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Weighted exponential Dichotomy of the Solutions
of linear impulsive differential Equations
in a Banach Space

ABSTRACT. In the paper a dependence is established between the ψ-exponential dichotomy
of a homogeneous impulsive differential equation in a Banach space and the existence of ψ-
bounded solution of the appropriate nonhomogeneous impulsive equation.

KEYWORDS AND PHRASES. Exponential dichotomy for impulsive differential equations,
ψ-dichotomy, ψ-boundedness

1 Introduction

The impulsive differential equations are an adequate mathematical apparatus for simulation
of numerous processes and phenomena in biology, physics, chemistry and control theory,
e.t.c. which during their evolutionary development are subject to short time perturbations
in the form of impulses. The qualitative investigation of these processes began with the
work of Mil’man and Myshkis [17]. For the first time such equations were considered in an
arbitrary Banach space in [2, 3, 18, 19].

The problem of ψ-boundedness and ψ-stability of the solutions of differential equations in
finite dimensional Euclidean spaces, introduced for the first time by Akinyele [1] has been
studied later by many authors. A beautiful explanation about the benefits of such a use of
weighted stability and boundedness can be found for example in [15].

Inspired by the famous monographs of Coppel [6], Daleckii and Krein [7] as well as Massera
and Schaeffer [16], where the important notion of exponential and ordinary dichotomy for
ordinary differential equations is considered in details, Diamandescu [8]-[10] and Boi [4]-[5]
introduced and studied the ψ-dichotomy for linear differential equations in finite dimensional
Euclidean space, where ψ is a nonnegative continuous diagonal matrix function. The concept
of ψ-dichotomy for arbitrary Banach spaces is introduced and studied in [11] and [12]. In
this case ψ(t) is an arbitrary bounded invertible linear operator for all t.
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The goal of the present paper is to study such a weighted dichotomy for linear differential
equations with impulse effect in arbitrary Banach spaces. We will establish a dependence be-
tween the ψ-exponential dichotomy of a homogeneous impulsive equation in a Banach space
and the existence of a solution of the corresponding nonhomogeneous impulsive equation
which is ψ-bounded on the semi-axis R+.

The first investigation in this direction was made in [20] for the particular case of ψ-ordinary
dichotomy.

It must be mentioned that in [13, 14] the attempt to introduce ψ-exponential dichotomy for
impulsive differential equations in finite dimensional spaces is a real disaster - due to the
meaningless use of the fundamental matrix there even the definitions are wrong.

2 Preliminaries

Let X be an arbitrary Banach space with norm |.| and let LB(X) be the space of all linear
bounded operators acting in X with the norm ||.|| and identity I. Denote R+ = [0,∞).

We consider the nonhomogeneous impulsive equation

dx

dt
= A(t)x+ f(t) (t 6= tn) (1)

x(tn + 0) = Qnx(tn) + hn (n = 1, 2, 3, ...) (2)

where the operator valued function A(.) : R+ → LB(X) and the function f(.) : R+ → X

are strongly measurable and Bochner integrable on the finite subintervals of R+, {Qn}∞n=1 is
a sequence of impulsive operators Qn ∈ LB(X) (n = 1, 2, 3, ...), T = {tn}∞n=1 is a sequence
of points on the semi-axis R+ satisfying the condition

0 < t1 < t2 < ..., lim
n→∞

tn =∞

and {hn}∞n=1 is a sequence of elements hn ∈ X. The corresponding homogeneous linear
impulsive equation is

dx

dt
= A(t)x (t 6= tn) (3)

x(tn + 0) = Qnx(tn) (t = 1, 2, 3, ...). (4)

Definition 1 By a solution of the impulsive equation (1), (2) (or (3), (4)) we shall call
a function x(t) which for t 6= tn satisfies equation (1) (or (3)), for t = tn satisfies condition
(2) (or (4)) and is continuous from the left.
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It is known (see [18], [3]) that for the impulsive equation (3), (4) there exists an evolutionary
Cauchy operator associating with any element ξ ∈ X a solution x(t) of the impulsive equation
which satisfies the initial condition x(s) = ξ (0 ≤ s ≤ t <∞).

Lemma 1 ([3]) Let the conditions A(t), Qn ∈ LB(X) hold, where t ∈ R+ (n = 1, 2, . . . ).

