf. Definition 2.1 /b).

Theorem 2.2 is supplemented by the following theorem, where the superscript ”D” is allowed

to be replaced by ”B” (in view of Theorem 3.3).

Theorem 3.4 Assume f to be bounded µ-a.e. Then the following statements (a), (b),

and (c) are equivalent:

(a) f is µ-measurable;

(b) f is D-Bochner integrable;

(c) ∅ 6= D
∫ ∧

f∼dµ = Y
∫
f∼dµ, provided that X ⊆ Y.

Proof: By Theorem 3.2, (b) implies (a). Assume (a). Then, since µ is complete, the function

‖f‖ is µ-measurable and (by supposition) bounded µ-a.e., therefore (by Lemma 1.4) it is

µ-summable. Thus, the combination of Theorems 3.2 and 2.2 provides the statements (b)

and (b) ⇐⇒ (c). 2

Next, we make sure that in the present situation the D-Bochner integral coincides with the

Bochner integral used in [4].
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Proposition 3.2 D
∫
· dµ is the set of all (f, x) ∈ M(µ, T, E) × E such that, for some

sequence g in ST (X, E), (a) and (b) defined next hold true:

(a) 0 = lim
n ∈ N

H
∫
‖f − gn‖ dµ;

(b) x = lim
n ∈ N

el
∫
gn dµ.

Proof: 1. By Theorem 3.2, one has Dmn D
∫
· dµ ⊆M(µ, T, E).

2. If g is a sequence in ST (X, E) Ω-converging in mean to an element f of M(µ, T, E),

then Ω
∫
‖f − gn‖∼dµ 6= ∅ for eventually all n ∈ N, say for all n ≥ n0, and for those

n H
∫
‖f − gn‖ dµ ∈ Ω

∫
‖f − gn‖∼dµ. Thus, then (a) holds true.

3. If (a) holds true for some f ∈ M(µ, T, E) and some sequence g in ST (X, E), then

eventually all functions ‖f − gn‖ are µ-summable, thus g Ω-converges in mean to f .

4. Furthermore, use Proposition 2.7. 2

4 Integration w. r. to an arbitrarily fine µ-partition system

Up to now, on the set T no topological structure was given. For the remainder of this

paper, we assume that (T, d) be a metric space. For each X ⊆ T, we denote by diam(X)

the diameter of X w. r. to d; we define the mapping Diam : PPT −→ R by letting

Diam(x) = sup
X ∈ x

diam(X) for all x ∈ PPT .

Definition 4.1 We call a set N of partitions of T to be arbitrarily fine w. r. to d (or

d-arbitrarily fine), if, for each ε > 0, there is an x ∈ N such that Diam(x) < ε.

Obviously, N is d-arbitrarily fine if and only if there exists a sequence (xn)n∈N in N such

that lim
n ∈ N

σ Diam(xn) = 0, where limσ denotes the limit operation in the extended real line

w.r. to its usual topology σ. If R and S are sets of partitions of T with R ⊆ S then the

statement ”R is d-arbitrarily fine” implies ”S is d-arbitrarily fine”.

Example 4.1 Let n ∈ N and ν be the Lebesgue-Borel measure (for the terminology, see

[1], p.37) or the Lebesgue measure on Rn; let T be a non-empty compact subset of Rn. Define

µ by µX = νX for all X ∈Dmn ν with X ⊆ T. Then, X is arbitrarily fine w. r. to the

Euclidian metric of Rn restricted to T × T.

Remark 4.1 The comparison of the notion of an ”arbitrarily fine µ-partition system” with

proposition 8.3.3.1 in [13], p.184, on a measure being ”eng adaptiert” to a topology suggests
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to generalize the preceding considerations by replacing there the metric space (T, d) by a

topological space (T, ρ) or a uniform space (T,U) and modifying the notion ”d-arbitrarily

fine” in a suitable way. Given (T,U), a set N of partitions of T should be called U-arbitrarily

fine, if, for each U ∈ U, there is an x ∈ N such that X × X ⊆ U holds for all X ∈ x. Of a

special interest, of course, would be, in this context, the topology ρ(U) induced by U. Is there

a natural relationship between the property of a µ-partition system to be ”U-arbitrarily fine”

and and the property of a measure to be ”eng adaptiert” to ρ(U)?

For the remainder of this paper, let Z be a third µ-partition system (beside X and Y).

Proposition 4.1 Let (T, d) be compact and assume that Z is d-arbitrarily fine. If f is

continuous (w. r. to d and the norm of E), then one has (a) and (b):

(a) There exists a sequence g : N −→ ST (Z, E) converging uniformly to f.

(b) If Z ⊆ X ⊆ Y, then Y
∫
f∼dµ is non-empty.

Proof: Since Z is d-arbitrarily fine, there exists a sequence (zn)n∈N in Z with the property

lim
n ∈ N

σ Diam(zn) = 0. Choose φ ∈ P
n ∈ N

Pzn and put φ(n) = φn for each n ∈ N. Define, for

each n ∈ N, a Z-step function gn : zn −→ E by letting, for each t ∈ T ,

gn(t) = f(φn(Z)), if t ∈ Z ∈ zn .

Let ε > 0. Since f is continuous and T is compact, there is a δ > 0 such that for all t1, t2 ∈ T

‖f(t1) − f(t2)‖ < ε, if d(t1, t2) < δ . (1)

There is an n0 ∈ N such that

Diam(zn) < δ for all n ≥ n0 . (2)

Let n ≥ n0 and t ∈ T . Then, there is a Z with t ∈ Z ∈ zn. One has diam(Z) < δ by (2),

therefore, by (1), ‖gn(t)− f(t)‖ < ε, since gn(t) = f(φn(Z)). Thus (a) is proven. (b) follows

from (a) by means of Theorem 2.2/b. 2

We conclude this paper with a short view to the Riemann integration:

Definition 4.2 (a) For each x, y ∈ Y, let x �R y, if Diam(y) ≤ Diam(x). (Remark:

Since (Y,�) is a directed set, also (Y,� R) is a directed set.)

(b) For each (x, φ), (y, ψ) ∈ Y#, let (x, φ)(�R)#(y, ψ), if x �R y. (Remark: (Y#, (�R)#) is

a directed set. We denote by F(X#, (�R)#) the filter of perfinality on this directed set (see

Section 1/b).)

(c) The (µ,Y)-Riemann integral RY
∫
· dµ is the mapping on ET into E being defined by

letting, for each g ∈ ET ,
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RY
∫
g dµ = F(Y#, (�R)#) lim

(x, φ) ∈ Y#

R(f, x, φ) .

(For the terminology, see Section 1/d and f.)

The following example opens a wide range of investigation in the survey paper [8]:

Example 4.2 Let T = [a, b] ⊆ R with a < b. Take µ as in Example 4.1. Define Y1 to be

set of all finite partitions of [a, b[ into half-open intervals of the form [c, d[ with a ≤ c < d ≤ b

and let Y = {y∪ {{b}} | y ∈ Y1}. Alternatively, define Y to be set of all finite partitions of

T into intervals, where also half-open intervals and singletons [c, c] with c ∈ T are admitted.

In both cases, ( Y
∫
· dµ)∨ (see Propositon 18 in [6]) coincides with the integral defined in

[8], p.924, Definition 2(b) there, while ( RY
∫
· dµ)∨ coincides with the integral defined in [8],

p.924, Definition 2(a) there. (For the latter use of ∨, see the terminology introduced in

Section 0 in [6], which is applicable here by Proposition 18 in [6] and Proposition 4.2 below.)

By Theorem 3 in [8], p.924, one has RY
∫
· dµ = Y

∫
· dµ.

Since (�#) ⊆ ((�R)#), one obtains

Proposition 4.2 For each g ∈ ET , one has the inclusion RY
∫
g dµ ⊆ Y

∫
g dµ.

Proposition 4.3 If RY
∫
f∼dµ and RZ

∫
f∼dµ are non-empty, then

RY
∫
f∼dµ = RZ

∫
f∼dµ .

Proof: By Lemma 1.1 and Proposition 4.2, one has RY
∫
f∼dµ ⊆ Ω

∫
f∼dµ and RZ

∫
f∼dµ ⊆

Ω
∫
f∼dµ. Now, use the premise. 2

Proposition 4.4 Let (T, d) be compact; assume Y ⊆ X and Y to be d-arbitrarily fine.

Then, one has: If f is continuous, then RY
∫
f∼dµ is non-empty.

Proof: We skip the trivial case µT = 0 and assume µT > 0. Let ε > 0. Since T is compact

and f is continuous, there is a δ > 0 such that

for all s, t ∈ T, d(s, t) < δ implies ‖f(s) − f(t)‖ < ε

µT
. (1)

Because Y is d-arbitrarily fine, there is an x0 ∈ Y such that

Diam(x0) <
δ

2
. (2)

Let x, y ∈ Y such that x0 �R x, y. Furthermore, let φ ∈ Px and ψ ∈ Py. Since (Y,�) is a

directed set, there is a z ∈ Y with x, y � z. Choose such a z. For all Z ∈ z, there are exactly

one α(Z) ∈ x such that Z ⊆ α(Z) and exactly one β(Z) ∈ y such that Z ⊆ β(Z). Define the

mappings g, h : z −→ E by letting g(Z) = f(φ(α(Z))) and h(Z) = f(ψ(β(Z))) for all Z ∈ z.

Using (2) and the relationship between x0, x, y, and z, one obtains d(φ(α(Z)), ψ(β(Z))) < δ

for all Z ∈ z, thus, using (1) and the relationship between x, y, and z, the chain
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‖R(f∼, x, φ) − R(f∼, y, ψ)‖ ≤ Σ
Z ∈ z

‖g∼(Z) − h∼(Z)‖µZ < ε ,

where the three occuring sums are singletons, since x, y, and z are finite sets. (Observe that,

e.g., Σ
Z ∈ z

g(Z)µZ ∈ R(f∼, x, φ) holds, since x � z (use of Proposition 20 and Lemma 1 in

[6]).) We have shown that the net

(j,Y#, (�R)#) with j(u, κ) = e(R(f∼, u, κ)) for all (u, κ) ∈ Y#

is a Cauchy net in the Banach space (E, ‖ ·‖), therefore (by Definition 4.2) the set RY
∫
f∼dµ

is non-empty. (For the definition of the mapping e, see Section 1/a.) 2

Of course, Proposition 4.1/b (even if one supposes there Z ⊆ X ∩ Y instead of Z ⊆ X ⊆ Y)

follows also from the Propositions 4.2 and 4.4 (use of Lemma 1.1); see also Proposition 4.6/b.

For the remainder of this paper, we assume Z to be d-arbitrarily fine and T to be compact.

We add now some remarks on the integration of continuous functions. – As in Remark 2.1,

we denote by L2 the linear space of all those D-Bochner integrable functions g : T −→ E,

which are bounded µ-a.e. In the following, C(T,E) denotes the set of all (d, ‖ · ‖)-continuous

functions on T into E.

Proposition 4.5 If f ∈ C(T,E) and Z ⊆ X, then RZ
∫
f∼dµ = RX

∫
f∼dµ.

Proof: Combine Propositions 4.4 and 4.3. 2

In the sense of Proposition 4.5, for continuous f , the integral RX
∫
f dµ represents all integrals

RW
∫
f dµ, W being a d-arbitrarily fine µ-partition system of T with W ⊆ X. So, it seems

to be justified to reserve a special symbol, namely R
∫
· dµ, for RX

∫
· dµ, and to call R

∫
· dµ

the µ-Riemann integral. (This terminology deviates from that used in [8], p.925, definition

of ”Riemann integrable”. See our Example 4.2: There, for continuous f (by Proposition 4.4

and Lemma 1.1) RY
∫
f∼dµ = R

∫
f∼dµ = X

∫
f∼dµ.)

Proposition 4.6 One has (a) and (b):

(a) If X is d-arbitrarily fine, then C(T,E) ⊆ L2.

(b) If f ∈ C(T,E), then RZ
∫
f∼dµ = D

∫ ∧
f∼dµ = Y

∫
f∼dµ 6= ∅, provided that Z ⊆ X ∩Y.

Proof: Ad (a). Assume X to be d-arbitrarily fine. Let f ∈ C(T,E). Then, by Propo-

sition 4.1, there is a sequence h : N −→ ST (X, E) converging uniformly to f . Thus, by
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Theorem 2.2/b, one has (?) ∅ 6= D
∫ ∧

f∼dµ = X
∫
f∼dµ; therefore, the function f is D-Bochner

integrable, while, being continuous on a compact set, it is bounded. Thus, one has f ∈ L2.

Ad (b). Let Z ⊆ X ∩ Y. Using the Propositions 4.2, 4.4, and Lemma 1.1, one gets
RZ
∫
f∼dµ = Y

∫
f∼dµ = X

∫
f∼dµ, therefore (using the statement (?) which is applicable,

since X containing Z as a subset is d-arbitrarily fine) the assertion (b). 2

From Theorem 2.3, we regain a classical result on the Riemann integration being contained

in

Proposition 4.7 If (g,K, b) is a filtered family in C(T,E) converging uniformly to f ,

then one has:

∅ 6= b lim
k ∈ K

RZ
∫
gk

∼dµ = RZ
∫
f∼dµ, provided that Z ⊆ X .

Proof: By the premise, f is continuous. Now, apply Proposition 4.6 (to f and all gk with

k ∈ K) and then Corollary 2.1. 2
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[18] Horwáth, J. : Topological vector spaces and distributions. I. Addison-Wesley, Reading,

Mass. 1966

[19] Marti, J. T. : Introduction to the theory of bases. Springer Berlin 1969

[20] Monk, J.D. : Introduction to set theory. McGraw-Hill, New York 1969

[21] Zaanen, A.C. : Integration. Second edition. North-Holland, Amsterdam 1967

2Printing errors: On p.20, lines 17–18 from below, move the subscript ”n ∈ N” of the integral sign as a
subscript to the sign ”lim”. On p.21, lines 13 from below, replace ”h?” by ”h”. On p.21, line 10 from below,
replace the superscript ”∧” by the superscript ”∨”.



Approximation of the Bochner integral . . . 37

received: September 30, 1997

Author:

G. Grimeisen

Jahnstraße 28/1

D - 70771 Leinfelden-Echterdingen





Rostock. Math. Kolloq. 54, 39–50 (2000) Subject Classification (AMS)

54A20, 54B30, 54E05,

54E15, 54E17

Dieter Leseberg

A note on antitonic convergence

This paper is dedicated in honour to Professor Harry Poppe with

congratulations to his 65th birthday and also to

Professors Gerhard Maeß and Günther Wildenhain

on the occasions of their 60th birthdays

0 Introduction

In the joint paper [2], Bentley, Herrlich and Lowen-Colebunders noted that ConvS, the cate-

gory of symmetric convergence spaces, and Chy, the category of Cauchy spaces, can be fully

embedded into the Katětov’s category Fil of filter-merotopic spaces [9]. Fil is a bicoreflective

subcategory of Mer, the category of merotopic spaces, which is closely related to the concept

of nearness introduced by Herrlich [8] who basically uses notions of set systems which are

near. Katětov proved that Fil is cartesian closed and that the corresponding function space

structure is the one of continuous convergence. As pointed out above, not all convergence

spaces can be described by Fil, only the symmetric ones can be. Supertopological spaces

in the sense of Doitchinov [5] or, more generally, the so called neighborhood spaces of Tozzi

and Wyler [17], are a common generalization of all topological spaces and proximity spaces

but fail to form a cartesian closed category.

Preuß [15] introduced semiuniform convergence spaces as a common generalization of (sym-

metric) limit spaces (and thus of symmetric topological spaces) as well as of uniform limit

spaces (and thus of uniform spaces) with many convenient properties like cartesian closed-

ness, hereditariness, and the fact that products of quotients are quotients again, which

together build a strong topological universe. The latter mentioned two concepts lead us to

define a notion of convergence in a more general setting. Moreover, it looks like as a first step

in finding a more general concept which contains all the above mentioned spaces and, addi-

tionally, is being more set-like enough to allow constructions such as formation of functions

spaces or universal one-point extensions. As a basic concept we use the convergence of filters
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to bounded subsets defined similarly as in the Wyler’s paper [18]. But as for construction

of function spaces with respect to evaluation maps our definition seems to be more natural

because in some special cases (such as limit spaces or merotopic spaces) we obtain the usual

function space structures.

1 Superfilterformities and related structures

Definition 1.1 For a set X, a subset BX ⊆ PX (where PX denotes the set of all

subsets of X) is called a prebornology or shortly a B-structure on X and the elements of BX

are called bounded sets if the following axioms are satisfied:

(B1) B′ ⊆ B ∈ BX implies B′ ∈ BX ,

(B2) ∅ ∈ BX ,

(B3) x ∈ X implies {x} ∈ BX .

Given a pair of B-structures BX and BY on sets X and Y respectively, a map f : X → Y is

called bounded iff {f [B];B ∈ BX} ∈ BY .

Remark 1.2 The category BOUND whose objects are pairs (X,BX) where X is a set

and BX is a B-structure on X and whose morphisms are bounded maps is topological and

cartesian closed and has universal one-point extensions, which means that BOUND is a

topological universe.

Definition 1.3 Given a B-structure BX on a set X, a map C : BX → P(P(PX)) is

called an antitonic convergence operator provided that the following axioms are satisfied:

(ac1) H1 ∈ C(B) ∧H1 � H2 imply H2 ∈ C(B), where H1 � H2 iff for each F1 ∈ H1 there

exists F2 ∈ H2 such that F2 ⊆ F1,

(ac2) ∅ /∈ C(∅) and {∅} ∈ C(X),

(ac3) B1 ⊆ B2 ∈ BX implies C(B2) ⊆ C(B1).

