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Ian Schindler, Cyril Tintarev

The limiting Dirac-Sobolev inequality

ABSTRACT. We prove the critical Dirac-Sobolev inequality for p ∈ (1, 3). It follows that the
Dirac Sobolev spaces are equivalent to classical Sobolev spaces if and only if p ∈ (1, 3). We
prove the cocompactness of Lp∗(R3) in Ḣ1,p(R3). As an application, we prove the existence
of minimizers to a class of isoperimetric problems.

KEY WORDS AND PHRASES. cocompact imbeddings, concentration compactness, Dirac
operator, minimizers, Sobolev imbeddings, critical exponent

1 Introduction

In [1], Balinsky, Evans and Saito introduced an Lp-seminorm ‖(α · p)u‖p,Ω of a C4-valued
function on an open subset of Ω of R3 relevant to a massless Dirac operator

α · p =
3∑
j=1

αj(−i∂j). (1.1)

Here p = −i∇, and α = (α1, α2, α3) is the triple of 4× 4 Dirac matrices

αj =

(
02 σj

σj 02

)
j = 1, 2, 3

that use the 2× 2 zero matrix 02 and the triple of 2× 2 Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −1

i 0

)
, σ3

(
1 0

0 −1

)
.

They proved a family of inequalities for this seminorm, called Dirac-Sobolev inequalities, in
order to obtain Lp-estimates of the zero modes, i.e. generalized eigenfunctions associated
with the eigenvalue 0 of the Dirac operator (α · p) + Q, where Q(x) is a 4 × 4 Hermitian
matrix-valued potential decaying at infinity.
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Let Ω be an open subset of R3. The first order Dirac-Sobolev space H1,p
0 (Ω;C4) = H1,p

0 (Ω),
1 ≤ p <∞, is the completion of C∞0 (Ω;C4) with respect to the norm

‖u‖D,1,p,Ω :=

∫
Ω

(|u(x)|pp + |(α · p)u(x)|pp)dx (1.2)

where the p-norm of a vector a = (a1, a2, a3,a4)T ∈ C4 is defined as

|a|p = (
4∑
i=1

|ai|p)1/p,

u(x) = (u1(x), u2(x), u3(x), u4(x))T , and

(α · p)u(x) :=
3∑
j=1

αjpju(x) =
3∑
j=1

(−iαj∂ju(x)).

A completion of C∞(Ω;C)4 with respect to the same norm will be denoted H1,p(Ω).

Let β be the fourth Dirac matrix given by

β =

(
12 02

02 −12

)
,

where 12 is the 2 × 2 identity matrix. It is known that the free massless Dirac operator
α · p as well as the free Dirac operator α · p +mβ with positive mass m and the relativistic
Schrodinger operator

√
m2 −∆ have similar embedding properties in L2 but not necessarily

in Lp for p 6= 2. It is also known that for 1 < p < ∞, the usual W 1,p(Ω) Sobolev norm
(‖ψ‖pp + ‖∇ψ‖pp)1/p is equivalent to the norm ‖

√
1−∆ψ‖p, where ψ : R3 7→ C [14].

In [5] the authors explore the relationship of H1,p
0 (Ω) with the classical Sobolev spaces

W 1,p
0 (Ω;C4) when Ω is a bounded domain. In particular, it is shown that W 1,p

0 (Ω) and
W 1,p(Ω) are dense subspaces of H1,p

0 (Ω) and H1,p(Ω) respectively. The mapsJΩ,0 : W 1,p
0 (Ω) 3 u 7→ u ∈ H1,p

0 (Ω)

JΩ : W 1,p(Ω) 3 u 7→ u ∈ H1,p(Ω)

are one to one and continuous for 1 ≤ p <∞. They showed that the map JΩ,0 is onto with
continuous inverse if 1 < p < ∞ so that the spaces W 1,p

0 (Ω) and the space H1,p
0 (Ω) are the

same. If p = 1, the map JΩ,0 is not onto.

In this paper we prove the limiting Dirac-Sobolev inequality on the whole space,

∫
R3

|u|p∗dx ≤ Cp

(∫
R3

|(α · p)u|pdx
) p∗

p

, (1.3)
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where Cp is a positive constant, p ∈ (1, 3), and p∗ = 3p
3−p . It follows that the map JΩ is

onto for p ∈ (1, 3) if Ω is an extension domain. An extension domain is a domain for which
every u ∈ H1,p(Ω) there is a ũ ∈ H1,p

0 (Ω′) such that u = ũ|Ω where Ω ⊂ Ω′. We then prove
cocompactness of the embedding Lp∗(R3) ⊂ Ḣ1,p(R3), where Ḣ1,p(R3) is the completion of
C∞0 (R3;C4) with respect to the norm

‖u‖ =

(∫
R3

|(α · p)u|pdx
) 1

p

. (1.4)

See Remark 2.2. We apply this result to show existance of minimizers to isoperimetric
problems involving oscillatory nonlinearities with critical growth.

2 A Dirac-Sobolev inequality and the space Ḣ1,p(R3)

In this section we prove inequality (1.3).

Theorem 2.1 Let p ∈ (1, 3). Then there exists a constant Cp > 0 such that for every
u ∈ C∞0 (R3;C4), (1.3) holds.

Proof. Let us use the inequality (3.10) of [1], with the choice of parameters k = p, r = 1 and
θ = 3p−3

4p−3
:

‖u‖pp,B1
≤ C‖(α · p)u‖pθp,B1

‖u‖p(1−θ)1,B1
, u ∈ C∞0 (B1;C4). (2.1)

Using an elementary inequality sθt(1−θ) ≤ C(λs + λ−γt), 1
γ

= 1
θ
− 1, that holds for all

positive t, s, and λ, and setting λ = ρp, s = ‖u‖pp,B1
, and t = ‖u‖p1,B1

, one deduces from
(2.1), for all positive ρ,

‖u‖pp,B1
≤ C

(
ρp‖(α · p)u‖pp,B1

+ ρ3−3p‖u‖p1,B1

)
u ∈ C∞0 (B1;C4). (2.2)

By choosing ρ′ = Rρ and rescaling the integration domain we will have, for any positive ρ′,
renamed ρ,

‖u‖pp,BR ≤ C
(
ρp‖(α · p)u‖pp,BR + ρ3−3p‖u‖p1,BR

)
, u ∈ C∞0 (BR;C4), (2.3)

for any R > 0. We conclude that for any positive ρ,

‖u‖pp,R3 ≤ C
(
ρp‖(α · p)u‖pp,R3 + ρ3−3p‖u‖p1,R3

)
, u ∈ C∞0 (R3;C4). (2.4)

Let us apply (2.4) to functions χj(|u|), where χj(t) = 2−jχ(2jt), j ∈ Z and χ ∈ C∞0 ((1
2
, 4),

[0, 3]), such that χ(t) = t whenever t ∈ [1, 2] and |χ′| ≤ 2. Then we obtain, with the values
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ρ = ρj to be determined,∫
|u|∈[2j ,2j+1]

|u|pdx ≤
∫
χj(u)pdx

≤ C

(
ρpj

∫
|u|∈[2j−1,2j+2]

|(α · p)u|pdx+

ρ3−3p
j

(∫
|u|∈[2j−1,2j+2]

|u|dx
)p)

.

Taking into account the upper and lower bounds of |u| on the respective sets of integration,
we have

2(p−p∗)j

∫
|u|∈[2j ,2j+1]

|u|p∗dx ≤ Cρpj

∫
|u|∈[2j−1,2j+2]

|(α · p)u|pdx+

C2p(1−p
∗)(j−1)ρ3−3p

j

(∫
|u|∈[2j−1,2j+2]

|u|p∗dx

)p
.

If we substitute ρj = 2−
p3(1−p)j+pp∗−p

3−3p ρ, take the sum over j ∈ Z, and note that each of the
intervals [2j−1, 2j+2], j ∈ Z, overlaps with the others not more than four times, we get

∫
|u|p∗dx ≤ C

(
ρp
∫
R3

|(α · p)u|pdx+ ρ3−3p

(∫
R3

|u|p∗dx

)p)
Setting ρ =

(
1

2C

) 1
3−3p (

∫
up

∗
)
1
3 and collecting similar terms we arrive at (1.3).

Inequality (1.3) defines a continuous imbedding of Lp∗(R3;C4) into Ḣ1,p
D (R3).

Remark 2.2 Note that (1.4) does indeed define a norm on C∞0 (R3;C4), since (α · p)u = 0

implies |∇u|2 = 0 which yields u = const. Since u = 0 outside of a compact set, the value
of this constant is zero. We have therefore a Banach space Ḣ1,p

D (R3) into which Lp∗(R3) is
continuously imbedded. It should be noted, however, that the space Ḣ1,p

D (R3) is equivalent
to the usual gradient-norm space D1,p(R3;C4) if and only if p ∈ (1, 3). If p > 1, consider
the gradient norm and the Dirac-gradient norm (1.4) on C∞0 (BR;C4), which are equivalent
Sobolev norms in W 1,p

0 (BR;C4) and H1,p
0 (BR) respectively. Since these norms are scale-

invariant, they are equivalent (by Theorem 1.3 (ii) of [5]) on the balls BR with bounds
independent of R and thus, these norms are equivalent on C∞0 (R3;C4), and, consequently
D(R3;C4) = Ḣ1,p(R3). As a further consequence, the map JΩ defined in the introduction is
onto if p ∈ (1, 3) and Ω is an extension domain. From this observation, we obtain

Corollary 2.3 Let p ∈ (1, 3), Ω ⊂ R3 be and extension domain, and q ∈ [p, p∗] then

‖u‖q,Ω ≤ Cp,q

(∫
Ω

(|(α · p)u|p + |u|p)dx
)1/p

. (2.5)
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Remark 2.4 If p = 1, by Proposition 4.4 of [5] Ḣ1,1(R3;C4) is strictly smaller than
Ḣ1,1(R3).

3 Cocompactness of Dirac-Sobolev imbeddings

We recall the following definitions:

Definition 3.1 Let uk be a sequence in a Banach space E and D be a set of linear
isometries acting on E. We say that uk converges D−weakly to u, which we denote

uk
D
⇀ u,

if for all φ in E ′,
lim
k→∞

sup
g∈D

(gφ, uk − u) = 0.

Remark 3.2 It follows immediately from 3.1 that if a bounded sequence uk is not D−
weakly convergent to 0, then there exists a sequence gk ∈ D and a w 6= 0 ∈ E such that
g∗kuk ⇀ w.

Definition 3.3 Let B be a Banach space continuously embedded in E. We say that B
is cocompact in E with respect to D if uk

D
⇀ u in E implies uk → u in B.

Let δR be the group of dilations,

hsu(x) = p
3−p
p
su(psx),

let DG be the group of translations,

gyu = u(· − y), y ∈ R3,

and let
D := δR ×DG.

We will denote by DZ the subgroup, s ∈ Z, y ∈ Z3. Note that both ‖u‖p∗and ‖u‖Ḣare
invariant under D and DZ. Furthermore, cocompactness with respect to D is equivalent to
cocompactness with respect to DZ (Lemma 5.3, [15]).

Theorem 3.4 Let p ∈ (1, 3). Then Lp
∗
(R3)is cocompactly embedded in Ḣ1,p(R3) with

respect to D.

Proof. Assume uk is D-weakly convergent to zero in Ḣ1,p(R3). Since C∞0 (R3;C4) is dense in
Ḣ1,p(R3) and the latter is continuously imbedded into Lp∗(R3), we may assume without loss
of generality that uk ∈ C∞0 (R3). Let χ ∈ C∞0 ((1

p
, p2); [0, p2 − 1]), be such that χ(t) = t for

t ∈ [1, p] and |χ′| ≤ p
p−1

. By the Dirac-Sobolev inequality (2.5), for every y ∈ Z3,
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(∫
(0,1)3+y

χ(|uk|)p
∗
dx
)p/p∗

≤ C
∫

(0,1)3+y
(|(α · p)uk|p + χ(uk)

p)dx.

Since χ(t)p
∗ ≤ Ctp, this gives∫

(0,1)3+y

χ(|uk|)p
∗
dx

≤ C

(∫
(0,1)3+y

(|(α · p)uk|p + χ(uk)
p)dx

)(∫
(0,1)3+y

χ(|uk|)p
∗
dx

)1−p/p∗

≤ C

(∫
(0,1)3+y

(|(α · p)uk|p + χ(uk)
p)dx

)(∫
(0,1)3+y

upkdx

)1−p/p∗

.

Summing the above inequalities over all y ∈ Z3, and noting that by (1.3) ‖uk‖p∗ ≤ C,
therefore |

{
uk ≥ 1

p

}
| ≤ C from which we can conclude

∫
R3 χ(uk)

p ≤ C, we obtain

∫
R3

χ(|uk|)p
∗ ≤ C sup

y∈Z3

(∫
(0,1)3+y

|uk|p
)1−p/p∗

. (3.1)

Let yk ∈ Z3 be such that

sup
y∈Z3

(∫
(0,1)3+y

|uk|p
)1−p/p∗

≤ 2

(∫
(0,1)3+yk

|uk|p
)1−p/p∗

.

Since uk converges to zero D-weakly, uk(· − yk) ⇀ 0 in Ḣ1,p(R3), and thus it follows from
Theorem 1.3 (ii) in [5] and the fact that (0, 1)3 is an extension domain that uk(· − y)→ 0 in
Lp((0, 1)3;C4). Therefore,∫

(0,1)3+yk

|uk|p =

∫
(0,1)3

|uk(· − yk)|p → 0.

Substituting into (3.1), we obtain

∫
R3

χ(|uk|)p
∗
dx→ 0.

Let
χj(t) = pjχ(p−jt)), j ∈ Z.

Since for any sequence j ∈ Z, hjkuk converges to zero D-weakly, we have also, with arbitrary
jk ∈ Z,

∫
R3

χjk(|uk|)p
∗
dx→ 0. (3.2)

For j ∈ Z, we have
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(∫
R3

χj(|uk|)p
∗
dx

)p/p∗
≤ C

∫
{pj−1≤|uk|≤pj+2}

|(α · p)uk|pdx,

which can be rewritten as

∫
R3

χj(|uk|)p
∗
dx ≤ C

∫
{pj−1≤|uk|≤pj+2}

|(α · p)uk|pdx
(∫

R3

χj(|uk|)p
∗
dx

)1− p
p∗

. (3.3)

Adding the inequalities (3.3) over j ∈ Z and taking into account that the sets {x ∈ R3 :

2j−1 ≤ |uk| ≤ 2j+2} cover R3 with uniformly finite multiplicity, we obtain

∫
R3

|uk|p
∗
dx ≤ C

∫
R3

|(α · p)uk|pdx sup
j∈Z

(∫
R3

χj(|uk|)p
∗
)1−p/p∗

. (3.4)

Let jk be such that

sup
j∈Z

(∫
R3

χj(|uk|)p
∗
)1−p/p∗

≤ 2

(∫
R3

χjk(|uk|)p
∗
)1−p/p∗

.

Using the previous estimate and (3.2) we see that the right hand side of (3.4) converges to
zero. Thus uk → 0 in Lp∗ .

4 Existence of minimizers

We consider the class of functions F ∈ Cloc(R)satisfying

F (p
3−p
p
js) = p3jF (s), s ∈ R, j ∈ Z. (4.1)

This class is characterized by continuous functions on the intervals [1, p
3−p
p ] and [−p

3−p
p ,−1]

satisfying F (p
3−p
p ) = p3F (1) and F (−p

3−p
p ) = p3F (−1), extended to (0,∞) and (−∞, 0) by

(4.1). It is immediate that there exists positive constants C1 and C2 such that

C1|s|p
∗ ≤ |F (s)| ≤ C2|s|p

∗
. (4.2)

It also follows from (4.1) that for hj ∈ δZ,∫
R3

F (hju)dx =

∫
R3

F (u)dx, for j ∈ Z, u ∈ Lp∗
(R3).

The functional
G(u) =

∫
R3

F (u)dx

is continuous on Lp∗(R3) and thus on Ḣ1,p(R3).
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Theorem 4.1 There exists a minimizer to the following isoperimetric problem.

inf
G(u)=1

∫
R3

|(α · p)u|pdx (4.3)

in Ḣ1,p(R3).

Proof. Let uk be a minimizing sequence. By (4.2) and (2.5), uk is bounded. By Theorem 3.4
and (4.2), uk cannot converge D−weakly to 0. By Theorem 2 in [13] (see also [12]), (4.2),
and using the facts: ‖gw‖p

Ḣ
= ‖w‖p

Ḣ
and G(gw) = G(w), we may write (in our notation)

‖uk −
∑

n∈N g
(n)
k w(n)‖Lp∗ → 0 with g(n)

k ∈ DZ, w(n) ∈ Ḣ1,p(R3),

‖uk‖pḢ ≥
∑
n∈N

‖w(n)‖pH , and (4.4)

1 = G(uk) =
∑
n∈N

G(w(n)) + o(1). (4.5)

Since G(uk) = 1, (4.5) implies that at least one w(n) 6= 0. We will denote this w(n) by w.
From the proof of Theorem 2 in [13] it is immediate that

‖uk‖pH = ‖w‖pH + ‖uk − w‖pH + o(1). (4.6)

From (4.5) we deduce that

G(uk) = G(w) +G(uk − w) + o(1). (4.7)

Assume G(w) = λ. We imbed problem (4.3) in the continuous family of problems

α(t) := inf
G(u)=t

∫
R3

|(α · p)u|pdx.