Then the evolutionary operator V (t, s) (0 ≤ s ≤ t < ∞) of the impulsive equation (3), (4)
has the form

V (t, s) =


V0(t, s), tn < s ≤ t ≤ tn+1

V0(t, tn)

(
k+1∏
j=n

QjV0(tj, tj−1)

)
QkV0(tk, s),

tk−1 < s ≤ tk < tn < t ≤ tn+1

where V0(t, s) (0 ≤ s ≤ t <∞) is the evolutionary operator of equation (3).

The operator-valued function V (t, s) satisfies the equalities

V (t, t) = I (0 ≤ t <∞), (5)

V (t, s) = V (t, τ)V (τ, s) (0 ≤ s ≤ τ ≤ t <∞). (6)

Moreover, it is differentiable at the points t ∈ (tj−1, tj] (j = 1, 2, 3, . . . ) and s ∈ [tj−1, tj) (j =

1, 2, 3, . . . ), and it is

dV (t, s)

dt
= A(t)V (t, s),

dV (t, s)

ds
= V (t, s)A(s). (7)

At the points tn (n = 1, 2, 3, . . . ) the following equalities are staisfied:

V (tn + 0, s) = QnV (tn, s) (0 ≤ s ≤ tn <∞). (8)

Lemma 2 ([3]) Let the following conditions hold:

1. A(t), Qn ∈ LB(X), where t ∈ R+(n = 1, 2, . . . ).

2. The operators Qn have continuous inverses Q−1
n (n = 1, 2, 3, . . . ).

Then the evolutionary operator V (t, s) (0 ≤ t, s <∞) of the impulsive equation (3), (4) has
the form

V (t, s) =



V0(t, s), tn < s, t ≤ tn+1

V0(t, tn)

(
k+1∏
j=n

QjV0(tj, tj−1)

)
QkV0(tk, s),

tk−1 < s ≤ tk < tn < t ≤ tn+1

V0(t, tn)

(
k−1∏
j=n

Q−1
j V0(tj, tj+1)

)
Q−1
k V0(tk, s),

tn−1 < t ≤ tn < tk < s ≤ tk+1
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where V0(t, s) (0 ≤ s, t <∞) is the evolutionary operator of the equation (3).

If the conditions of Lemma 2 are satisfied, then the following equalities hold:

V (t, s) = V −1(s, t), V (t, s) = V (t, τ)V (τ, s) (0 ≤ s, τ, t <∞), (9)

V (tn + 0, s) = QnV (tn, s) (0 ≤ s, tn <∞). (10)

Let RL(X) be the subspace of all invertible operators in LB(X) whose inverse operators are
bounded, too. Let ψ(t) : R+ → RL(X) be a continuous operator-function with respect to
t ∈ R+.

Definition 2 A function u(.) : R+ → X is said to be ψ-bounded on R+ if ψ(t)u(t) is
bounded on R+.

Definition 3 A function f(.) : R+ → X is said to be ψ-integrally bounded on R+ if it
is measurable and there exists a positive constant m such that

∫ t+1

t
|ψ(τ)f(τ)|dτ ≤ m for all

t ∈ R+.

Definition 4 A sequence of points h = {hn}∞n=1 is said to be ψ-bounded on R+ if
sup

n=1,2,3,...
|ψ(tn)hn| <∞, hn ∈ X, tn ∈ T (n = 1, 2, 3, . . . ).

Let Cψ(X,T ) denote the space of all functions with values in X and ψ-bounded on R+ which
are continuous for t 6= tn, have discontinuities of the first kind for t = tn and are continuous
from the left which is a Banach space with the norm

|||f |||Cψ = sup
t∈R+

|ψ(t)f(t)|.

Let Mψ(X,T ) denote the Banach space of all functions with values in X and ψ-integrally
bounded which are continuous for t 6= tn, have discontinuities of the first kind for t = tn and
are continuous from the left for t = tn with the norm

|||f |||Mψ
= sup

t∈R+

∫ t+1

t

|ψ(s)f(s)|ds.

Let Hψ(X,T ) denote the space of all ψ-bounded sequences h = {hn}∞n=1 in X, i.e.