Examples 1.4 (i) For a preuniform convergence space (X,JX) and A ∈ PX we put

CJX
(A) := {F ;F × Ȧ ∈ JX} where F × Ȧ denotes the set generated by {F ×B;F ∈

F , B ⊇ A}.

(ii) For a syntopogenous structure S on a set X in the sense of Császár [3] we put CS(A) :=

{F ;∃ <∈ S ∀x ∈ A :< (x) ⊆ F} where < (x) := {T ⊆ X; {x} < T}.
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(iii) For a symmetrical semi-topogenous order < on a set X in the sense of Császár [3] we

put C<(A) := {H;< (B) � H} where < (B) := {F ⊆ X;X \B < X \ F}.

(iv) For a convergence structure q on a set X we put Cq(A) := {F∗;∀x ∈ A ∃F ∈ q(x) :

F � F∗}.

(v) For a merotopy Γ on a set X we put CΓ (A) := Γ .

At last we will mention an example with respect to generalized supertopological spaces

in the sense of Doitchinov [5], [16]:

(vi) For a neighborhood space (BX , Θ) where Θ is a function from BX to P(P(PX)))

satisfying certain axioms we put CΘ(B) := {F ;∀x ∈ B : Θ({x}) � F}.

Remark 1.5 In all the above examples, if we reduce set systems to filters, we obtain the

notion of filter convergence. Moreover, it is interesting to note that in the case BX = PX we

can easily construct a bijection between the set of all antitonic convergence operators and the

set of all isotonic operators as follows: For an antitonic convergence operator C and A ∈ PX
we put NC(A) := {H; secH ∈ C(X \ A)} where secH := {T ⊆ X;∀F ∈ H : F ∩ T 6= ∅}.
Then NC fulfils the following axioms:

(in1) H1 ∈ NC(A) ∧H2 � H1 imply H2 ∈ NC(A),

(in2) ∅ ∈ NC(∅) and {∅} /∈ NC(X),

(in3) B1 ⊆ B2 implies NC(B1) ⊆ NC(B2).

By imposing some next axioms we obtain the notion of a near operator and, more generally,

if BX is not specified, we get a supernearness, both introduced by myself [12], [13].

Now, after giving the previous background, we will define superfilterformities and consider

some their relationships to other structures and also construct for them natural function

space structures with respect to evaluation maps.

Definition 1.6 For a set X, FIL(X) denotes the set of all filters on X. A function

F : BX → P(FIL(X)), where BX is a B-structure on X, is called a superfilterformity and

the pair (BX , F ) is called a superfilterformic space iff the following axioms are satisfied:

(SF1) If B ∈ BX , F1 ∈ F (B) and F2 ∈ FIL(X), then F1 ⊆ F2 implies F2 ∈ F (B),

(SF2) x ∈ X implies ẋ ∈ F (x) where ẋ := {T ⊆ X;x ∈ T},
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(SF3) B1 ⊆ B2 ∈ BX implies F (B2) ⊆ F (B1), which means that F is an antitonic function.

Elements of F (B) are called B-convergent filters.

Given a pair of superfilterformic spaces (BX , FX) and (BY , FY ), a bounded map f :

X → Y is called an sf-map iff

(sf) B ∈ BX and F1(B) imply f(F) ∈ F2(B), where f(F) := {G ⊆ Y ; f−1[G] ∈ F}.

We also refer as to an sf-map f by saying it preserves convergent filters in the above

mentioned sense.

We denote by SUPFILFORM the category whose objects are the superfilterformic spaces

and whose morphisms are the bounded maps which preserve convergent filters.

Examples 1.7 (i) Let (BX , Θ) be a subadditive neighborhood space, which means Θ is

a function from BX to FIL(X) satisfying certain axioms including the following one:

(SA) B ∈ BX implies
⋂

x∈B

Θ({x}) = Θ(B).

Note that each subadditive neighborhood space (BX , Θ) is additive, which means Θ

has the property:

(A) Θ(B′ ∪B) = Θ(B′) ∩Θ(B) whenever B′ ∪B ∈ BX .

Further note that every neighborhood structure Θ on DX := {∅} ∪ {{x}; x ∈ X}, i.e.

each pretopology is subadditive. Define FΘ(B) := {F ∈ FIL(X);∀x ∈ B : Θ({x}) ⊆
F}.

(ii) For a limit space (X, q), we consider PX equipped with the superfilterformity Fq

defined as follows:

Fq(B) := {F ′ ∈ FIL(X);∀x ∈ B ∃F ∈ q(x) : F ⊆ F ′}.

(iii) For a filtermerotopic space (X,Γ ), we consider PX equipped with the superfilterfor-

mity FΓ defined as follows:

FΓ (B) := Γ for each set B ∈ PX.

(iv) Lastly, let (X,JX) be a preuniform convergence space and let BX be a prebornology.

We consider BX equipped with the superfilterformity FJX
defined as follows:

FJX
(B) := {F ∈ FIL(X);F × Ḃ ∈ JX} where F × Ḃ denotes the filter generated by

{F ×B′;F ∈ F , B′ ⊇ B}.

In this context it seems to be of interest to search the question whether each super-

filterformity is induced by a preuniform convergence space or, more precisely, whether
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we can construct to each superfilterformity F ′ a preuniform convergence structure J
such that FJ = F ′. But this is not the aim of this paper. Nevertheless, an affirmative

answer to this question is given at the end of the paper.

Theorem 1.8 The category SASNBD of subadditive neighborhood spaces and usual

morphisms is isomorphic to a full subcatefory of SUPFILFORM .

Proof: With respect to 1.7(i), let (BX , F ∗) be a superfilterformic space. Define an underly-

ing neighborhood structure ΘF ∗ by setting ΘF ∗(B) := {U ⊆ X;∀x ∈ B∀F ∈ F ∗({x}) : U ∈
F} for each B ∈ BX . Then we get an isomorphism between the category SASNBD and a

corresponding full subcategory of SUPFILFORM .

Theorem 1.9 The category LIM of limit spaces and convergence preserving maps is

isomorphic to a full subcatergory of SUPFILFORM .

Proof: With respect to 1.7(ii), let (PX,F ) be a superfilterformic space. Define an under-

lying convergence space [6] (X, qF ) by setting qF (X) := F ({x}) for each x ∈ X. Imposing

some aditional axiom on F , qF is a limit structure. Therefore we obtain an isomorphism

between the category LIM and a corresponding full subcategory of SUPFILFORM .

Theorem 1.10 The category FMER of filter-merotopic spaces and convergence pre-

serving maps is isomorphic to a full subcategory of SUPFILFORM .

Proof: With respect to 1.7(iii), let (PX,F ) be a superfilterformic space. Define an under-

lying filter merotopy ΦF by setting ΦF := F (∅). We obtain an isomorphism between the

catergory FMER and a corresponding full subcategory of SUPFILFORM .

2 Categorical properties of SUPFILFORM

First we note that superfilterformities on a B-structure BX can be naturally ordered by

putting F1 ≤ F2 :⇔ ∀B ∈ BX : F1(B) ⊆ F2(B). The SUPFILFORM fiber of BX is

a set and it will be denoted by SUPFILFORM(BX) (i.e. SUPFILFORM(BX) is the

set of all superfilterformities on BX). In addition we observe that from the categorical

point of view SUPFILFORM(BX) has the terminal separator property, which means that

SUPFILFORM(BX) is a singleton whenever X is a singleton. We state that BX equals

to {∅, X} in this case. Moreover, the null filter generated by the empty set is allowed to be

an element of FIL(X). Thus, to prove that SUPFILFORM is a topological category it is

sufficient to show that it has initial structures.
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Theorem 2.1 For any set X, any family (BXi , Fi)i∈I of superfilterformic spaces and

any family (fi : X → Xi)i∈I of functions there exists a unique prebornology BX
{f−1

i } and

a unique superfilterformity F{f−1
i } on BX

{f−1
i } which is initial with respect to the given data

(BX
{f−1

i }, fi, (BXi , Fi), I), i.e. such that for any superfilterformic space (BY , F ) a map g :

(BY , F ) → (BX
{f−1

i }, F{f−1
i }) is an sf-map iff for every i ∈ I the composite map fi ◦ g :

(BY , F ) → (BXi , Fi) is an sf-map.

Proof: We define the prebornology BX
{f−1

i } as follows:

BX
{f−1

i } := {B ⊆ X;∀i ∈ I : fi[B] ∈ BXi} .

Note that BX
{f−1

i } is the initial B-structure on X with respect to the above mentioned data.

Moreover, we define F{f−1
i } analogously in such a natural manner, namely:

F{f−1
i }(B) := {F ∈ FIL(X);∀i ∈ I : fi(F) ∈ Fi(fi[B])} for each B ∈ BX

{f−1
i }) .

Then (BX
{f−1

i }, F{f−1
i } is a superfilterformic space, and if (BY , F ) is a superfilterformic space

such that g : (BY , F ) → (BX
{f−1

i }, F{f−1
i }) is an sf-map, for every i ∈ I the composite map

fi ◦ g : (BY , F ) → (BXi , Fi) is also an sf-map. Conversely, let latter situation be given. We

are to show that g : (BY , F ) → (BX
{f−1

i }, F{f−1
i }) is an sf-map. So, let F be a B-convergent

filter in Y . Our goal is to verify that g(F) is a g[B]-convergent filter in X. To this end, let

i ∈ I. We have (fi ◦ g)(F) ∈ Fi((fi ◦ g)[B]) = Fi(fi[g[B]]). Hence g(F) ∈ F{f−1
i }(g[B]). Note

also that F{f−1
i } is uniquely determined.

Corollary 2.2 SUPFILFORM is a topological category.

Remark 2.3 The existence of initial structures in SUPFILFORM implies, by using

purely categorical arguments, the existence of final structures in SUPFILFORM . So

SUPFILFORM is complete and its limits (subspaces or products) are formed by sup-

plying the corresponding limits in SET (the category of sets and functions) with the initial

structures. Moreover, it is cocomplete and colimits (quotients or sums) are formed by sup-

plying the corresponding colimits in SET with the final structures. Finally, we mention

the fact that SUPFILFORM is also wellpowered and cowellpowered in consequence of the

above details.

3 Function space structures with respect to evaluation maps

Theorem 3.1 For any pair (BX , F1), (BY , F2) of superfilterformic spaces, the set Y X :=

{f ; f : (BX , F1) → (BY , F2) is an sf-map} can be supplied in a natural way with a pre-

bornology BY X
and this prebornology (which is a B-structure) can be then supplied with a
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superfilterformity FY X such that the evaluation map e : (BX , F1) × (BY X
, FY X ) → (BY , F2),

(x, f) 7→ f(x), preserves convergent filters.

Proof: We define BY X
by setting BY X

:= {B∗ ⊆ Y X ;∀B ∈ BX : B∗(B) ∈ BY }, where

B∗(B) := {f(b); f ∈ B∗, b ∈ B}. Now we define a superfilterformity FY X on BY X
by

setting for B∗ ∈ BY X
: FY X (B∗) := {F∗ ∈ FIL(Y X);∀B ∈ BX∀F ∈ F1(B) : e(F × F∗) ∈

F2(B
∗(B))}, where e(F × F∗) denotes the filter generated by {e[G × G∗];G ∈ F , G∗ ∈

F∗}. It is easy to verify that FY X fulfils the axioms (SF1) and (SF3) in the definition of a

superfilterformity (Definition 1.6). We will prove that FY X fulfils also the axiom (SF2). To

this end, let f : (BX , F1) → (BY , F2) be an sf-map. We will show that ḟ ∈ FY X ({f}). To

this account, let B be an element of BX and let F be a B-convergent filter. Our goal is to

verify that e(F×f) ∈ F2(f [B]). By the supposition it remains to prove the inclusion f(F) ⊆
e(F×f). As C ∈ f(F) implies f−1[C] ∈ F (see Definition 1.6), we have f−1[C]×{f} ∈ F×ḟ .

Further, C ⊇ e(f−1[C] × {f}) because z ∈ e(f−1[C] × {f}) implies z = e(x, f) for some

x ∈ f−1[C] and hence z ∈ C. So the above mentioned inclusion is proved.

In the following step we show that the evaluation map is an sf-map. Since BOUND is a

topological universe (see Remark 1.2), the evaluation map e : (BX , F1) × (BY X
, FY X ) →

(BY , F2) is bounded with respect to the product prebornology BX × BY X
on X × Y X . So,

let R be an element of BX × BY X
and let F be an R-convergent filter. We denote by

F1 × F Y X
the product superfilterformity on BX × BY X

, i.e. the superfilterformity which

is initial with respect to the data (BX × BY X
, PX , PY X , ((X,F1), (Y

X , FY X )) (see Theorem

2.1), where PX denotes the projection from X × Y X to X, and PY X denotes the projection

from X × Y X to Y X . We are to show that e(F) ∈ F2(e[R]). By the supposition we have

PX(F) ∈ F1(PX [R]) and PY X (F) ∈ F Y X
(PY X [R]). By definition of F Y X

we get e(PX(F) ×
PY X (F)) ∈ F2(PY X [R](PX [R])). Now, according to Definition 1.6, it is sufficient to show the

validity of the following two conditions:

(i) PY X [R](PX [R]) ⊇ e[R],

(ii) e(PX(F) × PY X (F).

Proof of (i): From y ∈ e[R] it follows that y = e(r) for some r ∈ R which means

r = (x, f) for some x ∈ X and f ∈ Y X , hence y = f(x). We have f = PY X (x, f) = PY X (r)

and x = PX(x, f) = PX(r), thus y ∈ PY X [R](PX [R]).

Proof of (ii): From S ∈ e(PX(F) × PY X (F)) it follows that S ⊇ e[F × F ∗] for some

F ∈ PX(F) and F ∗ ∈ PY X (F). We have F ⊇ PX [F1] for some F1 ∈ F and F ∗ ⊇ PY X [F2]

for some F2 ∈ F . Hence F1 ∩ F2 ∈ F because F is a filter. Now, our goal is to show that

e[F1 ∩ F2] ⊆ S. We have e[F1 ∩ F2] ⊆ e[PX [F1 ∩ F2] × PY X [F1 ∩ F2]], and the following two

inclusions hold:
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(1) PX [F1] ⊇ PX [F1 ∩ F2],

(2) PY X [F2] ⊇ PY X [F1 ∩ F2].

Consequently, PX [F1]×PY X [F2] ⊇ PX [F1 ∩F2]×PY X [F1 ∩F2] and therefore e[PX [F1 ∩F2]×
PY X [F1 ∩ F2]] is a subset of the set e[F × F ∗]. But now we have e[F1 ∩ F2] ⊆ S, which

concludes the proof.

Now, on the other hand, we shall prove that for given superfilterformic spaces (BX, F1),(BY, F2)

ans (BZ , F3) the superfilterformity F Y X
is weak enough to ensure that for any sf-map

f : (BX × BZ , F1 × F2) → (BY , F2) the associated function f̄ : (BZ , F3) → (BY X
, F Y X

)

defined by f̄(z)(x) := f(x, z) for each z ∈ Z and each x ∈ X is an sf-map.

Theorem 3.2 For a triple of superfilterformic spaces (BX , F1), (BY , F2), (BZ , F3) let f :

(BX ×BZ , F1 ×F3) → (BY , F2) be an sf-map. Then the function f̄ : (BZ , F3) → (BY X
, F Y X

)

defined by f̄(z)(x) := f(x, z) for each z ∈ Z and each x ∈ X is an sf-map.

Proof: With respect to Remark 1.2 it suffices to show that for a given bounded set B̄ ∈
BZ and a B̄-convergent filter F̄ the image f̄(F̄) is an f̄ [B̄]-convergent filter, i.e. f̄(F̄) ∈
F Y X

(f̄ [B̄]). We apply the definition of F Y X
. Let B ∈ BX and F be a B-convergent

filter. We have to show that e(F × f̄(F̄)) ∈ F2(f̄ [B̄](B)). To show this we will verify that

F × F̄ ∈ (F1 × F3)(B × B̄).

Since F is an sf-map, by supposition we have f(F × F̄) ∈ F2(f [B × B̄]). Moreover, the

inclusion F2(f [B × B̄]) ⊆ F2(f̄ [B̄](B)) - note that f̄ [B̄](B) ⊆ f [B × B̄] is valid - results

in f(F × F̄ ] ∈ F2(f̄ [B̄]). The desired result will be obtained as a consequence of the fact

that f(F × F̄) is coarser then the filter e(F × f̄(F̄)). To prove this fact, let Ē be an

element of f(F × F̄ ], i.e. Ē ⊇ f [F × F̄ ] for some F ∈ F and some F̄ ∈ F̄ . We have

F × f̄ [F̄ ] ∈ F× f̄(F̄). It remains to show that f [F × F̄ ] ⊇ e[F × f̄ [F̄ ]]. From y ∈ e[F × f̄ [F̄ ]]

it follows that y = e(x, f) for some x ∈ F and some f ∈ f̄ [F̄ ]. Now f = f̄(z) for some

z ∈ F̄ , and we have y = e(x, f̄(z)) = f̄(z)(x) = f(x, y) where (x, y) ∈ F × F̄ .

