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STEVO STEVIC

Periodic Character of a Difference Equation

ABSTRACT. In this note we prove that every positive solution of the difference equation

Tp—1

ol =01
p+ Tn-1 + T,

Tpy1 =
where p € [0,00) and the initial conditions x_,x¢ are positive real numbers, converges
to a, not necessarily prime, periodic-two solution. This result confirms Conjecture 7.5.2
in [I] (with ¢ = 1). Also, we show that the positive solutions of Eq.(1) converge to the
corresponding periodic-two solutions geometrically.

KEY WORDS AND PHRASES. Period two solution, difference equation, positive solution,

asymptotics

1 Introduction

In this note we consider the periodic character of the difference equation

Tn—-1

Tl p=0,1,... (1)
p+wn—1+xn

Tp41 =

where p € [0,00) and the initial conditions z_1,z( are positive real numbers. In fact we
consider the case p € (0,1) since when p > 1 the zero equilibrium of Eq.(1) is obviously
global attractor of all positive solutions of Eq.(1), see [I, Theorem 7.4.1 (a)]. The case p =0

was considered, for example, in [I, p. 61, (ii)].

Our motivation here stems from Conjecture 7.5.2 in [1]:

Conjecture 1 Assume that
p<l1

Show that every positive solution of Eq.(1) converges to a, not necessarily prime, periodic-two
solution.
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Note that when p < 1 all prime period-two solutions of Eq.(1) are given by

¢a1_p_¢7¢71_p_¢7

with .
0<¢<1-p and cb%%p,

see, [1, p. 134].

Recently there has been a great interest in studying the periodic nature of nonlinear difference
equations. For some recent results concerning, among other problems, the periodic nature

of scalar nonlinear difference equations see for example, [1, 2], [1]-[9] and references therein.

Our aim in this note is to confirm Conjecture 1. Also, we show that the positive solutions of
Eq.(1) converge to the corresponding periodic-two solutions geometrically and we look for

their asymptotics.

2 Main results

In this section we prove the main results in this note.

Theorem 1 Consider the difference Eq.(1) where p € (0,1) and initial conditions x_y, zg
are positive real numbers. Then every positive solution of Eq.(1) converges to a, not neces-
sarily prime, periodic-two solution (po, p1), such that p+po+p1 = 1. If p+xo+x_1 > 1 the
sequences Tonyq, (1 = 1,2) are decreasing, if p+ xo + x_1 < 1 the sequences Tan1q, (1 = 1,2)

are increasing, and if p+ xo + x_1 = 1 the sequence x,, is a periodic-two solution of Fq.(1).

Proof: By the change of variables z,, = i, Eq.(1) becomes

Zn t Zn—1 T PZnZn—
Zng1 = n an pnnl. (2)
n

From (2) we have

Zn + Zn—1 +pznzn—1 — Znin-1

Zn+1 — Rp—1 —

Zn
o Zn + Zn—1 +pznzn—1 — Zn—1 — Zn—2 — PZn—12n—2
Zn
(pznfl + 1)<Zn - Zn72)

Zn

and consequently

Zpn+l — Bpn—1 = (2’1 - 2—1) H

=1

pzi—1+1
Zi ’
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From (3) we obtain that the signum of 2,7 — 2,1 remains invariant for n € N and that
the sequences (22,44), @ = 0,1, are nondecreasing or nonincreasing at the same time which
implies that the sequences (z9,;), ¢ = 0,1, are nonincreasing or nondecreasing at the same

time. Since
p+zo+a_1—1

T

21 — R-1 =

we see from (3) that if p 4+ xo + x_1 < 1, then the sequences (x,.;), i = 0, 1 are increasing,
if p+ 29 + x_1 > 1, the sequences (z2,4;), ¢ = 0,1 are decreasing and if p + z¢ + z_1 = 1,

then (z_1,x9,x_1, o, ...) is a periodic-two solution of Eq.(1).

First suppose that the sequences (z2,4;), i = 0,1 are decreasing, that is p + o + x_1 > 1.

Then there are finite limits
lim Ton+i = Pis 1= 07 1.

It is clear that (pg, p1) is a two cycle of Eq.(1). Suppose that both of them are equal to zero.
Since (z9,,44), @ = 0,1 are decreasing from (1) we obtain

p+Tpqt+x,>1, n=0,1,... (4)
Letting n — oo in (4) we obtain p > 1 which is a contradiction. Hence (pg, p1) # (0,0) and
as we mentioned above it is a two cycle of Eq.(1).
Without loss of generality we may assume that p; # 0. Then letting n — oo in the equation

Ton—1
P+ Ton—1+ Topn

Ton41 =

we obtain the equality p + po + p1 = 1.

Now suppose that the sequences (z9,4,), ¢ = 0,1 are increasing, that is p + o + z_; < 1.

Then there are finite or infinite limits
lim Ton+i = Pis 1= 0, 1.
n—oo

By aresult of L. Berg [2, p. 1070] all solutions of Eq.(1) are bounded, hence p; < oo, i =0, 1.
On the other hand, since (z9,:;), ¢ = 0,1 are increasing py > o > 0 and p; > z; > 0.

Similarly as above we obtain that (pg, p1) is a two cycle of Eq.(1) and p+ po + p1 = 1.
Finally, for the initial conditions z_; = zq = (1 — p)/2, we have z,, = (1 — p)/2,n > —1,
which shows that there is a solution which converges to a not prime period-two solution.
Remark 1 Note that the condition p+xo+x_1 > 1, (e.g. condition (4) for n = 0) implies

(4) for all greater n, that is, for n > 1, moreover the sequence u, = p + x,_1 + x, is also

decreasing.
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Also, the condition p+ xg+ x_1 < 1 and (1) imply that the sequence u, = p + x,_1 + x,, is
increasing and

p+zr, 1+, <1, n=0,1,...

From this and by Theorem 1 it follows that the distance from the point (x,_1,2,) to the

limit line p+2z+y =1, ie.,
pta,ta,—1

7 ,

also converges monotonously to zero (we use here Hesse’s normal form).

dy,

For the readers who are interested in this area we leave the following open problem.

Open Problem 1 Let

"'ap071 _p_PO»POal — D~ Po, -

be a positive two cycle of Eq.(1). Find the basin of attraction of this two cycle.

The following result gives an estimation of the convergence rate of the positive solutions of
Eq.(1).

Theorem 2 Every positive solution of Eq.(1) converges to the corresponding periodic-
two solution (po, p1) geometrically, that is, there is an M > 0 and q € (0,1) such that

|T9n — po| + |Tont1 — p1] < M@*™, n>0.

Proof: As we have seen in the proof of Theorem 1, using the change x,, = % we obtain

(pzn—l + 1)(271 - Zn—?)
Zn,

Zn+l T Rp—1 =

If we go back to the sequence z,, we have

pt+ay, +xp_1—1 _p+xn_1ﬂj P+ Tpq+Tpo—1

Y

Tp—1 Tp—1 Tp—2

that is,
Ty
dn = (p + xn—l) dn—la
Tn—2
where d,, = Z%x;*l_l, and consequently
T, Ty
dn = (p + xn71> (p + xn72> ! dn72 . (5)

n—2 Tp—3
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Let € € (0,(1 — (1 + p)?/4)). Since the sequences (x2,4;), i = 0,1, are convergent, from (5)

we have that for such chosen e there is an ng € N such that

|dn] < ((p+po)(1 = po) +¢)|dnsa| < <(#> +5> |dp—2], (6)

for every n > ny.

In view of the choice of ¢ we see that r = (#)2 + ¢ < 1. From this and (6), using the

following equality

|Tont1 — p1 + Ta2n — po _ |Tont1 — p1] + [T2n — pol

dyny1| =
‘2+1’ \/5 \/5

we see that for ¢ = /r we can obtain the result easily. Note that in the last equality we

have used the fact that the sequences x,;, « = 0, 1, converge monotonously to p;, 2 = 0, 1.

Corollary 1 The distance d,, from the point (x,_1,x,) to the limit linep+z +vy = 1,

converges to zero monotonously and geometrically.

3 The case of nonnegative solutions of Eq.(1)

If 24 =0 or zy =0, from (1) we obtain x9, ; = 0 or z3, = 0, for all n > 0. Further, if
x_1 = 0 then Eq.(1) becomes
Lon—2

Top — ———.
P+ Ton—2

This is a Riccati equation (see [1, Section 1.6]) for xs, with the elementary solution

_ 330(1 —p)
o+ (1 —p—z0)p™’

Top n>0. (7)
From (7) we see that lim,, .., o, = 1 — p, so far as z; is different from 0. Similarly we can

treat the case ro = 0,x_1 # 0. The case xg = v_; = 0 yields the constant solution z,, = 0
for all n > —1.

We believe that only these solutions satisfy the condition pgp; = 0, where as before p;, © = 0, 1

denote the limits lim,, o, Z9,+;. Hence we leave the following conjecture:

Conjecture 1 ([3]) For positive initial values z_1 and xo there are no solutions of Eq.(1)
such that pop1 = 0.
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4 Asymptotically two-periodic solutions

Theorem 2 motivated us to study the asymptotics of the solutions of Eq.(1), as well as the

corresponding ones for the sequence d,,.

Let u,, = 9,1 and v, = xa,, then (1) can be written as the following system

Up,
Upp] = —————
1 P+ Uy + vy,
Un
Oy = 8
T D+t + U, (8)

We expect that the asymptotically two-periodic solutions have the following form (see [2,
p.1066))

o0 o0
Uy = p+ Z akckt"k, and v, =1—p—p-+ Z bcr e ) (9)
k=1 k=1

where ¢t € (0,1) is unknown and ¢ an arbitrary real number.

Substituting (9) into system (8) and comparing the coefficients we obtain
at™ = at"t + play +b)t",  and  byt™ = byt" Tt + (1 — p— p)(art™tt + byt™),
which implies
(I—t—plas=pb;, and t1—p—plar=(p+p—1t)br. (10)
This system has a nontrivial solution aq, by if and only if its determinant vanishes, i.e

t? = (1+p+pl—p—p))t+(1—p)p+p) =0. (11)

The only solution of (11) with ¢ contained in (0,1) is ¢t = (1—p)(p+p) and the corresponding
solution of system (10) is a3 = p, by = (1 — p)(1 — p — p) up to a constant factor ¢ which

already appears in the series (9). Therefore
U, =p+pct" +OF"), and v,=1-p—p+(1—p)(1—p—p)t"+0OF"). (12)

The asymptotic formulas (12) for w, and v, remain valid in the limit cases p = 0 and
p=1—p, with t = p, where they express the asymptotic behaviour of the explicitly known
solutions with one vanishing initial value (see Section 3). Note that the asymptotic formulas
(12) can also be obtained in the case u, = x, and v, = x9,11. We leave the following

conjecture:

Conjecture 2 Let p € (0,1) and (z,) be a nonnegative solution of Eq.(1) such that

(on_1,%2m) — (p, 1 — p—p), as n — oo. Then



Periodic Character of a Difference Equation 9

(a) @an—1 = p+ pct™ + O(t*");

(b) o, =1—p—p+ (1—=p)(1 —p—p)ct™ + O@t*");
where t = (1 — p)(p+ p) and the constant ¢ depends on initial values x_y and x.

If this conjecture is true, then it follows:

Corollary 2 et p € (0,1) and (z,) be a nonnegative solution of Eq.(1) such that
(xon_1,%2n) — (p,1 — p —p), as n — oo. Then the distance d,, from the point (x,_1,x,)

to the limit line p+ x +y = 1, has the following asymptotics

Een(l — (V)" + o),

where t = (1 — p)(p+p), €ean = 1,€2,01 = 1 — p, for n > 0, and the constant ¢ depends on

d, =

mitial values T_1 and xg.
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H. M. EL-OwAIDY; A. M. YOUSSEF; AND A. M. AHMED

On the Dynamics of x,,; = (bx?> |)(A+ Bx, 5)

ABSTRACT. We investigate the boundedness, the global stability, and the periodic nature

of the nonnegative solutions of the equation in the title with nonnegative parameters

KEY WORDS AND PHRASES. difference equations, boundedness, global asymptotic sta-

bility, semi-cycles

1 Introduction and Preliminaries

In this paper we consider the third order nonlinear rational difference equation

xn_l,_l:% n=0,1,.. (1)
A+an_27 s Ly

where the parameters A, B, and b and the initial conditions z_5,z_; and z( are arbitrary
non-negative real numbers. We investigate the boundedness, the global stability and the

periodic nature of the solutions of the Eq. (1).

Recently there has been a great interest in studying rational [1, 2, 5, 7] and nonrational
nonlinear difference equations [3, 5, 8, 9, 10, 11, 12], see also the references therein. Some
of the results recently obtained in this field can be applied in studying some mathematical

biology models, population dynamic etc., see [3, 1, 12].

Consider the difference equation

Lptl = f(xna Tn-1, xn—?) (2)

with x_9, 21,29 € I (where [ is some interval of real numbers).

The linearized equation of Eq. (2) about an equilibrium Z is the linear difference equation

Ynal = C1Yn + CoYn—1 + C3Yp—2, n=0,1,... (3)
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where
Vers), a=2E2m, o=t@5m
¢ = —(z,%,%), ¢ =—-—(%,%,7), c=—-—(T,T,T
1 o y Ay ) 2 ay s Ly ’ 2 Oz y Ay
The characteristic equation of Eq. (3) is
A — A2 — e\ — 3 = 0. (4)

Theorem A ([ , Theorem 1]) (Linearized Stability Theorem) The following statements

are true.

a) If all roots of Eq. (4) have modulus less than one, then the equilibrium T of Eq. (2) is
locally asymptotically stable.

b) If at least one of the roots of Eq. (4) has modulus greater than one, then the equilibrium
T of Eq. (2) is unstable.

A necessary and sufficient condition for all roots of Eq. (4) to have modulus less than one is

the following:
lep +e3l <1—cy, Jog—3cs] <3+cy, and ¢ —cy—ciez < 1.

In this case, the locally asymptotically stable equilibrium z is called a sink.

The equilibrium z of Eq. (2) is called a saddle point if there exits a root of Eq. (4) with
absolute value less than one and a root of Eq. (4) with absolute value greater than one. In

particular a saddle point equilibrium is unstable.

2 The case AB =0

In this section we shortly discuss the case when one of the parameters in the Eq. (1) is zero,

where we have the following two nontrivial cases:

ba?
= —= =0,1,..
Tni1 B$n—27 n 07 ) (5)
b o
Tap1 = J Ty, M= 0,1,.. (6)

In each of the above equations we assume that all parameters in the equations are positive.
Equations (5) and (6) are nonlinear third and second order respectively, and the change
of variables z,, = e¥" reduce the equations (5) and (6) to a third and second order linear

difference equation respectively, which can be solved. The details we leave to the reader.
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3 Main Results

In this section we investigate the dynamics of Eq. (1) under the assumption that all param-

eters in Eq. (1) are positive and the initial conditions are nonnegative.
The change of variables z,, = %yn reduces Eq. (1) to the difference equation

2

Tynfl
1 = ———, n=20,1,.. 7
Yn+1 1+ 4y s (7)

b

where r = 5

It is easy to see that ¢; = 0 is always an equilibrium point and when r > 1 we have also a

positive equilibrium point g, = —5.

3.1 An Oscillation Result

Lemma 1 Assume that r > 1 and let {y,}°°_, be a solution of Eq. (7) such that either
Y-2,Y = Y2 and y1 <Ys (8)
or
Y-2,90 < Y2 and Y1 > Yo 9)
then {yn}52 o oscillates about yo with semi-cycle of length one.

Proof: We will assume that (8) holds. The case where (9) holds is similar and will be

omitted. From (7) we obtain
Yo Y2

= "Y1 "2 =1y and yo = > =7
l+y, 145 7 Ty 14 7

Using induction the result follows.

n

3.2 Existence of Prime Period-Two Solutions

In this subsection, we show that Eq. (7) has prime period-two solutions.

Theorem 2 FEq. (7) has eventually nonnegative prime period-two solutions if and only

if either
1
y-1=0 and yo=— (10)
r
or )
Y-1 1
=0 d = — 11
Yo an 1_+_y_2 TQ? ( )

the period-two solution must be in the form

1
.,0,-,0,
T

S| =

(12)
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Proof: Assume that

""¢7¢7¢7/¢}7"'
is a nonnegative prime period-two solution of Eq. (7).
Then e i
r r
= and = : 13
TR g (13)
Hence ¢ — v = r(¢? —4?), and consequently
1
b= (14)

From Egs.(13) and (14) we get the period-two solution in form (12). If yor41 = 0 for some
k € N then from (7), it follows that y2,_1 =0, n =0,1,... , yo, = 1/r, n =1,2,..., and y_»
is arbitrary. If yo; = 0 for some [ € N, then yo, =0, n=1,2,..., Yyo,1 = 1/r, n = 1,2, ...,

ry2,
1+y_o

and =y = 1, as desired.
r?

3.3 Local and Global Stability

As we have already noted y; = 0 is always an equilibrium solution of Eq. (7). Furthermore
when r > 1, Eq. (7) also possesses the positive equilibrium g, = ﬁ

Theorem 3 Consider Eq. (7). Then the following results hold:

(i) The zero equilibrium point is locally asymptotically stable.

(ii) Assume that r > 1 then the equilibrium point o = ﬁ 1s unstable. In particular o is

a saddle point.

Proof: The linearized equation associated with Eq. (7) about g; , i = 1,2, has the form

_2rys n ry;
Zn+1 1+ _'anl (1+gi)22n72

Yi

=0, n=0,1,.. .

So the linearized equation of Eq. (7) about g3 = 0is z,.1 = 0, n = 0,1,..., and the
characteristic equation about g, = 0 is A*> = 0 so proof of (i) follows immediately from
Theorem A.

The linearized equation of Eq. (7) about g, = ﬁ is zZpy1 = 22,1 — %Zn_g, n=0,1,.. ,

and the characteristic equation is
3 1 .
AP =2\ 4+ —-=0, with r>1.
r

Set
f) =N =21+ % (15)
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Then f(1) = =1+ % < 0 and limy— ;o f(A) = 00, so f(A) has at least a zero in (1,00)
and the product of the moduli of the zeros of the function f is % < 1, hence there exists a

root in the unit disk. This completes the proof.

Theorem 4 The zero equilibrium point of Eq. (7) is globally asymptotically stable relative
to the set

S =1[0,00) x [0,1/7]*\ A. (16)
where

A={(z,y,2)|(y,2) = (0,1/r) or (v*/(1+2),2) = (1/r0)},
with (y_2,y-1,%0) € S.