Hψ(X,T ) = {h : sup
n=1,2,3,...

|ψ(tn)hn| <∞, hn ∈ X, tn ∈ T, n = 1, 2, 3, . . . }

with the norm
|||h|||Hψ = sup

n=1,2,3,...
|ψ(tn)hn|.
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Definition 5 The homogeneous impulsive equation (3), (4) is said to be ψ-exponential
dichotomous on R+ if there exist a pair P1 and P2 = I − P1 of mutually complementary
projections in X and numbers M, δ > 0 for which the inequalities

||ψ(t)V (t)P1V
−1(s)ψ−1(s)|| ≤Me−δ(t−s) (0 ≤ s ≤ t <∞), (11)

||ψ(t)V (t)P2V
−1(s)ψ−1(s)|| ≤Me−δ(s−t) (0 ≤ t ≤ s <∞) (12)

hold, where V (t) = V (t, 0) and V (t, s) (0 ≤ s, t < ∞) is the Cauchy evolutionary operator
of the impulsive equation (3), (4).

The equation (3), (4) is said to have a ψ-ordinary dichotomy on R+ if (11) and (12) hold
with δ = 0.

Lemma 3 Equation (3), (4) has a ψ-exponential dichotomy on R+ with positive constants
ν1 and ν2 if and only if there exist a pair of mutually complementary projections P1 and
P2 = I − P1 and positive constants M, Ñ1, Ñ2 such that following inequalities are fulfilled:

|ψ(t)V (t)P1ξ| ≤ Ñ1e
−ν1(t−s)|ψ(s)V (s)P1ξ| (ξ ∈ X, 0 ≤ s ≤ t), (13)

|ψ(t)V (t)P2ξ| ≤ Ñ2e
−ν2(s−t)|ψ(s)V (s)P2ξ| (ξ ∈ X, 0 ≤ t ≤ s), (14)

‖ψ(t)V (t)P1V
−1(t)ψ−1(t)‖ ≤M (t ≥ 0). (15)

The proof of the lemma is similar as the proof of Lemma 3.1 in [11] for equations without
impulses and will be omitted.

Definition 6 The homogeneous impulsive equation (3), (4) is said to have a ψ-bounded
growth on R+ if for some fixed l > 0 there exists a constant c ≥ 1 such that every solution
x(t) of (3), (4) satisfies

|ψ(t)x(t)| ≤ c|ψ(s)x(s)| (0 ≤ s ≤ t ≤ s+ l). (16)

Lemma 4 Equation (3), (4) has ψ-bounded growth on R+ if and only if there exist pos-
itive constants K ≥ 1 and α > 0 such that

‖ψ(t)V (t)V −1(s)ψ−1(s)‖ ≤ Keα(t−s) (0 ≤ s ≤ t). (17)

The proof of the lemma is similar as the proof of Lemma 3.2 in [11] for equations without
impulses and will be omitted.

Remark 1 It is easy to see that the condition for ψ-bounded growth (and for bounded
growth) of (3), (4) is independent of the choice of l. Hence we will use the Definition 6 with
fixed l = 1.
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Lemma 5 If (3), (4) has ψ-bounded growth on R+, then (15) is a consequence of (13)
and (14).

The proof of the lemma is similar as the proof of Lemma 3.5 in [11] for equations without
impulses and will be omitted.

3. Main results

We shall say that condition (H) is satisfied if the following conditions hold:

H1. A(t), Qn ∈ LB(X), where t ∈ R+(n = 1, 2, 3, . . . ).

H2. Qn ∈ RL(X) (n = 1, 2, 3, . . . ).

H3. ψ(t) : R+ → RL(X) is a continuous operator-function with respect to t ∈ R+.

Theorem 2 Let us assume the following:

1. Condition (H) is satisfied.

2. Equation (3), (4) is ψ-exponential dichotomous.

3. There exist a number l > 0 and a positive integer λ such that each interval on R+ with
length l contains not more than λ points of the sequence T .

Then for any function f ∈ Cψ(X,T ) and any sequence h ∈ Hψ(X,T ) there exists a solution
of the nonhomogeneous equation (1), (2) which is ψ-bounded on R+.