It remains to prove the still open statement that F ×F̄ ∈ (F1×F3)(B× B̄). In other words,

we have to check that

(i) PX(F × F̄) ∈ F1(PX [B × B̄]),

(ii) PZ(F × F̄) ∈ F3(PZ [B × B̄])

are valid. But the above two conditions are fulfilled whenever the following four inclusions

hold:

(1) PX [B × B̄] ⊆ B,
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(2) PX(F × F̄) ⊇ F ,

(3) PZ [B × B̄] ⊆ B̄,

(4) PZ(F × F̄) ⊇ F̄ .

Indeed, by supposition we firstly get F ∈ F1(B) ⊆ F1(PX [B × B̄]) and F̄ ∈ F3(B̄] ⊆
F3(PZ [B × B̄]), and secondly we have PX(F × F̄) ∈ F1(PX [B × B̄]) and PZ(F × F̄) ∈
F3(PZ [B × B̄]). Thus, it remains to prove (1)-(4). But it is trivial to verify (1) and (3).

To prove (2), let F be an element of F . Since F̄ 6= ∅, we can choose F̄ ∈ F̄ such that

F × F̄ ∈ F × F̄ . Now, with respect to (1), we get PX [F × F̄ ] ⊆ F , hence F ∈ PX(F × F̄).

The inclusion (4) can be shown in an analogous way.

4 SUPFILFORM and exponential laws

To give a short summary we note that SUPFILFORM is a topological category with well-

behaved function space structures, i.e. it is cartesian closed. With respect to Theorem

3.1, Example 1.7(ii) and Theorem 1.9 or, respectively, Example 1.7(iii) and Theorem 1.10,

the corresponding
”
reduced“ function space structures are the ones of continuous conver-

gence. Moreover, FMER, FCONV and some interesting neighborhood spaces can be fully

embedded up to isomorphism into SUPFILFORM .

By purely categorical arguments (see [7]) the following three exponential laws hold in

SUPFILFORM :

(1) First exponential law: XY ×Z is isomorphic to (XY )Z ,

(2) Second exponential law: (
∏
i∈I

Xi)
Y is isomorphic to

∏
i∈I

(XY
i ),

(3) Third exponential law: X

∐
i∈I

Yi

is isomorphic to
∏
i∈I

(XYi).

At least we mention that in SUPFILFORM there also holds the interesting distributive

law:

X ×
∐
i∈I

Yi is isomorphic to
∐
i∈I

(X × Yi).

5 Filterunitopic spaces

In Example 1.7(iv) the question raises whether each superfilterformity is induced by a pre-

uniform convergence. We will give an affirmative answer by constructing a more general
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category which includes both the superfilterformic spaces and the preuniform convergence

spaces. The construction is very natural and seems to have some nice properties as discussed

in the precedent paragraphs.

Definition 5.1 For a set X, FIL(X ×X) denotes the set of all filters on X ×X, i.e.

on the cartesian product of X with itself. A function µ : BX → P(FIL(X × X)) from a

B-structure BX on X to subsets of FIL(X ×X) is called a filterunitopy (or a filterunitopic

operator), and the pair (BX , µ) is called a filterunitopic space iff the following axioms are

satisfied:

(fut1)B ∈ BX and W ∈ µ(B) with W ⊆ V ∈ FIL(X ×X) imply V ∈ µ(B),

(fut2) x ∈ X implies ẋ× ẋ ∈ µ({x}),

(fut3)B1 ⊆ B2 ∈ BX implies µ(B2) ⊆ µ(B1).

W is called a B-uniform filter iff W ∈ µ(B).

Now, let (BX , µX) and (BY , µY ) be filterunitopic spaces. A bounded map f is called an

fut-map iff

(fut)B ∈ BX and W ∈ µX(B) imply (f × f)(W) ∈ µY (f [B]), where (f × f)(W) := {R ⊆
Y × Y ; (f × f)−1[R] ∈ W}.

We also refer as to an fut-map by saying that it preserves uniform filters in the above

mentioned sense.

We denote by F -UNITOP the category whose objects are the filterunitopic spaces and whose

morphisms are the bounded maps which preserve uniform filters.

Examples 5.2 (i) For a preuniform convergence space (X,JX), we consider PX equipped

with the filterunitopy µJX
defined as follows:

µJX
:= JX for each B ∈ PX.

(ii) For a superfilterformic space (BX , F ) we define a filterunitopic operator µF by setting

µF (B) := {W ∈ FIL(X ×X);∃F ∈ F (B) : F × F ⊆ W}.

Theorem 5.3 The category PUConv of preuniform convergence spaces and uniformly

continuous maps is isomorphic to a full subcategory of F -UNITOP .

Proof: With respect to Example 5.2(i), let (PX,µ) be a filterunitopic space. Define an

underlying preuniform convergence structure Jµ by setting Jµ := µ(∅). By this way we

obtain an isomorphism between the category PUConv and a corresponding full subcategory

of F -UNITOP .



A note on antitonic convergence 49

Theorem 5.4 The category SUPFILFORM is isomorphic to a full subcategory of F -

UNITOP .

Proof: With respect to Example 5.2(ii), let (BX , µ) be a filterunitopic space. Define an

underlying superfilterformity Fµ by setting Fµ(B) := {F ∈ FIL(X);F×F ∈ µ(B)} for each

B ∈ BX . By this way we obtain an isomorphism between the category SUPFILFORM

and a corresponding full subcategory of F -UNITOP .

Remark 5.5 Now it seems to be of interest to study categorical properties of F -UNITOP

and, moreover, to deal with the possibility of constructing function space structures with

respect to evaluation maps. But it is not the aim of this paper.
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Szymon Dolecki

Active boundaries of upper semicontinuous and com-
pactoid relations; closed and inductively perfect
maps

Dedicated to professor Harry Poppe on his 65th birthday

ABSTRACT. It is shown that upper semicontinuity (of a relation) is a weak variant of

compactoidness; in particular, for the relations that are the inverses of maps, the upper

semicontinuity amounts to closedness of the map, and the compactoidness to the perfectness

of the map. Therefore the Choquet theorem on the compactness of active boundaries, and

the Vainštein lemma on the compactness of boundaries of fibers are instances of the same

quest on conditions that make coincide upper semicontinuity and compactoidness. The role

of Fréchetness and its variants in this quest is discussed.

1 Introduction

A filter F is compactoid (resp., finitely compactoid) in A whenever every open cover (resp.,

finite open cover) of A admits a finite subfamily the union of which belongs to F . The upper

semicontinuity of a relation Ω (at a point y) amounts to the finite compactoidness of the

filter F = ΩN (y) ∨ (Ωy)c in the set A = Ωy. The latter property can be rephrased as

Ac ∈ F ≥ N (A) . (1.1)

In this paper I show how some compactness properties of A (like paracompactness), and

some set-theoretic compactness properties of F (like strong Fréchetness) can improve original

finite compactoidness to compactoidness. We have to do with the composition of a chain

of three compactness-like properties. A general theory of such properties in the framework

of convergence spaces is developed in [4]. Applied to relations of the type f−, where f is a

continuous closed map, the mentioned results entail the compactness of the boundaries of

fibers.



52 S. Dolecki

Let X, Y be topological spaces. A relation Ω : Y −→−→ X is upper semicontinuous at y if for

every open set P such that Ωy ⊂ P , there is a neighborhood W of y such that ΩW ⊂ P .

A relation Ω is compactoid at y if for every family P of open sets fulfilling
⋃
P ⊃ Ωy, there

exists a finite P0 ⊂ P and a neighborhood W of y such that ΩW ⊂
⋃
P0.

It is known (and follows immediately from the definitions above) that a relation which is

compactoid at y, is upper semicontinuous at y (1). It is clear that the converse is true if

Ωy is compact, and that this is in some sense also a necessary condition. However under

some additional conditions on the spaces (that need not look like variants of compactness),

a partial converse is true. G. Choquet announced without proof [2] the following

Theorem 1.1 (Choquet) If X and Y are metrizable (2), and if Ω : Y −→−→ X is upper

semicontinuous at y, then there exists a compact set K ⊂ Ωy such that for each U ∈ N (K),

there exists W ∈ N (y) for which ΩW ⊂ Ωy ∪ U .

Later it was observed [3] that the least set K fulfilling the conditions of Theorem 1.1, is

equal to ∂#Ωy, the active boundary of Ω at y:

∂#Ωy = adh(ΩN (y) ∨ (Ωy)c), (1.2)

where the adherence adhF of a filter F is the union of the limits of all the filters that are

finer than F ; if F is a filter in a topological space (which is the framework of this paper),

then

adhF =
⋂

F∈F

clF.

In [9] S. Rolewicz and the present author proved, in the language of measures of non com-

pactness, that if Ω is valued in a completely metrizable space, and upper semicontinuous at

a point of countable character (3) y, then ΩN (y)∨ (Ωy)c is compactoid. A. Lechicki and the

present author proved in [7] the same result, but under merely the Dieudonné completeness

of X.

At about the same time as the appearance of Theorem 1.1 of G. Choquet, I. A. Vainštein

proved in [20] that

Theorem 1.2 (Vainštein) If f is a (continuous) closed map from a metrizable space

onto a topological space Y , then for every y of countable character, ∂f−(y) is compact,

1 For example, R. E. Smithson [18] calls Ω subcontinuous at y if for each cover P of X, there exist a
neighborhood W of y and a finite subfamily that covers ΩW , and shows that if Ω is subcontinuous and
graph-closed at y (hence, compactoid at y), then it is upper semicontinuous at y.

2It was noticed [3] that it is enough that Y be first-countable.
3A point is of countable character if its neighborhood filter is countably based.
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where ∂A denotes the boundary of A.

It is well-known (and immediate) that the relation f− : Y −→−→ X (4) is upper semicontinuous

if and only if the map f is closed. On the other hand (if f is continuous), f− is compactoid

if and only if f is perfect, that is, closed with compact fibers; hence if the relation ∂f− is

compactoid (and f is continuous), then f is inductively perfect (5). Therefore Y is metrizable

by the theorem of Hanai-Morita-Stone on preservation of metrizability by perfect maps

[19, 17]. Now,

Proposition 1.3 If f is continuous, then the boundary of f−(y) is included in the

active boundary of f− at y (6).

Proof: If x is a boundary point of f−(y), then Q \ f−(y) 6= ∅ for every Q ∈ N (x). If f is

continuous, then for every W ∈ N (y), there exists Q ∈ N (x) such that Q ⊂ f−(W ). Thus

Q ∩ f−(W ) \ f−(y) 6= ∅. �

Therefore Theorem 1.2 is a consequence of Theorem 1.1 (strengthened as in the footnote).

A space X is called a q-space if every x ∈ X is a q-point, i.e., such that there exists a

sequence (Qn)n of neighborhoods of x with the property that if xn ∈ Qn, then adh(xn) 6= ∅
[16]. E. Michael proved [16, Theorem 2.1] that can be stated as follows:

Theorem 1.4 (Michael) Let X be T1, and let f : X → Y be continuous, closed and

onto. If y is a q-point, then ∂f−(y) is pseudocompactoid in X (7).

In [11] R. Hansell, J. Jayne, I. Labuda and C. A. Rogers extended Theorem 1.4 from the

relations f− to arbitrary relations Ω (of course, the active boundary of Ω at y generalizes

the boundary of f−(y)), but under the provision that Y is regular.

As every point of countable character is a q-point, and since in paracompact spaces pseudo-

compactness implies compactness, Theorem 1.4 generalizes Theorem 1.2.

However, the argument of Vainštein uses only the fact that f is closed at a given point

y (that is, that f− is upper semicontinuous at y), while the argument of Michael requires

the upper semicontinuity of f− on the whole Y . Therefore, the quest of Choquet and of

Vainštein (but not that of Michael) can be reduced to that on compactness of the adherence

of a filter F that is finer than the neighborhood filter of a set A as formulated in (1.1), so

4For a relation Γ, the inverse relation is denoted by Γ−; in particular, f− stands for the inverse relation
of a map f .

5A continuous map is inductively perfect if there exists its restriction (preserving the range) which is
perfect.

6On the other hand, if the graph of f is closed, then the active boundary is included in ∂f−(y).
7A subset A of X is pseudocompactoid if for each f ∈ C(X), sup |f(A)| < ∞.



54 S. Dolecki

that I can reformulate the (strengthened version of) Theorem 1.1, in terms of filters on a

single space (8).

Theorem 1.5 If X is metrizable, F is a countably based filter on X, A ⊂ X, and (1.1)

holds, then

adhF ⊂ A ; (1.3)

adhF is compact ; (1.4)

F ≥ N (adhF) . (1.5)

Moreover (1.4), (1.5) imply immediately that F is compactoid in adhF .

In this paper I investigate the conditions on X,A, and F that guarantee, separately, (1.3),

(1.4), the compactoidness of F , or (1.5).

2 J-compactoid filters

Recall that two families A,B of subsets (of a set) mesh (in symbols, A#B) if A ∩B 6= ∅ for

every A ∈ A and B ∈ B; the grill A# of A is the family of all subsets that intersect every

element of A . Recall also that A is finer than B (in symbols, A ≥ B) if for every B ∈ B,

there exists A ∈ A such that A ⊂ B.

Let J be a class of filters, and let X be a topological space. Specializing the definitions of

[6, 4], I say that a filter F on X is J-compactoid in a subset A of X if

∀
F#H∈J

adhH ∩ A 6= ∅ . (2.1)

If J is the class of, respectively, all filters, countably based filters, functional filters (9),

sequences (10), and principal filters, then J-compactoid becomes compactoid, countably com-

pactoid, pseudocompactoid, sequence-compactoid, and finitely compactoid.

One should not confuse sequence-compactoidness and sequential compactoidness, the lat-

ter being the compactoidness with respect to the sequential modification of the underlying

topology.

8If the topology is T1, then (1.1) implies that F is free.
9By a functional filter, I understand a filter generated by ({|f | ≥ n}), where f is a continuous real-valued

function.
10I use the term sequence both in the usual sense and for each filter generated by a sequence; (xn) is used

rather than (xn)n if no ambiguity is feared. By a subsequence of a sequence (xn), I understand (xnk
) with

(nk) tending to ∞ (not necessarily increasing), so that the filter generated by (ym) is finer than the filter
generated by (xn) if and only if (ym0+m) for some m0, is a subsequence of (xn) in our sense.
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J (class of filters) J-compactoid

all compactoid

countably based countably compactoid

functional pseudocompactoid

sequences sequence-compactoid

principal finitely compactoid

Tabelle 2.1: Some notions of compactoidness of filters

In particular, the principal filter of a set F is compactoid (resp., countably compactoid, pseu-

docompactoid) in A if and only if F is compact (resp., countably compact, pseudocompact)

relative to A in the usual sense (but without separation hypotheses).

The notion of cover in the theory of convergence spaces specializes to topological spaces as

follows. A family P is a cover of a subset A of a topological space whenever⋃
P∈P

intP ⊃ A.

It coincides with the classical concept of cover under the provision that its elements are open.

The cover definitions of compactness, countable compactness, and so on, with respect to the

two concepts of cover, are tantamount. I use here the convergence-theoretic cover, because

this makes several subsequent arguments and formulations simpler.

Given a family P of subsets of a set, let us denote by Pc = {P c : P ∈ P}. If P is a class of

families of sets, then we set

Pc = {Pc : P ∈ P},

and denote by P? the class of all (possibly) degenerate filters generated by the elements of

Pc. It is straightforward that

Theorem 2.1 [4] A family F is P?-compactoid in A if and only if for every cover P ∈ P

of A, there exists a finite subfamily P0 of P such that
⋃
P0 ∈ F .

In particular, a filter F is finitely compactoid in a subset A of a topological space if and only

if every open set Q that includes A belongs to F ; in other words, whenever F ≥ N (A).

A functional cover of A is a cover of the form ({|f | < n}), where f is a real-valued map

continuous at every point of A. Hence, a filter F on X is pseudocompactoid in A [4] if for

every real-valued function f on X that is continuous on A (that is, f ∈ CA(X)), there exists

F ∈ F such that sup |f(F )| <∞ (11).

11This notion is different from the one introduced in [6] under the same name.
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Of course, compactoidness implies countable compactoidness, and the latter implies pseudo-

compactoidness, finite compactoidness and sequence-compactoidness, and the implications

are in general strict. Indeed, the principal filter of the whole space X is compactoid (resp.,

countably compactoid, pseudocompactoid, finitely compactoid, sequence-compactoid) when-

ever the topological space X is compact (resp., countably compact, pseudocompact, finitely

compact, sequence-compact). Notice that every space is finitely compact, and X is sequence-

compact if and only if it is countably compact.

Example 3.4 shows that there exists a filter that is simultaneously finitely compactoid and

sequence-compactoid, but not countably compactoid (actually not even pseudocompactoid).

In the next section I will consider conditions on filters that enable one to reverse these

implications.

I shall say that F is nearly J-compactoid in A if the following variant of (2.1) holds (12)

∀
F≤H∈J

adhH ∩ A 6= ∅. (2.2)

It is clear that (2.1) implies (2.2). Of course, near compactoidness coincides with com-

pactoidness. It was observed in [6, Proposition 6.4] that countable near compactoidness

coincides with near sequence-compactoidness, and is strictly weaker than countable com-

pactoidness [6, Proposition 6.5]; in fact, it is strictly weaker than sequence-compactoidness

(a free ultrafilter on a countable discrete space X is nearly sequence-compactoid in X, but

not sequence-compactoid).

The following proposition slightly extends [13, Lemma 1].

Proposition 2.2 If X is T1 and if Ac ∈ F ≥ N (A), then F is nearly sequence-

compactoid in A.