Proof: By Theorem 3 we know that y; = 0 is locally asymptotically stable equilibrium
point of Eq. (7), and so it suffices to show that y; = 0 is a global attractor of Eq. (7) relative
to S. So let {y,}>2_, be a solution of Eq. (7), such that (y_2,y-1,%0) € S. We show that

lim,, . vy, = 0. We have

2
Y4 2 1
— < <y < —
N1y, V= it=y
2
Yo 2 1
Y2 1+y,1_y0_y0_r

By induction we obtain
2

TYn—1 2 1
0< ypp1 = —2L <py? <y, <~ n=01,..,
R T
that is, 0 < y, < %, n=—1,0,1,..., and {y2,}5>_; and {yo,—1}:>, are non-increasing and

bounded. Hence, there are finite limits

lim yo, =M and lim y5, 1 = L,

n—oo n—oo

moreover, in view of (16), we have

M,Le0,1/r). (17)
Letting n — oo in (7) we obtain
rM? rlL?
M = d L= :
r+r " 1+ M

Now, we want to prove that M = L = 0. We consider the following cases:
(i) If M =0 and L # 0 then L = %, which is a contradiction to (17).

(i) If M # 0 and L = 0, then M = %, a contradiction.

(iii) If M # 0 and L # 0, then we have

1+L=rM and 1+ M=rL

which implies L —M = r(M — L). Hence M = L = 1/(r — 1), which is a contradiction. Thus
L =M =0, as desired.



16 H. M. El-Owaidy; A. M. Youssef; A. M. Ahmed

3.4 Existence of Unbounded Solutions

In this subsection we show that when r > 1 Eq. (7) possesses unbounded solutions.

Theorem 5 Assume that r > 1. Then Eq. (7) possesses unbounded solution. In partic-
ular, every solution of Eq. (7) which oscillate about the equilibrium g = ﬁ with semi-cycle

of length one is unbounded.

Proof: We prove that every solution {y,}>2 , of Eq. (7) which oscillates with semi-cycles
of length one is unbounded (see Lemma 1 for the existence of such solutions). Let r > 1 and

without loss of generality that {y,}>2 , is such that

Yon1 <Y and yo, >y for n>0.

e ik 2
Yont2 = 7 y;_l > T+ rn_% = (r = 1)ya, > yon.
and
r ?J%n+1 T?J%nﬂ 2
Yont3 = Tty s 1+ ﬁ = (r = Dvani1 < Y2nt1
from which it follows that there are lim, ..o y2, = M and lim, .o y2,11 = m € [0, 7).

If M = oo, there is nothing to prove. Hence, assume that M < oo. As in the proof of
Theorem 3 we can see that m # 0 and M < oo is impossible. If m = 0 and M < oo then
M = % < % = 7, a contradiction. Hence M = oo, from which the result follows.
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IsMA BOUCHEMAKH!

On the dual Konig property of the order-interval hy-
pergraph of a new class of poset

ABSTRACT. Let P be a finite poset. We consider the hypergraph H(P) whose vertices
are the elements of P and whose edges are the maximal intervals of P. It is known that
H(P) has the Konig and dual Konig properties for the class of series-parallel posets. Here
we introduce a new class which contains series-parallel posets and for which the dual Konig
property is satisfied. For the class of N-free posets, again a generalization of series-parallel

posets, we give a counterexample to see that the Konig property is not satisfied.

1 Introduction

Let P be a finite poset. A subset I of P of the form [ = {v € P : p <wv < ¢} (denoted [p, q])
is called an interval. It is maximal if p (resp. ¢) is a minimal (resp. maximal) element of P.
Denote by Z(P) the family of maximal intervals of P. The hypergraph H(P) = (P,Z(P)),
briefly denoted H = (P,Z), whose vertices are the elements of P and whose edges are the
maximal intervals of P is said to be the order-interval hypergraph of P. The line-graph L(H)
of H is a graph whose vertices are points ey, ..., e, representing the edges I1,...,1,, of H,
the vertices e;, e; being adjacent iff I;N1; # (). The dual H* of the order-interval hypergraph
‘H is a hypergraph whose vertices ey, ..., e, correspond to intervals of P and whose edges
are X; = {e; 1 z; € I;}.

Let a, v, 7 and p be the independence, matching, edge-covering and vertex-covering number
of a hypergraph H, respectively. H has the Konig property if v(H) = 7(H) and it has
the dual Konig property if v(H*) = 7(H*), i.e a(H) = p(H) since a(H) = v(H*) and
p(H) = 7(H*). This class of hypergraphs has been studied intensively in the past and one

finds interesting results from an algorithmic point of view as well as min-max relations [2]-[0],

9]
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A poset P is said to be a series-parallel poset, if it can be constructed from singletons using
only two operations: disjoint sum and linear sum. It may be characterized by the fact that

it does not contain the poset N of Figure 3 as an induced subposet [13], [14].

Let P be a finite poset. The graph Gp = (P, Ep), with xy € Ep if x < y or y < z is the
comparability graph of the poset P. G = (V, F) is a comparability graph if there is a poset
P such that G ~ Gp.

It is known that the cographs, i.e. graphs without an induced path of length 4, are com-
parability graphs of series-parallel posets [7]. The cographs belong to the class of distance-
hereditary graphs, which has been studied in graph theory [7]. A possible definition of a
distance-hereditary graph is as follows: G is a distance-hereditary graph iff G has no induced

gem, house, hole (cycle of length at least 4) and domino (see Figure 1).

gem house hole domino

Figure 1

We investigate a class of posets that contains the series-parallel posets and whose members

have comparability graphs which are distance-hereditary graphs or generalizations of them.

A poset P is in the class Q (resp. Q') if it has no induced subposet isomorphic to P;, P, P3
(resp. Py, Py, P3, P;) of Figure 2 and their duals, where P3 has n vertices, n > 6. Obviously
the class Q' is included in Q. We prove that if P is in Q, then H(P) has the dual Konig

property.

X AT N

Figure 2

We characterize the comparability graphs of the class of posets in @ in terms of four for-

bidden subgraphs.
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Proposition 1 Let G be the comparability graph of the poset P. Then G contains no

induced gem, house, domino and even hole if and only if P € Q'.

Proof: We prove this result in four steps.

Step 1. The graph G contains no induced gem if and only if P contains neither P, nor
Py as an induced subposet. Indeed, assume that P has an induced P; (resp. P;) and let
x,y, z,t,u be the elements of Py such that t <y <z >t >z and t < u (resp. t > u). We
immediately deduce a gem with edges xy, xz, xt, zu, yz, zt and tu (resp. zy, zz, zt, zu,
yx, xt and tu) of G. Conversely, suppose that the graph G has an induced gem whose edges
are xy, rz, xt, xu, yz, zt and tu. The subgraph of G induced by {z,y, z} (resp. {z,z,t})
is a triangle, hence z,y, z (resp. z,z,t) form a chain of P. As yt ¢ E, we obtain only six
possibilities: z <y<z>t>zorax<y<z>t>xoryt<z<zxorty<axz<zor
r<z<ytorz<ax<uy,t. In virtue of the existence of the triangle induced by {z,u,t},
we infer that the first case gives z <y < x >t > u, z, the second z > y > x <t < z,u, the
third t <u <z > 2z > t,y, the fifth t > u > < z < y,t, without another comparability
relation, and the fourth and sixth lead to a contradiction. Hence, we have obtained in each

case either P, or P}.

Step 2. The graph G contains no induced house if and only if P contains no P, as an induced
subposet. Indeed, assume that P has an induced P, and let x,y, z,t,u be the elements of P,
such that r <y < z >t < u > x. We immediately deduce a house with edges zy, yz, xz, zt,
tu and uz of G. Conversely, suppose that G has an induced house whose edges are xy, yz,
xz, zt, tu and ux. Since xy € F, the elements x and y are comparable. First, assume that
r<y. Asyz € E, we have y < z or z < y. In fact z < y leads to a contradiction. To see
this, note that if z < y holds, then z < x < y or z < z < y. In the first case, from ux € F,
we deduce u > x, i.e. u > z, or u < z, i.e. u < y, both impossible since uz and uy are not
edges of F. In the second case, 2zt € F implies z < t, i.e., x < t or z > t, i.e. t <y, both
impossible since xt and ty are not edges of E. Hence z < y is impossible. From ¢z € F and
yt ¢ E, we obtain x < y < z > t and these are the only comparability relations. As tu € E
and uz ¢ E, we deduce t < u. Finally, the only possibility for the relation between = and u
is x < u. Hence, P, is obtained as an induced subposet. Adopting the same argument for

y < z, we obtain P, as an induced subposet with the ordering y <z <z >t <u>y.

Step 3. It is easy to see that GG contains no induced even hole if and only if P does not

contain a P3 as an induced subposet.

Step 4. The graph G contains no induced domino if and only if P contains no P, as an
induced subposet. Indeed, assume that P has an induced P, and let z,y, z,t, u, v be elements
of Py such that x < t,u and y < t,u,v and z < u,v. We immediately deduce a domino with

edges xt, ty, yv, vz, zu, ur and uy of G. Conversely, suppose that G has an induced domino
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whose edges are zt, ty, yv, vz, zu, ur and uy. Hence, uzr,uy,uz € E and xy,yz,zz ¢ E
lead to z,y,z2 < wor u < z,y,z with « || y, y || z and = || 2. We consider only the first
possibility because the other may be settled by duality. From yt € E (resp. yv € F) and
ut ¢ E (resp. uwv ¢ E), we obtain y < t (resp. y < v). For the remaining edges xt and zv,
we have only the possibilities x < ¢t and z < v. Obviously, there are no other comparability

relations between these elements. O

By Proposition 1, the comparability graph of a poset in Q' is a distance-hereditary graph,
because the comparability graph of any poset cannot contain an odd hole: Each transitive
orientation of an odd hole contains two consecutive arcs xy and yz which imply the chord

xTZz.

In order to prove the dual Konig property of H(P) when P is in the class Q, let us introduce
two observations. We recall that the vertices of the line-graph L(H*(P)) are the points of P

and two vertices are adjacent iff they belong to the same interval of P.

Observation 1 Assume that P has no induced subposet isomorphic to P, and P;. Let
u,v,w € P with u || v. If there exist two intervals I and I' such that u,v € I and v,w € I,
thenu € I'.

Proof: Let I = [p,ql and I' = [p/,¢/]. lf u ¢ I’, then u £ ¢’ or p’ £ w. In the first case, the
poset induced by {p,u,v,q, ¢} and P; are isomorphic. In the second case, the poset induced

by {p,p’,u,v,q} and P; are isomorphic, both impossible. ]

By Observation 1, one can say that the existence of two edges uv and vw of the line-graph

L(H*(P)) with the above mentioned properties enables us to affirm that uw is an edge, too.

Observation 2 Assume that P has no induced subposet isomorphic to Py, P} and Ps.
Let the "zig zag’ w1 < us > ug < --- > u;—1 < u;, be given by v elements of P, linking uy to
u;, where i is even, © > 6. If uy and u; belong to the same interval of P, then there exists at

least another comparability relation between wuq, . .., u;, different from uy < u; and u; < uq.

Proof: If u; > u;, then uy > w; 1. If uy || u;, then from Observation 1, u;, ug € I, where I is
the interval containing u; and us. If u; < u;, then there exists at least another comparability
relation between uq, ..., u;, different from u; < u; and u; < uq, because otherwise the poset

induced by {u,us,...,u;} and P; would be isomorphic. ]

Theorem 1 Let H(P) be the order-interval hypergraph of a poset P of the class Q. Then
the line-graph L(H*(P)) is perfect.

Proof: It is enough to verify that the line-graph L(H*(P)) is a Meyniel graph, i.e. each
cycle of odd length at least 5 has at least two chords. Meyniel [11] proved the perfectness of
Meyniel graphs.
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Let C = (a1,...,ax) be a cycle of odd length k, k > 5. Let us denote by I; = [p;, q;] the
interval of P containing both a; and a;,; and by I = [p, q] the interval of P containing both

ay; and ay.

Case 1. @ || az. From Observation 1, we have ajas € I and asay, € I.
Case 2. a; < ap. We distinguish three subcases:
Case 2.1. ay || as. From Observation 1, we have a1,a3 € I and ag, a4 € I3.

Case 2.2. ay < az. We immediately deduce the existence of the chord ajas of C. Let us

determine another chord.

Case 2.2.1. a3 < aq or ag || as. Then asay is a chord of C. Indeed, as < a4 implies as < ay

and from Observation 1, a3 || a4 leads to as, a4 € Is.

Case 2.2.2. a3z > a4. Then azas is a chord of C if ay > a5 or a4 || as. Indeed, ay > as

implies ag > a5 and from Observation 1, a4 || a5 leads to as, a5 € Is.

Now let a; < as. In the case k = 5, we have three possibilities: If a; > a5 or a; || as,
then agas is a chord of C. Indeed, a; > a5 implies as > a5 and from Observation 1, a; || as
leads to as,as € I. If a1 < as, then we must have another comparability relation between
the elements aq, as, as, as, as, i.e. the existence of a new chord, because otherwise the poset
induced by {a1,as, as,as,as} and P, would be isomorphic. In the case k > 5, consider the
'7ig zag ap < az > ag < az > --- > a;_1 < a; linking a; to a; where ¢ is a maximum odd
integer, 5 <1 < k. If i =k, i.e ay, a; are in the same interval of P, we use Observation 2 to

affirm the existence of the second chord. If 7 < k, we have again three possibilities:

If ajr1 > a; or a;4q || a;, then a;_ja;41 is a chord of C. Indeed, a; < a;11 implies a;11 > a;_1
and from Observation 1, a; || a;41 leads to a;_1, a;41 € I;—1. If a;11 < a;, the cases a;11 > a;42
and a;y1 || a2 give a new chord a;a;4o since a;4 o < a;41 implies a;10 < a; and from

Observation 1, a;y1 || a;2 implies a;, a;10 € I;.
Case 2.3. as > az. We distinguish three subcases:
Case 2.3.1. a3 || a4. From Observation 1, as,ay € I and agzas € I4.

Case 2.3.2. a3 > a4. Then asay is a chord of C since a4 < a3 < ay. Now, if a4 > a5 or
ay || as, we deduce the chord agas since ay > a5 implies ag > a5 and from Observation 1,
a4 || as implies ag, a5 € I3. If ay < as, then the corresponding part of this case in Case 2.2.2.

remains valid here by considering the 'zig zag’ a; < as > aqs < a5 > --- > a;_1 < a;.

Case 2.3.3. a3 < ay4. If a4y < a5, then a3 < as, i.e. azas is a chord of C. For obtaining
the second chord, we continue as in Case 2.2.2 (from the same situation a4 < a;). Here the
'7ig zag' is a1 < ag > ag < as > ag < --- > a;_1 < a;. If aq || as, then from Observation 1,

we have on the one hand as, a5 € I3. On the other hand ay,a4 € I if kK =5 and a4, a¢ € I5
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otherwise. If a4y > a5 and k = 5, then either a5 < a; (resp. a3 < as) or a; || as. If a5 < a4
(resp. a; < as), not only a5 < ay (resp. a; < ay), i.e. asas (resp. ajay) is a chord of C
but again, it must exist another comparability relation between elements a4, ..., as because
otherwise, the poset induced by these elements and P, would be isomorphic. If ay || a5, we

have by Observation 1, as, a5 € I; and aq, a4 € Iy, hence asas and ajay are chords of C.

If ay > a5 and k > 5, consider the 'zig zag’ a1 < ag > a3 < --- < a;_1 > a;, where 7 is a
maximum odd integer, 5 <1 < k.

If i = k, we have either, a; > a; (resp. a; < a;) or ay || a;. If a3 > a; (resp. a1 < a; ), asa;
(resp. aja;—1) is a chord of C. Moreover there exists another comparability relation between
elements as, . .., a; (resp. ai,...,a;_1) because otherwise the poset induced by these elements
and P3 would be isomorphic. If a; || a;, by Observation 1, aj,a; 1 € I;_1 and as, a; € I.

If + < k, we have three subcases:
Case 2.3.3.1. a;11 || a;.- Then from Observation 1, a;_1,a;+1 € I;_1 and a;, a;19 € I;11.
Case 2.3.3.2. a;41 < a;. We immediately deduce a;y; < a;_1, i.e. the chord a;_ya;+, of C.

If ;11 > airo, then a;a;,5 is a chord of C. If a; 41 || @s40, then from Observation 1, a;a;12 € I;.
If a;11 < a;49, we continue as in Case 2.2.2. with the zig zag’ a1 < as > --- < a;_1 > a;11 <
Ai42-

Case 2.3.3.3. a;41 > a;. If a;41 < a;y9, then a; < a;12 and hence a;a;12 is a chord of
C. In the case k = 7 + 2, we have either a; < a;4o which leads to the existence of another
comparability relation between the elements a4, ..., a;, a;12, i.e. a new chord, since otherwise
the poset induced by these elements and P; would be isomorphic, or a; > a;12 or a || a;4o.
These last possibilities give the chord aja;.; of C because a;,5 < a; implies a;,1 < a; and

from Observation 1, a; || a;y2 implies ay, a;41 € I;yg.

In the case i + 2 < k, we consider the 'zig zag’ a1 < as > -+ < a;—1 > a; < Qo
and we continue as in Case 2.2.2. by substituting the elements as,...,a;_o,a;_1,a; by
Q. .., G;_1,0;, G; 19, TESpectively.

If a;y1 || @ire, then from Observation 1, a;,a;12 € I; and ay,a;.1 € I (resp. aii1,air3 € Lir2)
if k=1i+2 (resp. k>1i+2).
Case 3. ay < ay. By duality, this case is similar to Case 2.

Finally, we have obtained in each case at least two chords of C and the proof is complete. [

Let H = (E4,..., Ey) be a hypergraph. We say that H has the Helly property or is a Helly
hypergraph if every intersecting family of H is a star, i.e. for J C {1,...,m}, E;NE; # 0, for
i,j € J, implies N;je E; # 0. A good characterization of a Helly hypergraph, due to Berge
and Duchet [1], is given by the following property:

For any three vertices aq, as, az the family of edges containing at least two of the vertices a;



On the dual Kénig property of . .. 25

has a non-empty intersection.

Theorem 2 Let H(P) be the order-interval hypergraph of a poset P which has no induced
subposet isomorphic to Py and Py. Then H*(P) is a Helly hypergraph.

Proof: In the class of order-interval hypergraphs of posets, H*(P) is a Helly hypergraph if
and only if H(P) is a Helly hypergraph [5]. Consequently, we can verify this property for
the hypergraph H(P).

Let Z = {I,...,I,} be the family of maximal intervals of P. We suppose that there exist
three vertices ai, ag, as of P such that NjesI; = 0 where J = {j : [[; N {a1,aq2,a3}| > 2}.
Hence, |J| > 3 and there exists three edges, say w.l.o.g Iy = [p1, 1], I» = [p2, ¢2], I3 = [p3, 3],

such that:
as,az € Iy and a1 ¢ I

aj,az € Iy and as & Iy

aj,as € I3 and az ¢ I3
From Observation 1, we have a; € I if a; || as, and ag € Iy if a; < ag and ay || az. If a1 < ag
and ay < a3, we have immediately ay € I5. Again, we obtain ag € I3, if a1 < as and a3 < as.
Indeed, we must have a; || a3 because a; < a3 (resp. az < ap) implies p3 < a; < az < az < g3
(resp. p1 < az < a1 < as < q1), i.e. az € I3 (resp. a; € I;). Moreover, ps # ps, because
otherwise p3 = py < a3z < as < g3 and hence, az € I3. Consequently, the poset induced by
{p2, p3,a1,as,a} and P are isomorphic. By duality, the remaining case, namely ay < ay,

leads to a contradiction as well. O

A hypergraph H is said to be normal if every partial hypergraph H’ has the coloured edge
property, i.e. it is possible to colour the edges of H' with A(H') colours, where A(H’)
represents the maximum degree of H'. Several sufficient conditions exist for a hypergraph to
have the Konig property [1]. One of them is its normality. A hypergraph H is normal iff it
satisfies the Helly property and the line-graph L(H) is a perfect graph. This characterization

enables us to derive the following corollary.
Corollary 3 Let H(P) be the order-interval hypergraph of a poset P of the class Q.
Then every subhypergraph of H(P) has the dual Kéonig property.