Proof. Consider the function

x̃(t) =

∫ t

0

ψ(t)V (t)P1V
−1(s)f(s)ds−

∫ ∞
t

ψ(t)V (t)P2V
−1(s)f(s)ds

+
∑
tj<t

ψ(t)V (t)P1V
−1(tj + 0)hj −

∑
tj≥t

ψ(t)V (t)P2V
−1(tj + 0)hj

(18)

In order to prove the boundedness of x̃(t) we shall estimate the norms of the summands in
(18). By (11) and (12) we have

|
∫ t

0

ψ(t)V (t)P1V
−1(s)f(s)ds| =

= |
∫ t

0

ψ(t)V (t)P1V
−1(s)ψ−1(s)ψ(s)f(s)ds|

≤
∫ t

0

||ψ(t)V (t)P1V
−1(s)ψ−1(s)|| |ψ(s)f(s)|ds

≤Me−δt
∫ t

0

eδsds |||f |||Cψ ≤
M

δ
|||f |||Cψ

(19)
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and

|
∫ ∞
t

ψ(t)V (t)P2V
−1(s)f(s)ds|

= |
∫ ∞
t

ψ(t)V (t)P2V
−1(s)ψ−1(s)ψ(s)f(s)ds|

≤
∫ ∞
t

||ψ(t)V (t)P2V
−1(s)ψ−1(s)|| |ψ(s)f(s)|ds

≤Meδt
∫ ∞
t

e−δsds |||f |||Cψ ≤
M

δ
|||f |||Cψ .

(20)

Analogously having in mind also the conditions 3 and H3 we obtain for the next summands

|
∑
tj<t

ψ(t)V (t)P1V
−1(tj + 0)hj|

= |
∑
tj<t

ψ(t)V (t)P1V
−1(tj + 0)ψ−1(tj + 0)ψ(tj + 0)hj|

= |
∑
tj<t

ψ(t)V (t)P1V
−1(tj + 0)ψ−1(tj + 0)ψ(tj)hj|

≤
∑
tj<t

||ψ(t)V (t)P1V
−1(tj + 0)ψ−1(tj + 0)|| |ψ(tj)hj|

≤M

∑
tj<t

eδ(tj−t)

 |||h|||Hψ ≤ Mλ

1− e−δl
|||h|||Hψ

(21)

and

|
∑
t≤tj

ψ(t)V (t)P2V
−1(tj + 0)hj|

= |
∑
t≤tj

ψ(t)V (t)P2V
−1(tj + 0)ψ−1(tj + 0)ψ(tj + 0)hj|

= |
∑
t≤tj

ψ(t)V (t)P2V
−1(tj + 0)ψ−1(tj + 0)ψ(tj)hj|

≤
∑
t≤tj

||ψ(t)V (t)P2V
−1(tj + 0)ψ−1(tj + 0)|| |ψ(tj)hj|

≤M

∑
t≤tj

eδ(t−tj)

 |||h|||Hψ ≤ Mλ

1− e−δl
|||h|||Hψ .

(22)

From (18) - (22) it follows that x̃(t) is bounded on R+ and satisfies for t ∈ R+ the inequality

|x̃(t)| ≤ 2M

δ
|||f |||Cψ +

2Mλ

1− e−δl
|||h|||Hψ

Let be x(t) = ψ−1(t)x̃(t). Obviously x(t) is ψ-bounded on R+. It is immediately verified
that the function x(t) is continuous for t 6= tn and that the limit values x(tn+0) (n = 1, 2, ...)
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exist. We shall show that the function x(t) satisfies the impulsive equation (1), (2) using the
equalities (7) and (10).

We differentiate x(t) by t 6= tn and get

dx

dt
= A(t)

∫ t

0

V (t)P1V
−1(s)f(s)ds+ V (t)P1V

−1(t)f(t)

+ V (t)P2V
−1(t)f(t)− A(t)

∫ ∞
t

V (t)P2V
−1(s)f(s)ds

+
∑
tj<t

A(t)V (t)P1V
−1(tj + 0)hj −

∑
tj≥t

A(t)V (t)P2V
−1(tj + 0)hj

= A(t)x(t) + V (t)P1V
−1(t)f(t) + V (t)P2V

−1(t)f(t)

= A(t)x(t) + f(t).