Proof: Suppose that, on the contrary, there exists a sequence (xn) ≥ F such that adh(xn)∩
A = ∅. As Ac ∈ F , we can suppose without loss of generality that {xn : n ∈ N} ∩ A = ∅.
Consequently, cl{xn : n ∈ N} = {xn : n ∈ N} ∪ adh(xn) is disjoint from A, thus

(
cl{xn :

n ∈ N}
)c

is a one-element cover of A, hence by finite compactoidness, cl{xn : n ∈ N} /∈ F#,

thus in particular {xn : n ∈ N} /∈ F# in contradiction with (xn) ≥ F . �

As for classical variants of compactness, certain compactoidness-type properties of a space

combined (we can even say, composed) with compactoidness properties of filters improve the

latter [4]. For example, a countably compactoid filter on a Lindelöf space is compactoid, or

Proposition 2.3 A pseudocompactoid filter on a normal topological space is sequence-

compactoid.

12In [6] quasi was used for what I call now nearly; because quasi compact has had frequently a different
meaning in the literature, I decided to change the terminology of [6].
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Proof: If F is not sequence-compactoid, then there exists (xn) such that (xn)#F and

adh(xn) = ∅. Consequently, the set {xn : n ∈ N} is closed and discrete. Therefore the

function f(xn) = n, that is continuous on {xn : n ∈ N}, can be continuously extended to

the whole space. Since {xk : k ≥ n} ∈ F# for every n, one has sup |f(F )| = ∞ for every

F ∈ F . �

However, many other classical results in this direction do not extend (from principal) to

larger classes of filters. Example 3.4 shows that a sequence-compactoid filter in a com-

pletely metrizable space need not be even pseudocompactoid. In the case of principal filters,

sequence-compactoid is countably compactoid, and thus compactoid in completely metriz-

able spaces.

3 Set-theoretic properties of filters improving compactoidness

If a filter enjoys both one of the compactoidness properties, and a set theoretic property, like

Fréchetness or strong Fréchetness, then the type of its compactoidness can be improved.

Let D, J be classes of filters. A filter F is said to be a J/D-filter if for every H ∈ J such that

H#F , there exists a filter D ∈ D such that D ≥ H and D#F . Notice that a filter F is a

J/D-filter if and only if for every set-theoretic cover of an element of F by a family P ∈ Dc,

there exists a refinement R of P which is a set-theoretic cover of an element of F , and such

that R ∈ Jc.

Properties of the type J/D can be considered as variants of compactness of filters F with

respect to the discrete topology (13). Conjugate with compactoidness properties of F in A,

and with compactness-like properties of A, they imply stronger compactoidness properties

of F in A.

A filter F is said to be a super-J/D-filter if for every H ∈ J such that H#F , there exists a

filter D ∈ D such that D ≥ F ∨H. It is obvious that

Theorem 3.1 If a J/D-filter is D-compactoid in A, then it is J-compactoid in A. If a

super-J/D-filter is nearly D-compactoid in A, then it is J-compactoid in A.

A filter F is called Fréchet [5] if for every A ∈ F#, there is a sequence (xn) such that

(xn) ≥ F ∨ A, that is, whenever

F# =
⋃

(xn)≥F

(xn),

13More general schemes are studied in [4].
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where (xn) is a shorthand for the filter generated by (xn). In other words, a filter is Fréchet

if and only if it is a super-principal/sequence filter (super-J/D-filter, where J is the class of

principal filters, and D is the class of sequences) (14).

On the other hand, Fréchet filters belong to the class of super-sequence/sequence filters (that

is, super-D/D-filters for the class D of sequences). Indeed,

Proposition 3.2 If F is a Fréchet filter and a sequence (xn) meshes F , then there

exists a subsequence (xnk
) that is finer than F .

Proof: We decompose F = F• ∧F◦, where F• is the principal filter of the kernel
⋂
F of F

and F◦ is the trace of F on the complement of the kernel. Of course, F• and F◦ are Fréchet

filters. Let (xn) be a sequence that meshes F ; hence (xn) meshes either with F• or with F◦.

In the first case the trace of (xn) on F• is a subsequence of (xn) that is finer than F . In

the second case, (xn) must be free, and F◦ ∨ {xn : n ∈ N} is a Fréchet filter, hence there

is a sequence (yk) ≥ F◦, and since F◦ is free, (yk) is finer than the cofinite filter of the set

{xn : n ∈ N}, that is, (xn). �

Remark that no ultrafilter is a super-sequence/sequence filter.

A filter F is called strongly Fréchet if for every countably based filter H with H#F , there

is a sequence (xn) ≥ H ∨ F ; in other words, strongly Fréchet filters coincide with super-

countably-based/sequence filters (super-J/D-filters, where J is the class of countably based

filters, and D is the class of sequences) (15). It immediately follows from Theorem 3.1 that

Proposition 3.3 A Fréchet filter that is nearly sequence-compactoid in A is sequence-

compactoid in A and finitely compactoid in A.

A strongly Fréchet filter that is nearly sequence-compactoid in A is countably compactoid in

A.

Example 3.4 (A finitely compactoid, sequence-compactoid non pseudocompactoid filter)

Consider F = N (Z) ∨ Zc on the real line equipped with the natural topology. No sequence

is finer than F , hence F is nearly countably compactoid. Since F is a Fréchet filter, by

Proposition 3.3, F is sequence-compactoid. F is not pseudocompactoid, because the function

f(r) = r is continuous and unbounded on every element of F .

By Propositions 2.2 and 3.3,

Corollary 3.5 If F is a strongly Fréchet filter on a T1 space, such that Ac ∈ F ≥ N (A),

then F is countably compactoid in A.

14It is known that a filter is Fréchet [5] if and only if it is an intersection of sequential filters.
15A topological space is Fréchet if and only if its every neighborhood filter is Fréchet; a topological space

is strongly Fréchet if and only if its every neighborhood filter is strongly Fréchet.
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In a regular topological space every compactoid filter has compact adherence, but from the

countable compactoidness of a filter we cannot conclude that the adherence is countably

compact (think of a relatively countably compact set with non countably compact closure)

(16). The latter is true in normal spaces, because pseudocompactoid closed sets are countably

compact therein.

As countable compactoidness implies pseudocompactoidness of a filter, and the latter implies

the pseudocompactoidness of the adherence of the filter, we have

Corollary 3.6 If F is a strongly Fréchet filter on a T1 space, such that Ac ∈ F ≥ N (A),

then adhF is pseudocompactoid in A.

Recall [10, page 568] that a topology is Dieudonné complete if it is homeomorphic to a closed

subset of a product of metrizable spaces; equivalently, if its topology admits a complete

uniformity U. Every paracompact space is Dieudonné complete. A filter F in a uniform

space is totally bounded if for every U ∈ U, there exists a finite set A such that UA ∈ F . It

is known [6, Proposition 7.1] that every compactoid filter is totally bounded, and that the

converse statement is true for complete uniformities. Here is a refinement of [6, Theorem

7.2] that required F to be countably based.

Proposition 3.7 A strongly Fréchet, countably compactoid filter in a Dieudonné com-

plete space, is compactoid.

Proof: It is enough to show that a strongly Fréchet filter F which is countably compactoid

on a Dieudonné complete space, is totally bounded. Let U be a complete uniformity of X,

and suppose that F is not totally bounded: there exists U ∈ U such that UA /∈ F for every

finite subset A of X. Consider W ∈ U for which W 5 ⊂ U .

I claim that there exists a sequence (xn)n and sequences (x(n,k))k ≥ F such that xn ∈
adh(x(n,k))k, and {x(n,k) : k ∈ N} ⊂ Wxn, and moreover W 2xn ∩ W 2xm = ∅ for n 6= m.

Indeed, as F is Fréchet and countably compactoid, there exists a sequence (x0,k)k ≥ F
and x0 such that x0 ∈ adh(x0,k)k, and (x0,k)k is included in Wy0, so that the induction

hypothesis of order 0 is fulfilled. Suppose that the induction hypothesis holds up to the

order n. Then, by assumption, U{x0, x1, . . . , xn} /∈ F , so that by Fréchetness and countable

compactoidness, there exist xn+1 and in Wxn+1 \U{x0, x1, . . . , xn} a sequence (xn+1,k) ≥ F
such that xn+1 ∈ adh(xn+1,k)k. Clearly, W 2xm ∩W 2xn+1 = ∅ for 0 ≤ m ≤ n.

Now, by strong Fréchetness, there exists a sequence (x(np,kp))p ≥ F , for which (np)p tends to

∞, and adh(x(np,kp))p 6= ∅ by countable compactoidness. But it follows from the construction

16In order to avoid this inconvenience I. Labuda assumes in several arguments of [13] that each relatively
countably compact set is relatively compact. Dieudonné complete spaces have this property.
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that {x(np,kp) : p ∈ N} is discrete, hence its every subset is closed, and thus adh(x(np,kp))p = ∅:
a contradiction. �

Corollary 3.8 If F is a strongly Fréchet filter on a Dieudonné complete space, and

Ac ∈ F ≥ N (A), then F is compactoid in A.

Since each a Dieudonné complete space is regular, it follows that adhF is compact.

A. V. Arhangel’skii and A. Bella proved [1, Theorem 9] that (for T1 topologies) the boundary

of each fiber of a continuous closed map to a countably fan-tight space is pseudocompactoid

in the domain space. I say that a filter F on a set X is countably fan-tight if for every

(decreasing) sequence (An) of sets such that An ∈ F#, there exists a sequence (Kn) of finite

sets such that Kn ⊂ An and
⋃

n∈NKn ∈ F#. A topological space is countably fan-tight if

and only if its every neighborhood filter is countably fan-tight. A Fréchet filter is countably

fan-tight if and only if it is strongly Fréchet [1]. Therefore the following theorem generalizes

Corollary 3.5 and, because of Corollary 3.6, it generalizes also [1, Theorem 9].

Theorem 3.9 If F is a countably fan-tight filter on a T1 space, and if Ac ∈ F ≥ N (A),

then F is countably compactoid in A.

Proof: Let H be a countably based filter that meshes F . As Ac ∈ F , the filter H ∨ Ac

also meshes F . Consider (Hn) be a (decreasing) base of H ∨ Ac such that Hn ∩ A = ∅. By

countable fan-tightness, there exists a sequence (Kn) of finite sets such that Kn ⊂ Hn such

B =
⋃

n∈NKn ∈ F#. By T1, the filter F is free, and hence Bn =
⋃

m≥nKm ∈ F# for every

n. Therefore clBn ∩ A 6= ∅, because F is finitely compactoid in A.

I claim that adh(Bn)∩A 6= ∅. If this were not the case, then on one hand adh(Bn)∩A = ∅,
and by construction B ∩A = ∅. As the filter generated by (Bn) is a sequence in a T1-space,

clB = B ∪ adh(Bn), that is a contradiction. As (Bn) ≥ H, we conclude that F is countably

compactoid in A. �

In order to come back to the starting point, that of upper semicontinuous relations, let

me notice that it is straightforward that if N (y) is, respectively, countably based, Fréchet,

strongly Fréchet, countably fan-tight, then ΩN (y)∨ (Ωy)c is, respectively, countably based,

Fréchet, strongly Fréchet, countably fan-tight. As a result, the following corollary generalizes

[1, Theorem 9] in several respects.

Corollary 3.10 Let X be T1, and let y be a countably fan-tight point of Y . If Ω :

Y −→−→ X is upper semicontinuous at y, then ΩN (y) ∨ (Ωy)c is countably compactoid, and

thus its active boundary ∂#Ωy is pseudocompactoid. If moreover X is Dieudonné complete,

then ∂#Ωy is compact.
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4 Active boundaries

The active boundary ∂FA of a filter F with respect to a setA is defined by ∂FA = adh
(
F∨Ac

)
[6]. It follows right away that ∂FA is disjoint from intA. Of course, if Ac ∈ F , then the active

boundary of F with respect to A is equal to adhF . By Theorem 1.5, if F is a countably

based filter on a metrizable space, and if A is a subspace such that

Ac ∈ F ≥ N (A), (4.1)

then the active boundary of F with respect to A is a subset of A, hence of ∂A. Observe that

A is not assumed to be closed. In general, (4.1) does not imply that adhF ⊂ A, even if A

is closed.

Example 4.1 Let X be a non regular Hausdorff topological space. Then there exist a

closed set A and x /∈ A such that the filter F = N (x) ∨ N (A) is non degenerate. This is a

free filter finer than N (A) and than N (x), hence convergent to x. Therefore {x} = adhF ,

the active boundary of F with respect to A, is disjoint from A.

Example 4.1 is a sort of characterization, because if A is a closed subset of a regular space,

then adhN (A) ⊂ A. Therefore in this case (4.1) implies adhF ⊂ A.

A subset of a topological space is said to be Gδ-closed if it is closed for the topology obtained

from the original topology by taking Gδ sets as a base of open sets. I. Labuda proved in [13,

Lemma 6] a result to the effect that if a countably based filter F on a regular (Hausdorff)

space fulfills (4.1) and if A is Gδ-closed, then adhF ⊂ A.

Theorem 4.2 Let A be a Gδ-closed subset of a regular T1 space and let F be strongly

Fréchet. If (4.1) holds, then adhF ⊂ A.

Proof: Let x /∈ A and let (Pn) be a (decreasing) sequence of closed neighborhoods of x

such that
⋂

n Pn ∩ A = ∅. If x ∈ adhF , then Pn ∈ F# for each n. Hence there exists

a sequence (xn) ≥ F such that xn ∈ Pn, because F is strongly Fréchet. It follows that

adh(xn) ⊂
⋂

n Pn. On the other hand by Proposition 2.2, F is nearly sequence-compactoid

in A, thus adh(xn) ∩ A 6= ∅. A contradiction. �

In the case of Fréchet filters F in Hausdorff spaces, (4.1) implies that the sequential adherence

of F is included in A. Therefore in this case we prove that adhF ⊂ A if we can prove that

the sequential adherence of F coincides with the adherence of F .

Recall that adhSeq F stands the sequential adherence of F , that is,

adhSeq F =
⋃

(xn)#F

lim(xn) .

By Proposition 2.2, each sequence (xn) on Ac finer than N (A) is nearly sequence-compactoid

in A. This fact slightly refines [13, Lemma 1]. It follows that
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Proposition 4.3 Suppose that each sequence has at most one limit point. If F is

Fréchet and if Ac ∈ F ≥ N (A), then

adhSeq F ⊂ A .

5 Minimal kernels

I say that a set A is a kernel of a filter F if (4.1) holds (17). If F is a countably based

filter on a metrizable space, then by Theorem 1.5, (4.1) implies that adhF ⊂ A and that

(adhF)c ∈ F ≥ N (adhF), so that adhF is a the least kernel of F . In general, (4.1) does

not imply that adhF is a kernel of F .

Example 5.1 (A filter with empty adherence that admits kernels). Let X = R and F =

N (N) ∨ Nc ∨ B, where the filter B is generated by {{x : |x| ≥ n} : n ∈ N}. The adherence

of F is empty, thus N (∅) is the degenerate filter, so that F is not finer than N (∅).

On the other hand, it follows from Example 4.1 that if adhF is a kernel of F , it need not

be the least one. Indeed in that example {x} = adhF is a kernel of F disjoint from another

kernel: A.

It is known [6] that if F is compactoid and (adhF)c ∈ F , then adhF is a kernel of F .

This follows from the fact that if F is compactoid (in A), then adhH∩ adhF 6= ∅ for every

H#F , because there exists a (convergent) ultrafilter U ≥ H∨F , so that F is compactoid in

adhF . If F is merely countably compactoid (in A) and H is a countably based filter such

that H#F , then adhH need not intersect adhF , because there need not be a convergent

filter G finer than H ∨ F .

For a given filter F , consider the set U(F) = {U ∈ β(F) : limU 6= ∅} of convergent

ultrafilters. If U(F) is Stone closed, that is, if the filter F+ =
∧

U(F) is compactoid, then F
is called solid. The infimum of a compactoid filter and of a non adherent filter is an example

of a solid non compactoid filter.

Proposition 5.2 If F is a free solid non compactoid filter in a regular topological space,

then adhF is not a kernel of F .

Proof: Take any U ∈ β(F) \ β(F+). Since by definition adhU = ∅, for every x ∈ adhF =

adhF+, there exists an open set Ox that contains x and such that Ox /∈ U . Of course,

Ox ∈ W for every W ∈ β(F) with x ∈ limW . Since F+ is compactoid and X is regular,

17A similar notion of an F-kernel of a set B was introduced in [6] as an abstraction of a concept from [7];
It is a kernel of F in the present sense that is moreover a subset of B.
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adhF+ = adhF is compact, and thus there exist x1, . . . xn such that Ox1 ∪ . . . ∪ Oxn ∈
N (adhF). On the other hand, Ox1 ∪ . . . ∪Oxn /∈ U , thus Ox1 ∪ . . . ∪Oxn /∈ F . �

The Fréchet adherence of a filter F :

adhε F =
⋃

(xn)≥F

adh(xn) (5.1)

has been introduced by A. Lechicki [14] (18) as an abstraction of an object considered by

I. Labuda [13]. This is not a notion of adherence with respect to some convergence modi-

fication of the underlying topology; adhε F depends only on the Fréchet core of F , that is,

on

F ε =
⋂

(xn)≥F

(xn),

where as usual (xn) is a shorthand for the filter generated by (xn). A filter is Fréchet if and

only if it is equal to its Fréchet core. If F is Fréchet, then adhε F =
⋃

(xn)#F adh(xn), hence

adhSeq F ⊂ adhε F . The following theorem has been proved for countably based filters by

A. Lechicki in [14, 3.1].

Theorem 5.3 If F is a Fréchet filter and if Ac ∈ F ≥ N (A), then

F ≥ N
(
A ∩ adhε F

)
. (5.2)

Proof: Because F is Fréchet, it is enough to show that (xn) ≥ N
(
A ∩ adhε F

)
for every

(xn) ≥ F . If this were not the case, then there would exist an open set O ⊃ A∩ adhε F and

a subsequence (xnk
) such that xnk

/∈ O for each k. By Proposition 2.2, adh(xnk
) ∩ A 6= ∅,

but on the other hand, adh(xnk
) ∩O = ∅, which is a contradiction. �

It follows from Theorem 5.3 and from Proposition 4.3 that in Hausdorff spaces, adhSeq F is

included in every kernel of F . If F is Fréchet, then adhSeq F ⊂ adhε F , thus it follows [13,

Lemma 2] that if adhSeq F is a kernel of F , then it is the smallest one.