From the change of variables u(t1/3·), we see that α(t) = infG(u)=1 t
(1−p/3)

∫
R3 |(α · p)u|pdx =

t(1−p/3)α(1), so α(t) is a strictly concave function. From (4.6), we deduce that α(1) =

α(λ) + α(1 − λ). Since α(t) is strictly concave, this is only possible if λ = 1. Therefore
G(w) = 1 and w solves problem (4.3).
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Dieter Schott

Projection kernels of linear operators and convergence
considerations

ABSTRACT. In the study of iterative methods used to solve linear operator equations
sequences of linear iteration operators (Tk) occur which have a nontrivial projection kernel,
that is a linear projector P 6= O satisfying P = TkP = PTk for all natural k. The convergence
proof for (Tk) or some related operator sequences is simplified if such P is known. It is
investigated when projection kernels exist and how they can be determined. Besides, special
types of projection kernels are considered.

KEY WORDS. Linear operators, Fejér monotone operators, nonexpansive operators, pro-
jectors, orthoprojectors, relaxation of orthoprojectors

1 Introduction

It is remarkable that sequences (Tk) of linear (bounded) operators occuring in iterative
methods for linear operator equations or in ergodic theory often have the following property:

(*) There is a projector P 6= O with TkP = PTk = P for all k ∈ N.

Such a projector P is called a (nontrivial) projection kernel of (Tk). E.g., if a linear bounded
operator T acting on a (real) Banach space X is asymptotically convergent, that is, if the
power sequence (T k) is convergent (to a linear bounded operator T∞ 6= O), then (*) is
fulfilled for P = T∞ and Tk = T k. If T∞ = O, then only the trivial projection kernel P = O

exists. In both cases the decomposition

X = N(I − T )⊕ R(I − T ), R(P ) = N(I − T ), N(P ) = R(I − T )

holds, where I is the identity operator. Reversely, if such a projection kernel P is known,
the convergence investigation of (T k) can be reduced to the invariant subspace N(P ), while
R(P ) is the fixed point set of T . More generally the knowledge of a projection kernel P
simplifies the convergence proof for (Tk) or for other related sequences. In this section we
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investigate, when sequences or sets of operators possess projection kernels and how they can
be determined. Later we specify also orthogonal, maximal, optimal and attainable projection
kernels. The starting point of these investigations is my paper [11]. In the mean time some
new aspects, examples and results can be presented.

For motivation we state some results concerning the iterative solution of linear equations
with operators acting in Banach spaces X and Y . Let L(X, Y ) be the algebra of linear
bounded operators from X into Y , let

Ax = b, A ∈ L(X, Y ), b ∈ Y (1.1)

be an equation with unknowns x ∈ X and let (Dk) be a given operator sequence with
Dk ∈ L(Y,X). Then linear iterative methods

xk+1 := Tkxk +Dkb, Tk := I −DkA, x0 ∈ X arbitrary (1.2)

for the solution of (1.1) can be constructed. The defects rk := b− Axk are obtained by

rk+1 := Skrk, Sk := I − ADk, r0 := b− Ax0 ∈ Y. (1.3)

Explicitly we have the representations

xk+1 = Tk,0x0 +Bkb, Bk :=
k∑
i=0

Tk,i+1Di, rk+1 = Sk,0r0, (1.4)

where the product notation Ui,j := Ui . . . Uj+1Uj for i ≥ j is used (see e.g. [1], [12]). If
Dk = D is constant for all k, then we get from (1.2) and (1.3) the stationary method

xk+1 := Txk +Db = T k+1x0 +
k∑
i=0

T iDb, rk+1 := Srk = Sk+1r0 (1.5)

with T := I −DA and S := I − AD. If (Dk) is cyclic and iteration is considered in cycles,
then again stationary methods of type (1.5) arise.

We state now some examples for X = Rn and Y = Rm (finite-dimensional case). Then
equation (1.1) is a system of m linear equations with n scalar unknowns. Further, the
operator A can be identified with a matrix A ∈ Rm,n. The adjoint operator A∗ is realized
by the transpose At of the corresponding matrix A.

Example 1.1 (Stationary iteration) If the method (1.5) is investigated, the conver-
gence of the power sequences (T k) and (Sk) as well as of the Neumann series (

∑k
i=0 T

i) is
of interest.
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Example 1.2 (PSH method) see [8] and [6]: p. 53f. We start with matrices Ek which
select one or more linearly independent rows of the matrix A in steps k in such a way that
each (non-vanishing) row is selected at least once in certain step sections uniformly bounded
for all k (as cycles if (Ek) is cyclic). Defining matrices

Dk := A∗E∗k(EkAA
∗E∗k)

−1Ek

the corresponding iterative method (1.2) projects in each step k orthogonally onto subspaces
of Rn formed by intersection of the hyperplanes corresponding to the rows in EkA. Further,
the following can be shown:

a) The sequence (Tk) of orthoprojectors Tk := I − DkA has the orthogonal projection
kernel P with R(P ) = N(A) and N(P ) = R(A∗). The product sequence (Tk,0) converges
to this P .

b) The sequence (Sk) of operators Sk := I −ADk has a projection kernel Q with N(Q) =

R(A). The product sequence (Sk,0) converges to this Q.

Example 1.3 (SPA method) see [7] and [6]: p. 38f. We start with matrices Fk which
select one or more linearly independent columns of the matrix A in steps k in such a way
that each (non-vanishing) column is selected at least once in certain step sections uniformly
bounded for all k. Defining matrices

Dk := Fk(F
∗
kA
∗AFk)

−1F ∗kA
∗

the corresponding iterative method (1.3) projects in each step k orthogonally onto subspaces
of Rm spanned by the rows in AFk. Further, the following can be shown:

a) The sequence (Sk) of orthoprojectors Sk := I − ADk has the orthogonal projection
kernelQ with R(Q) = N(A∗) and N(Q) = R(A). The product sequence (Sk,0) converges
to this Q.

b) The sequence (Tk) of operators Tk := I −DkA has a projection kernel P with R(P ) =

N(A). The product sequence (Tk,0) converges to this P .

The methods described in Example 1.2 and Example 1.3 can be generalized in various ways
by conservation of the main results (see [16]).

Example 1.4 (A gradient method for regular systems) see [2]. Let A be a regular
quadratic matrix (m = n). We consider row vectors Hk containing the signs of the k-th
columns ~ak of A, i.e. Hk := (sign ~ak)

∗. Now we define matrices

Dk := A∗H∗k(HkAA
∗H∗k)−1Hk.

Then the operators of the iterative methods (1.2) and (1.3) have the following properties:
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a) The sequences (Tk) and (Sk) have only the trivial projection kernel O.

b) The product sequences (Tk,0) and (Sk,0) converge to O.

Example 1.5 (A general case with operator relations) see [6]: p. 32 and [1]. We
consider the general iterative method described in (1.2) and (1.3). If the operator sequence
(Bk) occurring in (1.4) converges, say limk→∞Bk = B∞, and if moreover

DkAB∞ = B∞ADk = Dk for all k,

then the following holds:

a) (Tk) has the projection kernel P = I − B∞A and (Tk,0) converges to P .

b) (Sk) has the projection kernel Q = I − AB∞ and (Sk,0) converges to Q.

2 Projection kernels of operator sets

Let X be a (real) Banach space. In the following we consider projectors P ∈ L(X), that
means P 2 = P , and sets T of operators T ∈ L(X). We start with a well-known fact.

Proposition 2.1 A linear projector P is bounded (continuous) and induces the space
decomposition

X = R(P )⊕ N(P ) = N(I − P )⊕ R(I − P ),

where ranges and nullspaces are (closed) linear subspaces of X. Moreover, P is uniquely
determined by this decomposition. The operator I − P is a projector, too, with analogue
properties.
A projector P is an orthoprojector (R(P ) ⊥ N(P )) iff P is self-adjoint (P = P ∗). An
orthoprojector P is uniquely determined by its range R(P ) (see e.g. [10], section 5.6).

Now the main concept of the paper is introduced.

Definition 2.1 The projector P is said to be a

• left projection kernel of T if P = PT for all T ∈ T (P ∈ Kl(T )).

• right projection kernel of T if P = TP for all T ∈ T (P ∈ Kr(T )).

• projection kernel of T if P = PT = TP for all T ∈ T (P ∈ K(T )).

In brackets the short notations are given. Another expression for P ∈ K(T ) is that T has
the projection kernel P .

Remark 2.1 If sequences (Tk) are involved, we write simply (Tk) instead of the set notation
T = {Tk : k ∈ N}. If T = {T} contains only one operator T we often write simply T instead.
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Trivially, O is a projection kernel of all operator sets T (O ∈ K(T )). For completion we
define that P is a projection kernel of ∅, the empty set in L(X). Although the identity P = I

is a projector, it is no projection kernel of T if T contains operators T 6= I.

By definition P is a projection kernel of T iff it is both a left and a right projection kernel
of T . The following example shows that indeed left or right projection kernels need not to
be projection kernels.

Example 2.1 Consider the matrices

T =

1 0 0

0 1 0

1 0 1

 , P =

0 0 0

0 1 0

0 0 0

 , Q =

0 0 0

0 1 0

0 0 1


in R3,3. Then the following relations are satisfied:

P 2 = P = PT = TP = T ∗P = PT ∗,

Q2 = Q = TQ = QT ∗, Q 6= QT, Q 6= QT ∗.

Hence, P is a projection kernel of T and T ∗, while Q is neither a projection kernel of T nor
of T ∗. But Q is a right projection kernel of T and a left projection kernel of T ∗.

Now we list some simple statements about projection kernels. If a proof is missing it is either
obvious or it is a simple consequence of more general statements given later.

Proposition 2.2 Let T \ {I} 6= ∅. If P is a projection kernel of T , then I − P is not.

Proof: We assume P ∈ K(T ). Then the projector I − P satisfies

(I − P )T = T (I − P ) = T − P 6= I − P

for T 6= I. But such T are supposed to be in T by assumption. �

Proposition 2.3

a) If P is a projection kernel of T1, then also of T2 ⊆ T1.

b) If P is a projection kernel of both T1 and T2, then also of T1 ∪ T2.

c) Each projector P is a projection kernel of itself (P ∈ K(P )).

d) Each projector P is a projection kernel of I (P ∈ K(I)).

e) If P is a projection kernel of T , then also of T ∪ {I}.

f) If P 6= O is a projection kernel of T , then O /∈ T .
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The next statements refer to operations conserving projection kernels.

Lemma 2.1 If P is a (left, right) projection kernel of both T1 and T2, then P is also
a (left, right) projection kernel of the products T1 · T2 and T2 · T1 as well as of the linear
combinations λ1T1 + λ2T2 with λ1 + λ2 = 1.

Proof: We assume that P ∈ K({T1, T2}). By the way, the proofs for P ∈ Kl({T1, T2}) and
P ∈ Kr({T1, T2}) are included as parts. Since

P = PTi = TiP (i = 1, 2)

holds, we have for T := T1T2:

PT = PT1T2 = PT2 = P, TP = T1T2P = T1P = P.

Hence T is a projection kernel of P . Analogously this can be shown for T := T2T1. If
T := λ1T1 + λ2T2 and λ1 + λ2 = 1, then

PT = P (λ1T1 + λ2T2) = λ1PT1 + λ2PT2 = λ1P + λ2P = P.

Analogously TP = P is proven for this T . �

Corollary 2.1 If P is a projection kernel of T , then P is the projection kernel of the
generated multiplicative semi-group [T ](I) with identity I and of the affine hull aff(T ).

The next statement considers the aspect of regular (invertible) transformations in L(X).

Proposition 2.4 Let S be regular. If P is a (left, right) projection kernel of T , then
PS is a (left, right) projection kernel of TS, where PS := S−1PS and TS := S−1T S.

Proof: Under the given assumptions it is

PSTS = S−1PS · S−1TS = S−1PTS = S−1PS = PS,

TSPS = S−1TS · S−1PS = S−1TPS = S−1PS = PS

for all TS ∈ TS. �

Proposition 2.5 If P is a (left, right) projection kernel of T , then the dual (adjoint)
P ∗ is a (right, left) projection kernel of T ∗.

Proof: The assertion follows from the equations

(P 2)∗ = (P ∗)2, (PT )∗ = T ∗P ∗, (TP )∗ = P ∗T ∗. �

Now examples for projection kernels of operator sets are given.
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Example 2.2 We consider X = Rn and the sets

Tm =

{(
Im,m Om,n−m

On−m,m Tn−m,n−m

)}
, Pl =

{(
Il,l Ol,n−l

On−l,l On−l,n−l

)}

of matrices in Rn,n, where l,m, n are natural numbers with 1 ≤ l ≤ m ≤ n and m, n fixed.
The indices indicate the size of the submatrices. Further, indexed I stands for identity
submatrices and indexed O for zero submatrices. The matrices act as linear operators on
Rn. The set Tm is a subring and a subalgebra of Rn,n containing the identity (matrix).
It is easy to check that each operator Pl ∈ Pl is a projection kernel of the set Tm. Hence,
there are different projection kernels for the same operator set.
Let us fix an operator Tm = T ∈ Tm. Then each Pl ∈ Pl is also a projection kernel of the
power sequence (T k), where obviously T k ∈ Tm for all k ∈ N.

The example presents matrices in a canonical form. We can produce many other examples
applying a regular matrix S ∈ Rn,n and its inverse, namely

PSl = S−1PlS, T Sm = S−1TmS

(see Proposition 2.4). Reversely, for an operator set T and a projection kernel P we can
look for regular matrices S transforming the operators into a canonical form.

Example 2.3 Let us consider the matrices

P =
(
~e1 ~e1 . . . ~e1

)
=


1 1 . . . 1

0 0 . . . 0
...

...
...

...
0 0 . . . 0

 ∈ Rn,n,

T =
(
~e1

~t2 . . . ~tn

)
=


1 t12 . . . t1n

0 t22 . . . t2n
...

...
...

...
0 tn2 . . . tnn

 ∈ Rn,n :

n∑
i=1

tij = 1 (1 < j ≤ n),

where ~e1 is the first column of the identity matrix I ∈ Rn,n and the sums of the columns
~tj = (tij) are equal to 1. Then P is a projection kernel and also an element of the set T of
all such operators T . By the way, T is a noncommutative semi-group with respect to matrix
multiplication. Further, P ∗ = P t, the matrix with first row elements 1 and other elements 0,
is a projection kernel of T ∗ whose operators T ∗ have the same first row as I and the (other)
row sums are always equal to 1.
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Example 2.4 Let X be a (real) Hilbert space and T ∈ L(X) nonexpansive. Then the
orthoprojector P defined by R(P ) = N(I − T ) is a projection kernel of T , its powers T k

(k ∈ N) and their affine combinations (see Section 6 and Corollary 2.1).

3 Properties of projection kernels

Now we look for simple conditions to determine projection kernels. Obviously the relation
P ∈ K(T ) can be characterized by the behavior of operators T ∈ T on R(P ) and N(P ). We
introduce the abbreviations

N(I − T ) :=
⋂
T∈T

N(I − T ), R(I − T ) := span
⋃
T∈T

R(I − T ). (3.1)

Both defined sets are (closed) linear subspaces. The set N(I − T ) is the common fixed
point set F(T ) of T . The span operation contains the closure of the corresponding set. In
finite-dimensional spaces the closure operation can be omitted.

Lemma 3.1 The following conditions are equivalent for an operator P and operators in
a set T :

a1) P = TP for all T ∈ T ,

b1) T = P + T (I − P ) for all T ∈ T ,

c1) T |R(P ) = I |R(P ) for all T ∈ T ,

d1) R(P ) ⊆ N(I − T ).

Proof: The equivalence of a1), b1) and c1) is obvious. Besides, a1) is fulfilled iff the equation
(I − T )P = O, that means R(P ) ⊆ N(I − T ), holds for all T ∈ T . Hence also a1) and d1)
are equivalent. �

Lemma 3.2 The following conditions are equivalent for an operator P and operators in
a set T :

a2) P = PT for all T ∈ T ,

b2) T = P + (I − P )T for all T ∈ T ,

d2) N(P ) ⊇ R(I − T ).

From each of these conditions follows

c2) T N(P ) ⊆ N(P ) for all T ∈ T .
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Proof: The equivalence of a2) and b2) is obvious. Further a2) is fulfilled iff P (I − T ) = O,
that is N(P ) ⊇ R(I − T ), holds for all T ∈ T . Since N(P ) is a closed linear subspace, also
a2) and d2) are equivalent. Finally, supposing a2), Px = 0 supplies PTx = 0 for all x ∈ X.
But this is c2). �

Theorem 3.1 The following conditions are equivalent for a projector P and operators
in a set T :

a) P = TP = TP for all T ∈ T , that is P ∈ K(T ),

a’) (I − T )P = P (I − T ) = O for all T ∈ T ,

b) T = I |R(P )⊕ T |N(P ) for all T ∈ T ,

c) T |R(P ) = I |R(P ), T N(P ) ⊆ N(P ) for all T ∈ T ,

d) R(P ) ⊆ N(I − T ) and N(P ) ⊇ R(I − T ).