Analogously we obtain for t = tn (n = 1, 2, ...) taking into account (10)

x(tn + 0)

=

∫ tn

0

V (tn + 0)P1V
−1(s)f(s)ds−

∫ ∞
tn

V (tn + 0)P2V
−1(s)f(s)ds

+
∑
tj≤tn

V (tn + 0)P1V
−1(tj + 0)hj −

∑
tj>tn

V (tn + 0)P2V
−1(tj + 0)hj

= Qn

∫ tn

0

V (tn)P1V
−1(s)f(s)ds−Qn

∫ ∞
tn

V (tn)P2V
−1(s)f(s)ds

+Qn

∑
tj<tn

V (tn)P1V
−1(tj + 0)hj −Qn

∑
tj≥tn

V (tn)P1V
−1(tj + 0)hj

+ V (tn + 0)P1V
−1(tn + 0)hn + V (tn + 0)P2V

−1(tn + 0)hn

= Qnx(tn) + hn.

Hence the function x(t) is a ψ-bounded solution of the nonhomogeneous impulsive equation
(1), (2) on R+. Theorem 2 is proved.

Remark 3 Theorem 2 still holds, if the condition f ∈ Cψ(X,T ) is replaced by the weaker
condition f ∈Mψ(X,T ).

Proof. In the case f ∈Mψ(X,T ) the estimates (19) and (20) can be replaced by the following
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estimates

|
∫ t

0

ψ(t)V (t)P1V
−1(s)f(s)ds|

= |
∫ t

0

ψ(t)V (t)P1V
−1(s)ψ−1(s)ψ(s)f(s)ds|

≤
∫ t

0

||ψ(t)V (t)P1V
−1(s)ψ−1(s)|| |ψ(s)f(s)|ds

≤M

∫ t

0

e−δ(t−s) |ψ(s)f(s)|ds ≤M |||f |||Mψ

∞∑
k=0

e−δk

≤ M

1− e−δ
|||f |||Mψ

,

(23)

|
∫ ∞
t

ψ(t)V (t)P2V
−1(s)f(s)ds|

= |
∫ ∞
t

ψ(t)V (t)P2V
−1(s)ψ−1(s)ψ(s)f(s)ds|

≤
∫ ∞
t

||ψ(t)V (t)P2V
−1(s)ψ−1(s)|| |ψ(s)f(s)|ds

≤M

∫ ∞
t

e−δ(s−t) |ψ(s)f(s)|ds ≤M |||f |||Mψ

∞∑
k=0

e−δk

≤ M

1− e−δ
|||f |||Mψ

.

(24)

Remark 4 Theorem 2 obviously holds without condition 3 if we consider inhomogeneous
equations with h = 0. In this case the ψ-bounded solutions lie in the subspace C0

ψ(X,T ) of
the space Cψ(X,T ) which consists of the functions satisfying the condition

x(tn + 0) = Qnx(tn) (n = 1, 2, 3, . . . ). (25)

Let X1 be the linear manifold of all ξ ∈ X for which the functions V (t)ξ (t ∈ R+) are
ψ-bounded.

For our next main result we will need the following lemma.

Lemma 6 ([20]) Assume the following:

1. Condition (H) is satisfied.

2. Bψ(X) is an arbitrary Banach space of functions f(.) : R+ → X and for any function
f ∈ Bψ(X) the nonhomogeneous equation (1), (2) has at least one ψ-bounded on R+ solution
x ∈ Cψ(X,T ).
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3. The set X1 is a complementary subspace of X and X2 is a complement of it (X1+X2 = X).

Then to each function f(t) ∈ Bψ(X) there corresponds a unique solution x(t) which is ψ-
bounded on R+ and starts from X2, i.e. x(0) ∈ X2.

This solution satisfies the estimate

|||x|||Cψ ≤ k|||f |||Bψ , (26)

where k > 0 is a constant not depending on f .

Now we are ready for our second main result - a theorem, which is like an inverse of Theorem
2.

Theorem 5 Let us assume the following:

1. Condition (H) is satisfied.

2. The homogeneous impulsive equation (3), (4) has a ψ-bounded growth on R+.

3. The linear manifold

X1 = {ξ ∈ X : sup
0≤t<∞

|ψ(t)V (t)ξ| <∞} (27)

is a complementary subspace ( i.e. there exists a subspace X2 of X for which X = X1 +X2).