A topological space is said to have the Fréchet property with respect to a class B of subsets if

for every B ∈ B if x ∈ clB, then there exists a sequence (xn) in B such that x ∈ lim(xn). Of

course, if a topological space has the Fréchet property with respect to all its subsets, then

the topology is Fréchet by definition.

I. Labuda proved (for Hausdorff spaces, and in different terms) [13] the following

Proposition 5.4 If F is a filter on a T1 space with the Fréchet property with respect

to countably compactoid sets, then

adhε F ⊂ adhSeq F .
18Without any name.
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Proof: If x ∈ adhε F , then by definition there exists a sequence (xn) ≥ F such that x ∈
adh(xn) ⊂ cl{xn : n ∈ N}. By the Fréchet property with respect to countably compactoid

sets, there exists a sequence on {xn : n ∈ N} that converges to x, and since the topology is

T1, this is a subsequence of (xn). Therefore x ∈ adhSeq F . �

Corollary 5.5 Let F be a Fréchet filter on a Hausdorff space with the Fréchet property

with respect to countably compactoid sets. If (4.1) holds, then adhSeq F = adhε F is the least

kernel of F .

We conclude that adhF is the least kernel of a Fréchet filter F in a Hausdorff topological

space if and only if F admits a kernel, and if

adhF = adhSeq F . (5.3)

It turns out that the equality (5.3) can be characterized in terms of the Fréchetness of the

product of certain spaces. It is known [15] that if the product of X with a non discrete space

is Fréchet, then X must be strongly Fréchet. Consider Fr the class of Fréchet filters, and let

E,F classes of filters included in the class of strongly Fréchet filters; I assume that moreover

F has the property

F ∈ F(V ), A ⊂ V ×X =⇒ AF ∈ F(X) .

Theorem 5.6 The following assertions are equivalent:

N (x) ∈ E,F ∈ F =⇒
(
x ∈ adhX F =⇒ x ∈ adhSeq X F

)
; (5.4)

N (x) ∈ E,N (y) ∈ F =⇒ N (x, y) ∈ Fr . (5.5)

Proof: Assume (5.4) and consider A ⊂ X × Y and (x, y) ∈ clA. This amounts to

N (x)#A−N (y), that is, to x ∈ adhA−N (y). By the assumption, there exists a sequence

(xn)#A−N (y) that converges to x. It follows that A(xn)n#N (y) and since N (y) is strongly

Fréchet, there exist sequences (yk) ≥ N (y) and xnk
such that (xnk

, yk) ∈ A. We conclude

that (x, y) ∈ clSeqA.

Assume (5.5) and let x ∈ adhG, that is N (x)#G. Define on Y = {∞}∪X the finest topology

in which G converges to ∞. The set ∆ = {(x, x) : x ∈ X} belongs to the grill of N (x) × G
(hence to the grill of N (x)×N (y)), thus by the assumption there exists a sequence (xn, yn)

on ∆ that is finer than N (x) × G. Consequently, xn = yn for each n, and x ∈ adhSeq G. �

Theorem 5.6 constitutes a return to the original setting, that of a relation between two

spaces.

Proposition 5.7 If X is Hausdorff, if X × Y is Fréchet, and if Ω : −→−→ X is upper

semicontinuous at y, then the active boundary of Ω at y is a kernel of Ω at y.
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Proof: Indeed, under the assumptions, the adherence of ΩN (y) ∨ (Ωy)c is equal to the se-

quential adherence: x ∈ adh
(
ΩN (y)∨ (Ωy)c

)
if and only if (x, y) ∈ cl Ω \Ω. By Fréchetness,

there exists a free sequence (xn, yn) in Ω that converges to (x, y). Hence (xn) ≥ ΩN (y) ∨
(Ωy)c and converges to x. As the active boundary of Ω at y is equal to the adherence of

ΩN (y) ∨ (Ωy)c, by Proposition 4.3, the proof is complete. �

The two-fold theorem of [8, Theorem 4] (by T. Nogura and the present author) is a common

generalization and refinement of the known theorems on the Fréchetness of products. A

convergent bisequence

x(n,k) −→
k

xn −→
n

x (5.6)

is free if xn 6= x, and stationary if xn = x for every n. A space X is an α3-space (respectively,

a β3-space) [8] if for every stationary (respectively, free) convergent bisequence, there exists

a compact metrizable subset C of {x} ∪ {xn : n ∈ ω} ∪ {xn,k : n, k ∈ ω} such that

|{n : |C ∩ {xn,k : k ∈ ω}| = ω}| = ω. (5.7)

The property α3 (but not β3) is a property of single neighborhood filters. Therefore, it can

be formulated for filters without relation to any topological structure. A filter F is α3 if

for every countable collection of sequences (xn,k)k finer than F , there exists a set C such

that (5.7) holds, and the cofinite filter of C is finer than F . This property is preserved by

relations.

As a consequence of Proposition 4.3, of the two-fold theorem and of Theorem 5.6, we have

Theorem 5.8 If X is Hausdorff and F admits kernels, then adhF is the least kernel,

provided that one of the following holds:

1. X is first-countable and F is strongly Fréchet;

2. X is strongly Fréchet and F is first-countable;

3. X is a regular β3 Fréchet q-space, and F is strongly Fréchet;

4. X is a regular Fréchet q-space, and F is α3 Fréchet.

Each first-countable space is a β3 Fréchet q-space, but need not be regular; a regular Fréchet

q-space is strongly Fréchet; a first-countable filter is α3 Fréchet, and the latter is strongly

Fréchet. However, because no regularity is required in the first two conditions, they are not

a consequence of the two latter.

By virtue of Theorem 5.7, one can formulate other conditions for the adherence to be the

least kernel. For example,
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Corollary 5.9 If Y is a regular Fréchet q-space, X is a Hausdorff α3 Fréchet space,

and Ω : Y −→−→ X is upper semicontinuous, then (at each point) the active boundary of Ω is

its least kernel. Moreover, if X is Dieudonné complete, then the active boundary at every

point is compact.

The last conclusion of the the corollary follows from the results of [11] by R. Hansell, J. Jayne,

I. Labuda and C. A. Rogers, that I have mentioned in the introduction.

6 Disjoint kernels and non normality number

A filter can have many disjoint kernels. By definition a topological space X is not normal

if for there exist closed disjoint sets F0, F1 such that N (F0)#N (F1). The supremum of

cardinal numbers κ for which there exists a family A of disjoint closed subsets of X such

that |A| = κ and the filter

F =
∨

A∈A

N (A) (6.1)

is non degenerate is called the non normality number of X. It is clear that in each space of

non normality κ, there is a filter that admits κ disjoint closed kernels (19).

Example 6.1 (Non normality of the Niemytzki plane is c). Recall [10, Example 1.2.4]

that the Niemytzki plane can be defined as the upper half of the Euclidean plane, where the

neighborhood filters of the elements of the strict upper half of the plane are induced from the

natural topology, while for each (x, 0), the neighborhood filter admits a base consisting of

the Euclidean-closed discs tangent to R×{0} at (x, 0). The non normality of the Niemytzki

plane is c.

The argument below slightly refines that employed in [12, p. 514] to prove the Bernstein

theorem. Let {Cβ : β < c} be the set of the Cantor subsets of the real line. Set C(α,β) = Cβ

for each β ≤ α < c, and order {(α, β) : β ≤ α < c} lexicographically (denote l(α, β)

the ordinal that corresponds to (α, β) in the lexicographic order). Arrange R in the set

{xγ : γ < c} of distinct terms.

Let xγ(0,0)
be the first element that belongs to C0. If δ < c and {xγ(α,β)

: l(α, β) < δ} is such

that xγ(α,β)
∈ Cβ, let γ(αδ ,βδ) be the first γ such that xγ has not been already selected and

belongs to Cβδ
. Such an element exists, because Cβδ

is of cardinality c.

Let Bα = {xγ(α+β,β)
: β < c}. The family {Bα : α < c} is of cardinality c, all its elements

are disjoint, dense, of cardinality c. For each α0, the union
⋃

α0 6=α<cBα is a totally imperfect

19Dr Roberto Peirone (University of Rome, Tor Vergata) proved that for every regular cardinal κ, there
exists a completely regular space which the non normality number is equal κ.
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set (includes no Cantor set), hence each Bα is of second category in every open interval [12,

Section 40, Theorem 3].

The sets Bα × {0} are closed disjoint subsets of the Niemytzki space. Let O1, . . . , On be

Niemytzki open sets such that Bαk
× {0} ⊂ Ok for 1 ≤ k ≤ n; for every x ∈ Bαk

, let r(x)

stand for the radius of a disc tangent to (x, 0) and included in Ok. There are open subsets

W1 ⊃ Wk ⊃ . . . ⊃ Wn of R and rk > 0 such that {x ∈ Bαk
: r(x) > rk} is dense in Wk.

Therefore
⋂

1≤k≤nOk 6= ∅.

On the other hand, the cardinality of the Niemytzki plane is c, so that there are no more

than c mutually disjoint closed sets.
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Cauchy filters and strong completeness of quasi-
uniform spaces

ABSTRACT. We introduce and study the notions of a strongly completable and of a

strongly complete quasi-uniform space. A quasi-uniform space (X,U) is said to be strongly

complete if every Cauchy filter (in the sense of Sieber and Pervin) clusters in the uniform

space (X,U ∨U−1). An interesting motivation for the study of this notion of completeness is

the fact, proved here, that the quasi-uniformity induced by the complexity space is strongly

complete but not Corson complete. We recall that the (quasi-metric) complexity space was

introduced by Schellekens to study complexity analysis of programs. We characterize those

quasi-uniform space that are strongly completable and show that a quasi-uniform space is

strongly complete if and only if it is bicomplete and strongly completable. We observe that

every T0 strongly complete quasi-uniform space is Smyth complete. We also show that ev-

ery T1 strongly complete quasi-uniform space is small-set symmetric, so every T1 strongly

complete quasi-metric space is (completely) metrizable.

KEY WORDS. Cauchy filter, strongly complete, Corson complete, Smyth complete, bicom-

plete, small set-symmetric, complexity space.

1 Introduction

Throughout this paper the letters R, N and ω will denote the sets of reals, positive integers

and nonnegative integers, respectively.

Terms and undefined concepts may be found in [4] and [7].

Given a quasi-uniform space (X,U) (we shall denote by U s the coarsest uniformity finer

than U and its conjugate U−1 (i.e. U s = U ∨ U−1). If U ∈ U we denote by U s the entourage

U ∩ U−1 of U s.

∗
Supported in part by DGES, grant PB95-0737
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Let us recall that every quasi-uniformity U on a set X induces a topology T (U) = {A ⊆ X|
for each x ∈ A there is U ∈ U such that U(x) ⊆ A}, where U(x) = {y ∈ X|(x, y) ∈ U}.

According to [4], a quasi-uniform space (X,U) is called bicomplete if (X,U s) is a complete

uniform space. A bicompletion of (X,U) is a bicomplete quasi-uniform space (Y,V) which

has a T (Vs)-dense subspace quasi-unimorphic to (X,U). It was shown in [15] and in [4]

that every quasi-uniform space (X,U) admits a bicompletion (X̃, Ũ) such that if (X,U) is

a T0 quasi-unifom space then (X̃, Ũ) is T0 and it is the unique (up to quasi-unimorphism)

bicompletion of (X,U).

In the context of this paper, a quasi-metric on a set X is a nonnegative real-valued function

d on X × X such that for all x, y, z ∈ X : (i) d(x, y) = d(y, x) = 0 ⇔ x = y and (ii)

d(x, y) ≤ d(x, z) + d(z, y).

If d is a quasi-metric on a set X and x ∈ X, the set {y ∈ X|d(x, y) < r} is called the

open r-sphere around x and is denoted by Sd(x, r). The conjugate d−1 of the quasi-metric

d is given by d−1(x, y) = d(y, x). Then we shall denote by ds the metric defined on X by

ds = d ∨ d−1.

Every quasi-metric d on a set X induces a quasi-uniformity Ud on X which has as a base

the family of sets of the form {(x, y) ∈ X ×X|d(x, y) < 2−n}, for n ∈ N (see [4] p. 3]). The

topology T (Ud) will be denoted simply by T (d).

In [16] M. Schellekens introduced the quasi-metric complexity space as a part of the develop-

ment of a topological foundation for the complexity analysis of programs. Via the analysis

of its dual it was proved in [13] that the complexity space is Smyth complete. In Section

3 of this paper we shall show that actually the (dual) complexity space admits a stronger

form of completeness based on the use of Cauchy filters (in the sense of Sieber and Pervin)

having a sup-cluster point. This kind of completeness will be called ”strong completeness”.

Thus, in Section 2 we define the notions of a strongly completable and of a strongly complete

quasi-uniform space and obtain some properties of such spaces. In particular, we charac-

terize both strongly completable and strongly complete quasi-uniform spaces and deduce

that every strongly completable quasi-uniform space is Smyth completable and that every

T0 strongly complete quasi-uniform space is Smtyh complete. We give examples which show

that the converse implications do not hold. We also observe that a quasi-uniform space is

totally bounded if and only if it is precompact and strongly completable. We show that

every T1 strongly complete quasi-uniform space is small-set symmetric, so every T1 strongly

complete quasi-metric space is completely metrizable. Finally, in Section 3 we show, in ad-

dition to the result cited above, that the (dual) complexity space is not Corson complete (in

the sense of [11]) and give an example of a weightable Smyth complete quasi-metric space

having a maximum which is not strongly complete.
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2 Strongly complete quasi-uniform spaces

Let us recall that a filter F on a quasi-uniform space (X,U) is Cauchy [17] provided that

for each U ∈ U there is x ∈ X such that U(x) ∈ F . F is left K-Cauchy [12] provided that

for each U ∈ U there is an F ∈ F such that U(x) ∈ F for all x ∈ F .

(X,U) is said to be (left K-) complete if every (left K-) Cauchy filter has a T (U)-cluster

point. lt is clear that every left K-complete quasi-uniform space is complete and it is well-

known that the converse is not true. On the other hand, although every left K-Cauchy

filter converges to its cluster points, there exist complete quasi-uniform spaces having non

T (U)-convergent Cauchy filters (see [4], [6]).

In [8] H.P.A. Künzi proved that a quasi-uniform space (X,U) is Smyth complete if and only

if each left K-Cauchy filter is T (U s)-convergent to a unique point of X and that (X,U) is

Smyth completable if and only if every left K-Cauchy filter is a Cauchy filter on the uniform

space (X,U s).

Definition 1 A quasi-uniform space (X,U) is called strongly complete if each Cauchy

filter on (X,U) has a T (U s)-cluster point.

Definition 2 Let (X,U) be a quasi-uniform space. A strong completion of (X,U) is a

strongly complete quasi-unifom space (Y,V) in which (X,U) can be quasi-uniformly embedded

as a T (Vs)-dense subspace. In this case we say that (X,U) is strongly completable.

We will say that a quasi-metric space (X, d) is strongly completable (resp. strongly com-

plete) if the quasi-uniform space (X,Ud) is strongly completable (resp. strongly complete).

Similarly, (X, d) is called Smyth complete if (X,Ud) is Smyth complete.

Lemma 1 Let (Y,V) be a quasi-uniform space and let X be a T (Vs)-dense subset of Y .

If F is a Cauchy filter on (Y,V), then

G = {U s(F ) ∩X|F ∈ F , U ∈ V}

is a Cauchy filter base on (X,V|X ×X).

Proof: Let F be a Cauchy filter on (Y,V). Let U ∈ V. We shall show that there is x ∈ X

such that U(x) ∈ G. Choose a V ∈ V such that V 3 ⊆ U . Then there exists a y ∈ Y

such that V (y) ∈ F . Since X is T (Vs)-dense in Y , there exists an x ∈ V s(y) ∩ X. Since

V s(V (y)) ∩ X ∈ G, it will be sufficient to see that (V s(V (y)) ∩ X) ⊆ U(x). Indeed, given

z ∈ V s(V (y)) ∩X, there is a ∈ V (y) such that z ∈ V s(a). Thus z ∈ V 2(y). Since y ∈ V (x),

we conclude that z ∈ V 3(x) ⊆ U(x). The proof is complete. �

Theorem 1 A quasi-uniform space (X,U) is strongly completable if and only if every

Cauchy filter on (X,U) is contained in a Cauchy filter on the uniform space (X,U s).
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Proof: Suppose that (X,U) is strongly completable. Then there is a quasi-unimorphism f

from (X,U) to a T (Vs)-dense subspace of a strongly complete quasi-uniform space (Y,V).