Proof: A great part of the assertions is obtained by combination of Lemma 3.1 and Lemma
3.2. Thus a) and d) are equivalent. Further a) and a’) are equivalent because a’) can be
written as P − TP = P −PT = O. Since P is a projector T (I −P ) = (I −P )T means that
R(P ) and N(P ) are invariant linear subspaces of T . Now the equivalence of a), b) and c) is
obvious. �

The conditions b) and c) play an important part for considering convergence of operators.
The condition d) is especially useful for determining suitable projection kernels.

Corollary 3.1 If P is a projection kernel of T , then all operators T ∈ T map for all
x ∈ X the affine subspaces x + N(P ) into itself and the affine subspaces x + R(P ) onto the
affine subspaces Tx+ R(P ).

Proof: Let be P ∈ K(T ). First (I − P )x ∈ N(P ) because of P 2 = P . Hence

x+ N(P ) = Px+ (I − P )x+ N(P ) = Px+ N(P ).

Having also Theorem 3.1 in mind, we get

T (x+ N(P )) = T (Px+ N(P )) = TPx+ T N(P )

⊆ Px+ N(P ) = x+ N(P ),

T (x+ R(P )) = Tx+ T R(P ) = Tx+ TP R(P )

= Tx+ P R(P ) = Tx+ R(P ). �

The corollary shows that the operators T map affine subspaces which are parallel to R(P )

again into such subspaces. Further, all images Tx of x remain in the affine subspace x+N(P ).
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Relations between ranges and nullspaces of projectors can be used to define a semi-order
between projectors.

Definition 3.1 We write P ≤ Q for two projectors P and Q, if R(P ) ⊆ R(Q) and
N(P ) ⊇ N(Q). We write P < Q if P ≤ Q and P 6= Q.

Proposition 3.1 If P is a projection kernel of the projector Q, then P ≤ Q holds.

Proof: The assumption P ∈ K(Q) implies by Theorem 3.1 the relations R(P ) ⊆ R(Q) and
N(P ) ⊇ N(Q). By Definition 3.1 this is P ≤ Q. �

In Example 2.2 the projectors Pl fulfil the relations Pl < Pl+1 for 1 ≤ l ≤ n − 1. The
following statement shows how we can construct ’smaller’ and ’bigger’ projection kernels.

Proposition 3.2 If P1 and P2 are commutable projection kernels of T , then P = P1P2

and P̃ = P1 + P2 − P1P2 are projection kernels of T satisfying

R(P ) = R(P1) ∩ R(P2), N(P ) = span (N(P1) ∪ N(P2))

R(P̃ ) = span (R(P1) ∪ R(P2)) , N(P̃ ) = N(P1) ∩ N(P2).

This means P ≤ P1, P2 ≤ P̃ and P < P̃ for P1 6= P2.

Proof: The first part is shown in [11], p. 33. The relations between ranges and nullspaces
supply

R(P ) ⊆ R(Pi) ⊆ R(P̃ ), N(P ) ⊇ N(Pi) ⊇ N(P̃ ) (i = 1, 2).

Hence, the relations P ≤ P1, P2 ≤ P̃ follow by Definition 3.1. Finally we suppose P1 6= P2.
In contrary to the assertion we assume P = P̃ . By the above relations we get R(P1) = R(P2)

and N(P1) = N(P2). Proposition 2.1 shows that P1 = P2. This is a contradiction. Hence,
P < P̃ is true. �

4 Special kinds of projection kernels

If we investigate the convergence behavior of a operator sequence (Tk), we are interested in
projection kernels P with maximal range R(P ), where the operators Tk are the identity (see
Theorem 3.1). Further, if the limit of (Tk) is P , then P is in the closure of {Tk : k ∈ N}.

Definition 4.1 Let P be a (left, right) projection kernel of T . Then P is called

• nontrivial iff P 6= O,

• maximal iff there is no other projection kernel Q of T with R(Q) ⊃ R(P ),
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• orthogonal iff P is an orthoprojector (in a Hilbert space X),

• attainable (r.t. operator topology τ), iff P is in the (τ -) closure of T .

Proposition 4.1 Generally projection kernels P of an operator set T are neither uni-
quely determined nor maximal, orthogonal or attainable.

This can be seen by the examples. The next example also exposes that the method of
projection kernels has limitations.

Example 4.1 For X = R3 we investigate operators

T (c) =

1 0 0

0 1 0

c 0 1

 : c ∈ R.

The matrices T (c) have the determinant 1 and inverses T (−c). Further, it holds

N(I − T (c)) = N(I − T (1)) = span


0

1

0

 ,

0

0

1


 (c 6= 0),

N(I − T (0)) = N(O) = R3,

R(I − T (c)) = R(I − T (1)) = span


0

0

1


 (c 6= 0),

R(I − T (0)) = R(O) = {0}.

The set T0 of all such operators T (c) is a multiplicative commutative group. Now we consider
subsets T only assuming T \ {I} 6= ∅. Hence, T contains at least one operator T (c) with
c 6= 0. Then we get

N(I − T ) =
⋂

T (c)∈T

N(I − T (c)) = N(I − T (1)),

R(I − T ) = span
⋃

T (c)∈T

R(I − T (c)) = R(I − T (1)).

It is easy to check that the set P = K(T ) of all projection kernels consists of the matrices

P (a, b) =

 0 0 0

a 1 0

ab b 0

 : a, b ∈ R.
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The ranges and nullspaces are

R(P (a, b)) = span


0

1

b


 , N(P (a, b)) = span


 1

−a
0

 ,

0

0

1


 .

These results show the relations

R(P (a, b)) ⊂ N(I − T ), N(P (a, b)) ⊃ R(I − T )

such that condition d) in Theorem 3.1 is fulfilled properly, not reaching set equality. For
all operators P (a, b) the range is one-dimensional. Hence all these projection kernels are
nontrivial and even maximal. Since T is a set whose closure does not contain operators
of P , all projection kernels are not attainable. The power sequence (T (1)k) = (T (k)) is
divergent, but (Tk) = (T (0.5k)) tends to I, which is no projection kernel. The constant
sequence (Tk) = (T (1)) tends to T (1) which is even no projector (T (1)2 = T (2) 6= T (1)).
Further, only the projection kernel P (0, 0) is orthogonal (self-adjoint).

We turn to the question if always maximal projection kernels exist.

Theorem 4.1 Each set T of operators with finite-dimensional subspace N(I−T ) has at
least one maximal projection kernel.

Proof: Because of O ∈ K(T ) it is K(T ) 6= ∅. For P ∈ K(T ) it holds R(P ) ⊆ N(I − T )

and therefore dim R(P ) ≤ dim N(I − T ) =: n < ∞. Hence, there is a P̃ ∈ K(T ) with
n ≥ k := dim R(P̃ ) ≥ dim R(P ) for all P ∈ K(T ). This P̃ is maximal, since the assumption
R(P ) ⊃ R(P̃ ) leads to the contradiction dim R(P ) > dim R(P̃ ). �

Condition d) of Theorem 3.1 is of special importance for convergence, if equality of the sets
is reached in the subset relation. Remember that this was not the case in Example 4.1.

Definition 4.2

• A (right) projection kernel P of T is said to be right optimal if R(P ) = N(I − T ).

• A (left) projection kernel P of T is said to be left optimal if N(P ) = R(I − T ).

• A projection kernel P of T is said to be optimal if R(P ) = N(I − T ) as well as
N(P ) = R(I − T ).

Theorem 4.2 If Ps is a (left, right) optimal projection kernel of T , then Ps is maximal.

Proof: a) Let us assume that Ps ∈ K(T ) is right optimal. Then R(Ps) = N(I − T ). Since
R(P ) ⊆ N(I − T ) for all P ∈ K(T ) by Theorem 3.1, this Ps is maximal.
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b) Let us assume that Ps ∈ K(T ) is left optimal. Then N(Ps) = R(I − T ). Supposing that
Ps is not maximal there is a P̃ ∈ K(T ) with R(P̃ ) ⊃ R(Ps). Considering again Theorem 3.1
it is also N(P̃ ) ⊇ N(Ps). Since both P̃ and Ps are projectors we get

R(P̃ )⊕ N(P̃ ) ⊃ X = R(Ps)⊕ N(Ps).

This is a contradiction. �

Theorem 4.3 The operator set T has an optimal projection kernel iff

X = N(I − T )⊕ R(I − T ).

In this case the projector P with R(P ) = N(I−T ) and N(P ) = R(I − T ) is the optimal and
also the unique maximal projection kernel of T .

Proof: a) Let P be an optimal projection kernel of T . Then R(P ) = N(I − T ) and
N(P ) = R(I − T ) by definition. Hence

X = R(P )⊕ N(P ) = N(I − T )⊕ R(I − T ).

b) Let be X = N(I−T )⊕R(I−T ). Then we consider the projector P with R(P ) = N(I−T )

and N(P ) = R(I − T ). Consequently, P is an optimal projection kernel of T by definition.
By Theorem 4.2 this P is also maximal. Assuming another optimal or maximal projection
kernel P̃ 6= P we would get R(P̃ ) = R(P ) and N(P̃ ) = N(P ). For projectors this means
P̃ = P by Proposition 2.1 in contradiction with the assumption. �

Remark 4.1 The optimal projection kernel P of T is shortly denoted by P = Ko(T ).
If T has more than one maximal projection kernel, then T has no optimal projection kernel
(Ko(T ) = ∅). This shows that the set T in Example 4.1 has no optimal projection kernel.
If P is the optimal projection kernel of T , where T \ {I} 6= ∅, then I − P is the projector
with R(I −P ) = R(I − T ) and N(I −P ) = N(I −T ). This projector is no projection kernel
of T (see Proposition 2.2).

5 Optimal projection kernels

Now we consider optimal projection kernels of an operator set in more detail.

Lemma 5.1 If P is the optimal projection kernel of T1 and a projection kernel of T2,
then P is the optimal projection kernel of T := T1 ∪ T2.

Proof: By Theorem 3.1 we have

R(P ) = N(I − T1) ⊆ N(I − T2), N(P ) = R(I − T1) ⊇ R(I − T2).
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It follows

N(I − T ) = N(I − T1) ∩ N(I − T2) = N(I − T1) = R(P ),

R(I − T ) = span(R(I − T1) ∪ R(I − T2)) = R(I − T1) = N(P ).

This is the assertion. �

Corollary 5.1 If P is a projection kernel of T and P ∈ T , then P is the optimal
projection kernel of T .

Proof: By Proposition 2.1 it holds

X = R(P )⊕ N(P ) = N(I − P )⊕ R(I − P ).

Hence P is the optimal projection kernel of itself. Since P is a projection kernel of T , then
P is the optimal projection kernel of T ∪ {P} = T by Lemma 5.1. �

Lemma 5.2 If P is the optimal projection kernel of T , then P is the optimal projection
kernel of the generated semi-group [T ](I) with identity I and of the affine hull aff(T ).

Proof: Let P = Ko(T ). Consequently P ∈ K(T ). By Corollary 2.1 we have P ∈ K([T ](I))

and P ∈ K(aff(T )). Since T1 := T is a subset of both T2 := [T ](I) and T3 := aff(T ) the
assertion follows now by Lemma 5.1. �

Corollary 5.2 An operator T as well as the corresponding sets T := {T k : k ∈ N} and
S := aff(T ) have an optimal projection kernel iff

X = N(I − T )⊕ R(I − T ).

In this case the projector P with R(P ) = N(I − T ) and N(P ) = R(I − T ) is the optimal
projection kernel of T , T and S.

Proof: The operators S ∈ S have the representations

S = Sk(T ) =
k∑
i=0

αiT
i,

k∑
i=0

αi = 1.

Considering the coefficient relation of the αi, each polynomial Pk(λ) := 1 − Sk(λ) has the
zero 1. Hence, in each operator I − S a factor I − T can be separated. This implies

N(I − T ) ⊆ N(I − S), R(I − T ) ⊇ R(I − S)

for all S ∈ S. Observing {T} ⊆ T ⊆ S we obtain

N(I − T ) = N(I − T ) = N(I − S), R(I − T ) = R(I − T ) = R(I − S).

Now Theorem 4.3 shows the assertions. �
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Remark 5.1 In Corollary 5.2 the space decomposition

X = N(I − T )⊕ R(I − T )

occurs. Operators I−T with this property are called decomposition regular (short: d-regular)
in [14]. This paper contains more material about such operators. The given decomposition
of X is also necessary for the convergence of (T k) (see Section 9).

Example 5.1 Now we come back to Example 2.2 discussing matrices

Tm =

(
Im,m Om,n−m

On−m,m Tn−m,n−m

)
, Pl =

(
Il,l Ol,n−l

On−l,l On−l,n−l

)
,

1 ≤ l ≤ m ≤ n

in Rn,n, where the corresponding operators Pl are stated to be projection kernels of the
corresponding operators Tm. Let us choose m < n. Further let T be a set of matrices
Tm, where at least one Tm = T̂m has rank n. Then, using the coordinate unit vectors ~ei
(i = 1, 2, . . . , n), in other words the columns of the identity In,n, and the linear subspaces

Vi,j := span {~ei, . . . , ~ej}, 1 ≤ i ≤ j ≤ n,

we get for Tm the relations

R(I − Tm) ⊆ R(I − T̂m) = Vm+1,n, N(I − Tm) ⊇ N(I − T̂m) = V1,m

and finally for the set T the result

R(I − T ) = Vm+1,n, N(I − T ) = V1,m.

Further, it is
R(Pl) = V1,l, N(Pl) = Vl+1,n, l ≤ m.

Hence, we have a chain of orthogonal projection kernels Pl, where the maximal one, namely
Pm, is the optimal one. Moreover, Pm is attainable iff On−m,n−m is in the closure of the set
of submatrices Tn−m,n−m belonging to the matrices Tm ∈ T . For instance, this is the case if
T consists of all possible Tm, because On−m,n−m is a submatrix of Pm ∈ T .

Example 5.2 It is interesting to discuss Example 2.3 in more detail. There is stated that
the multiplicative semi-group T of all matrices

T =
(
~e1

~t2 . . . ~tn

)
∈ Rn,n :

n∑
i=1

tij = 1 (1 < j ≤ n)

has the projection kernel
P =

(
~e1 ~e1 . . . ~e1

)
∈ T .
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It can be shown that

R(P ) = span{~e1}, N(P ) = span{~e2 − ~e1, ~e3 − ~e1, . . . , ~en − ~e1}.

The nullspace of P contains all vectors with coordinate sums 0. Further, each vector ~x ∈
N(P ) has the basis representation

~x = x2 (~e2 − ~e1) + x3 (~e3 − ~e1) + . . .+ xn (~en − ~e1).

The matrices S := I − T have the form(
~0 ~s2 . . . ~sn

)
∈ Rn,n :

n∑
i=1

sij = 0 (1 < j ≤ n).

Since P is a projection kernel of all operators T , we have by Theorem 3.1

R(I − T ) = R(S) ⊆ N(P ), N(I − T ) = N(S) ⊇ R(P ).

Indeed, these relations are also a consequence of the above results. Now we consider a subset
Ts of T . If

dim R(I − Ts) = n− 1,

then it holds
R(P ) = N(I − Ts), N(P ) = R(I − Ts).

Hence, P is the optimal projection kernel of Ts. Especially this is the case if there is a matrix
T̂ ∈ Ts with rank (I − T̂ ) = n− 1. Such a matrix is

T̂ =
(
~e1 2~e2 − ~e1 2~e3 − ~e1 . . . 2~en − ~e1

)
∈ T

with full rank n since

I − T̂ =
(
~0 ~e1 − ~e2 ~e1 − ~e3 . . . ~e1 − ~en

)
has indeed rank n − 1. This means also that P is the optimal projection kernel of T .
Additionally P is then attainable, because P ∈ T . The operator T̂ has interesting properties,
for instance

(I − T̂ )2 = −(I − T̂ ) = I − P.

Hence T̂ − I is a projector. But observe that I − T̂ and I − P are not in T and are no
projection kernels of T . A simple consideration shows

T̂ n = P − 2n(I − T̂ ) ∈ T

for all integers n. Hence, the sequence (T̂ n) is divergent (for natural n) while the sequence
(T̂−n) of the inverses converges to P . Since

I − T̂−1 = −1

2
(I − T̂ )

has also rank n− 1, the sequence (T̂−n) has the optimal and attainable projection kernel P .
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Example 5.3 Let us investigate a more general approach to the set T of all matrices

T =
(
~e1

~t2 . . . ~tn

)
∈ Rn,n :

n∑
i=1

tij = 1 (1 < j ≤ n)

just investigated in Example 5.2. If subsets Ts of T are considered, then possibly P is not
the optimal projection kernel. On the other hand, if Q ∈ T is any projector, then we can
find subsets with Q as an optimal projection kernel. Let us look at the special projectors

Pk =
(
~e1 ~e2 . . . ~ek ~e1 . . . ~e1

)
∈ T (1 ≤ k < n).

For k = 1 we have Pk = P (see Example 5.2). The case k = n supplies Pn = I which is not
of interest. For arbitrary k we get

R(Pk) = span {~e1, ~e2, . . . , ~ek},
N(Pk) = span {~e1 − ~ek+1, ~e1 − ~ek+2, . . . , ~e1 − ~en}.