Proof: By Theorem 1 and Theorem 2, H*(P) is normal and consequently every partial
hypergraph is again normal. As the dual of a partial hypergraph of H*(P) is a subhypergraph
of H(P), we deduce that every subhypergraph of H(P) has the dual Koénig property. ]

2 N-free posets

Another natural and interesting generalization of series-parallel posets is the class of N-

free poset. A poset is called N-free iff its Hasse-diagram does not contain the N from
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Figure 3 as an induced subgraph [12], i.e. if there do not exist vertices vy, ..., v such that

V1 < v3 > vy < vy and vy || vy.

There is a characterization of series-parallel posets within the class of N-free posets [3]. It
states that a poset P is a series-parallel iff P is N-free and does not contain the poset N’ of

Figure 3 as an induced subposet.

N N’
Figure 3

Unfortunately, if the poset P is N-free, the Konig property is not satisfied in general. The
poset of Figure 4, gives a counterexample since v(H(P;)) = 1 and 7(H(P;)) = 2. Moreover,
H*(P) is not normal. To see this, consider the poset P, of Figure 4. The line-graph L(H*(P))
contains an induced odd cycle Cj given by the vertices {2,3,4,12,13} and hence L(H*(P))

is not perfect.

P1 P2
Figure 4
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ZEQING L1Uu, JEONG SHEOK UME AND SHIN MIN KANG!

Strong Convergence and pseudo Stability for Oper-
ators of the ¢-accretive type in uniformly smooth
Banach Spaces

ABSTRACT. Let X be a uniformly Banach space and let T : X — X be a ¢-strongly
quasi-accretive operator. It is proved that, under suitable conditions, the Ishikawa iterative
process with errors both converges strongly to the unique zero of T and is pseudo stable. A
few related results deal with the convergence and stability of the Ishikawa iterative process
with errors to the solutions of the equations Tz = f and x + Tz = f, respectively, when

T : X — X is ¢-strongly accretive. Our results extend, improve, and unify the results due
to Chidume [2], [3] and Zhou [15].

KEY WORDS AND PHRASES. Ishikawa iterative process with errors, ¢-strongly quasi-

accretive operator, ¢-strongly accretive operator, stability, uniformly smooth Banach space.

1 Introduction

Let X be a Banach space with norm || - || and the dual space X*. The normalized duality
mapping J : X — 2% is defined by

J(z) = {f € X" : Re(z, f) = ||l=|I* = I/}, =€X,

where (-, -) denotes the generalized duality pairing. It is known that if X is uniformly smooth,

then J is single valued and is uniformly continuous on any bounded subset of X.

The symbols D(T), R(T), F(T), N(T) stand for the domain, the range, the fixed point set
and the kernel of 7', respectively, where N(7T') = {z € D(T'); Tx = 0}.

Let T : D(T) C X — X be an operator and [ denote the identity mapping on X.

! This research was financially supported by Changwon National University in 2004
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Definition 1.1 (i) T is called to be strongly accretive if there exists a constant k €
(0,1) such that for each x,y € D(T'), there exists j(x —y) € J(x —y) satisfying

Re(Tx — Ty, j(x —y)) > kllz -yl
(ii) T is said to be ¢-strongly accretive if there exists a strictly increasing function ¢ :

[0,00) — [0,00) with ¢(0) = 0 such that for each x,y € D(T), there ezists j(x —y) €
J(x —y) satisfying

Re(Tx — Ty, j(x —y)) = ¢([lz = ylllz —yl;
(i) T is said to be ¢-strongly quasi-accretive if N(T) # O and if there exists a strictly

increasing function ¢ : [0, 00) — [0, 00) with ¢(0) = 0 such that for each x € D(T) and
y € N(T), there ezists j(x —y) € J(xz —y) satisfying
Re(Tx, j(x —y)) > ¢(llz — yl)||lz — yll.
The classes of operators appearing Definition 1.1 have been used and studied by several
authors (see, e.g., [1]-[1], [8], [10], [12]-[16], [1&8]). It is known that the classes of strongly
accretive operators and ¢-strongly accretive operators with a nonempty kernel are proper

subclasses of the classes of ¢-strongly accretive operators and ¢-strongly quasi-accretive

operators, respectively.

Let us recall the following iterative schemes due to Mann [11], Ishikawa [9] and Liu [10],

respectively.

Definition 1.2 (i) Let D(T) be a convex subset of X with D(T) = R(T). For any
given xog € D(T), the sequence {x,}>2, in D(T') defined by

Yn = (1 - 5n)xn + 6nTxn7 Tp+1 = (1 - an)xn + anTyna n 2 0

is called the Ishikawa iteration sequence, where {a, }22  and {(3,}22, are sequences in

[0, 1] satisfying certain conditions;
(i) If B, =0 for alln > 0 in (i), then the sequence {x,}5° in D(T') defined by
Tpi1 = (1 —ap)x, + o, Txy, n >0,
18 called the Mann iterative sequence;
(iii) For any given xo € D(T), the sequence {x,}32, in D(T) defined by
Yn = (1 = Bp)xn + BuTxy + vp, Tpr1 = (1 — )y + @ Tyn + ty, n >0,

is called the Ishikawa iteration sequence with errors, where {u,}° and {v,}>2, are
sequences in X and {a,}22, and {5,}5°, are sequences in [0,1] satisfying suitable

conditions;
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(iv) If, Bn = ||vn|| = 0 for alln > 0 in (iii), then the sequence {x,}o2, in D(T') now defined

by
Tpr1 = (1 —ap)zy + o Tz, +uy, n>0,

18 called the Mann iteration sequence with errors.

It is clear that the Ishikawa and Mann iterative sequences are all special cases of the Ishikawa

iterative sequences with errors.

Let T : X — X be an operator and {a, }52, be sequences in [0, 1]. Assume that xy € X and
Tpr1 = f(T,an,x,) defines an iteration scheme which produces a sequence {z,}>, C X.
Suppose that, furthermore, that F(T) # () and that {x,,}?°, converges strongly to ¢ € F(T).
Let {y,}22, be any sequence in X and define {g,,}°°, C [0,00) by €, = ||yns1— (T, n, Yn)||-

Definition 1.3 (i) The iterative scheme {x,}2, defined by o1 = f(T,an,x,) is

called T'-stable if lim,,_,o £, = 0 implies that lim,,_o ¥, = q;

(i) The iterative scheme {x,}°, defined by x,.1 = f(T, n, ) is called almost T-stable
if Yoo o €n < 00 tmplies that lim, oo yn = ¢;

(iii) The iterative scheme {x,}>2, defined by x,11 = f(T, an,x,) is called pseudo T'-stable

if limy, o0 ooy, = 0 and €, = o(ev,) implies that lim,, . Y, = q.

Osilike [10] pointed out that T-stability implies almost T-stability, and the converse does not
hold in general. Clearly, an iteration scheme {z, }°°, which is T-stable is pseudo T-stable.

In section 2, we shall show that an iteration which is pseudo T-stable may fail to be T-stable.

Several researchers proved that the Mann iterative scheme, Ishikawa iterative scheme, the
Mann iterative scheme with errors and Ishikawa iterative scheme with errors can be used
to approximate solutions of the equations Tx = f and z + Tx = f, where T is continuous

strongly accretive or continuous ¢-strongly accretive operators (see, e.g. [2]-[1], [12], [15],
[15]).

Rhoades [17] obtained that the Mann and Ishikawa iterative schemes may exhibit different
behaviors for different classes of nonlinear mappings. Several stability results for certain
classes of nonlinear mappings have been established by a few researchers (see, e.g. [5]-[7],
[13], [14], [16]). Harder and Hicks [7] revealed the importance of investigating the stability
of various iteration schemes for various classes of nonlinear mappings. In [13], [I4] and
[16], Osilike established the stability and almost stability of certain Mann and Ishikawa
iteration procedures for the classes of Lipschitz strongly accretive operators and Lipschitz
¢-strongly accretive operators in real g-uniformly smooth Banach spaces and real Banach

spaces, respectively.
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For ¢-strongly quasi-accretive operators without Lipschitz assumption, the possibility of

establishing corresponding stability results has not been explored yet within our knowledge.

The aim of this paper is to establish the strong convergence and pseudo stability of the
Ishikawa iterative scheme with errors to zeros of ¢-strongly quasi-accretive operators in
uniformly smooth Banach spaces. A few related results deal with the strong convergence
and pseudo stability of the Ishikawa iterative scheme with errors to solutions of the equation
Tx = f and z 4+ Tx = f, respectively, where T' : X — X is ¢-strongly accretive. The
convergence results in this paper are generalizations and improvements of the corresponding
results due to Chidume [2], [3] and Zhou [15].

We shall make use of the following result.

Lemma 1.1 ([1]) Let X be a Banach space. Then for allx,y € X, j(x+y) € J(z+y)

lz + yll* < [l=[* + 2Re(y, j(z +)).

2 Main results

Theorem 2.1 Let X be a uniformly Banach space and let T : X — X be a ¢-strongly
quasi-accretive operator. Suppose that the range (I — T') of either or T is bounded and that
S =1—-T. Assume that {a,}>2, and {5,}5>, are sequences in [0,1] and {u,}>>, and

o . e
{vn}5°, are sequences in X satisfying

lim o, = lim £, = lim ||v,| = 0; (2.1)
Zan = 00; (2.2)
n=0

[unl| = ofan). (2:3)

Suppose that {x,}°°, is the sequence generated from arbitrary xo € X by
zn = (1= Bp)xy + BnSTy + vy, xpy1 = (1 —ay)x, + anSz, +u,, n>0. (2.4)

Then the sequence {x,}2, converges strongly to the unique zero q of T and it is pseudo
(I —T)-stable.

Proof: Since T is ¢-strongly quasi-accretive, it follows that N(T') is a singleton, say, {q}.
It is easy to see that S has a unique fixed point ¢, and that

Re(Sz —¢,j(z — q)) < llz —ql* — ¢(llz —alD|z —ql, =€X. (2.5)
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Now we show that R(S) is bounded. In fact, if R(I — T') is bounded, so is R(S); if R(T) is
bounded, then

1Szl < llz = gll + llgll + |1 T=ll < ¢~ (IT=]) + llgll + | Tz

for all z € X. That is, R(S) is bounded. Using (2.1) and (2.3), we conclude that there exists

a nonnegative sequence {r,}2°, such that

[tnll = rnotn, 0 > 0; (2.6)

lim r, = 0. (2.7)

n—oo

Let A = diamR(S) + ||zg — ¢|| and B = A + sup{||v,|| : » > 0} 4+ sup{r, : n > 0}. Next we
show by induction that

|lzn —ql] < A+sup{r,:n>0}<B, n>0. (2.8)

Obviously, (2.8) is true for n = 0. Suppose that (2.8) is true for some n > 0. It follows from
(2.4) and (2.6) that

[eni1 = gl <0 = an)llzn — gll + anllSzn — gl + [lun]]
<(1— ) [A+sup{r, :n >0} + a, A+ a,r,
<A+ sup{r, : n > 0}.
Hence (2.8) is true for all n > 0.

In view of (2.4) and (2.8), we infer that

120 — qll <1 = Bu)llzn — gl + BallSzn — ql| + [Jva]]
<(1 = B)[A+sup{r, :n >0} + B, A+ ||v,|| (2.9)
<B

for all n > 0. It follows from Lemma 1.1, (2.4), (2.8) and (2.9) that

Iz = qll* =1 = B.) (@0 — @) + Bu(Sxn — q) + va?
<(1 = Bu)?l|lzn = gl + 28.Re(Szn — ¢, (20 — q))
+ 2Re(vp, (20 — q))
<(1 = Bn)llan — qll* + 2B* BB, + 2B]jv,|

(2.10)
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for all n > 0. Using Lemma 1.1, (2.4)-(2.6) and (2.8)-(2.10), we get that

2011 = ql* =[1(1 = an) (@0 — @) + an(Szn — @) + unl®

<(1 = an)?[lan — ql* + 200Re(Sz, — q, j (2011 — )
+ 2Re(Un, j(Tni1 — q))

<(1 = ap)?[lzn — ql* + 2a,Re(S2, — ¢, 5(20 — )
+ 2a,Re(Szn — ¢, j(Tni1 — @) — (20 — @) + 2B||us||

<1 = an)?[lzn = ql* + 20m[ll20 — all* = &(||zn — alD]l2n — gll] (2.11)
+ 20, B||j (w01 — @) = (20 — Q)| + 2B]lua|

<[(1 = an)? + 200(1 = Bo) |z — qlI” + 4B, B, + 4B Bav, |, |
— 20,0(||2n — gl |20 — 4|
+ 20, B||j (w01 — @) = (20 — Q)| + 2B]ua|

<lan = gl = 2000120 — alD) |20 — gll + ant,

for all n > 0, where
t, = B*B, +4BB, + 4B|v.|| + 2B|j(xns1 — q) — j(zn — @)|| + 2Br,, n>0.

Since j is uniformly continuous on each bounded subset of X and

l2ns1 = = (2 = Q)| S@nllzn = Szall + Ballzn — Swall + ]| + [lonl]
<2B(ay + fa) + [lunll + [val — 0

as n — o0, it follows that lim, . ||j(znt1 — q) — j(zn — ¢)|| = 0. Thus, by (2.1), (2.6) and
(2.7) we have

lim t, = 0. (2.12)

n—o0

Put inf{||z, — ¢|| : n > 0} = r. We claim that » = 0. Otherwise r > 0. Thus (2.12) ensures
that there exists a positive integer N such that t,, < ¢(r)r for all n > N. From (2.11) we
obtain that for all n > N,

1zn1 = all* <llwn — qll” = 200 (r)r + cnd(r)r
<llzn = qlI* = and(r)r,

which implies that

S(r)r Y an < D (e = glI* = llwna — all*) = llzn — qll*.
n=N n=N
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That is, >~ , a,, < 0o contradicting (2.2). Therefore r = 0. Thus there exists a subsequence
{Ilzn, — all}220 of {20 — qll 122, such that limg . ||z, — ¢|| = 0. It follows from (2.1), (2.4),
(2.6) and (2.7) that

2n, = qll <llznx = all + Buglon, = Sn, [l + [lon |
<llzn = gqll +2BBn, + [l ]| = 0

as k — oo. That is,
klim |zn, — ¢l = 0. (2.13)

By virtue of (2.1)-(2.3), (2.12) and (2.13), we conclude that for given ¢ > 0, there exists

positive numbers ky and p = ny, such that

9
lzp —all <&, max{an, fu} < 165, (2.14)

€ 1
max{lnll feull} < 5, tn < 0G2)e, 2.
By induction we show that
|Zpsm —qll <&, m>0. (2.15)

Note that (2.14) ensures that (2.15) holds for m = 0. Suppose that (2.15) holds for some
m > 0. If ||xpsme1 — ¢|| > €, then (2.14), (2.8) and (2.4) yield that

[Zp+m — qll 2|Zpsm1 — @l = pim S 2prm — Tpgmll — [ Upsml|
- € g 3 (2-16>
7 16B 8 4°
and
”Zp+m - qH ZprHn - QH - ﬁp+m||sxp+m - xp+mH - H%Hn”
>3 € e 1 (2'17>
1" 16B g8 2%

It follows from (2.11), (2.14), (2.16) and (2.17) that

e? <||zpymer — gl
SH"Ep-f-m - q||2 - 2ap+m¢(||zp+m - q||)||zp+m - QH + pirmbptm

1 1
<g?— Ozp+mgb(§€)€ + ap+m¢(§5)5 = g2,

which is impossible. Hence ||2pims1 — ¢|| < e. That is, (2.15) holds for all m > 0. Thus
(2.15) yields that lim, . =, = q.
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Let {yn}o, be any given sequence in X and define {g,}7°, by

Wy = (1= Bo)Yn + BuSYn + v, 1 2 0; (2.18)

en = |[Yns1 — (1 — an)yn — @ Tw, — uy,ll, n>0.
Put p, = yni1 — (1 — an)yn — ayTw,, — uy,. Then
Yns1 = (1 — an)yn + @ Twy, + up + pny, n > 0. (2.19)
Suppose that ¢, = o(a,). By (2.3), we get that
[t + pull < Nlunll + €n = o(am),

which implies that ||u, +p,|| = o(a,). It follows from the above conclusion that the sequence
{yn}22, defined by (2.18) and (2.19) converges strongly to ¢. That is, {z,}°, is pseudo
T-stable. This completes the proof.

Theorem 2.2 Let X, {a,}%, {610, {un}, and {v,}>2, be as in Theorem 2.1.
Let T : X — X be a ¢-strongly accretive operator and the range of either (I —T) or T
be bounded. Suppose that the equation Tx = [ has a solution for a given f € X and that
St = f+ax—Tx for all v € X. Then the sequence {z,}5°, generated from an arbitrary
o € X by (2.4) converges strongly to the unique solution of the equation Tx = f and it is
pseudo S-stable.

Proof: Since T is ¢-strongly accretive and the equation T'x = f has a solution, it follows
that the equation Tx = f has a unique solution. The rest of the proof is identical the proof

of Theorem 2.1 and is therefore omitted. This completes the proof.

Theorem 2.3 Let X, {a,}2%, {3.}°%, {un}2, and {v,}%, be as in Theorem 2.1.
Let T : X — X be a ¢-strongly accretive operator and the range of either (I +T) or T be
bounded. Suppose that the equation x + T'x = f has a solution for a given f € X and that
Sx = f—Tx for allz € X. Then the sequence {x,}3, generated from an arbitrary xo € X

by (2.4) converges strongly to the unique solution of the equation x+Tx = f and it is pseudo

S-stable.

Proof: Let A=1+T. Then A is ¢-strongly accretive and the range either A or (I — A)
is bounded. Clearly, x +Tx = f becomes Ax = f and Sx = f —Tx = f + 2 — Az for all
x € X. Hence Theorem 2.3 follows from Theorem 2.2. This completes the proof.



Strong Convergence and pseudo Stability 37

Remark 2.1 The boundedness of R(T) or R(I—T) in Theorems 2.1 and 2.2 can be replaced
by the boundedness of {T'z,,}5°, and {Tz,}>°, or {z, — Tx,}>°, and {z, — Tz, }>2,.