Let F be a Cauchy filter on (X,U). Clearly {f(F ) : F ∈ F} is a Cauchy filter base on (Y,V),

so it has a T (Vs)-cluster point y ∈ Y . Then, the filter generated by {f−1(V s(y)) ∩ F |F ∈
F , V ∈ V} is a Cauchy filter on (X,U s) which contains F .

Conversely, let (X̃, Ũ) be a bicompletion of (X,U). If F is a Cauchy filter on (X̃, Ũ), then

it follows from Lemma 1 that the filter base G = {U s(F ) ∩X|F ∈ F , U ∈ Ũ} is Cauchy on

(X,U). So G ⊆ H for some Cauchy filter H on (X,U s). Denote by H̃ the filter generated

on X̃ by H. Then H̃ is T (Ũ s)-convergent to some point y ∈ X̃. Hence y is a T (Ũ s)-cluster

point of F . We conclude that (X,U) is strongly completable. �

Remark 1 It follows from the preceding result that if (X,U) is a To strongly completable

quasi-uniform space, then its bicompletion is the unique strong completion of (X,U).

Recall that a quasi-uniform space (X,U) is precompact provided that for each U ∈ U there

is a finite subset A of X such that U(A) = X. (X,U) is said to be totally bounded if

the uniform space (X,U s) is precompact (see [4], [7]). Every totally bounded quasi-uniform

space is precompact but the converse does not hold. On the other hand, a quasi-uniform

space is precompact if and only if every ultrafilter is a Cauchy filter [4].

Corollary 1 A quasi-uniform space is totally bounded if and only if its precompact and

strongly completable.

Proof: Let (X,U) be a precompact strongly completable quasi-uniform space. Let F be

an ultrafilter on X. By the precompactness of (X,U), F is a Cauchy (ultra) filter. So, by

Theorem 1, F is a Cauchy filter on the uniform space (X,U s). Therefore (X,U) is totally

bounded. The converse follows from Theorem 1 and the preceding observations. �

It is essentially known (see, for instance, the proof of [11] Corollary 3) that a left K-Cauchy

filter on a quasi-uniform space (X,U) is Cauchy on (X,U s) if and only if it is contained in

a Cauchy filter on (X,U s). From this fact and Theorem 1 we deduce the following result.

Corollary 2 Every strongly completable quasi-uniform space is Smyth completable.

Theorem 2 A quasi-uniform space (X,U) is strongly complete if and only if it is bi-

complete and strongly completable.

Proof: Suppose that (X,U) is bicomplete and strongly completable. Let F be a Cauchy

filter on (X,U). By Theorem 1, F ∈ G for some Cauchy filter G on (X,U s). Hence G is

T (U s)-convergent to a point x ∈ X. So x is a T (U s)-cluster point of F . We conclude that

(X,U) is strongly complete. The converse is obvious. �



Cauchy filters and strong completeness . . . 73

Corollary 3 A T0 quasi-uniform space (X,U) is strongly complete if and only if it is

Smyth complete and strongly completable.

Proof: Suppose that (X,U) is a T0 strongly complete quasi-uniform space. Let F be a

left K-Cauchy filter on (X,U). By Corollary 2, F is a Cauchy filter on (X,U s). So it is

T (U s)-convergent to a point of X, by Theorem 2. Hence (X,U) is Smyth complete. The

converse follows from Theorem 2. �

The following is a simple example of a compact Hausdorff Smyth complete quasi-metric

space which is not strongly complete.

Example 1 Let d be the quasi-metric defined on ω by d(0, n) = 1/n for all n ∈ N, d(n,m) =

1 for all n ∈ N and m ∈ ω with n 6= m, and d(n, n) = 0 for all n ∈ ω. Clearly (ω, d) is a

compact Hausdorff Smyth complete quasi-metric space. However, it is not strongly complete

because the filter generated by {{m ∈ N : m ≥ n} : n ∈ N} is a Cauchy filter on (ω, Ud)

without T ((Ud)
s)-cluster points.

Proposition 1 Let (X,U) be a quasi-uniform space. Then the uniform space (X,U s)

is compact if and only if (X,U) is precompaet and strongly complete.

Proof: Suppose that (X,U) is precompact and strongly complete. Then (X,U) is bicom-

plete. Moreover, it is totally bounded by Corollary 1. We conclude that (X,U s) is a compact

uniform space. The converse is obvious. �

In [1] P. Fletcher and W. Hunsaker introduced the notion of a small-set symmetric quasi-

uniform space. It was shown in [9] that a quasi-uniform space (X,U) is small-set symmetric

if and only if T (U−1) ⊆ T (U).

Proposition 2 A T1 quasi-uniform space is strongly complete if and only if it is com-

plete and small-set symmetric.

Proof: Let (X,U) be a strongly complete T1 quasi-uniform space. Obviously, it is complete.

In order to prove that (X,U) is also small-set symmetric suppose that there exists x ∈ X

and U ∈ U such that V (x)\U−1(x) 6= ∅ for all V ∈ U . Thus, the filter generated by

{V (x)\U−1(x)|V ∈ U} is a Cauchy filter on (X,U). Let y ∈ X be a T (U s)-cluster point

of such a filter. Then x = y. Indeed, given V ∈ U there is W ∈ U such that W 2 ⊆ V .

Since W s(y) ∩W (x) 6= ∅, it follows that y ∈ V (x). Consequently y ∈ ∩V ∈UV (x), so y = x.

Therefore U s(x) ∩ (U(x)\U−1(x)) 6= ∅, a contradiction. We conclude that T (U−1) ⊆ T (U).

Hence (X,U) is small-set symmetric. The converse is almost obvious, so its simple proof is

omitted. �

Corollary 4 Every strongly complete T1 quasi-metric space is completely metrizable.
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Proof: Let (X, d) be a strongly complete T1 quasi-metric space. By Proposition 2 we obtain

that T (d−1) ⊆ T (d), so (X,T (d)) is a metrizable space. Now the conclusion follows from

the fast, proved in [2], that every metrizable space which admits a complete quasi-metric is

completely metrizable. �

3 Strong completeness of the complexity space

Let us recall [16] that the complexity space is the pair (C, dC), where

C =

{
f : ω → (0,+∞]|

∞∑
n=0

2−n 1

f(n)
< +∞

}

and dC is the quasi-metric on C defined by

dC(f, g) =
∞∑

n=0

2−n

[(
1

g(n)
− 1

f(n)

)
∨ 0

]
whenever f, g ∈ C.

The dual complexity space (C∗, dC∗) is defined in [13] as follows:

C∗ =

{
f : ω → [0,+∞)|

∞∑
n=0

2−nf(n) < +∞

}

and dC∗ is the quasi-metric on C∗ given by

dC∗(f, g) =
∞∑

n=0

2−n[(g(n) − f(n)) ∨ 0]

whenever f, g ∈ C∗.

It is observed in [13] that the inversion function Ψ : C∗ → C is a quasi-isometry from (C∗, dC∗)
to (C, dC), because dC(Ψ(f),Ψ(g)) = dC(1/f, 1/g) = dC∗(f, g), whenever f, g ∈ C∗.

The fact that the dual complexity space admits a structure of quasi-normed semilinear space

(see [14]) provided a first motivation to the authors for the use of the dual complexity space

rather than the original one in the study of the properties of completeness, compactness and

total boundedness of the complexity space (see [13]). A second motivation for the use of

the dual space is the fact that the definition of the dual is mathematically somewhat more

appealing, since dC∗ is ”derived” from the restriction to [0,+∞) of the standard quasi-metric

u defined on R × R, by u(x, y) = (y − x) ∨ 0. Consequently, the presentation of the proofs

becomes somewhat more elegant.
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The quasi-metric of pointwise convergence of u is the quasi-metric uP defined on Rω × Rω

by uP (f, g) =
∑∞

n=0 2−n min{u(f(n), g(n)), 1}. Thus the metric (uP )s induces the usual

topology of pointwise convergence on Rω.

A quasi-metric space (X, d) is called weightable [10] if there is a function w : X → [0,+∞)

such that for all x, y ∈ X:

d(x, y) + w(x) = d(y, x) + w(y).

In this case, we say that w is a weighting function for (X, d).

It was proved in [16] that the complexity space (C, dC) is weigthable with weighting function

wC defined by wC(f) =
∑∞

n=0 2−n(i/f(n)), for all f ∈ C. Similary, the dual complexity space

(C∗, dC∗) is weightable with weighting function wC∗ defined by wC∗(f) =
∑∞

n=0 2−nf(n), for

all f ∈ C∗.

A quasi-metric space (X, d) has a maximum provided there is x0 ∈ X such that d(x, x0) = 0

for all x ∈ X. It is obvious that the (dual) complexity space has a maximum. Before we

prove that the (dual) complexity space is strongly complete, it seems interesting to note that

there exists a non strongly complete weightable Smyth complete quasi-metric space which

has a maximum.

Example 2 Let X = ω ∪ {∞}. Define a quasi-metric d on X by d(0, x) = 0 for all x ∈ X,

d(∞, n) = 1 for all n ∈ N, d(∞, 0) = 2, d(n,m) = 1 for all n,m ∈ N with n 6= m, d(n,∞) = 0

for all n ∈ N, d(n, 0) = 1 for all n ∈ N, and d(x, x) = 0 for all x ∈ X. It is immediate

to check that (X, d) is Smyth complete and that ∞ is a maximum for (X, d). Furthermore

(X, d) is weightable with weighting function w given by w(0) = 2, w(∞) = 0 and w(n) = 1

for all n ∈ N.

Proposition 3 The dual complexity space (C∗, dC∗) is strongly complete.

Proof: Let F be a Cauchy filter on (C∗,UdC∗ . Then, for each k ∈ N there is an fk ∈ C∗ such

that SdC∗ (fk, 2
−3k) ∈ F . Put Fk = SdC∗ (fk, 2

−3k) for all k ∈ N.

Furthermore, for each f ∈ F1, wC∗(f) ≤ wC∗(f1) + dC∗(f1, f). Hence
∑∞

n=0 2−nf(n) <

wC∗(f1) + 2−3 and thus f(n) < 2n(wC∗(f1) + 1) for all f ∈ F1 and n ∈ ω.

Denote by K the compact space
∏∞

n=0[0, 2
n(wC∗(f1)+1)], and by F ∩K the closure of F ∩K

in K for all F ∈ F . (Note that for each F ∈ F , F ∩K 6= ∅ because F1 ⊆ K.)

Next we show that for each F ∈ F , (F ∩K) ∩ (∩∞
k=1Fk ∩K) 6= ∅.

Indeed, fix F ∈ F . For each k ∈ N there is gk ∈ F ∩ Fk, so (gk)k∈N is a sequence in

K and, thus, it clusters to a function g ∈ K with respect to T ((uP )s). Therefore g ∈
(F ∩K) ∩ (∩∞

k=1Fk ∩K).
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In particular, it follows from the above observation that ∩∞
k=1Fk ∩K is a nonempty compact

subset of K, so the filter base {(F ∩K) ∩ (∩∞
k=1Fk ∩K)|F ∈ F} clusters to some function

h ∈ ∩∞
k=1Fk ∩K with respect to T ((uP )s).

Now we want to show that h ∈ C∗ and F clusters to h with respect to T ((dC∗)
s). Thus

(C∗, dC∗) will be strongly complete.

Suppose that h /∈ C∗. Then, for each j ∈ N there is an mj ∈ w such that j <
∑mj

n=0 2−nh(n).

Since h ∈ F1 ∩K, there exists f ∈ F1 such that |h(n)− f(n)| < 2−j for n = 0, 1, . . . ,mj. So

mj∑
n=0

2−n|h(n) − f(n)| < 2−j

mj∑
n=0

2−n < 2−(j−1).

Since dC∗(f1, f) < 2−3, it follows that

j <

mj∑
n=0

2−nh(n) ≤ 2−(j−1) +

mj∑
n=0

2−nf(n)

< 2(j−1) + 2−3 +

mj∑
n=0

2−nf1(n),

which contradicts that f1 ∈ C∗. Therefore h ∈ C∗.

Finally, we shall prove that F clusters to h with respect to T ((dC∗)
s).

Fix k ∈ N and F ∈ F . Since fk and h are in C∗, there is n0 ∈ N with n0 > 3k such that
∞∑

n=n0

2−nfk(n) < 2−3k and
∞∑

n=n0

2−nh(n) < 2−3k.

On the other hand, since h ∈ F ∩ Fk ∩K, there is f ∈ F ∩ Fk such that (uP )s(h, f) < 2−n0 ,

which implies that
∑n0−1

n=0 2−n min{1, |h(n)−f(n)|} < 2n0 , i.e.
∑n0−1

n=0 2−n|h(n)−f(n)| < 2−n0 .

Therefore,

(dC∗)
s(h, f) ≤

∞∑
n=0

2−n|h(n) − f(n)|

< 2−n0 +
∞∑

n=n0

2−nh(n) +
∞∑

n=n0

2−nf(n).

From
∑∞

n=n0
2−nu(fk(n), f(n)) ≤ dC∗(fk, f) < 2−3k we deduce that

∑∞
n=n0

2−nf(n) < 2−3k +∑∞
n=n0

2−nfk(n) < 2−3k + 2−3k, so

(dC∗)
s(h, f) < 2−n0 + 2−3k + 2−3k + 2−3k < 4 · 2−3k ≤ 2−k.

We have shown that F clusters to h with respect to T ((dC∗)
s). Consequently, the dual

complexity space is strongly complete. �

By using the quasi-isometry Ψ from (C∗, dC∗) to (C, dC) constructed above and the preceding

theorem, we immediately deduce the following result.
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Corollary 5 The complexity space (C, dC) is strongly complete.

The notion of a Corson complete quasi-uniform space was introduced in [11]. A quasi-

uniform space (X,U) is said to be Corson complete if every weakly Cauchy filter on (X,U)

has a T (U s)-cluster point, where a filter F on (X,U) is weakly Cauchy provided that for

each U ∈ U , ∩F∈FU
−1(F ) 6= ∅ (see, for instance, [3]). Clearly, every Corson complete quasi-

uniform space is strongly complete. The converse does not hold even for uniform spaces as

a well-known example of J.R. Isbell shows (see [5]).

We conclude the paper by showing that the quasi-uniform space (C∗, UdC∗ ) is not Corson

complete.

Example 3 For each j, k ∈ N define a function f j
k : ω → [0,+∞) by f j

k(n) = j if n < k

and f j
k(n) = j + 2k−j if n ≥ k.

An easy computation shows that
∑∞

n=0 2−nf j
k(n) = 2(j + 2−j), so f j

k ∈ C∗ for all j, k ∈ N.

Now, for each m ∈ N, define Fm = {f j
k : j ≥ 1 and k ≥ m}. Then {Fm : m ∈ N} is a base

for a filter F on C∗.

For each j ∈ N consider the constant function gj : ω → [0,+∞) defined by gj(n) = j for all

n ∈ ω. Clearly each gj is in C∗ and, for each j ∈ N, the sequence (f j
k)k∈N converges to gj

with respect to T ((uP )s).

Furthermore, for each j, k ∈ N, we have

dC∗(gj, f
j
k) =

∞∑
n=k

2−n(j + 2k−j − j) = 2−(j−1),

which implies that F is a Corson filter on (C∗,UdC∗ ).

Finally, suppose that F clusters to a function g with respect to T ((dC∗)
s). Then there is

a sequence (f jm

km
)m∈N of distinct elements of F such that f jm

km
∈ Fm for all m ∈ N and

(dC∗)
s(g, f jm

km
) → 0.

We have two cases:

Case 1. The sequence (jm)m∈N is bounded. Then there is an i ∈ N and a subsequence

(hm)m∈N of (f jm

km
)m∈N which is also a subsequence (f i

k)k∈N. Hence, (dC∗)
s(g, hm) → 0, so

(uP )s(g, hm) → 0, and, by the triangle inequality, (uP )s(g, gi) = 0, i.e. g = gi, which is a

contradiction because dC∗(gi, hm) = 2−(i−1) for all m ∈ N.

Case 2. The sequence (jm)m∈N is not bounded. Let m0 ∈ N such that (dC∗)
s(g, f jm

km
) < 1 for

all m ≥ m0. Then, in particular, |f jm

km
(0) − g(0)| < 1 for all m ≥ m0, which provides a new

contradiction because f jm

km
(0) = jm, for all m ∈ N.

We conclude that the Corson filter F has no cluster point in (C∗, (dC∗)s), and, thus, the

quasi-uniform space (C∗,UdC∗ ) is not Corson complete.
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Isma Bouchemakh

On the chromatic number of order-interval hyper-
graphs

ABSTRACT. Let P a finite poset. We consider the hypergraph H(P ) whose vertices are the

points of P and whose edges are the maximal intervals in P . We verify in the present paper

the NP-completeness of the determination of the (strong) chromatic number γ(H(P )). We

give some exact or asymptotic values of γ(H(P )) if P is the subposet of the Boolean lattice

induced by consecutive levels Pl ∪ · · · ∪ Pu. Moreover, we determine γ(H(P )) for interval

orders P .

KEY WORDS. Partial order, Boolean lattice, interval, chromatic number, packing system,

Steiner system, large set, NP -completeness

1 Preliminaries

Let P be a finite poset. A subset I of P of the form I = {v ∈ P : p ≤ v ≤ q} (denoted [p, q])

is called an interval. If p resp. q is a minimal resp. maximal element of P , then [p, q] is

called maximal interval. Let I(P ) be the family of maximal intervals of P . The hypergraph

H(P ) = (P, I(P )), briefly denoted H = (P, I), whose vertices are the elements of P and

whose edges are the maximal intervals of P is said to be the order-interval hypergraph of P.