The sets Tk of matrices

Tk =
(
~e1 ~e2 . . . ~ek ~tk+1 . . . ~tn

)
,

~ei − ~ti ∈ N(Pk) (1 ≤ k < n, k + 1 ≤ i ≤ n)

are again semi-groups of operators containing Pk. Now Tk has the projection kernel Pk
because of

I − Tk =
(
~0 ~0 . . . ~0 ~ek+1 − ~tk+1 . . . ~en − ~tn

)
and

R(Pk) ⊆ N(I − Tk), N(Pk) ⊇ R(I − Tk).

There are special matrices

T̂k =
(
~e1 ~e2 . . . ~ek 2~ek+1 − ~e1 . . . 2~en − ~e1

)
with

I − T̂k =
(
~0 ~0 . . . ~0 ~e1 − ~ek+1 . . . ~e1 − ~en

)
and

R(Pk) = N(I − T̂k), N(Pk) = R(I − T̂k).

Hence, Pk is the optimal projection kernel of Tk. Besides, the relations

T ⊇ Tk ⊃ Tk+1, R(P ) ⊆ R(Pk) ⊂ R(Pk+1), N(P ) ⊇ N(Pk) ⊃ N(Pk+1)

are fulfilled.
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Let X be a (real) Hilbert space. We turn to optimal projection kernels which are orthog-
onal.

Proposition 5.1 Let T possess the optimal projection kernel P . Then the following
conditions are equivalent:

a) P is orthogonal (P = P ∗), b) N(P ) = R(I − T ∗), c) R(P ) = N(I − T ∗).

Proof: Using Theorem 4.3 the assumption P ∈ Ko(T ) implies

R(P ) = N(I − T ), N(P ) = R(I − T ).

Then it follows

N(P ∗) = R(P )⊥ = N(I − T )⊥ = R(I − T ∗),

R(P ∗) = N(P )⊥ = R(I − T )
⊥

= N(I − T ∗).

Because of the equivalences

P = P ∗ ⇔ N(P ) = N(P ∗) ⇔ R(P ) = R(P ∗)

the assertion is true. �

Self-adjoint operators T = T ∗ trivially satisfy N(I −T ) = N(I −T ∗). But all operators with
this property have an outstanding property.

Theorem 5.1 If the operators T in T have the property N(I − T ) = N(I − T ∗), then T
has an orthogonal optimal projection kernel, namely the orthoprojector P with

R(P ) = N(I − T ), N(P ) = R(I − T ) = R(I − T ∗).

Proof: It is known that the linear subspaces

N := N(I − T ), R := R(I − T ∗)

are orthogonal complements (see e.g. [13]). Hence an orthogonal projector P is defined by
R(P ) = N and N(P ) = R. The property N(I − T ) = N(I − T ∗) implies

R(I − T ) = N(I − T ∗)⊥ = N(I − T )⊥ = R(I − T ∗).

This means also
R(I − T ∗) = R(I − T ).

Now Theorem 4.3 shows that P is the optimal projection kernel of T . �
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Remark 5.2 The property N(I − T ) = N(I − T ∗) is equivalent to the orthogonal decom-
position

X = N(I − T )⊕ R(I − T ), R(I − T ) = N(I − T )⊥,

considering the orthogonality relation N(I − T ∗)⊥ = R(I − T ) (see e.g. [13]). Not only
self-adjoint, but also normal operators T , defined by the commutation relation TT ∗ = T ∗T ,
have the property N(I − T ) = N(I − T ∗) (see e.g. [21], p. 331 – 332). Moreover all products
T = PkPk−1 . . . P1 of orthoprojectors Pi (i = 1, 2, . . . , k) fulfil this condition. Here it is

N(I − T ) = N(I − PkPk−1 . . . P1) =
k⋂
i=1

R(Pi) =
k⋂
i=1

R(P ∗i )

= N(I − P ∗1 . . . P ∗k−1P
∗
k ) = N(I − T ∗).

Moreover, T is nonexpansive. In [17], p. 183f. a more general result is proven, namely if so-
called relaxations Ti of orthoprojectors Pi replace Pi. In section 6 we will see that arbitrary
nonexpansive operators T satisfy N(I − T ) = N(I − T ∗) (see Remark 6.1 and the text after
it).

Finally, the operators T ∈ T itself can be orthoprojectors.

Corollary 5.3 If the operators T ∈ T are orthoprojectors (T 2 = T = T ∗), then T has
an orthogonal optimal projection kernel, namely the orthoprojector P with

R(P ) =
⋂
T∈T

R(T ), N(P ) = span
⋃
T∈T

N(T ).

Proof: If the operators T are orthoprojectors, then we get

R(T ) = N(I − T ) = N(I − T ∗), N(T ) = R(I − T ) = R(I − T ∗),

where both R(T ) and N(T ) are closed. This means also

N(I − T ) =
⋂
T∈T

R(T ), R(I − T ) = span
⋃
T∈T

N(T ).

Now the assertion follows if we take Theorem 5.1 into account. �

The assumptions and hence the assertions of Corollary 5.3 are fulfilled in Example 1.2 for
the set T of sequence members Tk and in Example 1.3 for the set T of sequence members Sk.
It turns out that these assertions also hold for a bigger class than that of orthoprojectors.
We follow this topic in Section 6.

Proposition 5.2 Let T be a set of orthoprojectors and P be a further orthoprojector.
Then the following conditions are equivalent:
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a) P is a projection kernel of T .

b) P is a left projection kernel of T .

c) P is a right projection kernel of T .

Proof: Obviously the conditions b) and c) follow from condition a). Now we want to show
the reversions. Starting with the relations

P 2 = P, P = PT, P = TP for all T ∈ T

the transition to the adjoint operators supplies

(P ∗)2 = P ∗, P ∗ = T ∗P ∗, P ∗ = P ∗T ∗ for all T ∈ T .

Observing the assumptions P ∗ = P and T ∗ = T for all T ∈ T we get correspondingly

P 2 = P, P = TP, P = PT for all T ∈ T .

Hence, a left (right) projection kernel of T is also a right (left) projection kernel of T and
consequently also a projection kernel of T . �

6 Nonexpansive operators and projection kernels

Let X be a (real) Hilbert space. Nonexpansive operators play an important part in the
fixed point theory. Here we study the linear case.

Definition 6.1 A linear operator T is called

a) nonexpansive, if ‖Tx‖ ≤ ‖x‖ for all x.

b) isometric, if ‖Tx‖ = ‖x‖ for all x.

c) contractive, if ‖Tx‖ ≤ k ‖x‖ for all x and a number k < 1.

d) Fejér monotone, if ‖Tx‖ < ‖x‖ for all x /∈ N(I − T ).

e) strongly Fejér monotone, if ‖Tx‖ ≤ k ‖x‖ for all x ∈ N(I−T )⊥ and a number k < 1.

These concepts are also defined for nonlinear operators (see e.g. [4], [24], [22]). In my papers
[17] and [18] linear (strongly) Fejér monotone operators are called (strong) relaxations.
The concepts are renamed to get a better coordination between linear and nonlinear theory.
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Remark 6.1 Nonexpansive operators T are characterized by ‖T‖ ≤ 1. They induce via
I − T the orthoprojector P = P (T ), where

X = R(P )⊕ N(P ), R(P ) ⊥ N(P ),

R(P ) = N(I − T ) = R(I − T )
⊥

= N(I − T ∗),
N(P ) = R(I − T ) = N(I − T )⊥ = R(I − T ∗)

is the corresponding decomposition of X (see [17]: p. 182). By Corollary 5.2 and the property
R(P ) ⊥ N(P ) the projector P is the orthogonal optimal projection kernel of T . Moreover,
N(P ) = N(I−T )⊥ is an invariant linear subspace under T (for another proof see [17]: p. 180).
Further

‖T − P‖ = ‖T (I − P )‖ = ‖T |R(I − P )‖ = ‖T |N(P )‖ =: ν ≤ 1,

where the number ν measures the deviation of T from P . We call P = P (T ) also the
eigenprojection of T .

Theorem 6.1 If T consists of nonexpansive operators T , then T has an orthogonal
optimal projection kernel, namely the orthoprojector P with

R(P ) = N(I − T ), N(P ) = R(I − T ) = R(I − T ∗).

Proof: By Remark 6.1 nonexpansive operators T satisfy N(I −T ) = N(I −T ∗). Hence, the
assertion follows immediately from Theorem 5.1. �

The set of all nonexpansive operators is a multiplicative semi-group with identity. This set
can be divided again into semi-groups of nonexpansive operators with the same eigenprojec-
tion P .
Isometric operators T satisfy ‖T‖ = 1. Contractive operators T are norm reducing for x 6= 0

and fulfil ‖T‖ ≤ k < 1.
Fejér monotone operators T are nonexpansive, but not isometric, since they are norm re-
ducing outside their fixed point sets N(I − T ). Strongly Fejér monotone operators T are
contractive on the invariant subspace N(I − T )⊥ (see Definition 6.1). Here it is

ν = ν(T ) := ‖T |N(I − T )⊥‖ ≤ k < 1.

For N(I−T ) = {0} strongly Fejér monotone operators and contractive operators coincide.
In [17] and [18] a (strongly) Fejér monotone T with eigenprojection P is said to be a
(strong) relaxation of its carrier P . In [18] you can find an example of T which is Fejér
monotone, but not strong.

Since Fejér monotone operators play an important part in a certain class of iterative solu-
tion methods (see [16]), we mention some further facts about them.
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Example 6.1 Let P 6= I be an orthoprojector. Then the operators

T = (1− λ)I + λP, |1− λ| < 1

are self-adjoint strongly Fejér monotone operators with the same eigenprojection P (scalar
relaxations). Here it is ν(T ) = |1− λ|.

If T is in one of the operator classes of Definition 6.1, then the same is true for T ∗. We state
this for one class.

Proposition 6.1 ([17]: p. 182, [18]: p. 33, p. 37) T is (strongly) Fejér monotone iff
T ∗ is (strongly) Fejér monotone. Thereby both have the same eigenprojection.

Proposition 6.2 ([17]: p. 184, [18]: p. 40) If T is (strongly) Fejér monotone, then
T k, TT ∗ and T ∗T are (strongly) Fejér monotone with the same eigenprojection as T .

Theorem 6.2 ([17]: p. 183) Let T be a set of Fejér monotone operators T with
eigenprojections P = P (T ). Then each projection kernel of T is a projection kernel of
P := {P = P (T ) : T ∈ T } and vice versa.

This statement also holds if T is a set of nonexpansive operators. The proof is the same as
in the paper [17].

7 Attainable projection kernels

For simplicity we use in L(X) the strong operator topology τs. Then L(X) becomes a local
convex topological vector space (see e.g. [23]: p. 110). But, corresponding results can also
be obtained for the uniform and the weak operator topology.
First we investigate the relation between attainable and optimal projection kernels. In this
section we use generalized sequences (Tα)α∈J of operators, where α is an element of an index
set J . Shortly we write (Tα). Such sequences are also called Moore-Smith sequences.
Further, we use the notation TJ := {Tα : α ∈ J} for the set of sequence members.

Lemma 7.1 If T ⊆ L(X) and S ∈ T , then

N(S) ⊆ R(I − S) ⊆ R(I − T ), R(S) ⊇ N(I − S) ⊇ N(I − T ).

Proof: Since S belongs to T , there is a generalized sequence (Tα) in T with limit S (see
e.g. [24]: p. 205). Further, we have for arbitrary x ∈ X and all α ∈ J

(I − Tα) x ∈ R := R(I − T ).
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Hence, it holds also
(I − S) x = lim

α
(I − Tα) x ∈ R

because R is closed. Moreover, we get

(I − S) x = lim
α

(I − Tα) x = 0 for all x ∈ N := N(I − T ).

This implies R(I − S) ⊆ R and N(I − S) ⊇ N. The relations N(S) ⊆ R(I − S) and
R(S) ⊇ N(I − S) are obvious. �

Theorem 7.1 Each attainable (left, right) projection kernel P of T is a (left, right)
optimal (left, right) projection kernel of T .

Proof: According to Lemma 3.2 and Lemma 3.1, respectively, we have

N(P ) ⊇ R(I − T ), R(P ) ⊆ N(I − T )

for a left (right) projection kernel P of T , respectively. Lemma 7.1 supplies for S = P the
relations

N(P ) ⊆ R(I − T ), R(P ) ⊇ N(I − T ),

respectively. This shows

N(P ) = R(I − T ), R(P ) = N(I − T ),

respectively. Hence, the assertions hold by Definition 4.2. �

Remark 7.1 Theorem 7.1 shows that an operator set T has at most one attainable pro-
jection kernel P , because there is at least one optimal projection kernel.

Now we turn to the question under which conditions the limits T∞ of generalized sequences
(Tα) are projection kernels of these sequences.

Proposition 7.1 If the limit T∞ of (Tα) exists, then the following equivalences hold:

a) TαT∞ = T∞ for all α ∈ J ⇔ T∞ ∈ K+(TJ) ⇔ R(T∞) = N(I − TJ),

b) T∞Tα = T∞ for all α ∈ J ⇔ T∞ ∈ K−(TJ) ⇔ N(T∞) = R(I − TJ).

Proof: a) We start with the first part and conclude cyclically. The relation TαT∞ = T∞

implies T 2
∞ = T∞ by limit transition. Hence T∞ is a right projection kernel of TJ , that is

T∞ ∈ K+(TJ). Since T∞ is attainable by assumption, Theorem 7.1 shows that T∞ is right
optimal, that is R(T∞) = N(I−TJ) by Definition 4.2. This relation implies again TαT∞ = T∞

for all α by Lemma 3.1. Hence, the cycle is closed.
b) This part can be obtained analogously. �
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Theorem 7.2 If the limit T∞ of (Tα) exists, then the following statements are equivalent:

1) TαT∞ = T∞Tα = T∞ for all α ∈ J ,

2) T∞ ∈ K(TJ),

3) R(T∞) = N(I − TJ) , N(T∞) = R(I − TJ).

Proof: Combining a) and b) in Proposition 7.1 we arrive at the assertion. �

Theorem 7.2 shows: if the limit T∞ of (Tα) is a projection kernel, then it is an optimal one.

Example 7.1 (Semi-group of operators) Let T be a semi-group of operators T ∈ L(X)

with identity I. Further, let exist a generalized sequence (Tα) of operators Tα ∈ L(X) with
the following properties:

a) (Tα) is (uniformly) bounded,

b) Tαx ∈ co({Tx : T ∈ T }) for all α and for all x ∈ X,

c) limα Tαx exists for all x ∈ X,

d) limα(I − T )Tαx = limα Tα(I − T )x = 0 for all x ∈ X and for all T ∈ T .

Then the limit operator P defined by Px := limα Tαx is a projection kernel of co(T ). This
result can be derived from [5], p. 220 – 222. In our context, P is moreover the attainable and
optimal projection kernel of co(T ).

Theorem 7.3 Let P be a projection kernel of TJ = {Tα : α ∈ J}. Then the following
conditions are equivalent:

a) (Tα) converges to P .

b) (Tα) converges on N(P ) to the null operator O.

In both cases P is the optimal projection kernel of TJ , that means

R(P ) = N(I − TJ), N(P ) = R(I − TJ).

Proof: It is supposed that P ∈ K(TJ). According to Theorem 3.1 the operators Tα have
the direct sum representation

Tα = I |R(P )⊕ Tα |N(P ) = P |R(P )⊕ Tα |N(P ).

Hence, a) and b) are equivalent. Under the condition a) P is attainable. Consequently P
is by Theorem 7.1 the optimal projection kernel of TJ , where the given range and nullspace
follow by Definition 4.2. �
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8 Projection kernels of operator products

Considering iterative methods, beside operators Tk also product operators

Tk,0 := Tk . . . T1T0

occur. Hence, especially the limit behavior of (Tk,0) is of interest. Finally, we introduce the
set notations

TN := {Tk : k ∈ N}, TN,0 := {Tk,0 : k ∈ N}

for the corresponding sequences (Tk) and (Tk,0).

Theorem 8.1 If the product sequence (Tk,0) converges to a (left, right) projection kernel
P of (Tk), then P is a (left, right) optimal (left, right) projection kernel of (Tk) and (Tk,0).

Proof: Let P be a (left, right) projection kernel of (Tk) with limk→∞ Tk,0 = P . Let us
consider the identities

I − Tk,0 =
k∑
i=0

Tk . . . Ti+1(I − Ti) =
k∑
i=0

(I − Ti)Ti−1 . . . T0.

Since x ∈ N(I − TN) implies (I − Tk)x = 0 for all k, it implies also (I − Tk,0)x = 0 for all k.
Hence, by limit transition it is (I − P )x = 0. This shows

R(P ) = N(I − P ) ⊇ N(I − TN,0) ⊇ N(I − TN).

On the other hand the identities verify R(I − Tk,0) ⊆ R(I − TN) for all k and by limit
transition also R(I − P ) ⊆ R(I − TN). In more detail, we have even

N(P ) = R(I − P ) ⊆ R(I − TN,0) ⊆ R(I − TN).