4. For each function f ∈ Cψ(X,T ) the nonhomogeneous impulsive equation (1), (2) for
h = {hn}∞n=1 = 0 has at least one solution belonging to the subspace C0

ψ(X,T ).

Then the impulsive equation (3), (4) is ψ-exponential dichotomous.

Proof. Let x(t) be a nontrivial ψ-bounded solution of the impulsive equation (3), (4) with
initial value x(0) ∈ X1. Set

y(t) = x(t)

∫ t

0

χ(τ)|ψ(τ)x(τ)|−1dτ,

where

χ(t) =


1 : 0 ≤ t ≤ t0 + τ

1− (t− t0 − τ) : t0 + τ < t ≤ t0 + τ + 1

0 : t0 + τ + 1 ≤ t

It is not hard to check that the function y(t) is a solution of the nonhomogeneous impulsive
equation (1), (2) for h = 0 and for

f(t) = χ(t)
x(t)

|ψ(t)x(t)|
.
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Obviously f ∈ Cψ(X,T ) and |||f |||Cψ = 1. But y(0) = 0 ∈ X2, and applying Lemma 6 it
follows

|||y|||Cψ = sup
t∈R+

|ψ(t)y(t)| ≤ k|||f |||Cψ = k

from (26). Hence

|ψ(t)y(t)| = |ψ(t)x(t)|
∫ t

0

χ(s)|ψ(s)x(s)|−1ds ≤ k (t ∈ R+).

By t = t0 + τ we obtain the inequality

|ψ(t0 + τ)y(t0 + τ)| = |ψ(t0 + τ)x(t0 + τ)|
∫ t0+τ

0

|ψ(s)x(s)|−1ds ≤ k. (28)

Let consider the function

ϕ(t) =

∫ t

0

|ψ(s)x(s)|−1ds.

From (28) it follows
ϕ′(t0 + τ)

ϕ(t0 + τ)
≥ 1

k
.

After integrating the inequality with respect to τ on [1, τ ] this implies the estimate

ϕ(t0 + τ) ≥ ϕ(t0 + 1)e
(τ−1)
k (τ ≥ 1). (29)

From condition 2 of the theorem it follows for s ∈ [t0, t0 + 1] that there exists a constant
c > 1 such that

|ψ(s)x(s)| ≤ c|ψ(t0)x(t0)|

and that is why

ϕ(t0 + 1) =

∫ t0+1

t0

|ψ(s)x(s)|−1ds ≥ c−1|ψ(t0)x(t0)|−1.

From here, taking into account the estimates (28) and (29) we obtain for τ ≥ 1 the relation

|ψ(t0 + τ)x(t0 + τ)| ≤ k

ϕ(t0 + τ)
≤ ke−

τ−1
k

ϕ(t0 + 1)
≤ kce

1
k e−

τ
k |ψ(t0)x(t0)|.

For τ ≤ 1 we have

|ψ(t0 + τ)x(t0 + τ)| ≤ c|ψ(t0)x(t0)| ≤ ce
1−τ
k |ψ(t0)x(t0)|.

Hence we obtain the estimate

|ψ(t)x(t)| ≤ Ne−ν(t−t0)|ψ(t0)x(t0)|, (30)

where ν = 1
k
and N = max{ce 1

k , kce
1
k }, i.e. the inequality (13).
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Analogously we consider the case if the solution x(t) of the impulsive equation (3), (4) has
an initial value x(0) ∈ X2. Then we will consider the function

ỹ(t) = x(t)

∫ ∞
t

χ(s)|ψ(s)x(s)|−1ds

instead of y(t). It is easy to check that the function ỹ(t) is a solution of the nonhomogeneous
impulsive equation (1), (2) for h = 0 and for

f̃(t) = −χ(t)
x(t)

|ψ(t)x(t)|
.

The solution ỹ(t) is ψ-bounded because ỹ(t) = 0 for t ≥ t0 + τ + 1. But ỹ(0) ∈ X2 and
obviously f̃ ∈ Cψ(X,T ). Now we can apply Lemma 6, and from (26), taking into account
that |||f̃ |||Cψ = 1, it follows

|ψ(t)ỹ(t)| = |ψ(t)x(t)|
∫ ∞
t

χ(s)|ψ(s)x(s)|−1ds ≤ k|||f̃ |||Cψ = k.