Several interesting results exist about the matching, covering and independence numbers of

H such as the algorithmic complexity and min-max relations (see [2, 3, 6]).

In this paper, we investigate another parameter, the chromatic number, and study it in the

case of the order-interval hypergraph Hn;l,u of the subposet Pn;l,u induced by consecutive

levels of the Boolean lattice Bn, where more precisely Pn;l,u = {X ⊆ [n] : l ≤ |X| ≤ u} with

0 ≤ l < u ≤ n and [n] = {1, . . . , n}.

Let k ≥ 2 be an integer. Recall that a (strong vertex) k-colouring of a hypergraph H = (V, E)

is a partition {C1, . . . , Ck} of V into k (colour) classes (or independent sets) such that no

colour appears twice in the same edge. The (strong) chromatic number of a hypergraph H,
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denoted by γ(H), is the smallest integer k for which H admits a k-colouring. For the special

order-interval hypergraph Hn;l,u of the poset Pn;l,u, we denote the chromatic number by γn;l,u.

The design theory enables us in some cases to get results for the colouring problem. Let us

recall some notions. A packing system P (t, k, n) of order n (briefly packing) is a pair (Q, q),

where Q is an n-set and q is a collection of k-subsets of Q called blocks, having the property

that every t-subset of Q is a subset of at most one block of q. In particular, a P (2, 3, n)

is called a packing triple system PT of order n (briefly PT (n)). A PT is optimal if there

is no PT of the same order with more blocks. Two PTs, (Q, q1) and (Q, q2), are said to

be disjoint if q1 ∩ q2 = ∅. If we replace “at most” with “exactly” in the definition of the

packing system, we have a Steiner system S(t, k, n). In particular an S(2, 3, n) is called a

Steiner triple system STS of order n (briefly STS(n)). Such a system exists iff n ≡ 1 or 3

(mod 6). It is easy to show that the maximum number of pairwise disjoint STSs of order n

is at most n− 2. If this number is exactly n− 2, i.e., the set of all triples can be partitioned

into n − 2 STS(n), this partition will be called a large set of disjoint Steiner triple system

(briefly LTS(n)). An LTS(n) exists iff n ≡ 1 or 3 (mod 6), n 6= 7 (see [13, 14, 18]).

The objective of the paper is to begin the study of the chromatic number of the order-interval

hypergraph of P where P is either the subposet induced by consecutive levels of the Boolean

lattice Bn or an interval order. We also show that the problem of the determination of the

chromatic number γ(H(P )) is NP-complete if there is no restriction on P .

2 NP-completeness of the colouring problem

Let us mention that the order-interval hypergraphs of chromatic number 2 can be recognized

in polynomial time since γ(H(P )) ≤ 2 iff P is a bipartite poset. Let us denote the problem

of deciding γ(H(P )) ≤ k (with input P and k, with k > 2) the colouring problem for the

order-interval hypergraph.

Theorem 1 The colouring problem for the order-interval hypergraph is NP-complete.

Proof: It is clear that this problem belongs to the class NP. We prove the completeness

by a polynomial reduction of the colouring problem in a graph to our problem. For a graph

G = (V,E), the chromatic number γ(G) is given by

γ(G) = min{k, there exists a partition of G into

k sets of mutually nonadjacent vertices}.

It is known (see [10]) that the decision problem γ(G) ≤ k is NP-complete for k > 2. Now

we present a construction which leads to the relation 2γ(G) = γ(H). Label the vertices of G
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by v1, . . . , vn and the edges by e1, . . . , em. We associate with G a poset P = Q*⊕Q where Q

is the incidence poset of G, i.e., P = E ∪ V ∪ V ′ ∪ E ′, where V ′ = {v′ : v ∈ V } (copy of V)

and E ′ = {e′ : e ∈ E} (copy of E) and the ordering is given in the following way:

for e ∈ E, v ∈ V we have e < v iff v is an endpoint of e in G,

for v ∈ V, v′ ∈ V ′ we have v < v′,

for v′ ∈ V ′, e′ ∈ E ′ we have v′ < e′ iff v is an endpoint of e in G.

We show that, G is t-colourable iff H(P ) is 2t-colourable whenever t > 2. Indeed, for a

colouring {C1, . . . , Ct} of G whose colours are chosen among the set C = {α1, . . . , αt}, we

shall assign to the vertices of H the following colours: For e ∈ E, e will get any colour α ∈ C
provided that it is different to the colours of its adjacent vertices inG (note t > 2). For v ∈ V ,

v will get the same colour as in G. For v′ ∈ V ′, v′ will get the colour α′ ∈ C′ = {α′1, . . . , α′t}
(with α′i 6= α′j for all i 6= j) if α is the colour of v. For e′ ∈ E ′, e′ will get the colour α′ ∈ C ′

if e has colour α. In this way, we obtain a 2t-colouring of H, that is γ(H) ≤ 2γ(G).

Conversely, if H admits a 2t-colouring, then there are in the first or in the second level of P

at most t colours. Thus there is a k-colouring of the vertices of G with k ≤ t. Consequently,

2γ(G) ≤ γ(H).

3 Some results for the level induced subposet of the Boolean lattice

Proposition 1 We have γn;1,n = 2n−1.

Proof: The inequality “≥” follows by observing that each edge of Hn;1,n has 2n−1 elements.

Now, if we assign the same colour i to both elements, pi and its complement [n]\pi (pi 6= [n]),

for all i = 1, . . . , 2n−1 − 1 and the colour 2n−1 to the element [n], we obtain the inequality

γn;1,n ≤ 2n−1.

We need two preliminary lemmas for the next results.

Lemma 1 We have

max{n− l + 1,

(
n

l+1

)
b n

l+1
bn−1

l
b. . . bn−l+1

2
c . . .c

} ≤ γn;l,l+2,

where, as usual, bxc denotes the largest integer not exceeding x.

Proof: Proceeding by induction on l, Schönheim [17] proved that a packing system P (l, l+

1, n) does not contain more than Ψ(n, l) = b n
l+1

bn−1
l
b. . . bn−l+1

2
c . . .c (l + 1)-subsets. Since

each colour-class of the level Nl+1 = {X ⊆ [n] : |X| = l + 1} is obviously a packing system,(
n

l+1

)
Ψ(n, l)

≤ γn;l,l+2.
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Besides this inequality, we have also γn;l,l+2 ≥ n − l + 1 since the elements {1, . . . , l} and

{1, . . . , l, i}, i = l + 1, . . . , n, must have pairwise different colours.

Lemma 2 Suppose that there is a partition of the (l + 1)-subsets of an n-set into ϕ(n)

disjoint packings P (l, l + 1, n).

If ϕ(n) > max{n− l, (l+1)(l+2)
2

+ l + 2, then γn;l,l+2 ≤ ϕ(n).

If ϕ(n) = n− l and n > 2l + 2, then γn;l,l+2 ≤ ϕ(n) + 1.

Proof: Let {C1, . . . , Cϕ(n)} be the partition of
(

[n]
l+1

)
into disjoint packings P (l, l + 1, n). It

is easy to see that ϕ(n) ≥ n− l. Assign to each element of Ci the colour i. If ϕ(n) > n− l,

then each l-subset has at least ϕ(n)− (n− l) choices for its colour among the elements of the

set [ϕ(n)]. After that, we observe that each (l+2)-subset can get at least ϕ(n)−
(

l+2
l

)
−

(
l+2
l+1

)
colours from [ϕ(n)]. Hence, we obtain a ϕ(n)-colouring of Hn;l,l+2 for ϕ(n) > (l+2)(l+1)

2
+ l+2.

If ϕ(n) = n− l, then all l-subsets get a new colour ϕ(n) + 1 and as above, since each (l+ 2)-

subset has at least ϕ(n)−
(

l+2
l+1

)
choices for its colour in [ϕ(n)], we obtain a (ϕ(n)+1)-colouring

of Hn;l,l+2 for ϕ(n) > l + 2.

Now we study the values of γn;l,l+2 for some l ≤ n. The following theorem is proved for l = 1

and n > 5, nevertheless, it is easy to verify that γ3;1,3 = 4, γ4;1,3 = 5 and γ5;1,3 = 6.

Theorem 2 For n > 5, we have γn;1,3 = n.

Proof: The inequality “≥” follows by Lemma 1 (l = 1). Let n be even. The well known

one-factorization F = {F1, . . . , Fn−1} of the complete graph Kn is a partition of the 2-subsets

of [n] into n− 1 disjoint packings P (1, 2, n).

Let n be odd. It suffices to consider a one-factorization F ′ = {F ′
1, . . . , F

′
n} of Kn+1 and to

delete all 2-subsets which contain the element n + 1. Hence, we obtain from Lemma 2 the

inequality “≤”.

It is not difficult to verify that γ5;2,4 = 5, γ6;2,4 = 6 and γ7;2,4 = 7.

Theorem 3 We have

γn;2,4 =

{
n− 1 if n ≡ 0, 1, 2 or 3 (mod 6) n 6= 6, 7, 8

n if n ≡ 4 (mod 6) n 6= 10

and

γn;2,4 ∈ {n− 1, n} if n ≡ 5 (mod 6), n 6= 5.
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Proof: By Lemma 1 with l = 2 we have

γn;2,4 ≥

{
n− 1 if n ≡ 0, 1, 2, 3, 5 (mod 6)

n if n ≡ 4 (mod 6).

Let us determine upper bounds for γn;2,4. To this end, we need, using Lemma 2, only a

partition of the 3-subsets into disjoint packings P (2, 3, n).

Case 1. n ≡ 1 or 3 (mod 6) and n 6= 7.

From the partition which is defined by the large set of disjoint Steiner triple system LTS(n),

we deduce an (n− 1)-colouring of Hn;2,4 and the inequality γn;2,4 ≤ n− 1 follows.

Case 2. n ≡ 0 or 2 (mod 6) and n 6= 6, 8.

In this case n + 1 ≡ 1 or 3 (mod 6). Therefore all triples of order n + 1 can be partitioned

into (n + 1) − 2 = n − 1 pairwise disjoint STSs whenever n 6= 6. By deleting all 3-subsets

containing the element n+ 1, we obtain a partition into n− 1 packings P (2, 3, n) and then

an (n− 1)-colouring of Hn;2,4 for n > 11.

Case 3. n ≡ 5 (mod 6) and n 6= 5.

The condition n ≡ 5 (mod 6) is equivalent to n + 1 ≡ 0 (mod 6). Hence, γn+1;2,4 = (n +

1) − 1 = n for n 6= 5. If we delete all subsets containing n + 1, we obtain an n-colouring of

Hn;2,4, i.e, γn;2,4 ≤ n.

Let us mention that the above inequality can be improved if the weak conjecture of Etzion

[8] is proved. It states that for every n ≡ 5 (mod 6), n > 5, there exists a partition of triples

of order n into n− 1 PTs.

More precisely, we shall have, γn;2,4 = n− 1 if n ≡ 5 (mod 6), n > 11.

Case 4. n ≡ 4 (mod 6) and n 6= 10.

In Etzion’s papers [7, 8] it is proved for n ≡ 4 (mod 6) that there is a partition of the triples

into n− 1 optimal PTs and one PT of size (n− 1)/3. Hence, we can infer an n-colouring of

Hn;2,4 for n > 10.

In the case l = 3, it is well known [4] that an optimal packing P (3, 4, n) has size n(n−1)(n−3)
24

if n ≡ 1 or 3 (mod 6) and n(n2−3n−6)
24

if n ≡ 0 (mod 6). For n ≡ 5 (mod 6), it has, by the

Johnson bound [12], at most size (n−1)(n2−3n−4)
24

+ bn−5
12

c. Consequently, the minimal number

θ(n) of pairwise disjoint packings P (3, 4, n) which partition all quadruples of an n-set satisfies

θ(n) ≥ n− 1 if n ≡ 5 (mod 6) and θ(n) ≥ n− 2 otherwise.

In [9], Etzion proved that θ(n) ≤ n−2 if n = 2i (i ≥ 3). With Lemma 2, we infer the equality

γn;3,5 = n − 2 for this value of n. Graham and Sloane [11] proved that θ(n) ≤ n for all n.

Hence, we obtain γn;3,5 ∈ {n−1, n} if n ≡ 5 (mod 6) and γn;3,5 ∈ {n−2, n−1, n} otherwise.

In particular, it was proved by Van Pul and Etzion [19] that θ(n) ≤ n − 1 if n = 3 · 2i and
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by Brouwer et al [5] that θ(n) ≤ n − 1 if n = 5 · 2i or n = 7 · 2i, therefore, we have again

γn;3,5 ∈ {n − 2, n − 1} if n = 3 · 2i, γn;3,5 = n − 1 if n = 5 · 2i and γn;3,5 ∈ {n − 2, n − 1} if

n = 7 · 2i.

Theorem 4 For every fixed l, we have γn;l,l+2 = n(1 + o(1)) as n→∞.

In order to prove the theorem, we need the following result due to Spencer and Pippenger

[16]. Let H = (V, E) be a hypergraph. The degree of x in H (denoted deg(x)) is the number of

edges of H containing x and the codegree of x and y in H (denoted codeg(x,y)) is the number

of edges of H containing both x and y. A packing in H is a set P of edges of H such that

each vertex of H is in at most one edge of P . The chromatic index of H, denoted by χ(H),

is the smallest number of packings into which the edges of H may be partitioned.

Theorem 5 [16]. Let k, k ≥ 2, be a fixed natural number. Let Hn = ([n], En) be a

sequence of k-uniform hypergraphs such that for n→∞

min
x∈[n]

deg(x) = (max
x∈[n]

deg(x))(1 + o(1)),

max
x,y∈[n],x6=y

codeg(x, y) = (max
x∈[n]

deg(x))o(1).

Then

χ(Hn) = (max
x∈[n]

deg(x))(1 + o(1)).

Proof of Theorem 4: Let us consider the uniform hypergraph H = (V, E) whose vertices

are all l-subsets of [n] and whose edges are the (l + 1) l-subsets of an (l + 1)-set. H satisfies

both hypotheses of the above theorem since we have for all x, y ∈ V , x 6= y, deg(x) = n− l

and codeg(x, y) = 1 if |x∩ y| = l− 1 and 0 otherwise. It follows that χ(H), which is nothing

else than the minimum number of disjoint packings P (l, l + 1, n) which partition the set of

all (l + 1)-subsets, is asymptotically equal to n. Hence, from Lemma 1, we have for n→∞

n− l ≤ γn;l,l+2 ≤ n(1 + o(1))

i.e., γn;l,l+2 = n(1 + o(1)).

Theorem 6 We have for n > 7

γn;1,4 =

{
2n− 1 if n ≡ 0 or 2 (mod 6)

2n− 2 if n ≡ 1 or 3 (mod 6)

and

γn;1,4 ∈

{
{2n− 2, 2n− 1, 2n} if n ≡ 5 (mod 6)

{2n− 1, 2n} if n ≡ 4 (mod 6).
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Proof: Let A be a subset of the vertex set of Hn;1,4 whose elements contain 1. We claim that

A has not less than 2n− 2 colours if n is odd and 2n− 1 if n is even. Indeed, to show this,

it suffices to observe that the set A1 = {{1}, {1, i}, i = 2, . . . , n} needs exactly n colours and

the set A2 = {{1, i, j}, i, j ∈ {2, . . . , n}, i 6= j}, which is isomorphic to
(
[n−1]

2

)
, needs at least

n − 2 colours if n − 1 is even (from the factorization of the complete graph on {2, . . . , n})
and n− 1 colours if n− 1 is odd. Moreover, each colour in A1 cannot appear in A2 because

otherwise, there would exist an edge containing both vertices having these colours. Thus,

γn;1,4 ≥ 2n− 2 if n is odd and γn;1,4 ≥ 2n− 1 if n is even.

Now, let us determine upper bounds for γn;1,4. We only must obtain a colouring of
(
[n]
1

)
∪(

[n]
2

)
∪

(
[n]
3

)
since in all cases the colour of each quadruple may be chosen among colours of

triples.

Case 1. n ≡ 1 or 3 (mod 6), n 6= 7.

Consider a near-one-factorization {F1, . . . , Fn} of Kn (i.e., a one-factorization of Kn+1 where

the pairs {i, n+1} are substituted by isolated vertices {i}) and a large set of disjoint Steiner

triple systems of order n {S1, . . . , Sn−2} (which exists since n ≡ 1 or 3 (mod 6), (n 6= 7). If

we choose the colour i (resp. n + j) for the elements of Fi (resp. Sj), we have immediately

γn;1,4 ≤ 2n− 2.

Case 2. n ≡ 0 or 2 (mod 6), n 6= 6.

Using the parity of n and the fact that n + 1 ≡ 1 or 3 (mod 6), n + 1 6= 7, we get on the

one hand a factorization of
(
[n]
2

)
into n− 1 factors and on the other hand the existence of a

large set LTS(n+ 1). The deletion of the n/2 triples containing n+ 1 in each STS(n+ 1),

and one additional colour for all singletons yield γn;1,4 ≤ (n− 1) + (n− 1) + 1 = 2n− 1.

Case 3. n ≡ 5 (mod 6), n 6= 5.

From Etzion’s papers [7, 8], we know that
(
[n]
3

)
may be partitioned into n PTs, and with a

near-one-factorization of Kn we infer that Hn;1,4 is 2n-colourable for n > 5.

Case 4. n ≡ 4 (mod 6), n 6= 4.

The factorization of
(
[n]
2

)
and the partition of

(
[n]
3

)
into n PTs [7, 8] produce 2n− 1 colours.