Remark 2.2 The convergence result in Theorem 2.2 extends, improves and unifies Theo-

rems 1 and 2 of [2], Theorems 7 and 8 of [3] and Theorem 1 of [1&] in the following ways:

(a) The Mann iterative schemes in [2, 3] and the Ishikawa iterative schemes in [2, 3, 15]

are replaced by the more general Ishikawa iterative scheme with errors.

(b) The strongly accretive operators in [2], [3] and [18] are replaced by the more general

¢-strongly accretive operators;

(c) That T is Lipschitz in [2] is omitted;

(d) The assumptions of a,, < [, 1n [2], [3], [18], D07y enb(cn) < coin [2], [3], D07y anblay,) <
oo in [2], [3] are superfluous;
(e) The boundedness hypotheses of R(I — T') in [2], [18] and R(T') in [3] are replaced by

the boundedness of either R(I —T') or R(T);

The following example reveals that the convergence result in Theorem 2.2 extends properly

the corresponding results in [2], [3] and [15].

Example 2.1 Let X = (—o00,00) with the usual norm. Then for any ¢ > 1, X is real
g-uniformly smooth Banach space. Define T': X — X by

xr—1, ifer<—1
Te=qr—+/—z, ifze[-1,0)
, if z € [0, 00).

Clearly R(T) = X, R(I —T) is bounded and T is continuous. Note that

Hence T is not Lipschitz. Take ¢(t) = %t for all £ > 0. In order to prove that T" is ¢-strongly

accretive, that is,
(Te =Ty, j(z —y)) = ¢(lz —y))llz —yll, z,yeX. (2.20)

We have to consider the following cases.

Case 1. Let z,y € (—oo,—1) or z,y € [0,00). Then

(Tz =Ty, j(x—y)) = (x—y)*
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Case 2. Let x,y € [-1,0). Then
(Ta = Tojlo =) =l =y = (V=a = vl =) = (14 =) (o)

Case 3. Let x € (—o0,—1), y € [-1,0). Then

(Tz =Ty, jle—y) =l -1-(y—V-yllo—y) = (@-y)*+ 1~ vV-y)ly—2)
Case 4. Let x € (—o0,—1), y € [0,00). Then

(Te =Ty, jx—y)=@@—-1-y)(z—y) =@ -y’ +{y—a);

Case 5. Let z € [-1,0), y € [0,00). Then

(Te =Ty, j(x —y)) = (¢ = V= —y)(@ —y) = (= y)* + V-a(y — ).
Therefore (2.20) holds. Since R(T') = X, it follows that the equation Tz = f has a solution
for any f € X. Set

a, = (1 +n)_%, Bn =2+ Zn)_%, U, = (14+n)"" v, =(1 +n)_%, n > 0.

Then all the assumptions of Theorem 2.2 are fulfilled. But Theorems 1 and 2 in [2], Theorems
7 and 8 in [3], and Theorem 1 in [18] are not applicable since R(T) is unbounded, 7" is not
Lischitz, and «,, > 3, for each n > 0.

Remark 2.3 Theorems 11 and 12 in [3] are special cases of our Theorem 2.3.

Remark 2.4 For T : X — X a ¢-strongly quasi-accretive operator, Theorem 2.1 proves
that the Ishikawa iterative scheme with errors considered in Theorem 2.1 is pseudo (I —T')-

stable. The following example reveals that the iterative scheme is not (I — T')-stable.

Example 2.2 Let X = (—o0,00) with the usual norm, 7" = I and w,, = v, = 0 for all
n > 0. Clearly,

Re(Tx — Ty, j(z — ) = lle —yI? = (e — yl)lle — yll, =€ X, ye N(T),

where ¢(t) = it for all ¢ > 0. It follows from Theorem 2.1 that the sequence {z,}52,

generated from an arbitrary xzo € X by
zn = (1= Bp)xn + BuSTyn + vy, Tpy1 = (1 — an)zn + @ Szn + up, n >0,

converges strongly to the unique zero 0 of T" and is pseudo (I — T')-stable. Next we prove
that it is not pseudo (I — T')-stable. Let y, = 17 for all n > 0. Then

en = Y1 — (1 = an)yn — anSwn = tnll < [[yni1 — ynll + anllynll = 0

as n — oo. That is, lim, .., &, = 0. But, lim, .y, =1 ¢ N(T) = {0}.
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CENGIZ CINAR, STEVO STEVIC AND IBRAHIM YALCINKAYA

A Note on Global Asymptotic Stability of a Family
of Rational Equations

ABSTRACT. In this note we prove that all positive solutions of the difference equations
1+ @, Zf:l Ln—i
Tn + Tp-1+ Tp Zfzg Tpn—i

where k € N, converge to the positive equilibrium z = 1. The result generalizes the main

Tpy1 = ) n:O,l,...,

theorem in the paper: Li Xianyi and Zhu Deming, Global asymptotic stability in a rational
equation, J. Differ. Equations Appl. 9 (9), (2003), 833-839. We present a very short proof

of the theorem. Also, we find the asymptotics of some of the positive solutions.

KEY WORDS AND PHRASES. rational difference equation, global asymptotic stability,

equilibrium point, positive solution, asymptotics

1 Introduction

In [11], Xianyi and Deming prove that the positive equilibrium of the difference equation
TpTn_1 +1
1 = ——, =0,1,2,.. 1
et T + Tp—1 " ( )

with positive initial values x_1, xg, is globally asymptotically stable.
In [1], Kruse and Nesemann, among other things, proved the following theorem:

Theorem A Consider the difference equation

Tnir :f($n+7"—17---7$n)7 n:Oala'“ (2)

where 1 € N, f : (0,00)" — (0,00) is a continuous function with some unique positive
equilibrium Z. Suppose that there is an m € N such that for all solutions (x,) of Eq. (2)
72
(xn - anrm) <_ - anrm) S 0
Iy

with equality if and only if x,, = &. Then Z s globally asymptotically stable.
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In this note we consider a family of difference equations of the form

1+ Tn Zle Tn—i

k
Tp + Tp—1 + Ty, ZiZQ Tn—i

Tpy1 = , n=0,1,..., (3)

where £ € N and the initial conditions z_j,z_j11,...,29 are positive numbers. From the
equation
kz?+1
T = - (4)
(k—1)z%2 427

we see that £ = 1 is a unique positive equilibrium of Eq. (3).

We show that the positive solutions of Eq. (3) have some similar properties with the positive

solutions of Eq. (1) and give a very short proof of the following result:
Theorem 1 The positive equilibrium point T of Eq. (3) is globally asymptotically stable.

This theorem generalizes the main result in [I 1], since for k = 1 Eq. (3) becomes Eq. (1).

For some other globally convergence results and their applications, see, for example, [5, 0,
) ) ) ]'

In the last section we find the asymptotics of some solutions of Eq. (1).

2 Some properties of the positive solutions of Eq. (3)

In this section we prove several results concerning the positive solutions of Eq. (3).

Lemma 1 A positive solution (x,)°_, of Eq. (3) is eventually equal to 1 if and only if

Proof: Assume that Eq. (5) holds. Then by Eq. (3), it is easy to see that the following

conclusion is true: if x_; =1 or g = 1, then x,, = 1 for n > 1.

Conversely, assume that (r_; — 1)(xg — 1) # 0. We show

xn, # 1 for any n > 1 (6)

Let xn = 1 with minimally chosen N > 1.

Clearly
1+ay_ Zle TN-1—i

k
TN_1+TN_2+TN-1D g TN-1—i

]_:ZL'N:

which implies (1 — zx_1)(1 — zy_2) = 0 and consequently xy_1 =1 or zx_o = 1, a contra-
diction with the choice of N and the condition (z_; — 1)(zo — 1) # 0.
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Lemma 2 Let (x,)> _, be a positive solution of Eq. (3) which is not eventually equal to
1. Then the following statements are true:

(i) (zpi1 — p)(zn — 1) <0 forn >0,
(i) (xp41 — D(zp — 1) (xp—1 —1) >0 forn > 0.
Proof: From Eq. (3), we obtain

(1 —2,) (1 + 2, + 2 Zf=2 Tni)

k
T, + Tn—1 + T ZZ’ZQ Lp—i

Tpyl — Tp = , n=0,1,2,... (7)

and
(xp — 1)(xp_1 — 1)
Tn + Tp-1 + Tn Zfzg LTpn—i

From (7) and (8), inequalities (i) and (ii) follow according to Lemma 1.

Tni1 — 1 = . n=012,.. (8)

Remark 1 From Lemma 2 we see that the signs of z,, — 1, n > 1 of a positive solution (z,,)
of Eq. (3) are determined by x_; and zy. Hence in the investigation of the semicycle analysis
of positive solutions of Eq. (3) we will consider only the terms with the indices greater than
or equal to —1.

A positive semicycle of a solution (z,) of Eq.(3) consists of a “string” of terms {z;, 141,

wosy T }, all greater than or equal to Z, with [ > —1 and m < oo and such that
either [=—-1, or [>—-1 and z;, <7

and

either m=o00, or m<oo and x4 <ZI.

A negative semicycle of a solution (x,) of Eq. (3) consists of a “string” of terms {z;, z;41,
ety T }, all less than to z, with [ > —1 and m < co and such that

either [=—-1, or [>—-1 and z;,1>7

and

either m=o00, or m<oo and x4 > 2.

The first semicycle of a solution starts with the term z_; and is positive if z_; > z and

negative if z_; < Z.

Lemma 3 For Eq. (3), the following statements are true:

(i) There exists a positive solution with a semicycle of Eq. (3) which has an infinite number

of terms and monotonically tends to the positive equilibrium point x;
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(ii) Every negative semicycle of a solution of Eq. (3), except perhaps for the first, has

exactly two terms.
(iii) Fwvery positive semicycle of an oscillatory solution of Eq. (3) has exactly one term.

Proof:
(i) If x_y > 1 and ¢ > 1, then by Lemma 2 (ii), it follows that x,, > 1, n > —1, i.e. this
positive semicycle has infinite number of terms. By Lemma 2 (i), we see that x,, is

strictly decreasing for n > 0. Hence, there is finite lim,, ...z, = [ > 0. From this and
(4) it follows that [ =z = 1.

(ii) If x5 (s > 0) is the first term of a negative semicycle, then from Lemma 2 (ii) we have
(511 — D)(zs — 1)(x521 — 1) >0
and consequently z,.1 < 1.

From this and since
(s12 — V(w51 — )(zs —1) >0

it follows that x,,9 > 1, from which the result follows.

(iii) Ifz, (p > 0) is the first term of a positive semicycle of an oscillatory solution of Eq. (3),

then from the inequality in Lemma 2 (ii) we have

(@p41 — )(xp — D(@p-1 — 1) > 0.

Since z,_; < 1 it follows that z,,; < 1, as desired.

From Lemmas 1, 2 and 3 it follows the following corollary.

Corollary 1 Consider Eq. (3). Then a positive solution of Eq. (3) is either eventually
equal to 1, or greater than 1 and monotonically tends to 1, or an oscillatory solution of
Eq. (3), such that the positive semicycles of the solution have always one term, and the

negative semicycles, disregarding the first one, two terms.

3 Proof of Theorem 1
In this section we prove Theorem 1.

Proof: From (3) we have

1 1 1+, Zle Tp—i
— — Tpy1 = — — %
Tn Ln Tn + Tp—1+ Tp Zizg Tn—i

(1 —ap) (@1 (1 +2,) + 2 Zfzg Tpi)

In(xn + Tp—1 + Tp Zfzg xn—i)
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From (7) and (9) we have

1
(:L’n—xn+1) <$— —xn+1> S 0, n:O,l,... .

n

with equality if and only if z,, = 1. From this and by Theorem A, we obtain that the positive
equilibrium z = 1 is globally asymptotically stable, as desired.
4 Asymptotics of solutions of Eq. (3)

In this section we find the asymptotics of some solutions of Eq. (3). We use the method

described in [3], see also, [2] and [1].

4.1 Asymptotics of nonoscillatory solutions of Eq. (3)

According to Lemma 3 these solutions monotonically tend to 1 as n — oo. In order to find

the asymptotics we make the ansatz z,, = 1 + y,, with y, = o(1). Equation (3) implies
YnYn—1

Ynt+1 = & A : (10)
k + 1 + kyn + ZZ‘:1 Yn—i + Yn ZZ‘ZQ Yn—i
Note that Eq. (10) can be approximated by the equation

where first we look for positive solutions ¥, which correspond to the condition x,, > 1 for

n > 0. Taking the logarithm of (11) and making the change z, = In y,,, we obtain
Znal — Zn — Zno1 = —In(k + 1). (12)

By standard methods it can be shown that the general solution of Eq. (12) has the form.

Zn = C1 <1+2\/5> + ¢ (1_2\/5> +1In(k +1).

Hence the general solution of Eq. (11) reads

)" e ()"

g = (k+ Dyt (73 : (13)

For real constants c; this solution is positive, and it satisfies y, = o(1) if ¢; < 0. Without

loss of generality we may assume that ¢; = —1, which is shown by a suitable shift of n.

This motivated us to make the ansatz

Yo = (k+1) (e_ln + bl/)n) , (14)
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with 1, = exp(—al™), a > 1, where | = (1 ++/5)/2.

Setting (14) into (10) and comparing the coeficients we obtain that a = 1+ "% and b = 1.
Now after a shift of n to n+ & in (10) we apply Theorem 2.1 in [3]. Let

pn=(k+1) (e +e ) and b, =", (15)

where a and [ are as above and let

k—2
F(wo, wi, ooy whyr) = (b + 14 kwg + w1 + (wy + 1) Zwi)wk—H — WEWk—_1-
i=0
The partial derivatives of the function F' are the following
Fw() = le — . = ka72 == wk—‘,—l(wk —|— 1)’
k—2
Fu, = Weg1 —we,  Fuy = wiea (b + ) wi) — wey,
i=0
k—2
Fuppy =k + 1+ kwe +wimy + (we + 1) wy.
i=0

Hence
UntiFw, (@n, o Prins1) ~ Yntininr ~ (k + 1)e’ln(a”+lk“)
forv=0,1,....k — 2,

Uniho1Fupy (Pns ooy Prest) ~ —Vnrho1Pnak ~ — (K + 1)@+,

—I"(a k_ jk—
Vni kP (Pns s Pri1) ~ —UnipPnin—1 ~ —(k +1)e CASA

and
1" (alk+1)

Ukt 1 P (P oy Ongrr1) ~ (b + DYpgr = (b + 1e :

Since a = 1 4 7% it is easy to see that
Pl =al" ' +1F = min{al’ + 1, (i =0,1,....k — 2),al" " + ¥ al* +1F71 al"™},
where the minimum is attained at the last but two position.
Thus, for f, = e """+ we obtain
wnﬂFwi(Spm 3% 90n+k+1) ~ Aifn
where A; =0,i=0,1,2,...k—2,k,k+1,and Ay_1 = —(k+1).
Now we prove that

F@ny ooy @ripnin) ~ (k4 1)2e CTHHTON — (£, (16)
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For w; = @nyi = (k4+1)s;, i =0,1,... . k+1, with 5; = e """ +e 9" let F = (k+1)2G with

k—2
G(S0, 81, ey Skt1) = Spr1(1 4+ ksp + sp—1 + (L + (k+ 1)sg) Z Si) — SkSk—_1-

i=0

It follows

G505 51y ey Skt1) = Sk1(1 + S0 + 1) — SkSk—1 + 0 (e(L+“)ln)
with L = [**1 since the terms s;15;5; with i > 0, the terms sp418; for i > 2, and the terms
Sgr18k for k > 2 are contained in the remainder term. In the exponents of the terms of the

product spsi_; there appear the factors of —I"

it =1p, (17)
Fral" =L+1, (18)
alf +1F =L +1 (19)
and
al® 4 al*~* = aL. (20)

The corresponding factors concerning the product sy 1(1 + so + s1) are

(17), (20), (18), L4+a, aL+ 1, a(L+ 1), (19), L+al, aL +1, a(L +1).
The terms with a number cancel. The smallest term of the remaining ones is L + a. Hence
(16) is proved.

From all above mentioned the conditions of Theorem 2.1 in [3] are satisfied for m = k + 1,
hence for every € > 0, Eq. (3) has a solution y, in the stripe ¢, — e, < y, < @, + €, for
sufficiently large ng = ng(e), with ¢,, and v, defined in (15).

4.2 Asymptotics of oscillatory solutions of Eq. (3)

The signs of the terms of a solution of Eq. (11) depend on the initial conditions yy and y;.
It can easily be seen that the general nontrivial solution of Eq. (11) can be written as v,y,
where y, is the positive solution (13) and v, for n > 0 one of the four 3-periodic sequences
in Table 1.

vn’ | vy | vy vy | v vy | v Vg’ | v | vg
e 1|1 1 1|1
VA1 alal a1l

VOl al 1t alalr]alal

TABLE 1. Values of the sequences US), 1=1,2,3,4.
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These periodic sequences can be represented as v, = €™ where t,, is one of the solutions

with integer values mod 2 of Fibonacci’s equation in Table 2.

$0 T T T4 T T4 T30 T T30 740
DTolololololololo]o
Dol [1]ol1[1lol1]1
STy lol1]1]ol1]l1]o]l1
Dl ]olr]r]o]r]1]o

TaBLe 2. t9), =t 447 (mod 2), i =1,2,3,4.

With some more effort it can be shown analogously as before that Eq. (10) has also solutions
which behave asymptotically like the solutions v,y, of (11). This result matches with Lemma

2 (ii), which is equivalent to v, 11v,v,—1 > 0 for n > 0, and it also matches with Lemma 3.

Acknowledgement. We would like to express our sincere thanks to Professor Lothar Berg

for giving valuable suggestions during the preparation of this paper.
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BENEDICTE ALZIARY, NAZIHA BESBAS

Anti-Maximum Principle for a Schrédinger Equation
in RV, with a non radial potential

ABSTRACT. Anti-maximum for the Schrodinger equation —Au + ¢(z)u — Au = f(x) in
L*(RY) is extended to potentials ¢ non necessarily radial. The anti-maximum is proved in
the following form: Let ¢; denote the positive eigenfunction associated with the principal
eigenvalue \; of the Schrédinger operator A = —A+g(x)e in L>(RY). Assume the potential
q(z) grows fast enough near infinity, and the function f satisfy f £ 0 and 0 < f/p; < C =
const a.e. in RY. Then there exists a positive number § (depending upon f) such that,
for every A € (A, A\; + 0), the inequality u < —cp; holds a.e. in R, where ¢ is a positive

constant depending upon f and A.

KEY WORDS. Positive or negative solutions; pointwise bounds; principal eigenvalue; pos-

itive eigenfunction; strong maximum and anti-maximum principles

1 Introduction

The anti-maximum for the Dirichlet Laplacian defined in a regular bounded domain 0 C R¥
is an important result established first by Ph. Clément and L. A. Peletier [1] and extended to
several types of elliptic operators or systems defined in a bounded domain, see e.g. G. Sweers
[13], P. Takéc [14],G. Fleckinger et al.[5, 6]. The case of the Schrédinger operator on Q = RY
is more difficult. Indeed, for maximum and anti-maximum in unbounded domain the works
of B. Alziary and P. Takéc [3], B. Alziary, G. Fleckinger and P. Takac [!, 2] and Y. Pinchover

8, 9] show that, on must always take into account the growth of the solution near the infinity.