But, by Lemma 3.1 and Lemma 3.2 it holds

R(P ) ⊆ N(I − TN), N(P ) ⊇ R(I − TN)

for a left and right projection kernel of TN , respectively.
Consequently, the assertion is true. �

Proposition 8.1 If the limit T∞,0 of (Tk,0) exists, then it follows

a) TkT∞,0 = T∞,0 for all k ⇔ T∞,0 ∈ K+(TN) ⇔ R(T∞,0) = N(I − TN),

b) T∞,0Tk = T∞,0 for all k ⇔ T∞,0 ∈ K−(TN) ⇔ N(T∞,0) = R(I − TN).
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Proof: a) The relation TkT∞,0 = T∞,0 for all k implies Tk,0T∞,0 = T∞,0 for all k. By limit
transition we get T 2

∞,0 = T∞,0. This means T∞,0 ∈ K+(TN) considering the first relation.
Since T∞,0 is attainable, Theorem 7.1 shows that T∞,0 is right optimal. By Definition 4.2
the relation R(T∞,0) = N(I − TN) holds in this case.
Assertion b) is shown analogously. �

Theorem 8.2 If the limit T∞,0 of (Tk,0) exists, then the following conditions are equiv-
alent:

1) TkT∞,0 = T∞,0Tk = T∞,0 for all k,

2) T∞,0 ∈ K(TN),

3) R(T∞,0) = N(I − TN), N(T∞,0) = R(I − TN).

Proof: The assertion follows by combination of a) and b) in Proposition 8.1. �

Theorem 8.3 Let P be a projection kernel of TN . Then the following conditions are
equivalent:

a) (Tk,0) converges to P .

b) (Tk,0) converges on N(P ) to the null operator O.

In both cases P is the optimal projection kernel of TN , that means

R(P ) = N(I − TN), N(P ) = R(I − TN).

Proof: By assumption it is P ∈ K(TN). Then P ∈ K(TN,0) follows using Lemma 2.1 or
Corollary 2.1. Applying Theorem 7.3 with (Tk,0) instead of (Tα), the statements a) and b) are
shown to be equivalent. If a) or b) are supposed, Theorem 8.1 supplies that the projection
kernel P is optimal. By definition P has the stated range and nullspace. �

Remark 8.1 If (Tk,0) converges to O, then there is only the trivial projection kernel P = O.
Further, it is

N(I − TN) = R(O) = {0}, R(I − TN) = N(O) = X.

Reversely, if these space conditions hold for (Tk), then (Tk,0) converges to O.

Theorem 8.4 If the operators Tk are Fejér monotone with eigenprojections Pk (k =

1, . . . ,m), then the product Tm,1 = Tm . . . T2T1 is Fejér monotone with eigenprojection P

defined by

R(P ) =
m⋂
k=1

R(Pk), N(P ) = span
m⋃
k=1

N(Pk).

Thereby P is the orthogonal optimal projection kernel of both (Pk) and (Tk).
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Proof: The first part is shown in [17], p. 183. The last part follows by Theorem 5.1, if the
relations

N(I − Tk) = N(I − T ∗k ) = R(Pk) = N(I − Pk) = N(I − P ∗k ), R(I − Pk) = N(Pk)

are observed (see also Corollary 5.3). �

9 Power sequences and related series

Now we turn to the special case Tk = T for all k. Then Tk,0 = T k+1. Thus we arrive at
power sequences (T k) and their convergence properties.

Lemma 9.1 The following statements are equivalent:

a) (T k) converges strongly (to an operator T∞ ∈ L(X)).

b) (T k) converges strongly to the projector P given by R(P ) = N(I − T ) and N(P ) =

R(I − T ).

c) There is a projector P with R(P ) = N(I − T ) such that T̃ := T |N(P ) ∈ L(N(P )) and
(T̃ k) converges strongly to O ∈ N(P ).

Proof: The equivalence of b) and c) is a consequence of Theorem 8.3. It remains to show
that the limit operator of (T k) is a projector in L(X) with given range and nullspace. This
is done e.g. in [15], pp. 6 – 8. �

Remark 9.1 Several authors have proven in different ways and in different spaces that the
limit of a convergent power sequence (T k) is a projector P (see e.g. [1]: p. 367, [3]: p. 567,
[9], [19]: p. 179, [20]: p. 351). This projector P in the above lemma is the optimal projection
kernel of T . Hence, the existence of an optimal projection kernel for T is necessary for the
convergence of (T k). In other words, I − T has to be decomposition regular (see [14]):

X = N(I − T )⊕ R(I − T ).

Proposition 9.1 ([18], p. 35 – 36) Let T be a strongly Fejér monotone operator. Then
the sequence (T k) converges (uniformly, r.t. the operator norm) to the eigenprojection P (T )

of T .

Lemma 9.1 shows that powers sequences (T k) of strongly Fejér monotone operators con-
verge uniformly to O on N(P ) = R(I − T ), where the range of I − T is closed in this case.
If R(I − T ) = X, then (T k) converges uniformly to O. The latter statement fits to the
following well-known facts.
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Proposition 9.2 These conditions are equivalent:

a) The sequence (T k) converges uniformly to O.

b) There is a natural n such that ‖T n‖ < 1.

c) The Neumann series
(∑k

i=0 T
i
)
converges uniformly.

Theorem 9.1 The following two statements are equivalent:

a) The sequence (T k) converges.

b) The sequence (T nk) converges for a fixed n and all n-th roots of unity which are different
from 1 are no eigenvalues of T .

Under one of these conditions a) or b) both sequences converge to their optimal projection
kernel P with R(P ) = N(I − T ) and N(P ) = R(I − T ).

Proof: The equivalence of a) and b) is given in [15]: p. 11 and in [3]: p. 568 for the special
case n = 2. The consequence is shown by Lemma 9.1. �

Corollary 9.1 If the natural power of an operator T is a projector P , say T n = P , and
all n-th roots of unity which are different from 1 are no eigenvalues of T , then it holds also
T k = P for all members of (T k) with k ≥ n. Thereby P is the optimal projection kernel of
(T k).

Proof: By assumption we have T n = P . Considering T nk = P for all k and Theorem 9.1
both sequences (T k) and (T nk) converge to the common optimal projection kernel P such
that also PT = TP = P holds. Hence,

T n+1 = T · T n = T · P = P.

By induction we get T k = P for all k ≥ n. �

Example 9.1 Let us choose

T =


1 1 1 1

0 1 1 1

0 −1 1 1

0 0 −2 −2

 , P =


1 1 1 1

0 0 0 0

0 0 0 0

0 0 0 0

 ,

where P is a projector. Then it is T 3 = P . The eigenvalues 0, 1, i and −i of T are no
third roots of unity except for 1. Thus Corollary 9.1 can be applied for n = 3. This implies
T k = P for k ≥ 3. Direct computation also confirms the result. Further P is the optimal
projection kernel of (T k), i.e.

R(P ) = N(I − T ), N(P ) = R(I − T ) = R(I − T ).
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This can also be shown directly. Observe that the given matrices fits Example 5.2. The
matrix

I − T =


0 −1 −1 −1

0 0 −1 −1

0 1 0 −1

0 0 2 3


has rank 3. This again proves the optimality of P in the referred context.

Example 9.2 We consider an operator

T := I +B, B ∈ Rn,n, B 6= O, B2 = O.

Then we get
T k = I + kB.

Hence, the limit T∞ of (T k) does not exist. Therefore I − T and B are not decomposition
regular (see Remark 9.1). A projector P ∈ Rn,n is a projection kernel of (T k) iff PB =

BP = O. But such a projector cannot be optimal (see again Remark 9.1). Example 4.1
shows that the conditions for B given above can be fulfilled. We choose

B := c

0 0 0

0 0 0

1 0 0

 .

Then T (c) := I + B, where B2 = O and BP (a, b) = P (a, b)B = O holds for the projection
kernels P (a, b) of operators T (c).

The following example shows that the optimal projection kernel of T are sometimes obtained
by limits of more general sequences which can converge if (T k) diverges.

Example 9.3 (Means of operator powers) Let X be a reflexive Banach space and
T ∈ L(X) an operator with a (uniformly) bounded sequence (T k) of powers. Then the
sequence of Cesàro means

Tk :=
1

k + 1

k∑
i=0

T i

converges strongly to the optimal projection kernel P of (T k) (see also [23]: p. 214).

Similar results can be obtained also by other means of operator powers.
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Manfred Krüppel

Two-Scale Difference Equations and Power Sums
related to Digital Sequences

ABSTRACT. This paper uncovers a connection between two-scale difference equations and
the representation of sums of sequences which satisfy a certain multiplicative recurrence
formula. For certain digital power sums related with such a sequence we derive a formula
which in case of usual power sums yields the known representation of power sums by means
of Bernoulli polynomials.

KEY WORDS. Two-scale difference equations, digital sums, Bernoulli polynomials, Appell
polynomials, generating functions

1 Introduction

Let p > 1 be an integer and Cn the sequence which is given by the p initial values C0 = 1,

C1, . . . , Cp−1 such that
C := C0 + · · ·+ Cp−1 > 0 (1.1)

and which satisfies the recurrence formula

Ckp+r = CkCr (k ∈ N, r = 0, . . . , p− 1). (1.2)

In this paper we derive a formula for the sum

Sm(N) =
N−1∑
n=0

Cnn
m (1.3)

where m ∈ N0. In the simple case Cn = 1 for all n we have the usual power sum which can
be expressed by means of the Bernoulli polynomials Bm(t) in the form

N−1∑
n=0

nm = B̃m(N) (1.4)

where
B̃m(t) =

1

m+ 1
{Bm+1(t)− Bm+1}. (1.5)

Digital sums were investigated by many authors, cf. e.g. [4], [13], [3], [12], [5], [6], [10].
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Under the condition
|Cr| < C for r = 0, 1, . . . , p− 1 (1.6)

we show that for the digital sum (1.3) it holds

N−1∑
n=0

Cnn
m = Nα

m∑
µ=0

NµFm,µ
(
logpN

)
(1.7)

with α = logpC and 1-periodic continuous functions Fm,µ which can be expressed by means
of the solutions of certain two-scale difference equations (Theorem 4.1).

In order to derive formula (1.7) we quote some facts on the two-scale difference equation

λϕ

(
t

p

)
=

p−1∑
r=0

crϕ(t− r) (t ∈ R) (1.8)

with λ 6= 0 and complex coefficients cr where c0 6= 0 and

p−1∑
r=0

cr = 1, (1.9)

cf. [11] where equation (1.8) with λ = 1 was studied in detail. In [7] and [8] it was investigated
a system of simple functional equations which is equivalent to equation (1.8) with λ = 1, cf.
[11, p. 60]. It is known that under the condition |cr| < 1 equation (1.8) with λ = 1 has a
continuous solution ϕ0 satisfying

ϕ0(t) = 0 for t < 0, ϕ0(t) = 1 for t > 1 (1.10)

and that ϕ0 is even Hölder continuous cf. [11, Theorem 3.6]. The solution ϕ = ϕ0 has the
Laplace transform

L{ϕ0} =
1

z
Φ(z) (1.11)

where

Φ(z) =
∞∏
j=1

P
(
e−z/p

j
)

(1.12)

with the polynomial

P (w) =

p−1∑
r=0

crw
r, (1.13)

cf. [1], [2].

The iterated integrals ϕn (n ∈ N) of ϕ0, defined recursively by

ϕn(t) =

∫ t

0

ϕn−1(τ)dτ
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are solutions of (1.8) with λ = pn. For t > 1 the solution ϕn is a polynomial

ϕn(t) = pn(t) (t > 1) (1.14)

of degree n with the main term 1
n!
tn. We remark that the polynomials pn have the property

p′n(t) = pn−1(t), i.e. they are Appell polynomials, cf. [1], [2]. The generating function reads

etzΦ(z) =
∞∑
n=0

pn(t)zn (t ∈ R) (1.15)

with Φ from (1.12). The coefficients of the power series

Φ(z) =
∞∑
n=0

anz
n (1.16)

can be calculated recursively by a0 = Φ(0) = 1 and

an =
1

pn − 1

n∑
k=1

(−1)k
an−k
k!

p−1∑
r=1

rkcr (n ∈ N) (1.17)

cf. [2, Proposition 2.6] where p = 2, and the polynomials pn in (1.15) have the representation

pn(t) =
n∑
k=0

an−k
k!

tk. (1.18)

We also need the power series
1

Φ(z)
=
∞∑
n=0

bnz
n (1.19)

where the coefficients bn are determined by b0 = 1 and the equations

anb0 + an−1b1 + · · ·+ a0bn = 0 (n > 1). (1.20)

The corresponding Appell polynomials

qn(t) =
n∑
k=0

bn−k
k!

tk (1.21)

have the generating function
etz

Φ(z)
=
∞∑
n=0

qn(t)zn. (1.22)

This paper is organized as follows: At first we show that the solution ϕ = ϕn of the two-scale
difference equation (1.8) with λ = pn has for k ≤ p` the representation

ϕn

(
k

p`

)
=

c`0
pn`

k∑
j=1

Ck−jpn(j) (1.23)
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where pn are the polynomials (1.18), (Theorem 2.1). This formula is the start point for the
representation (1.7) of digital power sums. In Section 3 we prove (1.7) in the case m = 0,
i.e.

S0(N) =
N−1∑
n=0

Cn = NαF0(logpN) (1.24)

(Theorem 3.2), and give some properties of the 1-periodic continuous function F0 under the
condition (1.6), for instance that F0 is Hölder continuous and that F0 is differentiable almost
everywhere if p|C0C1 · · ·Cp−1|1/p < C, (Proposition 3.5). By means of a Toeplitz theorem
we prove the convergence of the arithmetical mean

1

pn

pn∑
N=1

1

Nα
S0(N) (1.25)

as n → ∞ (Proposition 3.7). In Section 4 we prove the main result of this paper, namely
the representation (1.7), (Theorem 4.1). In the simple case Cn = 1 for all n formula (1.7)
turns over into the known representation (1.4) for the usual power sums, cf. Remark 4.2.
For the specific power sums (1.3) where N is a power of p we have the representation

Sm(pk) = (−1)mm!pαk
m∑
µ=0

pµkaµbm−µ (1.26)

with α = logpC and the coefficients an from (1.16) and bn from (1.19), (Proposition 5.2),
and we prove for positive integers k, `

Sm(pk+`) =
m∑
µ=0

(
m

µ

)
pkµSµ(p`)Sm−µ(pk) (1.27)

(Proposition 5.6).

2 Functional relations

For given coefficients c0, c1, . . . , cp−1 of the two-scale difference equation (1.8) we define a
sequence Cn by Cn = cn

c0
for n = 0, 1, . . . , p− 1 and for n ≥ p by the recursion

Ckp+r = CkCr (k ≥ 1, r ∈ {0, 1, . . . , p− 1}). (2.1)

If n has the p -adic representation

n =
∑

nip
i, (ni ∈ {0, 1, . . . , p− 1}) (2.2)

then we have

Cn =

p−1∏
r=1

Csr(n)
r (2.3)
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where sr(n) denotes the total number of occurrences of the digit r in the representation (2.2)

of n, cf. [11, p. 63].

The numbers Cn have the generating function

G(z) =
∞∏
j=0

1

c0

P
(
zp

j
)

=
∞∑
n=0

Cnz
n (2.4)

which converges for |z| < 1, cf. [11, Remark 2.2.1.].

In the following we want to generalize Proposition 2.3 from [11] for ϕn.

Theorem 2.1 For ` ∈ N and non-negative integers k < p` the solution ϕ = ϕn of (1.8)

with λ = pn satisfies the equations

ϕn

(
k + t

p`

)
=

c`0
pn`

k∑
j=0

Cjϕn(t+ k − j) (0 ≤ t ≤ 1). (2.5)

Moreover, for k ≤ p` we have

ϕn

(
k

p`

)
=

c`0
pn`

k∑
j=1

Ck−jpn(j) (2.6)

where pn are the polynomials (1.18).

Proof: In (1.8) with λ = pn we replace t by k + t with 0 ≤ k ≤ p − 1 and get in view of
Cr = cr

c0
for 0 ≤ r ≤ p− 1

ϕn

(
k + t

p

)
=

1

pn

p−1∑
r=0

crϕn(k + t− r)

=
c0

pn

p−1∑
r=0

Crϕn(k + t− r)

=
c0

pn

k∑
j=0

Cjϕn(k + t− j)

since ϕn(t) = 0 for t ≤ 0. So (2.5) is true for ` = 1. Assume that (2.5) is valid for a fixed `.
Replace t by s+t

p
with 0 ≤ s ≤ p− 1 we get

ϕn

(
kp+ s+ t

p`+1

)
=

c`0
pn`

k∑
j=0

Cjϕn

(
p(k − j) + s+ t

p

)

=
c`0

pn`+n

k∑
j=0

p−1∑
r=0

Cjcrϕn(pk + s− pj − r + t)

=
c`+1

0

pn(`+1)

k∑
j=0

p−1∑
r=0

Cjp+rϕn(t+ kp+ s− pj − r).
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So (2.5) is proved by induction. Formula (2.6) follows by summation in view of ϕn(0) = 0

and (1.14) for the polynomials pn(t) from (1.18). �

Remark 2.2 Formula (2.6) yields in case n = 0 the known representations

ϕ0

(
k + t

p`

)
= ϕ0

(
k

p`

)
+ c`0Ckϕ0(t) (0 ≤ t ≤ 1) (2.7)

and

ϕ0

(
k

p`

)
= c`0

k−1∑
j=0

Cj (2.8)

for the solution ϕ = ϕ0 of equation (1.8) with λ = 1, cf. [11].