If we add one new colour for the singletons, we have γn;1,4 ≤ 2n− 1 whenever n > 4.

4 The chromatic number for interval orders

P is called an interval order if there is a mapping f from P into the set of closed intervals

on the real line, such that for all p, q ∈ P :

p < q in P ⇐⇒ sup f(p) < inf f(q).
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Let us denote the right (resp. left) endpoint of the interval f(p) by r(p) (resp. l(p)). Let

min(P ) = {p1, . . . , ps} and max(P ) = {q1, . . . , qt} be the minimal and maximal elements

of P , respectively. Assume without loss of generality that r(p1) ≤ · · · ≤ r(ps) and l(q1) ≤
· · · ≤ l(qt). In [3], we studied the order-interval hypergraph H of the interval order and in

particular, we presented polynomial-time algorithms which lead min-max relations α = ρ

and ν = τ where α, τ, ν and ρ are the independence number, the point covering number, the

matching number, and the edge covering number of H, respectively.

Proposition 2 We have γ(H(P )) = n− s− t+ 2.

Proof: Since the interval [p1, qt] in P contains n − s − t + 2 different colours, we obtain

n − s − t + 2 ≤ γ(H). If we assign to the remaining elements p2, . . . , ps, q1, . . . , qt−1 the

colours c(pi) = c(p1) for all i ≥ 2 and c(qj) = c(qt) for all j ≤ t− 1, we obtain the inequality

γ(H) ≤ n− s− t+ 2. Hence, γ(H) = n− s− t+ 2.
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Taylor Series of the Pick Function and the Loewner
Variation within the Class S and Applications0

ABSTRACT. We find the unknown Taylor series of the Pick function (4) (or (8)) and the

Loewner variation (5). As an application we prove the local Bieberbach conjecture for the

Loewner variation (5) in a simple way (see Corollaries 3.2 and 3.3 and their consequences).

KEY WORDS. Pick function, Loewner variation, Gauss hypergeometric function, Taylor

series, local Bieberbach conjecture, Bombieri proof in the class S, our proof for the Loewner

variation within the class S.

1 Introduction

Let S denote the class of all functions

f(z) =
∞∑

n=1

anz
n, a1 = 1, (1)

analytic and univalent in the unit disk D(z) = {z : |z| < 1}. The family fλ(z) (0 5 λ < λ0

for some λ0 > 0) of functions is called a variation of f(z) within S if f0(z) = f(z) and

fλ(z) ∈ S and if

ḟ0 =
∂

∂λ
fλ(z)

∣∣∣
λ=0

= lim
λ→0

fλ(z) − f(z)

λ
(2)

exists locally uniformly in D(z) (Pommerenke [1, p. 185]). Let the function (1) be the rotated

Koebe function

g(z) =
z

(1 + ζz)2
=

∞∑
n=1

n(−ζ)n−1zn ∈ S, |ζ| = 1, (3)

and G be its inverse function, i.e. G(g(z)) = z. If λ > 0, then the function

w = G(e−λg(z)) = e−λz + . . . (4)

0Änderung zur Druckvorlage! Korrigiert am 19.4.2002 Formel (4) und Formel (21) letzte Zeile
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maps D(z) onto D(w) minus some slit. The function (4) and its normalization are known as

the Pick function [2] or as the bounded Koebe function (Goodman [3, pp. 36-38]). It follows

from (1) and (4) that the function

fλ(z) = eλf(G(e−λg(z))) = z + · · · ∈ S. (5)

Further it follows from (2), (5) and (3) that

ḟ0(z) = f(z) − g(z)

g′(z)
f ′(z) = f(z) − zf ′(z)

ζ + z

ζ − z
. (6)

The familiy (5) with 0 5 λ < λ0 is called the Loewner variation within S (Pommerenke

[1, p. 185, Example 7.3]). Having in mind (1), the Taylor series of (6) is easily obtained

(Pommerenke [1, p. 191, Formula (10)]):

ḟ0(z) = −
∞∑

n=2

[
(n− 1)an + 2

n−1∑
j=1

(n− j)an−jζ
j

]
zn, a1 = 1, (7)

for z ∈ D(z) and |ζ| = 1. But the explicit form of the Taylor series of (4) and (5) are

unknown. Now we will give a method with the help of which we discover the Taylor series

of (4) and (5) even in a wider range 0 5 λ < +∞.

2 Taylor series of the natural powers of the Pick function (4)

It is clear from (3) and (4) that the Pick function (4) can also be determined by the equation

z

(1 + ζz)2
=

eλw

(1 + ζw)2
, z ∈ D(z), 0 5 λ < +∞, |ζ| = 1. (8)

The function w, determined by (8), maps the disk D(z) onto the disk D(w) except for a slit

along the rectilinear segment from the point

G

(
e−λζ

4

)
= ζ

[
2eλ − 1 − 2

√
eλ(eλ − 1)

]
to the point

G
(
ζ

[
1 − 2e−λ ± 2i

√
e−λ(1 − e−λ)

])
= ζ,

where

|w| 5 |z|, z ∈ D(z), 0 5 λ < +∞, (9)
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where, for 0 < λ < +∞, the equality holds only for z = 0. Further we will use the

Pochhammer symbol

(a)ν = a(a+ 1) . . . (a+ ν − 1), ν = 1, 2, . . . ; (a)0 = 1, (10)

for an arbitrary number a, the Gauss hypergeometric series (function, respectively)

F (α, β; γ;x) =
∞∑

ν=0

(α)ν(β)ν

(γ)νν!
xν (11)

for arbitrary parameters (or elements) α, β and γ with γ 6= 0,−1,−2, . . . , and a variable x

with |x| < 1, the summation formula

F (α, β; γ; 1) =
Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
, Re(γ − α− β) > 0, (12)

where Γ is the Gamma function, and the transformation formula

F (α, β; γ;x) = (1 − x)γ−α−βF (γ − α, γ − β; γ;x) (13)

(see, for example, in [4, pp. 1065-1071]). For α = −n, n = 0, 1, 2, . . . , the series (11) is

reduced to the hypergeometric polynomial

F (−n, β; γ;x) =
n∑

ν=0

(−n)ν(β)ν

(γ)νν!
xν (14)

for all x. If Re(γ + n− β) 5 0, then the formula (12) is not always applicable to (14) when

x = 1. But there is another general summation formula which is given without a proof in the

Gould tables for binomial coefficent summations [5, p. 58, Identity (7.1) and p. 61, Identity

(7.20)] and in the Bailey monograph [6, p. 3], namely:

F (−n, β; γ; 1) =
(γ − β)n

(γ)n

, n = 1, 2, . . . , γ 6= 0,−1,−2, . . . ,−n+ 1 (15)

having in mind the notation (10). A simple proof of the identity (15) can be obtained with

the help of the following procedure. We have the identity

(−n)ν = (−n+ 1)ν − ν(−n+ 1)ν−1, n = 1, 2, . . . , ν = 1, 2, . . . , n. (16)

From (14) for x = 1 and (16) we obtain the identity

F (−n, β; γ; 1) =
γ − β

γ
F (−n+ 1, β; γ + 1; 1), n = 1, 2, . . . . (17)

By induction on the first and third elements in (17) we attain to (15).
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Theorem 1 The natural powers wp, p = 1, 2, . . . , of the Pick function w, determined by

(4) (or (8)), have the following Taylor series

wp = e−pλ

∞∑
n=p

(−ζ)n−p

(
n+ p− 1

2p− 1

)
F (p− n, p+ n; 2p+ 1; e−λ)zn (18)

for |z| < 1, |ζ| = 1 and 0 5 λ < +∞, where

F (p− n, p+ n; 2p+ 1; e−λ) =

n−p∑
ν=0

(p− n)ν(p+ n)ν

(2p+ 1)νν!
e−νλ (19)

are the hypergeometric polynomials in e−λ, determined according to (10)-(11) and (14).

Proof: Let the complex number z and the real number r be fixed with 0 5 |z| < r < 1.

Then, on the basis of (9) for the Pick function w, determined by (4) (or(8)), and the Cauchy

theorem on residues, we have the integral representation

wp =
1

2πi

∫
|u|=r

up eλg′(u)

eλg(u) − g(z)
du (20)

for 0 5 λ < +∞, and p = 1, 2, . . . , where the integration along the circle |u| = r is performed

in positive direction. From (20) and (3) we obtain the Taylor series as follows

wp =
1

2πi

∫
|u|=r

up−1(1 − ζu)

1 + ζu

du

1 − (1+ζu)2

eλu
z

(1+ζz)2

=

=
∞∑

ν=p

zν

(1 + ζz)2ν

e−νλ

2πi

∫
|u|=r

(1 − ζu)(1 + ζu)2ν−1

uν−p+1
du =

=
∞∑

ν=p

(−1)νζ
−p p

ν

(
2ν

ν − p

)
e−νλ

∞∑
n=ν

(
n+ ν − 1

n− ν

)
(−ζ)nzn =

= e−pλ

∞∑
n=p

(−ζ)n−pzn

n−p∑
ν=0

cν(n, p)e
−νλ

(21)

for |z| < 1, 0 5 λ < +∞, p = 1, 2, . . . , where

cν(n, p) = (−1)ν p

ν + p

(
2ν + 2p

ν

)(
n+ ν + p− 1

n− p− ν

)
(22)

for 0 5 ν 5 n− p, n = p, p = 1, 2, . . . . It follows from (22) that

cν(n, p)

cν−1(n, p)
=

(p− n+ ν − 1)(p+ n+ ν − 1)

(2p+ ν)ν
(23)
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for 1 5 ν 5 n− p, n = p+ 1, p = 1, 2, . . . , with

c0(n, p) =

(
n+ p− 1

2p− 1

)
, n = p, p = 1, 2, . . . . (24)

From (23) and (24) we deduce that

cν(n, p) =

(
n+ p− 1

2p− 1

)
(p− n)ν(p+ n)ν

(2p+ 1)νν!
(25)

for 0 5 ν 5 n− p, n = p, p = 1, 2, . . . , having in mind the notation (10). With the help of

(25), having in mind (11) and (14), the expansion (21) takes the form (18)-(19).

This completes the proof of Theorem 1.

Corollary 2.1 The natural powers wp, p = 1, 2, . . . , of the Pick function w, determined

by (4) (or (8)), have the following Taylor series

wp = e−pλzp + e−pλ(1 − e−λ)·

·
∞∑

n=p+1

(−ζ)n−p

(
n+ p− 1

2p− 1

)
F (p+ 1 − n, p+ 1 + n; 2p+ 1; e−λ)zn

(26)

for |z| < 1, |ζ| = 1 and 0 5 λ < +∞, where

F (p+ 1 − n, p+ 1 + n; 2p+ 1; e−λ) =

n−p−1∑
ν=0

(p+ 1 − n)ν(p+ 1 + n)ν

(2p+ 1)νν!
e−νλ (27)

are the hypergeometric polynomials in e−λ, determined according to (10)-(11) and (14).

Proof: By (13) we have the factorization

F (p− n, p+ n; 2p+ 1; e−λ) = (1 − e−λ)F (p− n+ 1, p+ n+ 1; 2p+ 1; e−λ) (28)

for n = p+ 1. Thus from (28) and (18) we obtain (26)-(27).

3 Taylor series of the Loewner variation (5)

These series originate from (18)-(19), namely:

Theorem 2 The Loewner variation fλ(z), determined by (5), has the following Taylor

series

fλ(z) =
∞∑

n=1

an(λ)zn ∈ S, |z| < 1, 0 5 λ < +∞, a1(λ) = 1, (29)



96 P.G. Todorov

where

an(λ) =
n∑

p=1

ap(−ζ)n−pe−(p−1)λ

(
n+ p− 1

2p− 1

)
F (p− n, p+ n; 2p+ 1; e−λ), (30)

where ap, 1 5 p 5 n, are the coefficients of the function f(z) in (1), |ζ| = 1, and F are the

hypergeometric polynomials in e−λ, determined by (19) for p = 1, 2, . . . , n, n = 1.

Proof: From (5), (4) and (1) we have

fλ(z) = eλf(w) = eλ

n∑
p=1

apw
p. (31)

Now we use (18)-(19) to (31) to obtain (29)-(30).

Corollary 3.1 The Loewner variation fλ(z), determined by (5) has the following rep-

resentation

fλ(z) = eλf(ze−λ) + (1 − e−λ)
∞∑

n=2

bn(λ)zn ∈ S, |z| < 1, 0 5 λ < +∞, (32)

where

bn(λ) =
n−1∑
p=1

ap(−ζ)n−pe−(p−1)λ

(
n+ p− 1

2p− 1

)
F (p+ 1 − n, p+ 1 + n; 2p+ 1; e−λ) (33)

where ap, 1 5 p 5 n−1, n = 2, are the coefficients of the function f(z) in (1), |ζ| = 1, and F

are the hypergeometric polynomials in e−λ, determined by (27) for p = 1, 2, . . . , n− 1, n = 2.

Proof: The transformation of (30) for 1 5 p 5 n− 1, n = 2, by means of (28) leads us to

(32)-(33). The representation (32)-(33) can also be obtained from (31) and (26).

Corollary 3.2 The Loewner variation (5) tends to the rotated Koebe function (3) as

λ→ +∞, i.e.

lim
λ→+∞

fλ(z) = g(z), |z| < 1. (34)

Proof: As λ→ +∞ it follows that the series (29), determined by (30) and (19), is reduced

to the series (3) and hence the relation (34) holds. Also the relation (34) follows from the

representation (32), determined by (33) and (27).

Corollary 3.3 Let n = 2 be an arbitrary fixed integer. Then the Taylor coefficient (30)

of the Loewner variation (5) has the following asymptotic representation

an(λ) = n(−ζ)n−1 + e−λ(−ζ)n−2

(
n+ 1

3

)
(a2 + 2ζ) +O(e−2λ), 0 5 λ < +∞, (35)

where |ζ| = 1, a2 is determined by (1) and O(e−2λ) denotes a magnitude, the ratio of which

to e−2λ for 0 5 λ < +∞ is bounded by some positive constant depending only on n.
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Proof: This follows from (30) and the Bieberbach result [7] that the coefficient body

(a2, a3, . . . , an) is bounded in the class S (see also Schaeffer and Spencer [8, p. 12, Lemma

II]).

In particular, for ζ = −1 it follows from (35) that

an(λ) = n+ e−λ

(
n+ 1

3

)
(a2 − 2) +O(e−2λ), 0 5 λ < +∞. (36)

By the Bieberbach inequality |a2| 5 2 [7] with equality only for the Koebe function (3) (see

also Pommerenke [1, p. 24]) it follows from (36) that

Rean(λ) 5 n (37)

for sufficiently large positive λ where the equality holds if and only if the function f in (5)

is the Koebe function g in (3). Thus it follows from (37) that the Bieberbach conjecture

|an(λ)| 5 n for the Loewner variation (5) within the class S is true for sufficiently large

positive λ. Hence in accordance with Corollary 3.2 we proved the local Bieberbach conjecture

for the Loewner variation (5) in a new, simpler and direct method in comparison with the

Bombieri proof [9] of this conjecture in the class S (see also Pommerenke [1, p. 26] and

Hummel [10]). We must note that the global Bieberbach conjecture |an| 5 n in the full class

S with equality only for the Koebe function (3) was proved by Louis de Branges and others

in different methods (see the Grinshpan reviews [11]).

Remark 1 In particular, for λ = 0, the series (29)-(30) is reduced to the series (1). In fact,

for λ = 0 and 1 5 p 5 n− 1, n = 2, we have the values

F (p− n, p+ n; 2p+ 1; 1) = 0 (38)

according to the formula (12) since Γ(2p+ 1) = (2p)!, Γ(1) = 1, Γ(p+ n+ 1) = (p+ n)! and

Γ(p − n + 1) = ∞. Of course, the values (38) follow from the formula (15) as well. Also it

is evident that the equation f0(z) = f(z) is immediately obtained from (32).

Remark 2 In particular, the derivative (2) applied to the expansions (29)-(30) for λ =0

yields the equation (7). In fact, for 1 5 p 5 n− 1, n = 2, from (19) we have the relations

d

dλ
F (p− n, p+ n; 2p+ 1; e−λ) =

(n− p)(n+ p)

(2p+ 1)eλ
F (p− n+ 1, p+ n+ 1; 2p+ 2; e−λ) (39)

and for λ = 0 we have the values

F (p− n+ 1, p+ n+ 1; 2p+ 2; 1) = (−1)n−p−1 (n− p− 1)!

(2p+ 2)n−p−1

(40)
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according to the formula (15) since the formula (12) is not applicable in this case. Now it

follows from (30) and (38)-(40) that

d

dλ
an(λ)

∣∣∣
λ=0

= −(n− 1)an − 2
n−1∑
p=1

(n− p)an−pζ
p
, n = 2, |ζ| = 1. (41)

The formula (41) in accordance with (29) leads us to (7). The equation (7) can also be

obtained from the derivative of (32) with respect to λ and (33) for λ = 0, having in mind

the values

F (p+ 1 − n, p+ 1 + n; 2p+ 1; 1) = (−1)n−p−1 (n− p)!

(2p+ 1)n−p−1

for 1 5 p 5 n− 1, n = 2, according to (15).

Remark 3 The Theorems 1 and 2 and their Corollaries appear to be basic results in the

theory of the Pick function (4) (or (8)) and the Loewner variation (5). Using the Gauss

hypergeometric function theory (see, for example, [4], [6], [12]-[13]) for these results, we can

obtain other formulas that suit our purposes better.
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