We investigate here, anti-maximum for a linear partial differential equation with the Schro-
dinger operator,

—Au+q(z)u — du= f(r) in RY, (1)
Here, f is a given function satisfying 0 < f # 0 in RY (N > 1), and )\ stands for the

spectral parameter. As usual, the Schrodinger operator takes the form A = —A + ¢(x)e in
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L*(RY) where A and g(x)e, respectively, denote the selfadjoint Laplace operator and the
pointwise multiplication operator by the potential ¢ in L*(RY). Let ¢; denote the positive
eigenfunction of A associated with the principal eigenvalue A\;. We recall the definition of

p1-positivity and ¢i-negativity.

Definition 1.1 A function u € L*(RY) is called p,-positive if there exists a constant
¢ > 0 such that

w>cpy  almost everywhere in RY. (2)

Analogously, u € L*(RY) is called pi-negative if there exists a constant ¢ > 0 such that

u< —cp;  almost everywhere in RY. (3)

To obtain anti-maximun for the Schrédinger operator on Q@ = RY, we need to assume f in

the strongly ordered Banach space X introduced in Alziary and Takac [3]:
X ={uec L*RY): u/p, € L(R")} (4)
endowed with the ordered norm
|ul|x = inf{C € R: |u| < Cip; almost everywhere in R"}. (5)

The ordering “<” on X is the natural pointwise ordering of functions. This means that
X is an ordered Banach space whose positive cone X, has nonempty interior )O( +. Taking
N > 2, The necessity of such a restriction for the Schrédinger operator in L*(RY) has
been justified in [2, Example 4.1 p. 377]. B. Alziary, G. Fleckinger and P. Tak4¢ construct a
counterexample to the anti-maximum principle (3) for a positive, radially symmetric function
feLl?RY)\ X.

The validity of (2) for a “sufficiently smooth” solution u to Equation (1) is established in
Alziary and Takéac [3, Theorem 2.1, p. 284] for a nonnegative function f # 0 in L*(RY).
The inequality (3) is shown in Alziary, Fleckinger and Taka¢ [1, 2] under considerably more
restrictive hypotheses on ¢ and f, since they consider only radially symmetric potentials
and they establish the anti-maximum only for f from a Banach space X®? that contains

“sufficiently smooth” perturbations of radially symmetric functions of X.

In the present work we are able to extend this results to some non radial potential and
for f € X\ {0} and f € C**(RY). For either (2) or (3) to be valid, it is necessary
and sufficient that the potential ¢(z), which is assumed to be strictly positive and locally
bounded, have a superquadratic growth as |x| — oo. In particular, ¢(z) must grow faster
than |z|* as |x| — oo; the growth like |z|?™® with any constant e > 0 is sufficient. Thus, both

(2) and (3) are in general false for the harmonic oscillator, i.e., for g(x) = |z|? in RY; see [1],
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Examples 4.1 and 4.2. As it seems to be inevitable in the theory of Schrodinger operators,
we assume that ¢(z) is a “relatively small” perturbation of a radially symmetric function,
q(r) = qi(|z]) + qo() for z € RV,

Y. Pinchover in [8, 9] prove the inequalities (2) and (3) for any solution f € X, \ {0},but
imposing certain growth conditions on the first derivatives of ¢(x), and assuming the solution
w is already in X. Our method combine a comparison result from B. Alziary and P. Takac [3,
Theorem 2.2, p. 285] in the exterior domain Qr = {z € RY: || > R}, for 0 < R < oo and
the approach of Y. Pinchover in the proof of [, theorem 5.3, p.23]. We study the behavior
of the principle eigencurve of a certain two parameter eigenvalue problem and prove the

anti-maximum principle using a fixed point argument.

This article is organized as follows. In Section 2 we state our main result, Theorem 2.1.
There, the inequality (3) for Ay < A < A; + 0 is stated for the solution u of (1). In Section 3

we first recall the comparison result we will used and then give the proof of the main result.

2 The Main Result

Notation. We denote by RY the N-dimensional Euclidean space (N > 2) endowed with
the inner product x - y and the norm |z| = (z - 2)Y/2, for z,y € RY. We write R, = [0, 00)
and RY = (R;)¥ c RM. For a set M C R, we denote by OM (M, and ]\04, respectively)
the boundary (closure, and interior) of the set M in RY. We use analogous notation for sets

in all Banach spaces.

Given a set © € RY and 1 < p < oo, we use the following standard Banach spaces of
functions f: @ — R (or C), see e.g. Gilbarg and Trudinger [7, Chapt. 7]:
LP(§2), where 2 is Lebesgue measurable, is the Lebesgue space of all (equivalence classes

of) Lebesgue measurable functions f: 0 — R with the norm

def (fQ f(z)[? dx)l/p < o0 if 1<p<o0;
1fllp = 1 flle) =

esssup | f(z)] < oo if p=oc.
e

The space W*P(Q2), where k > 1 is an integer and © open in RY, is the Sobolev space of
all functions f € LP(2) whose all partial derivatives of order < k also belong to L”(€2). The

norm || f|lkp = | flwea) in WHP(Q) is defined in a natural way.

The local Lebesgue and Sobolev spaces L2 _(€) and W;"?(Q) are defined analogously.

loc loc

The holder spaces CH*(RY) are defined as the subspaces of C¥(RY) consisting of functions

whose K-th order partial derivatives are locally Holder continuous with exponent a.
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Finally, for Q open in RY, D(Q) = C5°(2) is the space of all infinitely many times differen-
tiable functions f: @ — R with compact support. It is well-known that D(RY) is a dense
linear subspace of both LP(RY) and W*»?(RY) for 1 < p < oo.

In order to formulate our hypothesis on the potential ¢(x), x € RY, we first introduce the

following class of auxiliary functions Q(r) of r = |z|, Ry < r < oo, for some Ry > 0:

Q(r) >0, Q is locally absolutely continuous,
Q'(r) >0, and there exists a constant 3 with (6)
0<p<jzand ["Q(r) ™ dr < oo

We assume that the potential ¢ takes the form
q(z) = qi(|2]) + go(w), @€ RY,
where ¢;(r) and ¢y are Lebesgue measurable functions satisfying the following hypothesis,

with some auxiliary function @(r) which obeys (6):

Hypothesis (H1) The potential ¢: R, — R is locally essentially bounded, ¢(r) > const >

0 for » > 0, and there exists a constant ¢; > 0 such that

(N-1)(N-3)
4r2

for Ry <r < oo. (7)

aQ(r) < q(r) +

(H2) The potential ¢o: R, — R is locally essentially bounded, ¢(z) = ¢(|z]) + ¢2(x) >

const > 0 for » > 0, and there exists a constant ¢, > 0 such that

lg2(2)] < 2Q(|z])7?  for z € RY. (8)

Notice that the fraction (N — 1)(IN — 3)/47? in the inequality (7) is not essential and has

been added for convenience in later applications; it can be left out.

Next we introduce the quadratic form

(v,w), oof /IRN (Vv - Vw + q(z)vw) dx (9)

defined for every pair

def
v,weV, =

{f € L2RY): (f, f)q < 00} (10)

Notice that V; is a Hilbert space with the inner product (v,w); and the norm |[v|y, =
((v,v))*?. The set D(RY) is a dense linear subspace of V,. By the Lax-Milgram theorem,
the Schrodinger operator

A=—-A+q(x)e in L*RY) (11)
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is defined to be the selfadjoint operator in L2(RY) satisfying
/ (Av)wdr = (v,w), forall v,w € DRY). (12)
RN

We denote by D(A) its domain. The Banach space D(A) endowed with the graph norm
is compactly embedded into L?(RY), by Rellich’s theorem combined with ¢(z) — oo as

|z| — oo.

It is well-known that A possesses an infinite sequence of positive eigenvalues, A\ < Ay <

-+ Ap -+, and the first one, denote by \;, is given by

M o=inf {(f, f)g: f €V, with | fll2@vy =1}, A >0.

The eigenvalue \; is simple with the eigenspace spanned by an eigenfunction ¢; € D(A)
satisfying ¢1 > 0 throughout RY. We normalize ¢; by the condition |¢1||z2@y) = 1. Since
q(r) = q(|z]) for x € RN, we must have also 1(z) = ¢1(|z]) for z € RY. Furthermore, if
u € D(A) and Au = f € L*(RY) with f € LP (RY) for some p with 2 < p < oo, then the
local LP-regularity theory yields u € W2P(RN), see Gilbarg and Trudinger [7, Theorem 9.15,
p. 241]. In particular, if p > N then u € C*(RY), by the Sobolev imbedding theorem [7,

Theorem 7.10, p. 155]. It follows that also ¢; € C1(RY).

The following theorem about (i-negativity of u is our main result:

Theorem 2.1 Let the hypotheses (H1) and (H2) be satisfied and q be locally Hélder
continuous. Assume that u € D(A), Au — = f € L*(RY), A e R. Let f € X NCO(RY)
be a nonnegative function with f > 0 in some set of positive Lebesque measure. Then there
exists a positive number § (depending upon f) such that, for every A € (A, \; + 0), the
imequality

u< —cpy in RY (13)

is valid with a constant ¢ > 0 (depending upon f and \).

If we choose § < Ay — Ay, for any A\ < A < A\ + 4, the solution of the equation, Au — Au =
f € L*RY), always exists and is unique. So it suffices to show the existence of a ¢;-
negative solution for \; < A < A\; +d as in Y. Pinchover [3, 9]. Y. Pinchover proved that
for any f € X, NCO(RY), f # 0, there exists a positive number § such that, for every
A € (A1, A1 + ), any solution u of X is ¢j-negative. Here we prove that u € X. Moreover,
his hypothesis on ¢; is much stronger than ours in that he requires that log ¢; be uniformly
Lipschitz in RY and ¢, itself satisfy ¢;(r) > 0 and [~ q;(r)~/2dr < oc.

3 Proof of the Main Result

We first recall some comparison result and then prove our theorem.
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3.1 Preliminary result

The following theorem, proved by B. Alziary and P. Takac¢ in [3, Theorem 2.2 p. 285,
establish a comparison result for positive solution u(z) and u;(x) of the Schrodinger equation

in the exterior domain ) with the potentials ¢(z) and ¢;(x), respectively, and f = 0 in Qg:

Theorem 3.1 Let the hypotheses (H1) and (H2) be satisfied. Furthermore, fix any
constant R > Ry such that Q(R)%J”B > 2co/cy. Assume that u and uy are two functions of
x € RY such that u, u; € D(A), both u and u; are positive and continuous throughout Qp,

for some R > 0, and the following equations hold in the sense of distributions over (g,

—Au+gq(x)u=0 in Qg, (14)
—Auy + ¢ (|z))ur =0 in Q. (15)

Then there exists a positive constant v (depending only upon the potential q) such that:

1 My M, _
Y ul(R)u1(|$|) <ulx) < 7u1<R)u1(|x|) for a.e. x € Qp, (16)

with

m, = min u(z) and M, = maxu(x).
|z|=R |z|=R

3.2 Proof of the Theorem

Since A has a discrete spectrum, there exists dg such that (A, \; +dg) "o (A) = (). Therefore,
it is enough to show that there exists § < g such that, for every A € (Ay, \; +9) the equation

Au — \u = f admits a negative solution wuy, satifying —uy > cp; with a positive constant c.

Set wy = —uy, the equation becomes
(A+ f(2)/wy — Nwy = (A + q(z) + f(z)/wy — Nwy = 0 in RY. (17)

Now, we need to prove that the equation (17) has a positive solution wy, satisfying wy > cp;

with a positive constant c.

First, for Ay < A < A1 + 1, we introduce the following set of functions:
Yi={ueDA), u>0, u(0)=p(0), and

(18)
FJV e CORY), 0<V <1l st. (A=A+V)u=0}
First we prove that Y\ is a nonempty convexr compact set.

(i) Yy is nonempty: Indeed, for V) = A — A;, we have 0 < V), < 1 and the eigenfunction
1 is solution of the equation (A — A + V) )p; = 0. Therefore p; € Y.
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(ii)

(iii)

Y\ is conver: Let u; and us be two functions of Y). This functions u; and uy satisfy
respectively the equations (A — A + Vi)u; = 0 and (A — X\ + Vo)ug = 0, with 0 <
Vi,Vo < 1. Let 0 < t < 1 and denote u; = tu; + (1 — t)us. We check easily that u, is
solution of (A — A+ V)u, = 0, with 0 < t Vi + (1-— t%)% <1. Sou; €Y.

Let us prove now that there exists C' > 0 such that
C o1 (z) < u(x) < Copi(x) for all v € R™

for every u € Yy and Ay < XA < A\ + 1.

We introduce now ¢, the radial eigenfunction corresponding to the eigenvalue A; of

the Schrodinger operator —A + ¢ (|z])e.

Notice that, since Ay < A< A +1and 0 <V <1, we have
g—M—1<qg+V-A<qg—X\+1

The potential ¢ goes to +o0 as |z| goes to 0o, so there exists R; such that 0 < const <
g(x) = A — 1 < q(z) + V() = XA < g(x) — A\ + 1 for all |z| > R, . Thus principal
eigenvalues corresponding to those potentials on (2, are all positive. We choose R
large enough, so that we could apply theorem 3.1 with the potentials ¢(z) — A; + 1 and
a1(j2]) = Av, q() — A\ and @(Jaf) — A, or q() — Ay — 1 and 1 (o) — Ay,

Let us take any u € Y. Now we split our proof of (iii) into the cases x € B, and
WS QRl-

Case z € Qlg, Denote by u and u the solutions of the following equations:

—Au+(¢g+V =XNu=0 in Qg
—AQ + (q - )\1 + 1)Q =0 in QR1 (19)
AT (=M —Da=0 inQp

u(z) =u(x) = u(z) on 0fg,

Since g — A\ —1<Q+V — A< qg— A +1, by the weak maximum principle on Qg,,
we have:
u<u<7uin Qp, (20)

For the eigenfunctions ¢; and 1, the following equations hold for all R > 0,

—Ap+ (q(x) = M)p1 =0 in Qg,
=AY+ (q1(|z]) — A1)y =0 in Qp.

So applying the theorem 3.1 on Qp, for ¢ and 1), there exists a positive constant ~,

(21)

(depending only upon the potential ¢) such that :

Suilla]) < ¢(o) < vl for ae s € B, (22
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with

my, = min ¢i(z) and M, = max ¢(x).

®1
|z|=R1 |z]=R1

More clearly, there exists a constant C; > 0 (depending only on ¢) such that

Cr i (|z]) < pi(x) < Crapy(|z]) for ae. o € Qp,. (23)

We apply now the theorem 3.1 on Qp, for w and v, and for u and ;. So there exist
two constants y and v (depending only on ¢) such that

—1 msz _ _ Mg —
Y —1/11(R1)¢1(|x|) <a(z) < 7¢1(R1)¢1(|x|) for a.e. x € Qg,, (24)
with
me = mip T(e) = min u(z) and Mg = max W) = max u(z),
and y
1 My w _
¢1(R1)¢1(|$|) <u(r) < 1¢1(R1)¢1(|x|) for a.e. x € Qp,, (25)
with

m, = min u(z) = min u(x and M, = max u(x) = max u(z).
u ‘xlle_() nin (2) u |z|=R1_(> nax (z)

Combining (20) ,(23), (24) and (25), we arrive for a.e. z € Qp, at

7 Cy
Y(Ry)

101_1

s M, (a), (26)

My p1(7) < u(z) <

with
m, = min u(z) and M, = max u(z).
lz|=R1 [z|=R1

Case v € Bp,. By the Harnack inequality on Byg, (see Gilbarg and Trudinger |7,
Corollary 9.25, p.250]), we gate

supu(x) < Cyinfu(x) for all R < 2R;.

Br Br
with a constant Cy depending only on ¢ and R. Then using the condition u(0) = ¢1(0)
for u € Y), we obtain for Ry < R < 2R,

M, < supu(z) < Cyinfu(z) < Cop(0),
R

(27)
£1(0) < supu(s) < Cyinf u(z) < Gy,
R
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(iv)

Then for a.e. © € Bp,,

5 '1(0)
MATByg, 1 (ZL‘)

Cap1(0
1(x) <infu < wu(z) <supu < L()
Br Br mlnBle QOl(I)

pr(e). (28)

Finally, by (28), (27) and (26), we deduce (iii).

Yy is compact in CO(RY): Let (un)nen € Y be a sequence. By (iii), we know that the
functions (u,)ney are bounded in L>°(RY) and by the regularity theory, we know that

they are continuous.

For R > 0, we denote by ul the restriction of u, to Bg(0). This restriction satisfy

(=A+ g+ V, = Nulf) =0 in Bp(0) (29)
Using the Schauder estimate it follows that uy® € C>*(Bg(0)) and that
2.0 < Cllu?]loc (30)

where C' = C(N, R, q) (see Gilbarg and Trudinger [7, Theorem 6.13, p.106 and Theorem
6.2 p.90]). By (30) and (iii), we deduce that (u,(IR))neN and (Vu%R))neN are bounded
in C°(Bx(0)). So, using theorem of Ascoli, one can extract a subsequence (u'’) such
that:

ug:) — B strongly in CO(BR( ))?
)

0
vul® - Vu®  strongly in C°%(Bgr(0)), (31)
Au,(f,? —  Au™  strongly in C%*'(Bg(0)) for some 0 < o’ < a.

(n)

Then, taking the diagonal subsequence (un, )nen, We construct a subsequence of (uy, )nen

wich converge, strongly in C*>®(Bg(0)) for all R > 0, to a continuous function u
satisfying

C~ oy (r) < u(r) < Cpi(z) for all x € R™.

Thus the subsequence (u\)nen converge to u strongly in C°(RY). Indeed, by (iii),

Ve >0, dng>0 suchthat Vo €Q,, Vn>ng ]u(”)(x) —u(z)| <e,

Nn

and by the strong convergence of u!! to u in C°(B,,(0)),

In; >0 such that ¥n > ny, Vo € B, (0), [ul”(z) —u(x)| <e.

To finish the proof of the compactness of Y), we have to check that u belongs to Y.

(n)
Since V,, = 2% — g+ A, it follows that V,,, — V locally in C%*(RY), where 0 < V < 1.

M)

Hence u satisfgfnthe equation
(A=A+V)u=0 inR",

and u € Y.
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Now, for every nonzero, nonnegative, bounded function V' and any ¢t > 0, we define the

operator A,

The potential ¢; = ¢ + tV has the same properties as ¢, so the operator A; has the same
properties than A. This operator A; possesses an infinite sequence of positive eigenvalues,

and the first one, denote by Ay (t), is given by
Ay (t) = inf {/ IVul?> + g(z)|ul* de: uw € V, with [Ju| 2@y = 1} : (32)
RN

The eigenvalue Ay (t) > 0 is simple with the eigenspace spanned by an eigenfunction ¢y, €
D(A,) satisfying ¢y, > 0 throughout RY and [|¢v,| 2@~y = 1. The following properties of
the curve {(t, A\y(t)) |t > 0} are easy to check with the characterization (32). The function
A(t) is a continuous increasing concave function of ¢ such that Ay(t) — A as t — 0.
Furthermore, if V; <V < V5, then

Avi (1) < Av(t) < Ay (1) (33)

Fix f € X NC%(RN), f >0, by (iii),

<v—cl (34)

!
U ¥1

ne=cd <
¥1
forevery u € Yy and \y < A < A\ + 1.