From (2.5) and (2.6) we get in view of (1.14) the following result.

Corollary 2.3 For ` ∈ N0 and non-negative integers k < p` the solution ϕ = ϕn of (1.8)

with λ = pn satisfies

ϕn

(
k + t

p`

)
=
c`0Ck
pn`

ϕn(t) +
c`0
pn`

pnk(t) (0 ≤ t ≤ 1) (2.9)

with the polynomials

pnk(t) =
k∑
j=1

Ck−jpn(j + t) (2.10)

and pn(t) from (1.18).

We remark that (2.9) with (2.10) is already known for the iterated integrals of de Rham’s
function, cf. [2, (3.16) and Theorem 3.1].

3 Digital sums

Let Cn be an arbitrary sequence with the properties C0 = 1, (1.1) and (1.2). In order to
obtain a formula for the sum (1.3) with m = 0, i.e.

S0(N) =
N−1∑
n=0

Cn (3.1)

we consider the two-scale difference equation

ϕ

(
t

p

)
=

1

C

p−1∑
r=0

Crϕ(t− r) (3.2)
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with C from (1.1). In the following we assume that (1.6) is satisfies so that equation (3.2)
has a continuous solution ϕ = ϕ0 satisfying (1.10) since the quotients cr = Cr

C
satisfy (1.9)

and |cr| < 1. For 0 ≤ t ≤ 1 we have in view of C0 = 1 and (1.10)

ϕ0

(
t

p

)
=

1

C
ϕ0(t) (0 ≤ t ≤ 1).

We put
α := logpC (3.3)

so that pα = C and
ϕ0( t

p
)

( t
p
)α

=
ϕ0(t)

tα
(0 < t ≤ 1). (3.4)

Hence, the function

f0(t) :=
ϕ0(t)

tα
(0 < t ≤ 1) (3.5)

has the property: f0( t
p
) = f0(t) so that it can be extended for all t > 0 by

f0(pt) = f0(t) (3.6)

where f0(t) is continuous for t > 0.

Proposition 3.1 If (1.6) is satisfies then for N ∈ N the sum S0(N) from (3.1) can be
represented as

S0(N) = Nαf0(N) (3.7)

with α from (3.3) and the continuous function f0 from (3.5) and (3.6).

Proof: Because of (1.6) equation (3.2) has a continuous solution ϕ0 satisfying (1.10). For
N ≤ p` we have by (2.8) the formula

S0(N) = C`ϕ0

(
N

p`

)
. (3.8)

For arbitrary N we choose ` so large that p` > N . In view of (3.8), (3.3) and (3.5) we have

S0(N) = C`ϕ0

(
N

p`

)
= Nα

(
p`

N

)α
ϕ0

(
N

p`

)
= Nαf0

(
N

p`

)
.

Owing to (3.6) it follows (3.7). �

According to (3.6) the function

F0(u) := f0(pu) (u ∈ R) (3.9)

has the period 1 and in virtue of (3.5) we have by Proposition 3.1 :
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Theorem 3.2 If (1.6) is satisfies then for N ∈ N the sum S0(N) from (3.1) can be
represented as

S0(N) = NαF0(logpN) (3.10)

with α from (3.3) and an −1 periodic continuous function F0 which is given by

F0(u) =
ϕ0(pu)

pαu
= C−uϕ0(pu) (u ≤ 0) (3.11)

where ϕ0 is the solution of (3.2) satisfying (1.10).

Remark 3.3 Note that from (3.10) and (3.11) for N = pk we get in view of F0(k) =

F0(0) = 1 that

S0(pk) =

pk−1∑
n=0

Cn = pkα = Ck (3.12)

with C from (1.1).

Remark 3.4 In the case Cr = 1 for all r = 0, 1, . . . , p − 1 we have C = p and α = 1.
Equation (3.2) has the trivial solution ϕ0(t) = t for 0 ≤ t ≤ 1, f0(t) = 1 for t > 0, F0(u) = 1

for all u ∈ R and we get S0(N) = N for the sum (3.1).

In the following we exclude the trivial case Cn = 1 for all n.

Proposition 3.5 If (1.6) is satisfies then the 1-periodic continuous function F0(u) from
(3.11) has the following properties:

1. F0 is Hölder continuous.

2. If pM0 < C where M0 = |C0C1 · · ·Cp−1|1/p then F0 is differentiable almost everywhere
and if pM0 ≥ C then it is almost nowhere differentiable.

3. F0 has finite total variation on [0, 1] if and only if Cr ≥ 0 for r = 0, 1, . . . , p − 1. In
this case we have

1∨
0

(F0) ≤ 2C − 2. (3.13)

Proof: It is known that in case |cr| < 1 the solution ϕ = ϕ0 of (1.8) with λ = 1 is Hölder
continuous, cf. [11, Theorem 3.6]. This implies in view of cr = Cr

C
with C from (1.1), (3.5)

and (3.9) the first property of F0. Analogously, the second property is a consequence of [11,
Theorem 4.12].

In order to prove the third property first we consider the case Cr ≥ 0 where the solution
ϕ = ϕ0 of (3.2) is increasing, cf. [11, Proposition 5.1]. We show that for f0 from (3.5) it
holds

1∨
1/p

(f0) ≤ 2C − 2. (3.14)
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Let 1
p

= t0 < t1 < . . . < tn = 1 be some decomposition of [1
p
, 1]. Because of the identity

2(aA− bB) = (a+ b)(A− B) + (A+B)(a− b) (3.15)

it holds
2|aA− bB| ≤ |a+ b||A− B|+ |A+B||a− b|.

Using this inequality with a = 1
tαi
, b = 1

tαi+1
, A = ϕ0(ti) and B = ϕ0(ti+1) we have in view of

max |ϕ0(t)| = ϕ0(1) = 1 and (3.5)

2|f0(ti)− f0(ti+1)| ≤
∣∣∣∣ 1

tαi
+

1

tαi+1

∣∣∣∣ |ϕ0(ti)− ϕ0(ti+1)|+ 2

∣∣∣∣ 1

tαi
− 1

tαi+1

∣∣∣∣
≤ 2 max {pα, 1}|ϕ0(ti)− ϕ0(ti+1)|+ 2

∣∣∣∣ 1

tαi
− 1

tαi+1

∣∣∣∣ .
Since pα = C > 1 and ϕ0(.) is increasing we get by summation

1∨
1/p

(f0) ≤ C

(
ϕ0(1)− ϕ0

(
1

p

))
+ |pα − 1| = C

(
1− 1

C

)
+ (C − 1)

where we have used ϕ0(1) = 1, ϕ0(1
p
) = 1

pα
= 1

C
, cf. (3.4) with t = 1, and (3.3). So we have

proved (3.14) which implies (3.13) in virtue of (3.9).

Now we consider the case that Cr ≥ 0 is not true for all r = 0, 1, . . . , p − 1. Then by [11,
Proposition 2.6] the solution ϕ = ϕ0 of (3.2) does not have finite total variation on [0, 1].
According to (2.7) this is true also for the subinterval [k

p
, k+1

p
] if Ck 6= 0. This implies

1∨
1/p

(ϕ0) =∞ (3.16)

since in view of (1.6) it is impossible that Cr = 0 for all r = 1, 2, . . . , p− 1.

From (3.15) we get

2|aA− bB| ≥ |a+ b||A− B| − |A+B||a− b|

and with the same notations as before

2|f0(ti)− f0(ti+1)| ≥ 2 min {pα, 1}|ϕ0(ti)− ϕ0(ti+1)| − 2M

∣∣∣∣ 1

tαi
− 1

tαi+1

∣∣∣∣
where M = max{|ϕ0(t)|} for 1

p
≤ t ≤ 1. In view of pα > 1 it follows

n−1∑
i=0

|f0(ti)− f0(ti+1)| ≥
n−1∑
i=0

|ϕ0(ti)− ϕ0(ti+1)| −M(pα − 1)
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which implies
1∨

1/p

(f0) =∞

according to (3.16). Finally, (3.9) yields that F0 does not have finite total variation on [0,1].
�

Remark 3.6 Note that according to (2.7) the solution ϕ0 is constant on [k
p
, k+1

p
] if Ck = 0

for some k ≤ p − 1. We remark that the suppositions of Proposition 2.6 in [11] are to add
by cj 6= 0 for all j = 0, 1, . . . , p− 1.

Proposition 3.7 If (1.6) is satisfies then for the sums S0(N) from (3.1) we have

1

pn

pn∑
N=1

1

Nα
S0(N)→ c (n→∞) (3.17)

where

c =

∫ 1

1/p

f0(t)dt (3.18)

with f0 from (3.5) and (3.6).

Proof: The sum in (3.17) can be written as

1

pn

pn∑
N=1

1

Nα
S0(N) =

n∑
m=0

tn,mAm (3.19)

with
tn,0 :=

1

pn
, tn,m :=

pm − pm−1

pn
(1 ≤ m ≤ n)

and

A0 := 1, Am :=
1

pm − pm−1

pm∑
N=pm−1+1

1

Nα
S0(N) (1 ≤ m ≤ n).

For the numbers tn,m we have tn,m > 0, tn,0 + tn,1 + · · ·+ tn,n = 1 and tn,m → 0 as n→∞ for
fixed m, so that by a known Toeplitz theorem the sum (3.19) converges to c from (3.18) if

Am →
∫ 1

1/p

f0(t)dt (m→∞). (3.20)

According to (3.7) with the continuous function f0 from (3.5) and (3.6) we have for m ≥ 1

Am =
1

pm − pm−1

pm∑
N=pm−1+1

f0(N)

=
1

pm − pm−1

pm∑
N=pm−1+1

f0

(
N

pm

)
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where we have used (3.6). With the substitution k = N − pm−1 we get

Am =
1

pm − pm−1

pm−pm−1∑
k=1

f0

(
1

p
+

k

pm

)
and in view of the continuity of f0 it follows (3.20). �

Example 3.8 (Digital exponential sums) We consider the sequence Cn = qs(n) with q > 0,
where s(n) denotes the number of ones in the binary representation of n. This sequence
satisfies relation (1.2) with p = 2, C0 = 1 and C1 = q. The corresponding two-scale
difference equation (3.2) reads

ϕ

(
t

2

)
= aϕ(t) + (1− a)ϕ(t− 1) (t ∈ R) (3.21)

with a = 1
1+q

and the solution ϕ = ϕ0 satisfying (1.10) which clearly depend on the parameter
a. (cf. de Rham’s function [10]). By Theorem 3.2 we have for the sum

S0(N) =
N−1∑
n=0

qs(n) (3.22)

the exact formula
S0(N) = NαF0(log2 N)

where α = log2(1+q) and where F0(u) is a continuous, 1-periodic function which is connected
with de Rham’s function ϕ0, i.e. the solution of (3.21), by

F0(u) = auϕ0(2u) (u ≤ 0),

cf. also [10, Theorem 2.1]. Let us mention that in case q = 2 the sum (3.22) is equal to the
number of odd binomial coefficients in the first N rows of Pascal’s triangle and that the sum
(3.22) was already investigated by many authors, cf. e.g. [12], [6], [10].

Example 3.9 (Cantor’s function) We consider the sequence Cn where Cn = 0 if the triadic
representation of n contains the digit 1, elsewhere Cn = 0. This sequence satisfies relation
(1.2) with p = 3, C0 = 1, C1 = 0 and C2 = 1. Note that for the generating function (2.4) we
have

G(z) =
∞∑
n=0

Cnz
n =

∞∑
k=0

zγk = 1 + z2 + z6 + z8 + z18 + z20 + z24 + z26 + · · ·

with strictly increasing exponents γ0 = 0, γ1 = 2, γ2 = 6, γ3 = 8 and so on, where it holds
with εµ ∈ {0, 1}:

n =
m∑
µ=0

εµ2µ =⇒ γn = 2
m∑
µ=0

εµ3µ, (3.23)



56 M.Krüppel

cf. [11, Formula (5.9)]. For the sum (3.1) it follows

S0(N) =
N−1∑
n=0

Cn = k + 1 for γk + 1 ≤ N < γk+1. (3.24)

By means of Theorem 3.2 this sum can also represented by means of Cantor’s function.
Cantor’s function is the solution ϕ0 of (3.2) restricted to [0,1] with p = 3, C0 = 1, C1 = 0,
C2 = 1 and C = 2, i.e. ϕ = ϕ0 is solution of

ϕ

(
t

3

)
=

1

2
ϕ(t) +

1

2
ϕ(t− 2) (t ∈ R)

satisfying (1.10), cf. [9, Section 5], [11, Example 5.6]. By Theorem 3.2 the sum (3.24) can
be expressed as follows :

S0(N) = NαF0(log3 N) (3.25)

where α = log3 2 and where F0 is a continuous periodic function with period 1 which is given
by

F0(u) =
1

2u
ϕ0(2u) (u ≤ 0) (3.26)

with Cantor’s function ϕ0.

It is remarkable that the intervals Jm,n, where Cantor’s function ϕ0 is constant, have the
form

Jm,n =

(
γm−1 + 1

3n
,
γm
3n

)
(n = 1, 2, 3, . . . , m = 1, 2, . . . , 2n)

with ϕ0(t) = m
2n

for t ∈ Jm,n, cf. [11, Formula (5.11)]. Let us mention that in [6, Section 5]
it was considered a sequence h(n), defined by

h

(∑
i

2ei

)
=
∑
i

3ei

with strictly increasing exponents ei, and in virtue of (3.23) we see that h(n) = 1
2
γn. In

[6] it was mentioned that h(1) < h(2) < · · · < h(n) is the “minimal” sequence of n positive
integers not containing an arithmetic progression. By means of the Mellin transformation it
was shown [6, Theorem 5.1] :

H(N) :=
∑
n<N

h(n) = Nρ+1F (log2 N)− 1

4
N

where ρ = log2 3 and where F (u) is an 1-periodic function which has the Fourier series

F (u) =
1

3 log 2

∑
k∈Z

ζ(ρ+ χk)
e2πiku

(ρ+ χk)(ρ+ χk + 1)

with χk = 2πik/ log 2 and Riemann’s zeta function ζ(.).
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4 Power sums related to digital sequences

Now we investigate the sum

Sm(N) =
N−1∑
n=0

Cnn
m (4.1)

with m ∈ N0, where Cn is an arbitrary sequence with C0 = 1 and (1.1) satisfying (1.2). For
this we consider the two-scale difference equations (1.8) with λ = pn (n ∈ N0) and cr = Cr

C

with C from (1.1). By Theorem 2.1 we have for the solutions ϕ(t) = ϕn(t) that

ϕn

(
t

p

)
=

1

Cpn
ϕn(t) (0 ≤ t ≤ 1)

since ϕn(t) = 0 for t < 0. Choosing αn so that pαn = Cpn i.e.

αn = n+ logpC (4.2)

then
ϕn( t

p
)

( t
p
)αn

=
ϕn(t)

tαn
(0 < t ≤ 1).

Hence, the functions

fn(t) :=
ϕn(t)

tαn
(0 < t ≤ 1) (4.3)

have the property fn( t
p
) = fn(t) so that they can be extended for all t > 0 by

fn(pt) = fn(t) (t > 0). (4.4)

Theorem 4.1 If (1.6) is satisfies then for N ∈ N the sum Sm(N) from (4.1) can be
represented as

Sm(N) = Nα

m∑
µ=0

NµFm,µ(logpN) (4.5)

where α = logpC and where Fm,µ(u) are 1-periodic continuous functions which have the
representations

Fm,µ(u) = (−1)mm! bm−µ

µ∑
ν=0

(−1)ν

ν!
fµ−ν(p

u) (4.6)

with the coefficients bn from (1.19) and fn(.) from (4.3) and (4.4).

Proof: For given N ∈ N we choose ` such that p` ≥ N . From (2.6) with n = m and k = N

we get

ϕm

(
N

p`

)
=

c`0
pm`

N∑
j=1

CN−jpm(j)
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where ϕm is the continuous solution of (1.8) with λ = pm satisfying (1.10). With j = N − n
it follows in view of c0 = 1

C
and pmC = pαm

N−1∑
n=0

Cnpm(N − n) =
pm`

c`0
ϕm

(
N

p`

)
= Nαm

(
p`

N

)αm
ϕm

(
N

p`

)
.

In virtue of (4.2) and (4.4) it follows

N−1∑
n=0

Cnpm(N − n) = Nα+mfm(N) . (4.7)

Next we write pm(N − n) as polynomial with respect to n. By Taylor’s formula

pm(N − n) =
m∑
µ=0

p(µ)
m (N)

(−n)µ

µ!
=

m∑
µ=0

(−1)µ

µ!
pm−µ(N)nν

where we have used that pm(t) are Appell polynomials. It follows

N−1∑
n=0

Cnpm(N − n) =
m∑
µ=0

(−1)µ

µ!
pm−µ(N)

N−1∑
n=0

Cnn
µ

and comparison with (4.7) yields in view of (4.1) that

Nα+mfm(N) =
m∑
µ=0

(−1)µ

µ!
pm−µ(N)Sµ(N).