By τ →∞ we find the inequality∫ ∞
t

|ψ(s)x(s)|−1ds ≤ k|ψ(t)x(t)|−1. (31)

Setting

ϕ̃(t) =

∫ ∞
t

|ψ(s)x(s)|−1ds

we obtain
ϕ̃′(t) ≤ 1

k
ϕ̃(t).

By integration the estimate
ϕ̃(t) ≤ ϕ̃(t0)e

t−t0
k (32)

follows. Now let τ ≥ t. From x(τ) = V (τ)V −1x(t) it arises

ψ(τ)x(τ) = ψ(τ)V (τ)V −1ψ−1(t)ψ(t)x(t)

and
|ψ(τ)x(τ)| = ||ψ(τ)V (τ)V −1ψ−1(t)|| |ψ(t)x(t)|.

Condition 2 of the theorem and Lemma 4 imply that there exist constants K ≥ 1, α > 0

such that
|ψ(τ)x(τ)| = Keα(τ−t)|ψ(t)x(t)|.

Then

|ψ(t)x(t)|ϕ̃(t) = |ψ(t)x(t)|
∫ ∞
t

|ψ(s)x(s)|−1ds

≥
∫ ∞
t

|ψ(s)x(s)|e
−α(s−t)

K
|ψ(s)x(s)|−1ds =

1

K

∫ ∞
t

e−α(s−t)ds =
1

Kα
.
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Having in mind (31) and (32) it follows

|ψ(t)x(t)| ≥ (Kα)−1

ϕ̃(t)
≥ (Kα)−1

ϕ̃(t0)
e

1
k

(t−t0) ≥ (Kα)−1

k
e

1
k

(t−t0)|ψ(t0)x(t0)|.

This inequality is from the same type as the desired estimate (14). From condition 2 of
the theorem and Lemma 5 and Lemma 3 it follows that the impulsive equation (3), (4) is
ψ-exponential dichotomous. Hence Theorem 5 is proved.

Remark 6 Theorem 5 holds without condition 3 if the space X is finite dimensional.
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Estimate of the validity interval for the Antimaximum
Principle and application to a non-cooperative system

ABSTRACT. We are concerned with the sign of the solutions of non-cooperative systems
when the parameter varies near a Principal eigenvalue of the system. With this aim we give
precise estimates of the validity interval for the Antimaximum Principle for an equation and
an example. We apply these results to a non-cooperative system. Finally a counterexample
shows that our hypotheses are necessary. The Maximum Principle remains true only for a
restricted positive cone.

KEY WORDS. Maximum Principle, Antimaximum Principle, Elliptic Equations and Sys-
tems, Non cooperative systems, Principal Eigenvalue.

1 Introduction

In this paper we use ideas concerning the Anti-Maximum Principle due to Clement and
Peletier [5] and later to Arcoya Gámez [3] to obtain in Section 2 precise estimates concerning
the validity interval for the Antimaximum Principle for one equation. An example shows
that this estimate is sharp.

The Maximum Principle and then the Antimaximum Principle for the case of a single equa-
tion have been extensively studied later for cooperative elliptic systems (see the references
([1],[6],[7],[8],[10],[12]). The results in [10], are still valid for systems(with constant coeffi-
cients) involving the p-Laplacian. Some results for non-cooperative systems can be found
e.g. in [4],[11]. Very general results concerning the Maximum Principle for equations and co-
operative systems for different classes (classical, weak, very weak) of solutions were given by
Amann in a long paper [2], in particular the Maximum Principle was shown to be equivalent
to the positivity of the principal eigenvalue.

Here in Section 3, we consider a non-cooperative 2 × 2 system with constant coefficients
depending on a real parameter µ having two real principal eigenvalues µ−1 < µ+

1 . We obtain
some theorems of Antimaximum Principle type concerning the behavior of different cones of
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couples of functions having positivity (or negativity) properties. We give several results of
this type for values of µ−1 < µ but close to µ−1 by combining the usual Maximum Principle
and the results for the Antimaximum Principle in Section 2.

Finally a counterexample is given showing that the Maximum Principle does not hold in gen-
eral for non cooperative systems, but a (partial, under an additional assumption) Maximum
Principle for µ < µ−1 is also obtained.