It follows, from the properties of the function Ay (¢), that there exists dy, such that for every
u € Yy with Ay < XA < Ay + 9y, there exist a unique ¢, and a unique eigenfunction ¢ of the

equation
Ao — Ao = (—A+q+tA£ — ANy =0,
wich satisfy ¢(0) = ©1(0). We define then the mapping Ty by Th(u) = ¢.

We prove now that there exists § > 0 (depending only on f) such that for every A €
(A1, A1 +0) we have Ty: Y\, — Y. By (34) we know that there exists some £ > 0 such that

f

t|<e = t=<tVh<L
u
Since the function Ay, () is invertible, with a continuous inverse, there exists § > 0 such that
O<Ap(t)— M <0 =0<t<e.

Using (33), Ay (tx) < Av(tr) = A, s0if 0 < A — Ay < 0 then £y <e. Thus T\(u) = ¢ € Y.

The mapping T} is continuous. If a sequence (uy,)n,eny € Yy converge to u € Yy in CO(RY),

the corresponding sequence (v, = Th(uy,))nen converge to v = Ty (u) in C°(RY). Indeed, the
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sequence (U, )nen 18 in the compact set Yy and any convergent subsequence clearly converges
to v =Th(u).

Applying the Schauder-Tychonoff fixed point theorem to the operator T, we conclude that

there exist t, > 0 and uy € Y, such that u, is a positive solution of the equation
fy L mN
(A= A+ty—)uy=01in R".
Ux

So the function u = —?—i is the negative solution of the equation

—Au+g(z)u — A u = f in R"

and this function satisfy the (p;-negativity,
-1

u < ——q.
> i ®1
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MANFRED KRUPPEL

On the Zeros of an Infinitely Often Differentiable
Function and their Derivatives

ABSTRACT. In this paper, we investigate the structure of an infinitely often differentiable
real function f defined on the interval [0,1]. We show that for such a function the set
{t:3neNg: fM() =0, f*(¢) # 0} is at most countable, and if f is not a polynomial
then the set {t: f(™(t) # 0, ¥n € Ny} has the power c.

KEY WORDS. C*-functions, derivatives of higher order, Cantor sets, Theorem of Cantor-

Bendixsohn, sets of first category.

In this paper we investigate real functions f on [0, 1] which are infinitely often differentiable,
where in the endpoints we consider the one-side derivatives. For such a given f we define
the sets

E={t:IneNy: fMt)=0} (1)

and their complement
D={t: f™(t)#0, ¥n € Ny}, (2)

i.e. EUD =[0,1]. Obviously, if f is a polynomial then £ = [0,1]. But it holds also the

conversion:

Theorem 1 ([ ], [ ]) Let f be an infinitely often differentiable real function over
[0,1]. If E =[0,1] then f is a polynomial.

Obviously, for a polynomial f the set D from (2) is empty, so that D = ) if and only if f
is a polynomial according to Theorem 1. In this paper we investigate the case D # () and
prove a general assertion concerning the structure of an infinitely often differentiable real
function (Proposition 3). Theorem 1 is an immediately consequence of Proposition 3. The
main results of this note are Theorem 6 and 7 which are proved by means of Proposition 3.

In order to prove Proposition 3 we need some preparations.
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Lemma 2 Every closed set F C [0,1] has a unique representation as union of three
disjoint sets
F = A4, UBy UC, (3)

where Aqg is an open set, By is a mowhere dense perfect set and Cy is at most countable,

where Ag, By and Cy can be empty.

Proof: We assume that the closed set F' is not countable. Then, owing to the Theorem of

Cantor-Bendixsohn, cf. [0], p. 55, it is representable in the form
F=FRUQ

where P, is a nonempty perfect set and where () is at most countable. If P, is nowhere
dense then it follows (3) with Ay = ), By = Py and Cy = (Q)p. Assume that P, is dense in

the intervals [a,, b,| (n € Ny) where these intervals are maximal then we put

Ao = (an, bn) (4)

n

which is an open set with Ag C Py since P, is closed. Consequently, the set F} = Py \ Ag is
nowhere dense and closed, and it holds AgN Fy = (). If F} is countable then (3) is valid with
Ap from (4), By =0 and Cy = F; U Q. If the closed set F} is not countable then, again by

the Theorem of Cantor-Bendixsohn, it is representable as

Fi=PUQ
where P; is a nonempty perfect set and where (7 is at most countable. In this case (3) is
valid with Ag from (4), By = P; and Cy = Qo U Q.

Assume that besides of (3) for F' there exist a further representation
F=4,UB UG, (5)

If Ay # A; then we can assume that there exist a point g € Ag\ A;. This means that there
exist an interval (a, ) C A\ A;. Since F'\ A} = By UCY is a set of first category and (a, 3)
is a set of second category by a Theorem of Baire, cf. e.g. [1], the relation (o, 3) C F'\ A;
is impossible. This implies that the case Ay # A; cannot be. In the case Ay = A; the set
P=F\Ay=F\ A is closed. Therefore it holds By = B; since this set is exactly equal to
the set of all points of condensation of P, cf. [0]. Finally, it follows Cy = C4, too B

On the structure of an infinitely often differentiable function we have the
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Proposition 3 Let f be an infinitely often differentiable real function over [0,1]. Then
the set E of all points t for which there exists an integer n € Ny such that f™(t) = 0 has a

unique representation as union of three disjoint sets
E=AuUBuUC (6)
which have the following form: A is an open set, i.e.

A=UJ(o8), ™

B is the union of at most countably many nowhere dense perfect sets B, with B, C B,.1,
and C' is at most countable, where A, B and C' can be empty. In the case A # () the function

[ is a polynomial on each interval (o, B;].

Proof: Obviously, F is the union of the sets E, = {t : f™(¢t) = 0} (n € Ny), which are
closed owing to the continuity of f™. Hence, according to Lemma 2 for each n € Ny the set

E,, is representable as union of three disjoint sets
E,=A, UB, UC, (8)

where A, is an open set, B, is a nowhere dense perfect set and C), is at most countable,
where A,,, B,, and C,, can be empty. Hence, for the union F of all E, is representable as (6)

where A and B are the union of all A,, B, respectively, and

C=JC\(AuB)

is at most countable. Thus A is an open set which has the form (7) where the components
(e, B;) are pairwise disjoint, and ANC = BNC = 0.

Fort € A, andt € B, we have f"*D(t) = 0 so that A, C A, and B,, C B,,, respectively.
Hence, A,, N B, = { for all n implies that AN B = 0, too.

The sets A,,, B, and C, are unique determined according to Lemma 2. This implies the

uniqueness of A, B and C' in (6).
Finally let be A # (). We remember that A,, C A, for n > m. Assume that I, = (a,,b,)

and I, = (am,by,) are components of A, and A,,, respectively, then either I,, = I, or
I, N1, = 0. This follows from the fact that f""Y(t) =c # 0 for t € I,, and f"V(t) = 0

for t € I,,,. Consequently, f is a polynomial on each interval o, 3;]. B

Remarks 4 1. In case E = [0,1] we have A = (0,1), C' = {0,1}, and f is a polynomial

on [0, 1] so that Theorem 1 is a consequence of Proposition 3.
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2. In case A # () the endpoints of each component (a;, 5;) belong to E. Between two
intervals (o, 5;), (oj, ;) of A there exists at least one point ¢, ¢ E. If namely
(0y, ;) € E where o; < «; then, owing to Theorem 1, the function f is equal to a
polynomial of degree n. Hence, (o, 3;) C A,, which is impossible in view of the unique

representation of A, according to Proposition 3.

Let us consider some examples for the different possibilities of the sets E, A, B, C in
Proposition 3. Obviously, if f is a polynomial then £ = [0,1], A = (0,1), B = () and
C = {0, 1}, but also the case F = () is possible, e.g. for f(t) = e'. For further possibilities

let us consider the homogeneous integral-functional equation

oy =v [ omar (b=-") )

with the real variable ¢ and a parameter a > 1, cf. [1], [2]. The solutions of (9) were studied
for a = 3 in Wirsching [9], for a = 2 in Schnabl [7] and Volk [3], and for a > 2 in Wirsching

[

]
[0, 1] which is uniquely determined by the normalization

. In [1] it was shown that for a > 1 equation (9) has a C'*°-solution with the support

/ d(t)dt = 1. (10)

In case @ = 2 the solution ¢ has the property ¢™(t) = 0 if and only if ¢ = 2% with
ke0,1,...,2" cf. [2], formula (4.8), so that in this case we have A = B = () and C is
the countable set of all dyadic rational numbers in [0, 1]. In case a > 2 the solution ¢ is a
polynomial on each component of an open Cantor set G with Lebesgue measure |G| = 1,
and the set of all ¢ ¢ G with ¢™(¢) = 0 with a certain n € N is countable, cf. formula (4.7)
in [2]. Hence, in this case we have A = G, i.e. A =1[0,1], B = () and C is the set of all

endpoints of the components of G.
The following example shows that also the case B # () is possible.
Example 5 Let fy be any infinitely often differentiable function over [0, 1] with fo(¢) > 0
for 0 <t <1 and fék)(O) = fék)(l) = 0 for all k € Ny, e.g.

folt) = e (11)
For a given nowhere dense perfect set By C [0,1] with 0,1 € By the open complement
G = [0,1] \ By is representable as union of pairwise disjoint intervals (a;,b;) (j € N). We
define a function f by f(t) =0 for t € By and by

f@z@h(t_%)

bj—aj
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for a; <t < b;, and

(12)

() o
" \bj—q

The number M; exists in view of the continuity of fék) and fék+1)(0) = fékﬂ)(l) = 0 so that
c; > 0 for all j. Consequently, it holds Ey = By. Obviously, for a; <t < b; and k € Ny it
holds

where

M, = ma ma.
J ke{O,..).(,j} aj<t<)%j (bj — a;)* min (t — a;,b; — t)

P90 = Gt (2. (14

(bj — a;)* bj — aj

We show by induction with respect to k that f*)(¢t) = 0 for t € By. This is true for k = 0
according to the definition of f. Assume that this is true for a fixed k. Let tg € By and

t, # ty a sequence which converges to to. If t, € By then

S () = F® (ko)
t, — to

=0.

Hence, it suffices to consider the case that ¢, € [0,1] \ By for all n € N, i.e. t, € (a;,,b;,).
Obviously, we need to investigate only two cases: 1. the sequence j, is bounded and 2.
Jn — 00 as n — o0o. The first case is only possible if for n > ng all ¢, belong to the same

interval (a;,b;) and ¢ is an endpoint of (a;, b;). Then we have

o F9 () = 0(0)

n—00 t, — tO

=0

in view of fékﬂ)(()) = fékﬂ)(l) = 0. In the second case we can choose an integer ny such
that j, > k for n > ny. From (14) and f*)(ty) = 0 we obtain

’f““) (tn) — ™ (to) 109 ( tn — aj, ) ‘
¢ \bj, —a;, /)|

tn — to
Since |ty — t,| > min(¢, — a;,,b;, — t,) we get for n > ng in view of (12), (13) and k < j,
that

_ Cin
(bj, — aj, )k |tn — to|

1
<——=0
In

() = fP(to)
’ tn - tO

for n — co. Altogether we obtain f*+ () = 0. According to Proposition 3 it holds By C B

so that here we have an example for an infinitely often differentiable function f with B # ().

Theorem 6 Let f be an infinitely often differentiable real function over [0,1]. Then the
set M ={t:3n € Ny: f™(t) =0, f"V(t) £ 0} is at most countable.
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Proof: For n € Ny let M, the set of all points ¢ € [0, 1] with £ (¢) = 0 and f™*(¢) # 0.
Hence, M,, C E,, with the notations of Proposition 3, cf. (8), where A, is an open set. Let
(cr, B) be a component of A, then f is a polynomial of degree m. Hence, for n < m the
number of points ¢ € (a, ) with f(™(¢) = 0 is finite and for n > m there is no point with
fOHN(t) #£ 0. Tt follows that M, N A, is at most countable. For t € B, we have f"*(t) =0
so that M, N B, =0, i.e. M, C A, NC,. It follows that M is at most countable H

Obviously, for a polynomial f the set D = {t : f™(t) # 0, Vn € Ny} is empty.

Theorem 7 Let f be an infinitely often differentiable real function over [0,1]. If f is
not a polynomial then the set D = {t : fM(t) # 0, ¥n € Ny} has the power c.

Proof: Let D be a nonempty set. We apply Proposition 3 with the introduced notations.
Obviously, the set D is the complement of F so that E C [0, 1] since D # (). We consider

two cases:

1. Assume that there exists an interval I = (a,b) without points of A. Then according

to Proposition 3 it holds the disjoint decomposition
I=(InB)U(INC)u(( nD)

where the first and the second set on the right-hand side are sets of first category.
Consequently, I N D is a set of second category and so D has the power c, cf. [1],
10.12.

2. Assume that [0, 1]\ A is nowhere dense in [0,1], i.e. A = [0, 1] where because of D # ()
the case A = (0,1) is excluded in view of Remark 4.1. It follows from Proposition
3 that A is the union of countably many open intervals (a;, 3;) which are pairwise
disjoint, cf. (7). Hence, the set [0,1] \ A is a nowhere dense perfect set. Then there
exists a continuous increasing function g with ¢(0) = 0, ¢g(1) = 1 and g(t) = g; for
t € (o, 3;) with g; # g; for i # j where the countable set g(A) of all g; is dense in
[0,1], cf. Cantor’s stair function. For the set

AT = U [, 5]

)

we have g(A*) = g(A) = {g:} and the restriction of g to [0,1] \ A* is even strictly

increasing and has the following property:

(i) The map g: ([0,1]\ A*) — [0,1] \ g(A*) is bijektive.
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According to Remark 4 the set D from (2) is a subset of [0,1] \ A*. Next we show
that for all n the sets g(B,) are nowhere dense. Assume that there exists an n such
that g(B,) is dense in an interval (g;, g;) with ¢ # j then [g;, g;] C ¢(B,,) since g(B,)
is closed in view of the continuity of g. This implies owing to (i) that all points of the
set (o, ;) \ A belong to B, C E which is impossible, c¢f. Remark 4. Consequently,
g(B,,) is nowhere dense so that g(B) is a set of first category. This is true also for
the union g(A) U g(B) U g(C) since g(A) and g(C') are at most countable sets. This
implies that g(D) is a set of second category so that it has the power c, cf. [1]. Since
D C[0,1] \ A* it follows from (i) that also the set D has the power ¢ B
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ALEXANDER MEDUNA, ROMAN LUKAS

A Note on Iteratively Extendable Strings*

ABSTRACT. This scientific note introduces the notion of an iteratively extendable string
within a language. It demonstrates that every language that has such an iteratively extend-
able string z contains infinitely many strings whose length is divisible by the length of z.

Some consequences and applications of this result are given.

KEY WORDS. Formal languages, Pumping lemmas, Primes

1 Introduction

Consider a language, L. A string of the form wgviuqvs...u,_1v,u, in L, where vivs...v,, is
non-empty, is iteratively extendable within L if uov{*u v5"... 1,10 u,, is also in L, for every
m > 0. In this scientific note, we prove that if there exists an iteratively extendable, z,
within L, then L contains infinitely many strings whose length is divisible by the length of
z. As a consequence of this, L contains infinitely many strings whose length differs from
any prime. Thus, if there is a pumping lemma for a language family, such as the pumping
lemma for the family of ETOL languages of finite index, then every infinite language in this

family contains infinitely many strings whose length differs from any prime.

2 Definitions

This paper assumes that the reader is familiar with the theory of formal languages (see
[1, 2, 3, 5]). For an alphabet, V', V* represents the free monoid generated by V under
the operation of concatenation. The identity of V* is denoted by . Set V' = V* —
{e}; algebraically, V* is thus the free semigroup generated by V under the operation of

concatenation. For w € V*, |w| denotes the length of w.

*Acknowledgement. This work was supported by GACR grant GA201/04/0441 and GACR grant
GA102/05/H050.
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Now, we introduce the notion of an iteratively extendable string within a language. Let
L CV*. Astringw € L is iteratively extendable within L if w = ugviuivs...u,,_10,u,, for some
n > 1, where u;,v; € V*,0<i<n,1<j<n,|vvse..v,] > 1and uov*uiv5"...up_ 10 u, € L
for all m > 0.

3 Results

Theorem 3.1 Let L be a language over an alphabet V. For every iteratively extendable
string z € L, there exists an infinite language L., C L such that for each x € L,, |z| is

divisible by |z|.

Proof: Let L be a language over an alphabet V. Let z be an iteratively extendable string in
L. That is, 2 = ugv1u1vs...Uy,— 1V Uy, for some n > 1, where u;,v; € V*,0<i<n,1<j<n,
|v1v9...0,| > 1 and ueuTug V5. 0™, € L for all m > 0. Set L, = {ugviuivy...u, 10iu,
J = i.|ugviugvg... Uy 10U, | + 1 for ¢ > 0}, Clearly, L, is infinite and L, C L. Consider

any string ugvjuav3...up_1vlu, € L, with j = i.|ugviuive...up_10,u,| + 1 for some i > 0.

Observe that [uov]uv).. .ty 107U, | = |UoV1t1Vs.. Uty | + |01 4 (037 + o 4 [0I 7] =
[ugv1 U1 V.. Uy 10U | + (5 — 1) o1+ (G = 1) Jva] 4+ ... 4+ (5 — 1) o] = Jugviugva...ty 100, |+
(7 = 1).Jvrvg...v,| = |uovrugve. .ty 1 0p Uy | + 1. [UgU1 UL Ve Uy U Uy | |01 V.0, | =

|uV1U1 Vg Uy — 1V Uy | (1 + 2. U1 va. 0y |) = |2].(1 + 4. |v1vg...0|). Thus, Theorem 3.1 holds. W

Corollary 3.2 Let L be a language and z € L be iteratively extendable string; then, L

contains infinitely many strings whose length is divisible by |z|.