Multiplication by zm and summation over m we get in view of the Cauchy product and
(1.15)

∞∑
m=0

Nα+mfm(N)zm =
∞∑
n=0

pn(N)zn
∞∑
m=0

(−1)m

m!
Sm(N)zm

= eNzΦ(z)
∞∑
m=0

(−1)m

m!
Sm(N)zm.

Therefore
∞∑
m=0

(−1)m

m!
Sm(N)zm =

e−Nz

Φ(z)

∞∑
m=0

Nα+mfm(N)zm

=
∞∑
n=0

qn(−N)zn
∞∑
m=0

Nα+mfm(N)zm

where we have used (1.22) with t = −N . Comparison of coefficients implies in view of the
Cauchy product

(−1)m

m!
Sm(N) =

m∑
n=0

qm−n(−N)Nα+nfn(N).
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Moreover, for the Appell polynomials qn(t) we have by (1.21) the representation

qm−n(−N) =
m−n∑
k=0

bm−n−k
k!

(−1)kNk

so that with the substitution µ = n+ k we get

(−1)m

m!
Sm(N) = Nα

m∑
n=0

m−n∑
k=0

bm−n−k
k!

(−1)kNn+kfn(N)

= Nα

m∑
µ=0

µ∑
n=0

(−1)µ−n
bm−µ

(µ− n)!
Nµfn(N)

= Nα

m∑
µ=0

bm−µN
µ

µ∑
n=0

(−1)µ−n
1

(µ− n)!
fn(N)

and it follows (4.5) with (4.6). �

Remark 4.2 In the simple case Cn = 1 for all n ∈ N0 the sum (4.1) is the usual power
sum. In this case equation (1.8) with λ = 1 has the solution ϕ0(t) = t for 0 ≤ t ≤ 1 so that
the iterated integrals are ϕn(t) = 1

(n+1)!
tn+1 in [0, 1]. From (4.2) we get αn = n + 1 so that

fn(t) = 1
(n+1)!

for all t > 0. Hence, the functions Fm,µ from (4.6) are constant and it easy to
see that (4.5) yields the known representation (1.4) with the Bernoulli polynomials.

In the following we again exclude the trivial case Cn = 1 for all n.

Proposition 4.3 If (1.6) is satisfies then the 1-periodic continuous functions Fm,µ(u)

from (4.6) have the following properties:

1. Each of the functions Fm,µ is Hölder continuous.

2. If pM0 < C where M0 = |C0C1 · · ·Cp−1|1/p then each Fm,µ is differentiable almost
everywhere and if pM0 ≥ C then each Fm,µ is almost nowhere differentiable.

3. Each of the functions Fm,µ has finite total variation on [0, 1] if and only if Cr ≥ 0 for
all r = 0, 1, . . . , p− 1.

Proof: Owing to (4.6) and (4.3) we see in view of the fact that ϕn are the iterated integrals
of ϕ0, that the analytic properties as differentiability of Fm,µ are determined by the function
f0. So the assertions are consequences of Proposition 3.5. �

5 Specific power sums

We consider the sum (4.1) for N = pk, i.e.

Sm(pk) =

pk−1∑
n=0

Cnn
m. (5.1)
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In order to get a simple formula for this sum we need the following lemma.

Lemma 5.1 For the 1-periodic function Fm,µ(.) from (4.6) we have

Fm,µ(0) = (−1)mm! bm−µaµ (5.2)

with the coefficients an from (1.16) and bn from (1.19).

Proof: From (4.6) with u = 0 we get

Fm,µ(0) = (−1)mm! bm−µdµ

with

dµ =

µ∑
ν=0

(−1)ν

ν!
fµ−ν(1). (5.3)

Multiplication by tµ and summation over µ yields in view of the Cauchy product

∞∑
µ=0

dµz
µ =

∞∑
ν=0

(−1)ν

ν!
zν

∞∑
µ=0

fµ(1)zµ

= e−z
∞∑
µ=0

fµ(1)zµ.

Further, by (4.3) we have fn(1) = ϕn(1) and by (1.14) also ϕn(1) = pn(1). Hence, in view of
(1.15) with t = 1 we get

∞∑
µ=0

fµ(1)zµ =
∞∑
n=0

pn(1)zn = ezΦ(z).

It follows
∞∑
µ=0

dµz
µ = Φ(z)

so that dµ = aµ according to (1.16). �

Theorem 4.1 and Lemma 5.1 imply

Proposition 5.2 The sum (4.1) for N = pk with k ∈ N reads

Sm(pk) = (−1)mm!pαk
m∑
µ=0

pµkaµbm−µ (5.4)

where α = logpC with C from (1.1), an from (1.16) and bn from (1.19).
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Remark 5.3 Formula (5.4) for m = 0 yields

S0(pk) =

pk−1∑
n=0

Cn = pαk = Ck

in accordance with (3.12).

If we introduce the polynomials

Pm(t) :=
m∑
µ=0

tµaµbm−µ (5.5)

then in virtue of (5.4) we have

Sm(pk) = (−1)mm!pαkPm(pk). (5.6)

Lemma 5.4 The polynomials Pm(t) have the generating function
∞∑
m=0

Pm(t)zm =
Φ(tz)

Φ(z)
. (5.7)

with Φ from (1.16), cf. also (1.12).

Proof: By multiplication of the power series (1.16) with tz in place of z and (1.19) we get
by means of the Cauchy product

Φ(tz)
1

Φ(z)
=

∞∑
n=0

an(tz)n
∞∑
n=0

bnz
n

=
∞∑
m=0

(
m∑
µ=0

tµaµbm−µ

)
zm

and in view of (5.5) it follows (5.7). �

Proposition 5.5 The polynomials Pm from (5.5) satisfy the relation

Pm(st) =
m∑
µ=0

sµPµ(t)Pm−µ(s). (5.8)

Proof: By repeated application of (5.7) we get
∞∑
m=0

Pm(st)zm =
Φ(stz)

Φ(z)
=

Φ(stz)

Φ(sz)
· Φ(sz)

Φ(z)

=
∞∑
m=0

Pm(t)(sz)m
∞∑
m=0

Pm(s)zm

=
∞∑
m=0

(
m∑
µ=0

sµPµ(t)Pm−µ(s)

)
zm

where we have used the Cauchy product. Comparison of coefficients yields (5.8). �
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Proposition 5.6 For positive integers k, ` the sums (5.1) satisfy the relation

Sm(pk+`) =
m∑
µ=0

(
m

µ

)
pkµSµ(p`)Sm−µ(pk). (5.9)

Proof: Applying (5.6) and (5.8) we get

(−1)m

m!
Sm(pk+`) = pα(k+`)Pm(pk+`)

= pα(k+`)

m∑
µ=0

pkµPµ(p`)Pm−µ(pk)

=
m∑
µ=0

pµ
(−1)µ

µ!
Sµ(p`)

(−1)m−µ

(m− µ)!
Sm−µ(pk)

which implies (5.9). �

Remark 5.7 Let us mention that in the simple case Cn = 1 for all n the polynomials (5.5)
can be represented as

Pm(t) =
(−1)m

m!
· 1

t
B̃m(t) (5.10)

with the polynomials B̃m(t) from (1.5) which as is known have the generating function

etz − 1

ez − 1
=

∞∑
m=0

B̃m(t)

m!
zm (|z| < 2π). (5.11)

In order to see (5.10) we note that in case Cn = 1 for all n the polynomial (1.13) has the
form

P (w) =
1

p
(1 + w + · · ·+ wp−1) =

1− wp

p(1− w)

so that for Φ from (1.12) we obtain

Φ(z) =
1− e−z

z
.

Therefore
Φ(−tz)

Φ(−z)
=

etz − 1

t(ez − 1)

and in virtue of (5.11) and Lemma 5.4 it follows (5.10).
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Harry Poppe

An abstract Alaoglu theorem

1 Introduction

We start with the paper [6] and repeat the definition of the dual space Xd of the space X
w. r. t. another space Y . By Corollary 3.3 of this paper was given a (strong) generalization
of the Alaoglu theorem for normed spaces. The Alaoglu theorem concerns the compactness
of subsets H ⊆ Xd, where for H the pointwise topology τp is considered. Of course for the
classical Alaoglu theorem we have:

(X, ‖ · ‖) is a Banachspace, Y = K, Xd = X ′, H = B(X ′) ⊆ X ′,

the norm-closed ball, and the topology τp here is nothing else than the weak-star topology.

What is the aim of this paper? We prove a general τp-compactness theorem for special subsets
H ⊆ Xd (Theorem 2.3). This theorem includes both the generalized Alaoglu theorem of [6],
Corollary 3.3 and the Alaoglu theorem for locally convex topological vector spaces (see for
instance [5]).

2 The τpτpτp-compactness theorem

Definition 2.1 Let (X, τ), (Y, σ) be topological spaces. Moreover let X, Y be spaces with
finitely many algebraic operations such that X, Y belong to the same class of such spaces.
We assume that we can assign to each algebraic operation in X an algebraic operation in Y
(in a naturel manner).

Xd = {h : X → Y | h is continuous and h is a homomorphism with respect to each pair of
corresponding algebraic operations in X and in Y respectively}; Xd is called the (first) dual
space of X with respect to Y or the Y -dual of X.
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Remark 2.2 1. A theory of this general concept of duality is developed in [6], [2], [3]
(definitions of Xd and of the second Y -dual space Xdd together with the corresponding
toolbox).

Hereby in [2] the definition of Xd and that of the other notions (definitions, propositions
and theorems occuring in [2]) is presented very precisely using the language of universal
algebra.

2. Clearly, a closed subset of a compact topological space is compact too. Hence, we not
only look for the τp-compactness of some sets H ⊆ Xd but also for the τp-closedness of
H.

3. We still provide a notion of relative compactness we need:

if X is a topological space, A ⊆ X is called relatively compact in X iff holds: each
open cover of X has a finite subcover which covers A, or equivalently:

for each ultrafilter π on X:

A ∈ π =⇒ ∃ x ∈ X, π −→ x.

For the definition and especially the properties of this notion see [8], [1]. Sometimes
one defines: A is relatively compact iff the closure A is compact, a notion somewhat
stronger than the first one.

For regular spaces the two notions coincide.

Theorem 2.3 Let (X, τ), (Y, σ) be topological spaces with algebraic structure according
to definition 2.1 and let us consider Xd. We assume that (Y, σ) is Hausdorff such that all
algebraic operations in Y are continuous with respect to σ. Moreover there is a bornology B
in Y .

We assume that there exists a family (Kx)x∈X such that ∀ x ∈ X, Kx ∈ B and Kx 6= ∅;
for the product Π{Kx|x ∈ X} we consider the Tychonoff-topology; thus Π{Kx|x ∈ X} is a
subspace of (Y X ; τp).

H = {h ∈ Xd|∀ x ∈ X : h(x) ∈ Kx};

identifying
h ≡ (h(x))x∈X we get H ⊆ Π{Kx|x ∈ X}.

Finally, we assume

1. For (Y ;B) holds: ∀B ∈ B: B is relatively compact in Y .

2. Either

(a) H is τp-closed in Y X , or
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(b) ∀ x ∈ X: Kx is closed and H is closed in Π{Kx|x ∈ X}.

Then H is compact and Hausdorff in (Y X , τp) and hence in (Xd, τp) too.

Proof: ∀ x ∈ X, Kx ⊆ Y is relatively compact in Y =⇒ Π{Kx|x ∈ X} is relatively
compact in (Y X ; τp) by the Tychonoff theorem. Y Hausdorff =⇒ ∀x ∈ X : Kx is Hausdorff
=⇒ Π{Kx|x ∈ X} is Hausdorff. By 2. (a) H is τp-closed in Y X and since H ⊆ Π{Kx|x ∈ X},
H is relatively compact in (Y X ; τp) too and hence H is compact and Hausdorff in (Y X , τp).

We have H ⊆ Xd ⊆ Y X and hence H is Hausdorff and compact in (Xd; τp), too.

By 2. (b) each Kx is relatively compact and closed yielding that Kx is compact and thus
Π{Kx|x ∈ X} is a Hausdorff and compact topological space again by Tychonoff. Then H

being closed in Π{Kx|x ∈ X}, is compact in Π{Kx|x ∈ X} and hence H is Hausdorff and
compact in (Y X , τp) and in (Xd, τp) respectively.

Corollary 2.4 Let X, Y be Hausdorff locally convex topological vector spaces (shortly:
l. c. s.); B = {B ⊆ Y |B is bounded}; clearly B is a bornology. Only the vector space opera-
tions are the algebraic operations in X and Y and these operations are continuous w. r. t. the
topologies of X and Y . Now let Y be a Montel space, which means a Hausdorff barreled
l. c. s. such that ∀B ⊆ Y : B bounded =⇒ B is relatively compact.

With these spaces X, Y , their properties and with the other assumptions from Theorem 2.3
the assertions of Theorem 2.3 hold here.

3 Application

We will deduce from Theorem 2.3 or Corollary 2.4 respectively the classical Alaoglu theorem
for l. c. s. (sometimes called Alaoglu-Bourbaki theorem) and the generalized τp-theorem in
Corollary 3.3 of [6].

A. Let X be a Hausdorff l. c. s. and Y = K; R and C are Montel spaces (as normed
Euclidian spaces) and thus the vector space operations in K are continuous. Xd = {h :

X → K |h linear and continuous} = X ′. Now let U be a neighborhood of o ∈ X and
U o = {h ∈ Xd| ∀ x ∈ U : |h(x)| ≤ 1} the polar of U ; let H = U o; ∀ x ∈ U ,

Kx = {y ∈ K | |y| ≤ 1},

where | · | is the K-norm; ∀ z ∈ X\U , {z} is bounded in X and hence there exists
λz > 0 : z ∈ λzU .
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Hence ∀ z ∈ X\U , {λ > 0 | z ∈ λU} 6= ∅; by the axiom of choice there exists a vector
(λz)z∈X\U : ∀ z ∈ X\U : z ∈ λzU .

∀ x ∈ U : λx := 1; ∀ x ∈ X : Kx = {y ∈ K | |y| ≤ λx};

each Kx is bounded and closed in K and hence compact implying that Kx is relatively
compact too, of course each Kx is Hausdorff.

We show:

1. H = U o ⊆ Π{Kx | x ∈ X}.

2. U o is closed in (KX ; τp).

Then Corollary 2.4 shows:

U o is τp-compact and Hausdorff in KX and in Xd too, thus showing the assertion of the
Alaoglu-Bourbaki theorem.

1. ∀h ∈ U o : ∀ x ∈ U , |h(x)| ≤ 1 = λx =⇒ h(x) ∈ Kx; x ∈ X\U =⇒ x ∈ λxU =⇒ x =

λxu, u ∈ U =⇒ h(x) = λxh(u) =⇒ |h(x)| = λx|h(u)| ≤ λx =⇒ h(x) ∈ Kx. Hence
U o ⊆ Π{Kx|x ∈ X}.

2. We know that the polar set U o is equicontinuous and hence U o is evenly continuous; let
(hi) be a net from U o, hi

τp−→ h ∈ KX ; ∀ i, hi is linear =⇒ h is linear by proposition 3.1
of [6]. Since U o is evenly continuous and hi

τp−→ h we get hi
c−→ h (continuous

convergence) by Theorem 31 of [4] (see also [7]).

Now K is a regular topological space and thus h is continuous by Theorem 30 of [4].

Hence h ∈ Xd; ∀ x ∈ U , hi(x) −→ h(x), ∀ i, |hi(x)| ≤ 1 =⇒ |h(x)| ≤ 1, meaning that
h ∈ U o and thus U o is closed in (KX , τp).

B. Now let our l. c. s.X, Y be Banach spaces.

But that means that Y = (Y, ‖ · ‖) is a finite-dimensional normed space because Y is
a Montel space.

In [6] there was defined:

∀ c ∈ R, c > 0 : Hc = {h ∈ Xd | ‖h‖ ≤ c},

where ‖ · ‖ is the operator norm,

∀ c > 0, ∀ x ∈ X : Kx,c = {y ∈ Y | ‖y‖ ≤ c‖x‖}.

Then Hc ⊆ Π{Kx,c| x ∈ X} and in Theorem 3.2 of [6] was shown that Hc is closed w. r. t. the
Tychonoff-topology in Π{Kx,c| x ∈ X}. For a fixed c > o, Kx,c is bounded and closed in Y
and hence compact too, because Y is finite-dimensional.
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Theorem 2.3 then shows that Hc is τp-compact in Y X and in Xd respectively. But this is
the assertion of Corollary 3.3 of [6].
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Ordered and non-ordered non-congruent convex
quadrilaterals inscribed in a regular nnn-gon

ABSTRACT. Using several arguments, some authors showed that the number of non-
congruent triangles inscribed in a regular n-gon equals {n2/12}, where {x} is the nearest
integer to x. In this paper, we revisit the same problem, but study the number of ordered and
non-ordered non-congruent convex quadrilaterals, for which we give simple closed formulas
using Partition Theory. The paper is complemented by a study of two further kinds of
quadrilaterals called proper and improper non-congruent convex quadrilaterals, which allows
to give a formula that connects the number of triangles and ordered quadrilaterals. This
formula can be considered as a new combinatorial interpretation of a certain identity in
Partition Theory.

KEY WORDS. Congruent triangles; Congruent quadrilaterals; Ordered quadrilaterals;
proper quadrilaterals; Integer partitions.

1 Introduction

In 1938, Anning proposed the following problem [6]: “From the vertices of a regular n-gon
three are chosen to be the vertices of a triangle. How many essentially different possible
triangles are there ? ”. For any given positive integer n ≥ 3, let ∆ (n) denote the number of
such triangles.

Using a geometric argument, Frame showed that ∆ (n) = {n2/12}, where {x} is the nearest
integer to x. After that, other solutions were proposed by some authors, such as Auluck [2].

In 1978, Reis posed the following natural general problem: From the vertices of a regular
n-gon k are chosen to be the vertices of a k-gon. How many incongruent convex k-gons are
there ?

Let us first specify that two k-gons are called congruent if one k-gon can be moved to the
other by rotation or reflection.
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For any given positive integers 2 ≤ k ≤ n, let R (n, k) denotes the number of such k-gons.
In 1979 Gupta [5] gave the solution of Reis’s problem, using the Möbius inversion formula.

Theorem 1

R (n, k) =
1

2

(⌊n−hk
2

⌋⌊
k
2

⌋ )+
1

2k

∑
d/ gcd(n,k)

ϕ (d)

(n
d
− 1

k
d
− 1

)
,

where hk ≡ k (mod 2) and ϕ(n) is the Euler function.

One can find the first values of R(n, k) in the Online Encyclopedia of Integer Sequences
(OEIS) [7] as A004526 for k = 2, A001399 for k = 3, A005232 for k = 4 and A032279 for
k = 5.

The immediate consequence of both Gupta’s and Frame’s Theorems is the following identity:{
n2

12

}
=

1

2

⌊
n− 1

2

⌋
+

1

6

(
n− 1

2

)
+
χ(3/n)

3
,

where χ(3/n) = 1 if n ≡ 0 (mod 3), 0 otherwise.

In 2004, Shevelev gave a short proof of Theorem 1, using a bijection between the set of convex
polygons with the tops in the n-gon splitting points and the set of all (0,1)-configurations
with the elements in these points [8].

The aim of this paper is to enumerate two kinds of non-congruent convex quadrilaterals,
inscribed in a regular n-gon, the ordered ones which have the sequence of their sides’s sizes
ordered, denoted by RO (n, 4) and those which are non-ordered denoted by RO (n, 4), using
the Partition Theory. As an example, let us consider Figure 1 showing three quadrilaterals
inscribed in a regular 12-gon, the first is not convex, the second is ordered while the third is
not. Observe that the second quadrilateral generates 1+1+3+3 as a partition of 8 into four
parts, that is why it is called ordered.
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Figure 1

http://oeis.org/eisA.cgi?Anum=A004526
http://oeis.org/eisA.cgi?Anum=A001399
http://oeis.org/eisA.cgi?Anum=A005232
http://oeis.org/eisA.cgi?Anum=A032279
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2 Notations and preliminaries

We denote by Gn a regular n-gon and by N the set of nonnegative integers. The partition
of n ∈ N into k parts is a tuple π = (π1, . . . , πk) ∈ Nk, k ∈ N, such that

n = π1 + · · ·+ πk, 1 ≤ π1 ≤ · · · ≤ πk,

where the nonnegative integers πi are called parts. We denote the number of partitions of
n into k parts by p(n, k), the number of partitions of n into parts less than or equal to k
by P (n, k) and by q(n, k) we denote the number of partitions of n into k distinct parts. We
sometimes write a partition of n into k parts π = (πf11 , . . . , π

fs
s ), where

∑s
i=1 fi = k, the value

of fi is termed as frequency of the part πi. For m ∈ N,m ≤ k, we denote the number of
partitions of n into k parts π = (πf11 , . . . , π

fs
s ) for which 1 ≤ fi ≤ m and fj = m for at least

one j ∈ {1, . . . , s} by cm(n, k). For example c2(12, 4) = 10, since such partitions are exactly
1128, 1137, 1146, 1155, 1227, 1335, 1344, 2235, 2244, 2334. Let δ(n) ≡ n (mod 2), so
that δ(n) = 1 or 0, bxc the integer part of x and finally {x} the nearest integer to x.

3 Main results

In this section, we give the explicit formulas of RO (n, 4) and RO (n, 4).

Theorem 2 For n ≥ 4,

RO (n, 4) =

{
n3

144
+
n2

48
− nδ(n)

16

}
·

Proof: First of all, notice that

RO (n, 4) = p(n, 4). (1)

Indeed, each ordered convex quadrilateral ABCD inscribed in Gn can be viewed as a quadru-
ple of integers (x, y, z, t), abbreviated for convenience as a word xyzt, such that: n− 4 = x+ y + z + t;

0 ≤ x ≤ y ≤ z ≤ t,
(2)

where x, y, z and t represent the number of vertices between A and B, B and C, C and D
and finally between D and A, respectively. It should be noted, that the number of solutions
of System (2) equals p(n, 4), by setting x′ = x+ 1, y′ = y + 1, z′ = z + 1 and t′ = t+ 1.

Now, let g(z) be the known generating function of p(n, 4) [3]:

g (z) =
z4

(1− z) (1− z2) (1− z3) (1− z4)
·
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From expanding g(z) into partial fractions, we obtain

g(z) =
1

32 (1 + z)2 −
13

288 (1− z)2 −
1

24 (1− z)3 +
1

24 (1− z)4 +
1− z2

8 (1− z4)
− 1− z

9 (1− z3)
·

Via straightforward calculations, it can be proved that

g (z) =
∑
n≥0

(
(−1)n (n+ 1)

32
− 13 (n+ 1)

288
− (n+ 1) (n+ 2)

48
+

(
1 + 11

6 n+ n2 + 1
6n

3
)

24
+ ε (n)

)
zn,

where ε (n) ∈
{
−17

72
,−1

8
,−1

9
,− 1

72
, 0, 1

72
, 1

9
, 1

8
, 17

72

}
·

Thus, we have

g (z) =
∑
n≥0

(
n3

144
+
n2

48
+

((−1)n − 1)n

32
+ β (n)

)
zn,

where

β (n) ∈
{
− 5

16
,−1

4
,− 29

144
,− 3

16
,− 5

36
,−1

8
,− 13

144
,− 11

144
,− 1

16
,− 1

36
,− 1

72
, 0, 5

144
, 7

144
, 1

9
, 23

144
, 2

9
, 7

72

}
·

Since p (n, 4) is an integer and |β (n)| < 1/2, we get

p (n, 4) =

{
n3

144
+
n2

48
+

((−1)n − 1)n

32

}
· (3)

Hence, the result follows.

Remark 3 Andrews and Eriksson said that the method used in the proof above dates
back to Cayley and MacMahon [1, p. 58]. Using the same method [1, p. 60], they proved the
following formula for P (n, 4):

P (n, 4) =

{
(n+ 1) (n2 + 23n+ 85)

144
−

(n+ 4)
⌊
n+1

2

⌋
8

}
·

Because p(n, k) = P (n− k, k) (see for example [4]), it follows:

p (n, 4) =

{
n3

144
+
n2

12
− n

8
−
n
⌊
n−1

2

⌋
8

}
· (4)

Note that the formula (3) seems a little bit simpler than (4).

To give an explicit formula for RO (n, 4), we need the following lemma.

Lemma 4 For n ≥ 4,

c2 (n, 4) = p (n, 4)− q (n, 4)−
⌊
n− 1

3

⌋
.
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Proof: By definition of cm (n, k) in Section 2, it easily follows that

c2 (n, 4) = p (n, 4)− (q (n, 4) + c3 (n, 4) + χ(4/n)) ,

where χ(4/n) = 1 if n ≡ 0 (mod 4), 0 otherwise.

Furthermore, c3(n, 4) can be considered as the number of integer solutions of the equation

3x+ y = n, with 1 ≤ y 6= x ≥ 1.

Since x 6= y, the solution x = y = n/4, when 4 divides n, must be removed. Then, by taking
y = 1, one can get c3(n, 4) =

⌊
n−1

3

⌋
− χ(4|n). This completes the proof.

Now we can derive the following theorem.

Theorem 5 For n ≥ 4,

RO (n, 4) =

{
n3

144
+
n2

48
− nδ(n)

16

}
+

{
(n− 6)3

144
+

(n− 6)2

48
− (n− 6)δ(n)

16

}
−
⌊
n− 1

3

⌋
.

Proof: First of all, notice that q(n, k) = p(n− k(k− 1)/2, k) [1]. Then from Theorem 2 we
get

q(n, 4) = p(n− 6, 4) =

{
(n− 6)3

144
+

(n− 6)2

48
− (n− 6)δ(n)

16

}
.

Therefore, it is enough to prove that

RO (n, 4) = p (n, 4) + q (n, 4)−
⌊
n− 1

3

⌋
. (5)

In fact, each non-ordered convex quadrilateral may be obtained by permuting exactly two
parts of some partition of n into four parts, which is associated from System (2) to a unique
ordered convex quadrilateral. For example, in Figure 1 above, the ordered convex quadri-
lateral (b) assimilated to the solution 1133 of 8 or to the partition 2244 of 12, generates the
non-ordered convex quadrilateral (c) via the permutation 1313. Obviously, not every par-
tition of n can generate a non-ordered convex quadrilateral, those having three equal parts
or four equal parts cannot. Also, each partition of n into four distinct parts xyzt generates
two non-ordered convex quadrilaterals, each one corresponds to one of the two following per-
mutations xytz and xzyt. On the other hand, each partition of n into two equal parts, like
xxyz, with y and z both of them 6= x, generates only one non-ordered convex quadrilateral,
corresponding to the unique permutation xyxz. Thus,

RO (n, 4) = 2q (n, 4) + c2(n, 4). (6)

Hence, from Lemma 4 the assertion follows.
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Remark 6 By substituting k = 4 in Theorem 1, we get

R (n, 4) =
1

2

(⌊
n
2

⌋
2

)
+

1

8

(
n− 1

3

)
+
n(1− δ(n))

16
+ α,

where

α =



1

8

−1

8

0

if n ≡ 0 (mod 4),

if n ≡ 2 (mod 4),

otherwise.

Knowing furthermore that

R(n, 4) = RO (n, 4) + RO (n, 4) ,

the following identity follows according to Theorem 1 and Theorem 5 :

1

2

(bn2 c
2

)
+

1

8

(
n−1

3

)
+
n(1− δ(n))

16
+ α = 2

{
n3

144
+
n2

48
− nδ(n)

16

}
+

+

{
(n− 6)3

144
+

(n− 6)2

48
− (n− 6)δ(n)

16

}
−

−
⌊
n− 1

3

⌋
.

4 Connecting formula between ∆ (n) and RO(n, 4)

There are two further kinds of quadrilaterals inscribed in Gn, the proper ones, those which
do not use the sides of Gn and the improper ones, those using them. In Figure 2 below, two
quadrilaterals inscribed in G12 are shown, the first one is proper while the second is not.
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Let denote the number of these two kinds of quadrilaterals by RP
O(n, 4) and RP

O(n, 4), re-
spectively. The goal of this section is to prove the following theorem.
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Theorem 7 For n ≥ 4,

∆ (n) = RO(n+ 1, 4)−RO(n− 3, 4).

Proof: Note first that an improper ordered quadrilateral is formed by at least one side of
Gn, hence the concatenation of the vertices of one of such sides gives a triangle inscribed in
Gn−1, as shown in Figure 3.
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Thus we have
RP
O(n, 4) = ∆ (n− 1) .

On the other hand, it is obvious to see that

RP
O(n, 4) = p(n− 4, 4).

Then from (1), we get
RP
O(n, 4) = RO(n− 4, 4).

Since
RO(n, 4) = RP

O(n, 4) + RP
O(n, 4),

we obtain
RO(n, 4) = RO(n− 4, 4) + ∆ (n− 1) .

So, the theorem has been proved by substituting n by n+ 1.

Remark 8 The well-known recurrence relation [4, p. 373],

p(n, k) = p(n+ 1, k + 1)− p(n− k, k + 1), (7)

implies by setting k = 3,

p(n, 3) = p(n+ 1, 4)− p(n− 3, 4). (8)

Thus, as we can see, the formula of Theorem 7 can be considered as a combinatorial inter-
pretation of identity (8).
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For k ≤ n, we have the following generalization, using the same arguments to prove Theo-
rem 7.

Theorem 9 For n ≥ k,

RO(n, k) = RO(n+ 1, k + 1)−RO(n− k, k + 1).

The formula of Theorem 9 can be considered as a combinatorial interpretation of the recur-
rence formula (7).
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Theorem 2.32 states that the category CG-SN is bicoreflective in G-SN.

But this theorem has to be replaced by the following one:

Theorem 2.32 The category CG-SN is bireflective in G-SN.

Proof. For a supergrill space (X,BX , N) we set for each B ∈ BX :

NC(B) := {ρ ⊂ PX : {cln(F ) : F ∈ ρ} ⊂
⋃

N(B)}.

Then (X,BX , NC) is a conic supergrill space and 1X : (X,BX , N)→ (X,BX , NC) to be the
bireflection in demand. First, we only show that NC satisfies (sn7): Let be {clNC (A).A ∈
A} ∈ NC(B) for B ∈ BX ,A ⊂ PX, we have to verify A ∈ NC(B) which means clN(A) ∈⋃
N(B) for each A ∈ A. A ∈ A implies clN(clNC (A)) ∈

⋃
N(B) by hypothesis. We claim

now that the statement clNC ⊂ clN(A) is valid. x ∈ clNC (A) implies {A} ∈ NC({x}),
hence clN(A) ∈

⋃
N({x}). We can find ρ ∈ N({x}) such that clN(A) ∈ ρ. Consequently

{clN(A)} ∈ N({x}) follows, which shows {A} ∈ N({x}), hence x ∈ clN(A) results. Alto-
gether we get clN(clNC (A)) ⊂ clN(A) implying clN(A) ∈

⋃
N(B), because by hypothesis

clN(clNC (A)) ∈ ρ1 for some ρ1 ∈ N(B). Secondly, we prove
⋃
NC(B) ∈ GRL(X) for each

B ∈ BX . Let be given B ∈ BX , evidently ∅ 6∈
⋃
NC(B). Now, if F1 ∈

⋃
NC(B) and

F1 ⊂ F2 ⊂ X, then there exists ρ ∈ NC(B) F1 ∈ ρ. Consequently, clN(F1) ∈ ρ1 for some
ρ1 ∈ N(B). By hypothesis we can find γ ∈ N(B) ∩ GRL(X) with clN(F1) ∈ γ. Conse-
quently clN(F2) ∈ γ follows, and {clN(F2)} ∈ N(B) is valid. Hence F2 ∈

⋃
NC(B) results.

At last let be F1 ∪ F2 ∈
⋃
NC(B) then there exists ρ ∈ NC(B) with F1 ∪ F2 ∈ ρ. By

definition of NC we get {clN(F ) : F ∈ ρ} ⊂
⋃
N(B). Hence clN(F1 ∪ F2) ∈ A for some

http://ftp.math.uni-rostock.de/pub/romako/heft66/leseberg66.pdf
http://ftp.math.uni-rostock.de/pub/romako/heft66/leseberg66.pdf
http://ftp.math.uni-rostock.de/pub/romako/heft66/leseberg66.pdf
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A ∈ N(B). Moreover we can choose γ ∈ GRL(X)∩N(B) with clN(F1)∪ clN(F2) ∈ γ. Con-
sequently the statement clN(F1) ∈ γ or clN(F2) ∈ γ results. But then clN(F1) ∈

⋃
N(B) or

clN(F2) ∈
⋃
N(B) is valid showing that {F1} ∈ NC(B) or {F2} ∈ NC(B), which concludes

this part of proof. Evidently, 1X : (X,BX , N) → (X,BX , NC) is sn-map. Now, let be given
(Y,BY ,M) ∈ Ob(CG − SN) and sn-map f : (X,BX , N) → (Y,BY ,M), we have to prove
f : (X,BX , NC) → (Y,BY ,M) is sn-map. For B ∈ BY and A ∈ NC(B) we have to show
fA ∈ M(f [B]). Therefore it suffices to verify that the inclusion fA ⊂

⋃
M(f [B]) holds.

For A ∈ A clN(A) ∈ ρ for some ρ ∈ N(B). Since f is sn-map we get fρ ∈ M(f [B]). But
{clM(f [A])} << {f [clN(A)]} ∈ fρ. Consequently {clM(f [A])} ∈ M(f [B]) follows implying
{f [A]} ∈M(f [B]). But then f [A] ∈

⋃
M(f [B]) results.

Definition 2.12 explains when a given round paranear space (X,BX , N) is LOproximal.

The condition (LOp) has to be corrected as follows:

(LOp) B ∈ BX\{∅}, ρ ⊂ pN(B) and {B} ∪ ρ ⊂
⋂
{pN(F ) : F ∈ ρ ∩ BX} imply ρ ∈ N(B),

where BpNA iff {A} ∈ N(B).
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