To demonstrate some applications of the previous corollary, recall that almost every textbook
about formal languages proves that {a" : n is a prime} is not regular in a rather complex way
(c.f. Example 3.2 in [1], Example 8.8 in [2], Example 4.1.3 in [3], and Example 7.3.2 in [7]).
Notice, however, that Corollary 3.2 immediately implies this result because every infinite
regular language contains infinitely many iteratively extendable strings as follows from the
regular pumping lemma (see Section 4.1 in [3]). From a broader perspective, if there is a
pumping lemma for a language family, then this family contains no infinite language in which
the length of every string equals a prime, such as {a" : n is a prime}. To illustrate, consider
the pumping lemma for the family of ETOL languages of finite index (see Theorem 3.13 in
[1]). That is, let G = (V, P, S, %) be an ETOL system of index k (for some k£ > 1) and let
L(G) be infinite. Then, there exist positive integers e and € such that, for every string w in
L(G) that is longer than e, there exists a positive integer n < 2k such that w can be written
in the form w = upvyuyva...Up 10U, With |v;| <€ for 1 < i < n, |vjvs...v,| > 1 and for every
positive integer m, the string upv*uiv5"...u,—1v, u, € L. By Corollary 3.2 above, this family

does not contain any infinite language in which the length of each string equals a prime.
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ZOLTAN BOROS! AND ARPAD SzAzZ

Finite and conditional completeness properties of
generalized ordered sets

ABSTRACT. In particular, we show that if X is a set equipped with a transitive relation

<, then the following completeness properties are equivalent :

(1) Ib ({z,y}) #0 forall z,y € X, and inf(A) #0 forall AC X with A #(
and 1b(A) #0;

(2) inf ({z,y})#0 forall z,y € X, and inf(A) #0 forall AC X with A#0,
Ib(A)#0 and ub(A) #0.

Thus, we obtain a substantial generalization of a basic theorem of Garrett Birkhoff which
says only that in a conditionally complete lattice every nonempty subset which has a lower

bound has a greatest lower bound.

KEY WORDS AND PHRASES. Generalized ordered sets, lower bound and infimum com-

pletenesses.

Introduction

Throughout this paper, X will denote an arbitrary set equipped with an arbitrary binary
relation <. Thus, X may be considered as a generalized ordered set or an ordered set

without axioms.

The set X will be called reflexive, transitive, antisymmetric and total if the relation < has
the corresponding property. If X is total, then for any x, y € X we have either x <y or

y < x. Thus, in particular, X is reflexive.

!The research of the first author has been supported by the grant OTKA T-043080 and the J4nos Bolyai

Scholarship of the Hungarian Academy of Sciences.
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For any A C X, the members of the families
Ib(A)={zeX: VacA: z<a}

and
ub(A)={zeX: VacA: a<uz}

are called the lower and upper bounds of A in X, respectively. And the members of the

families

min (A) =ANI1b(A), max (A) = ANub(A4),
inf (A) = max (1b (A)), sup (A) = min (ub (4))

are called the minima, maxima, infima and suprema of A in X, respectively.

First, we show that the following extension of [2, Lemma 2.23, p. 46] is true.

Lemma If X is transitive, and moreover A; C X and inf (A;) # 0 for all i € I,

then
Ib (U Ai) =1b (Uinf(Ai)) and  inf (U Ai) = inf <Uinf(Ai)>.
iel iel iel iel
Then, by using this lemma, we show that the following generalization of [I, Theorem 9,

p. 115] is also true.

Theorem If X is transitive, then the following completeness properties are equivalent :

(1) b ({z,y}) #0 foral z,ye€ X, and inf (A) #0 forall ACX with A#0
and 1b(A) #0;

(2) inf ({z,y}) #0 forall z,y€ X, and inf(A)#0 forall ACX with A#0,
Ib(A)#0 and ub(A) #0.

Remark If in particular X is partially ordered, then by using the above lemma we also

show that the following completeness properties are equivalent :

(1) inf ({z,y})#0 forall z,ye X;

(2) inf (A) # (0 for every finite, nonvoid subset A of X .

In this respect, it is noteworthy that to prove a counterpart of the above equivalence for 1b

instead of inf, the transitivity of the relation < is again sufficient.
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1 Lower and upper bounds

Concerning lower and upper bounds, we shall only quote here the following simple theorems

of [5].

Theorem 1.1 If A;C X forall i €1, then

b(JA4) = b(a).

icl iel
Corollary 1.2 If ACBC X, then 1b(B) Clb(A).
Proof: Note that 1b(B)=1b(AUB)=1b(A)N1b(B) Clb(A).
Corollary 1.3 If AcC X, then 1b(A)=(,c4lb(a), where 1b(a)=1b ({a}).
Theorem 1.4 If A, BC X, then

AClb(B) <= BCub(A).

Corollary 1.5 If AC X, then A C ub(lb(A)).

Proof: Clearly, 1b(A) C Ib(A). Hence, by Theorem 1.4, the required inclusion already

follows.

Theorem 1.6 If AcC X, then
min (A) = ANinf (A) and inf (A) =1b(A)Nub (Ib(4)).
Corollary 1.7 If AcC X, then min(A) C inf (A) C 1b(A) C Ib (inf (A)).

Proof: By Theorem 1.6, we have not only min (A) C inf (A) C Ib(A), but also inf (A) C
ub (lb (A). Hence, by Theorem 1.4, the required inclusion already follows.

The importance of reflexivity, totality and antisymmetry will only be illuminated here by

the following basic theorems of [0].

Theorem 1.8 If ® =1b, min or inf, then the following assertions are equivalent :
(1) X s reflezive;
(2) x € ®(x) forall zeX.

Theorem 1.9 The following assertions are equivalent :
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(1) X s reflexive;
(2) min(z) #0 foral zeX;
(3) min(x) ={x} forall z€X.

Theorem 1.10 The following assertions are equivalent :

(1) X is total;

(2) min ({z, y}) #0 forall =z, yeX.

Theorem 1.11 If X is reflexive and ® = min or inf, then the following assertions

are equivalent :

(1) X is antisymmetric;
(2) card (®(A4)) <1 forall ACX.

Corollary 1.12 If X is reflezive and antisymmetric, then inf (z) = {x} for all x €
X.

2 The importance of transitivity

Concerning the importance of transitivity, we shall only quote here the following basic the-

orems of [0]. Hints for the proofs are included only for the reader’s convenience.

Theorem 2.1 The following assertions are equivalent :

(1) X s transitive ;
(2) yelb(xz) and z€lb(y) imply z €lb(z) foral z,y, z € X;

(3) BCIb(A) and C CJyep Ib(b) imply C Clb(A) forall A, BCX.

Proof: To prove the less obvious implication (2) = (3), suppose that (2) and the con-
ditions of (3) hold. If ¢ € C, then since C' C |J,cz ub(b) there exists b € B such that
c € 1b(b). Moreover, if a € A, then since b € B C Ib(A) we have b € Ib(a). Hence, by
using (2), we can already infer that ¢ € 1b (a). Now, since a € A and ¢ € C' were arbitrary,
it is clear that ¢ € Ib(A), and thus C C 1b(A). Therefore, (3) also holds.

From the above theorem, it is clear that in particular we also have
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Corollary 2.2 If X is transitive, then x € Ib(A) and y € 1b(z) imply y € 1b(A)
forall ACX and xz,ye X.

Theorem 2.3 If X is transitive, then

Ib(z)=1b(A) for all ACX and x€inf(A).
Proof: If x € inf (A4), then by Corollaries 1.7 and 1.2 we have 1b (A) C Ib (inf (A)) C Ib(z)
even if X is not transitive.

Moreover, if x € inf (A), then Corollary 1.7 we also have z € 1b(A). Hence, by Corollary
2.2, it is clear y € Ib (x) implies y € Ib (A). Therefore, 1b(z) C Ib(A) is also true.

Corollary 2.4 If X is transitive, then
Ib(A)=1b(inf(A))  forall ~ACX with inf(A)#0.

Proof: By Theorems 1.1 and 2.3, it is clear that

b (inf(A4)) = () Ib(z)= (] b(A)=1(4).

z€inf (A) z€inf (A)
Now, in addition to the results of [(], we can also easily prove the following

Theorem 2.5 If X is transitive and A; C X for all i € I, then

ww(Ua)=w((Ua)u(U i),

iel\J

2) inf (|J 45) :mf((ieuj a)u( U inf(Ai)>),

iel ieI\J
where J={iel: inf(A;)=0}.

Proof: By Theorem 1.1 and Corollary 2.4, we have

lb<U Ai> = b(4,) =

(ﬂ lb(AZ-))ﬂ< N lb(Ai)> — (ﬁlb(Ai))m( N lb(inf(Ai))> =
ieJ ieI\J icJ ieI\J
lb(U Ai) mlb(Uinf(Ai)> :lb(<U Ai) u( U inf(AZ-)>).
ieJ ieJ ieJ 1el\J

Hence, by the definition of inf, it is clear that (2) is also true.

From Theorem 2.5, we can at once get the following generalization of the second part of |2,
Lemma 2.23, p. 46].
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Corollary 2.6 If X is transitive, and moreover A; C X and inf (A;) # 0 for all

1 €1, then
(1) 1b(U Ai> :1b<Uinf(Ai)>;
2) inf<U Ai) :inf<Uinf(Ai)>.

3 Finite lower bound completenesses

Definition 3.1 We say that

(1) X s two-lb-complete if b ({z,y})#0 forall z,yeX;

(2) X is two-inf-complete if inf ({z,y}) #0 foral z,yeX;

(3) X s finitely quasi-lb-complete if 1b(A) # O for all finite, nonvoid subset A of X ;
(4) X s finitely quasi-inf-complete if inf (A) # 0 for all finite, nonvoid subset A of X.

Remark 3.2 By Corollary 1.7, it is clear that ‘two-inf-completeness’ implies ‘two-1b-comp-

leteness’, and ‘finite quasi-inf-completeness’ implies ‘finite quasi-lb-completeness’.

Moreover, by using the well-orderedness of the set N of all natural numbers, we can prove

the following

Theorem 3.3 If X is transitive, then the following assertions are equivalent :

(1) X s two-lb-complete ;

(2) X s finitely quasi-lb-complete .

Proof: By Definition 3.1, it is clear that (2) = (1) even if X is not partially ordered.

To prove the converse implication, suppose on the contrary that (1) holds, but (2) does not
hold. That is, Ib ({z, y}) #0 forall z,y € X, and 1b(A) = 0 for some finite, nonvoid
subset A of X.

Denote by A the family of all finite, nonvoid subsets A of X such that 1b(A) = (). Then,
by the above assumptions, it is clear that A # () and card (A) > 2 for all A € A. Define

M= {card(A): AecA}.

Then, we evidently have () £ M C N such that 1 ¢ M and 2 ¢ M.
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Hence, since N is well-ordered, we can infer that min (M) # (). Therefore, there exists
n € min (M) . This implies that n € M and n € lb(M). Hence, it is clear that 2 <n € N
such that n < m for all m € M . Moreover, we can also state that there exists A € A such
that n = card (A).

Thus, we can choose a € A, and define B = A\ {a}. Then, it is clear that B is a
finite nonvoid subset of X such that k = card (B) < card (A) = n. Therefore, 1b(B) # ()
also holds. Namely, 1b(B) = () would imply that B € A. Hence, we could infer that
k = card (B) € M, and thus n <k, which would be a contradiction.

Now, we can choose [ € 1b(B) and v € 1b ({a, ﬁ}) . Then, by Theorem 1.1, it is clear
that v € Ib(a) and v € 1b (). Hence, by using Corollary 2.2, we can infer that v € Ib(B).
Therefore, by Theorem 1.1, we also have y € b (a) N1b(B) =1b ({a} UB) =1b(A). This
contradiction proves that (1) = (2).

A particular case of the following theorem is usually considered to be quite obvious in the
advanced theory of lattices. The proofs given here and in [1, p. 40] show that this attitude

cannot be completely justified.

Theorem 3.4 If X is partially ordered, then the following assertions are equivalent :

(1) X s two-inf-complete ;

(2) X is finitely quasi-inf-complete .

Proof: By Definition 3.1, it is clear that (2) = (1) even if X is not partially ordered.

To prove the converse implication, suppose on the contrary that (1) holds, but (2) does not
hold. Denote by A the family of all finite, nonvoid subsets A of X such that inf(A) = 0.
Then, by using a similar argument as in the proof of Theorem 3.3, we can see that there
exists A € A such that by choosing a € A and defining B = A\ {a}, we already have
inf (B) #0.

Now, by Theorem 1.11, it is clear that there exists x € X such that inf(B) = {z}.
Moreover, by Corollary 1.12, we also have inf ({a}) = {a}. Hence, by using Corollary 2.6,

we can infer that
inf (A) = inf ({a} U B) = inf (inf ({a}) Uinf (B)) = inf ({a} U{z}) =inf ({a, 2 }).

However, this is already a contradiction. Namely, by A € A, we have inf (A) = (). While,
by (1), we have inf ({a, z}) # 0. Therefore, the implication (1) = (2) is also true.
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4 Conditional infimum completenesses

Definition 4.1 We say that

(1) X is pseudo-inf-complete if inf (A) #0 forall AC X with Ib(A)#0;
(2) X is semi-inf-complete if inf (A) # 0 forall ACX with A#0 and 1b(A)#0;

(3) X is almost pseudo-inf-complete if inf (A) # @ forall AC X with Ib(A)#0D and
ub(4) £

(4) X is almost semi-inf-complete if inf (A) #0 forall AC X with A#0, Ib(A)#0
and ub(A) #0.

Remark 4.2 Thus, ‘pseudo-inf-complete’ implies both ‘semi-inf-complete’ and ‘almost pseudo-

inf-complete’, and ‘almost pseudo-inf-complete’ implies ‘almost-semi-inf-complete’.
Moreover, by using Corollary 2.6, we can also prove the following

Theorem 4.3 If X is transitive and ub (X) # (), then the following assertions are

equivalent :

(1) X s two-lb-complete and pseudo-inf-complete ;

(2) X s two-inf-complete and almost pseudo-inf-complete .

Proof: By the corresponding definitions, it is clear that (1) = (2) even if X is not
transitive or ub(X) = (. Moreover, from Remark 3.2 we know that the first part (2)
always implies that of (1). Therefore, to prove the converse implication (2) = (1), we

need only show that (2) implies the second part of (1).
For this, assume that (2) holds, and moreover A C X such that Ib (A) # 0. If A=0, then

by the corresponding definitions it is clear that
inf (A) = inf (§) = max (1b(0)) = max (X) = ub (X),

and thus inf (A) # (. Therefore, we may assume that A # ), i.e., there exists a € A.
Define

B = U inf({a,z}).

z€A
Then, by Corollary 2.6, it is clear that

lb(B):1b< | inf ({a, x}) :1b< UAa, x}) =1b(A).

z€A z€EA
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Moreover, by using the duals of Theorems 1.1 and Corollary 1.2, and Corollaries 1.7 and 1.5,

we can see that

ub (B) =ub( | inf ({a, :13}) =

reA

ﬂ ub (inf ({a, 2})) D m ub (Ib ({a,z})) D ﬂ{a, z} D {a}.

z€A reEA €A

Therefore, 1b(B) # 0 and ub(B) # ( also hold. Thus, by the almost pseudo-inf-
completeness of X, we also have inf (B) # ().

Now, it remains to note that by Corollary 2.6 we also have

inf (A) :inf( UAa, x}) :inf( |J inf ({a, x}) — inf (B).

z€A T€A
Therefore, inf (A) # () also holds, and thus X is pseudo-inf-complete.

The following theorem is a generalization of the first part of [I, Theorem 9, p. 115]. Our
subsequent sketch of the proof shows that the two and a half line proof given there may only

be considered as a hint.

Theorem 4.4 If X is transitive, then the following assertions are equivalent :

(1) X s two-lb-complete and semi-inf-complete ;

(2) X s two-inf-complete and almost semi-inf-complete .

Proof: Again, it is clear that (1) = (2) even if X is not transitive. Moreover, the first
part (2) always implies that of (1). Therefore, to prove the converse implication (2) = (1),
we need only show that (2) implies the second part of (1).

For this, assume that (2) holds, and moreover A C X such that A # () and Ib(A) # 0.
Choose a € A, and define
B = U inf ({a, z}).
zeA
Then, it is clear that () # B C X. Namely, by the two-inf-completeness of X and the
definition of B, we evidently have @) # inf({a,a}) C B.

Moreover, from the proof of Theorem 4.3, we can see that 1b(B) # () and ub (B) # 0 also
hold. Thus, by the almost semi-inf-completeness of X, we also have inf (B) # (). Now, it
remains to note that by the proof of Theorem 4.3, we also have inf (A) = inf (B). Therefore,
inf (A) # () also holds, and thus X is semi-inf-complete.
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5 Two illustrating examples
Example 5.1 If X ={a, b, ¢} such that we only have
a<b, b<e, c<a and <z for all re X,

then X is total and antisymmetric. Moreover, X 1is two-inf-complete, but not finitely
quasi-Ib-complete. Thus, by Remark 3.2, X is also two-lb-complete, but not finitely quasi-

inf-complete.

To check that X is not finitely quasi-lb-complete, note that
Ib(a) = {a, ¢}, Ib(b) = {a, b}, b (b) = {b, c}.
Therefore, by Corollary 1.3, we have

b (X) =1b(a) NIb(B)N1b(c) =0,

and thus X is not finitely quasi-lb-complete.

Moreover, we can quite similarly see that

b({a.b})={a},  B({ac})={c.  b({be})={b}.

Hence, since by the dual of Theorem 1.8 we have z € max (z) for all z € X | it is already

clear that
inf ({z,y}) =max (Ib({z,y})) #0

for all z,y € X with x # y. Moreover, by Theorem 1.8, we also have z € inf (z), and
hence inf (z) # 0 for all = € X. Therefore, X is two-inf-complete.

Remark 5.2 In addition to Example 5.1 and Corollary 2.4, it is worth noticing that if X
is reflexive, antisymmetric and

Ib(A) =1b (inf (A))
forall A C X with card(A) =2 and inf (A) # 0, then X is necessary transitive. Thus,

by Theorem 3.4, X is finitely quasi-inf-complete if and only if it is two-inf-complete.

To check the transitivity of X, by Theorem 2.1 it is enough to show only that if x € X,
y €lb(x), z €1lb(y) and r £y,

then z € 1b(z). For this, note if A = {z, vy}, then by Theorem 1.8 and Corollaries 1.3

and 1.5 we have

y€lb(z)Nlb(y) =1b(A) and yeAcCub(lb(A)).
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Hence, by Theorems 1.6 and 1.11, it is clear that
y€lb(A)Nub(lb(A)) =inf(A), and thus {y} =inf (A4).
Now, by using our former assumptions and observations, we can already easily see that
z€lb(y) =1 (inf(A)) =1b(A) =1b(z)Nlb(y) C Ib(z).

Example 5.3 If X ={a, b, ¢, d} such that we only have

then X is transitive and antisymmetric. Moreover, X is almost semi-inf-complete, but not

semi-inf-complete.
To check this, note that

b (a) = {a}, b () =0, Ib(c)={a}, 1b(d)={a,b,c};
ub(a) = {a, ¢, d}, ub(b)={d}, ub(c)={d}, ub(d)=0.
Hence, by Theorem 1.6 and the dual of Corollary 1.3, it is clear that

inf (d) =1b (d) Nub (1b(d)) =1b(d) Nub(a) Nub (b) Nub(c) =0.

Therefore, X is not semi-inf-complete.

Moreover, by Corollary 1.3, it is clear that, for any A C X,
b(A)#0 = Ac{a,c,d} and ub(A)#0 = AcC{a,b,c}.
Therefore, if A#£@, Ib(A)# 0 and ub(A) # 0, then we necessarily have
A= {a} or A=A{c} or A={a,c}.

Hence, by Corollary 1.3, it is clear that 1b(A) = {a}. Moreover, by Theorem 1.6, it is clear
that
inf (A) =1b(A) Nub (b (A)) =1b(a) Nub(a) = {a}.

Therefore, X is almost semi-inf-complete.
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YUGUANG XU

Iterative Processes with Random Errors for Fixed
Point of ®-Pseudocontractive Operator”

ABSTRACT. The purpose of this paper is to introduce ®-pseudo-contractive operators—a
class of operators which is much more general than the important class of strongly pseudo-
contractive operators and ¢-strongly pseudocontractive operators, and to study problems of
approximating fixed points by Ishikawa and Mann iterative processes with random errors
for ®-pseudocontractive operators. As applications, the iterative approximative methods for
the solution of equation with ®-accretive operator are obtained. The results presented in

this paper improve, generalize and unify the corresponding results of Chang [3]-[1], Chidume

[5]-[10], Deng [12], Ding [13]-[14], Liu [16], Osilike [1&], Xu [19], Zhou [20].
KEY WORDS AND PHRASES. Duality mapping, Mann iteration sequence, Ishikawa iter-

ation sequence, ® -pseudocontractive operator.

1 Introduction and Preliminaries

Throughout this paper, we assume that X is a real Banach space with dual X*, (-, -) denotes

the generalized duality pairing. The mapping .J : X — 2%~ defined by
Je={j€ X" (z.5) = |ellljll, ljll = |z} Ve e X (1.1)

is called the normalized duality mapping.

We recall the following two iterative processes due to Ishikawa [15] and Mann [17], respec-

tively.

(a) Let K be a nonempty convex subset of X, and 7' : K — K be a mapping. For any
given xy € K the sequence {z,} defined by

Tpt1 = (1 - O‘n)xn + anTyna Yn = (1 - ﬁn)xn + 5TLT‘T7M (TL Z 0)

*This work is supported by the Foundation of Yunnan Sci. Tech. Commission of P. R. China
(No.2002A0058M)
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is called Ishikawa iteration sequence, where {a,} and {3,} are two real sequences in

[0, 1] satisfying some conditions.

In particular, if 5, =0 for all n > 0 in (a), then {z,} defined by
o €K, zp1=01—an)z, +a,Tz,, (n>0)

is called the Mann iteration sequence.

The consideration of error terms is an important part of any theory of iteration meth-

ods. For this reason, Xu [19] introduced the following definitions.

Let K be a nonempty convex subset of X and T': K — K a mapping. For any given
zo € K the sequence {z,} defined by

Tp1 = QT + By TYn + Yolin,  Yn = Gy + BnTxn + YnUn (n > 0) (1'2)

is called Ishikawa iteration sequence with random errors. Here {u,} and {v,} are two
bounded sequences in K; {an}, {Ba}, {7}, {@n}, {3,} and {4,} are six sequences in
0, 1] satisfying

In particular, if 3, = 4, = 0 for all n > 0 in (A), the {x,} defined by
ro € K, Tpy1 = Ty + 5, T2y + Ypttn, (n>0) (1.3)

is called Mann iteration sequence with random errors .

Note that the Ishikawa and Mann iterative processes are all special cases of the Ishikawa

and Mann iterative processes with random errors.

Now,

we introduce ®-pseudocontractive operators as follows.

Definition 1.1 Let K be nonempty subset of X. An operator T : K — X is said to be
d-pseudocontractive, if there exists a strictly increasing function ® : [0,00) — [0, 00) with
®(0) =0 and j(x —y) € J(x —y) such that

(Te =Ty, j(z —y) < llz —ylI* = @(llz —yl) Va,ye K. (1.4)

An operator A: K — X s said to be ®-accretive, if

(Az — Ay, j(z —y)) = @(|lz —yl|) Vz,y € K. (1.5)
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Remark 1.1 Obvious, if a $-pseudocontractive operator has a fixed point then it is unique.

The pseudocontractive operator is intimately connected with accretive operator [11]. It is
easy to verify that the operator T is ®-pseudoaccretive if and only if I — T is $-accretive
where [ is a identity mapping on X. Hence, the mapping theory for accretive operators is

intimately connected with the fixed point theory for pseudocontraction operators.

We like to point out: every ¢-strongly pseudocontractive operator must be the ®-pseudocon-
tractive operator with ®:[0,00) — [0,00) defined by ®(s) = ¢(s)s, and every strongly
pseudocontractive operator is ¢-strongly pseudocontractive with ¢ : [0, 00) — [0, 00) defined
by ¢(s) = ks where k € (0, 1).

In 1994, Chidume proved a related result that deals with the Ishikawa iterative approxi-
mation of the fixed point for the class of Lipschitz strictly pseudocontractive mappings in
uniformly smooth Banach space. At the same time, he put forth an open problem: It is not
known whether or not the Ishikawa iteration method converges for a continuous strongly
pseudocontractive mapping. Recently, this open problem has been studied extensively by
researchers (see, for example[3-4, 6-10, 12-14, 18-20]) in the case of T is strongly pseudocon-

tractive or ¢-strongly pseudocontractive operators respectively.

The objective of this paper is to introduce the ®-pseudocontractive operators — a class
of operators which is much more general than the important class of strongly pseudocon-
tractive operators and ¢-strongly pseudocontractive operators, and to study problems of
approximating fixed point by Ishikawa and Mann iterative processes with random errors for
®-pseudocontractive operators. We will prove that the answer of Chidume’s open problem is
affirmative if X is an arbitrary Banach space and T : K — K C X is uniformly continuous
d-quasicontractive. furthermore, if X is an uniformly smooth Banach space and T" may be
not continuous, the answer of Chidume’s open problem also is affirmative. As applications,
the iterative approximation methods for the solution of equation with ®-accretive operator
are obtained. The results presented in this paper improve, generalize and unify results of
Chang [3]-[1], Chidume [5]-[10], Deng [12], Ding [13]-[14], Liu [16], Osilike [18], Xu [19], Zhou

[20].
The following two Lemmas play crucial roles in the proofs of our main results.

Lemma 1.1 ([4]) If X be a real Banach space then there exists j(x +y) € J(z + y)
such that

lz +yll? < ll=l* + 2(y, j(z+y)) Vo, yeX. (1.6)

Lemma 1.2 ([ ](BI‘OWdeI')) X is uniformly smooth(equivalently X* is uniformly
convex) Banach space if and only if J is single-valued and uniformly continuous on any
bounded subset of X.
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2 The Convergence Theorems in Arbitrary Banach Space

If X is an arbitrary real Banach space with dual X*, we can prove following theorems.

Theorem 2.1 Let X be an arbitrary real Banach space with dual X* and K C X
a nonempty bounded conver subset. Let T : K — K be an uniformly continuous ®-

pseudocontractive mapping. Suppose the Ishikawa iteration sequence {x, } with random errors
be defined by (1.2) with parameters

(i) limy, oo B = iy, o0 By = limyy 00 4 = 0 and 372 B, = +00;
(i) v, = o(Bn).
If F(T) # 0 then for arbitrary xy € K, {x,} converges strongly to unique fized point of T.

Proof: From Remark 1.1, we have that F'(T') = {q}. Putting M = sup{||z| : x € K} +]|q||.
Since ||yn — Tpi1l| = (G — an)zy + BnTxn + Ann — BT Yn — Youn)|| — 0(as n — o0),
therefore,

en = ||Tyn — Txpi1]] — 0(as n — o0)
by the uniformly continuity of T'.
Let 20 = inf{||zp41 —q|| : n > 0}. If 0 > 0, then ®(||z,11 —¢||) > ®(0) for all n > 0. From

the conditions (i) and (ii) there exists an integer Ny > 0 such that

0 <Y, B < % and o(B,) < B,®(0) Vn > Ny. (2.7)
By (1.4), (1.6) and (2.7) we have

Hanrl - QH2 = HOén<l'n - Q) + ﬁn(Tyn - Q) + 7n<un - Q>H2
a%”% - Q||2 + 280 (Tyn — q, j(Tpi1 —q))
+2’7n(un —q, j(l‘n-‘rl - Q))

IA

S O‘i”xn _Q‘|2+2ﬁn(Tyn _Txn-&-b j(xn—l—l _Q))
+2ﬁn<T'xn+1 —q, j<xn+1 - Q)) + 2M27n (2 8)
S (1_ﬁn_’)/n)QHxn_Q‘|2+2ﬁn”$n+1 _QH2

26,0 (|ter — qll) + 2MBoe, + 202,

< low — qll? + 2M2B2 4+ 3MBoen + 3M7,
~28([[as1 — ql)) 5

=l — qll? + 0(8,) — 22(|as1 — al))5s

for all n > Ny. It follows from (2.8) that

lzner = all® < llzn = qll* + 0(Ba) — 28(0)Bn < [l — ql|* + —2(0) B,
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for all n > Ny. By induction, we obtain

+00

®(0) Y 6 < llon — gl < M*. (2.9)
j=N

2.9) is in contradiction with Y7 8, = 400. From this contradiction, we get o = 0.
7=0 77

Therefore, there exists a subsequence {z,,} C {z,} such that z,;, — ¢ as j — oo. For any
given € > 0 there exists an integer jo > Ny such that ||z, — ¢|| < e for all j > jo. If jo is

fixed, we will prove that ||z, 4+ — ¢l < € for all integers k > 1.

The proof is by induction. For k = 1, suppose |z, +1 — ¢|| > €. It follows from (2.8) and
®((2,,, 1 — ql) > D(c) that

82 < H$nm+1 - C]Hz < Hxnjo - QHQ + O(ﬁnjo) - 2ﬂnj0¢(€) < Hxnjo - QH2 < 52'

It is a contradiction. Hence, ||z, +1—¢|| < € holds for k = 1. Assume now that ||z, +,—q|| <
e for some integer p > 1. We prove ||z, 4p+1 —¢|| < e. Again, assuming the contrary, Using

(2.8), @([|2n;,4pr1 — qll) > ®(g) and (2.7), as above, it leads to a contradiction as follows

e < ||xnj0+p+1 - Q||2 < ||xnj0+p - Q||2 + O(ano—i-p) - 25nj0+pq)(5) < ||$nj0+p - QHQ <é?

Where nj, +p > nj, > jo > No. Therefore, ||z, +x — ¢|| < ¢ holds for all integers k > 1, so
that T, +k — ¢ as k — oo.
The Proof is completed.O

Remark 2.1 Theorem 2.1 improves a number of results (for example, Theorem 3.4 of [7]
and Theorem 4 of [11]). A prototype for {an}, {3n}, {7}, {dn},{B.} and {4,} in Theorem
2.11s

n?>+3n+1 3 1 1 . n—+1
On = =033 n = ) n= 7 o Hn=
(n+ 2)? nt2 (n+2)? n+3
and )
An:An:— Vn >0
b 7 n+3 "=

Theorem 2.2 Let X, K and T be as in Theorem 2.1. If q is a fized point of T in K

and the Mann iteration sequence {x,} is defined by (1.3) with parameters

(i) lim, oo B, =0 and Z:ﬁ% , = +00;
(ii) v, = o(B,) then {x,} converges strongly to unique fized point of T.

Theorem 2.3 Suppose that K C X is a nonempty bounded convex subset with K+ K C
K and A : K — K is an uniformly continuous ®-accretive operator. For any given f € K

the equation Ax = f has unique solution in K.
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Proof: We define S : K — K by Sz = f+x — Az for all z € K. It is easy to see that S is
uniformly continuous ®-pseudocontractive. Clearly, ¢ is a fixed point of S in K if and only
if that ¢ is a solution of the equation Az = f. It follows from Theorem 2.1 or Theorem 2.2
above that the equation Ax = f has unique solution in K.

The proof is completed. O

3 The Convergence Theorems in Uniformly Smooth Banach Space

Let X be a real uniformly smooth Banach space. Now we prove the following theorems.

Theorem 3.1 Suppose that K C X is a nonempty bounded conver subset and T :
K — K is a ®-pseudocontractive operator. If T' has a fized point and the Ishikawa iteration
sequence {x,} is defined by (1.2) with parameters

(i) lim,— oo Bn = lim, o Bn =0 and ZZ:(’) B, = +o0;

(ii) A = 0(Ba) and 7 = o(B,),
then iteration sequence {x,} converges strongly to unique fixed point of T

Proof: From Definition 1.1, we know that F(7') is singleton. Setting F(T) = {q} and
M = sup{|lz]| - & € K}+lgll- Since [|(g—) — (@ns1 — @) | = (G — @n)n + BT 0+t —
BnTyn —unll — 0 (as n — 00) and ||(yn — q) — (0 — @)|| = (&0 — Vn + BT w0 +Jnvn|| —
0 (as n — o0), thus the uniformly continuity of j ensures that

en = 7 (Y0 — @) = §(Tn1 — gl = 0 (as n — o0)
and
s$n = |17 (yn — ) — (@0 — @)l = 0 (as n — o).
Using (1.4) and (1.6), we have
[ QH2 = |lan(®n — @) + Bn(TYn — q) + Ynltn — Q)HZ

e (@n = OI° + 262 (TYn — ¢, j(Tn41 — )
+2’Yn(un —q, j(anrl - q))

IN

< Nlaw(zn — OI? +2680(Tyn — ¢, §(Yn — q))

+20M2, '
< aZllzn — qll* + 28ullyn — dll* — 268.2(||lyn — 4l

+2M Bren + 2M %y,
< (1= 62)lzn — qll* + 26allyn — all®

_2571@(”%1 - QH) + O(ﬁn)
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for all n > 0. Similarly,

Yy — QHZ = [lan(r, —q) + Bn(Txn —q) + Yn(vn — q)H2
16 (20 — QI + 200 (Txn — q, j(yn —q))
+2'3/n<un —q, ](yn - Q))

IN

S dngxH - Q||2 + 2Bn(Txn - 49, ](xn - Q))
+28,(Ta0 — ¢, §(Yn — @) — J (T — q)) + 2M34, (3.11)
< aqllen —all* + 28, )|z — gl = 268,2(]|2n — q|)
+2M By + 2M?,
< lwn — gl + M232 + 2MB,s, + 2M34,,
<l — gl + 0(Ba)

for all n > 0. Substituting (3.11) into (3.10) and simplifying, we obtain

Hxn-&-l - q”2 < ||xn - q”2 + O(ﬁﬂ) - QBnCI)(Hyn - qH) Vn >0 (3'12>

where o(3,) > 0. Let 20 = inf{||y, —¢q|| : n > 0}. If ¢ > 0, then ®(||y, — ¢||) > ®(0) >0
for all n > 0, and so, there exists an integer N > 0 such that o(3,) < 3,P(¢) for all n > N.
It follows from (3.12) that

|Zns1 = all* < llzw — qll* = Ba®(o0) ¥n > N.

By induction, we obtain

+0o0
(o) < llow — > < M2, (313)
j=N

(3.13) is in contradiction with Z;;OS B; = +o00. It follows from the contradiction that o = 0.
Therefore, there exists a subsequence {y,,} C {y.} such that y,, — ¢ as j — oo. Since
10 50, — = 10 oy [0, — | < 105 i, — ]+ M i e (B, +50,) = O, the
subsequence {z,,} converges strongly to q. So, we know that maybe {x, } converges to ¢ and
we cannot assure {x,} is not convergent. But, there are other conditions of {x,}, such that
{x,} converges to ¢q. Since z,, — q as j — oo, for any given £ > 0 there exists an integer
Jo > 0 such that |z,, —¢q|| < e for all j > jo, and 2M (|a,, — | + B + B 4 Y + Tn) < €
and o(83,) < 3,®(¢/2) for all n > ny,. If jo is fixed, we will prove that ||z, 1+ — ¢l < & for
all integers k£ > 1.

The proof is by induction. For k = 1, suppose ||z, +1 — ¢|| > €. Then, (1.2) implies that
[Yn;, — qll > €/2. In fact, we have

€< ||wnj0+1 _qH < ||ynj0 —QH +M(|anj0 _aﬁjo | +5nj0 +ﬁnj0 +7nj0 +,y7;j0) < ||ynj0 _QH +5/2
From ®([[y,,, — qll) > ®(¢/2) and using (3.12), we obtain

e® < lwnsy+1 = all* < llamy, — all* + 0(Buy,) — 260, 2(2/2) < 2y, —all* < ™.
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It is a contradiction. So, ||x,,; 41 —¢|| < € holds for & = 1. Assume now that ||z, +, —ql| <&
for some integer p > 1. We prove ||z, 1p41 — ¢q|| < €. Again, assuming the contrary, as
above, it leads to a contradiction. Hence, ||z, yx — ¢|| < € holds for all integers k& > 1, so
that x, — g as n — oo, i.e., limy_. Lo+ = -

The Proof is completed. O

Remark 3.1 Theorem 3.1 gives an affirmative answer to Chidume’s open problem when

T is ®-quasicontractive. The corresponding results (see, for example, Theorem 3.3 of [4],
Theorem 2 of [5], Theorem 3.1 of [13], Theorem 2 of [16] and Theorem 3.3 of [19]) are all
special cases of Theorem 3.1 in the following senses:

1) T may not be continuous, therefore, 7' may not be Lipschitz, also;
2) T may not be strongly pseudocontractive or ¢-strongly pseudocontractive;
3) the random errors of iterative processes have been considered appropriately;

4) the condition (iii) of Chidume’s Theorem in [5] is dropped.

We like to point out: the iteration parameters {a,}, {Bu}, {1}, {én}, {6} and {%,} in
Theorem 3.1 do not depend on any geometric structure of the Banach space X and on any
property of the operator T', but, the selection of the parameters is deal with the convergence
rate of the iteration. A prototype for {a,}, {Bn}, {7}, {@n}, {Bn} and {4,} in our theorem

1S

R n®>+3n+1 N 1
Oén—Oén—W7 6n—/6n_n+2
and )
n == ————= VYn>0.
== g T E

In the Theorem 3.1, if Bn =4, = 0 for all n > 0, then we obtain a result that deals with the

Mann iterative process with random errors as follows.

Theorem 3.2 Let K be a nonempty bounded convex subset of X and T : K — K C X
a ®-pseudocontractive operator. If T has a fized point and the Mann iteration sequence {x,}

is defined by (1.3) with parameters

(i) lim, oo B, =0 and :i% , = +00;
(ii) Tn = O(ﬁn)

Then {x,} converges strongly to unique fized point of T.
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Theorem 3.3 Suppose that K C X is a nonempty bounded convex subset with K + K C
K and A: K — K is a ®-accretive operator. For any given f € K the equation Az = f has
unique solution in K.

Proof: We define S: K — K by Sz = f+x — Az for all x € K. It is easy to see that §
is ®-pseudocontractive. Clearly, ¢ is a fixed point of S if and only if that ¢ is a solution of
the equation Az = f. It follows from Theorem 2.1 or Theorem 2.2 above that the equation
Axz = f has an unique solution in K.

The proof is completed. O
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