2 Estimate of the validity interval for the Anti-maximum Principle

Let Ω be a smooth bounded domain in IRN . We consider the following Dirichlet boundary
value problem

−∆z = µz + h in Ω , z = 0 on ∂Ω, (2.1)

where µ is a real parameter. We associate to (2.1) the eigenvalue problem

−∆ϕ = λϕ in Ω , ϕ = 0 on ∂Ω. (2.2)

We denote by λk, k ∈ IN∗ the eigenvalues (0 < λ1 < λ2 ≤ ...) and by ϕk a set of orthonormal
associated eigenfunctions. We choose ϕ1 > 0.

Hypothesis (H0): We write
h = αϕ1 + h⊥ (2.3)

where
∫

Ω
h⊥ϕ1 = 0 and we assume α > 0 and h ∈ Lq, q > N if N ≥ 2 and q = 2 if N = 1.

Theorem 1 We assume (H0) and λ1 < µ ≤ Λ < λ2. There exists a constant K depend-
ing only on Ω, Λ and q such that, for λ1 < µ < λ1 + δ(h) with

δ(h) =
Kα

‖h⊥‖Lq
, (2.4)

the solution z to (2.1) satisfies the Antimaximum Principle, that is

z < 0 in Ω; ∂z/∂ν > 0 on ∂Ω, (2.5)

where ∂/∂ν denotes the outward normal derivative.

Remark 2.1 The Antimaximum Principle of Theorem 1, assuming α > 0, is in the line of
the version given by Arcoya- Gámez [3].

Lemma 2.1 We assume λ1 < µ ≤ Λ < λ2 and h ∈ Lq, q > N ≥ 2. We suppose that
there exists a constant C1 depending only on Ω, q, and Λ such that z satisfying (2.1) is such
that

‖z‖L2 ≤ C1‖h‖L2 . (2.6)
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Then there exist constants C2 and C3, depending only on Ω, q and Λ such that

‖z‖C1 ≤ C2‖h‖Lq and ‖z‖Lq ≤ C3‖h‖Lq . (2.7)

Remark 2.2 Hypothesis (2.6) cannot hold, unless h is orthogonal to ϕ1. Indeed, letting
µ go to λ1, (2.6) implies the existence of a solution to (2.1) with µ = λ1. Note that in the
proof of Theorem 1, Lemma 2.1 is used for h (and hence z) orthogonal to ϕ1 .

2.1 Proof of Lemma 2.1

All constants in this proof depend only on Ω, Λ and q.

Claim: ‖z‖Lq ≤ C3‖h‖Lq .

If the claim is verified then, by regularity results for the Laplace operator combined with
Sobolev imbeddings

‖z‖C1 ≤ C4‖z‖W 2,q ≤ C5(Λ‖z‖Lq + ‖h‖Lq). (2.8)

From the claim and regularity results we deduce (2.7).

Proof of the claim:

- Step 1 We consider the sequence pj = 2 + 8j
N

for j ∈ IN . Observe that for any j,
W 2,pj ↪→ Lpj+1 and that there exists a constant H(j) such that

∀v ∈ W 2,pj , ‖v‖Lpj+1 ≤ H(j)‖v‖W 2,pj . (2.9)

The relation (2.9) is obvious if 2pj ≥ N and for 2pj < N we have

Npj
N − 2pj

− pj+1 =
2pjpj+1 − 8

N − 2pj
> 0

and the result follows by classical Sobolev imbedding.

- Step 2 We consider z satisfying (2.1). For j = 0, we derive from (2.6) and Hölder
inequality that

‖z‖L2 ≤ C5‖h‖Lq . (2.10)

By induction we assume that z ∈ Lpj with pj < q and that

‖z‖Lpj ≤ K(j)‖h‖Lq . (2.11)

By Hölder inequality,

‖µz + h‖Lpj ≤ Λ‖z‖Lpj + |Ω|
q−pj
qpj ‖h‖Lq .
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By regularity results for the Laplace operator:

‖z‖W 2,pj ≤ C(j)(Λ‖z‖Lpj + |Ω|
q−pj
qpj ‖h‖Lq) ≤ C(j)(ΛK(j) + |Ω|

q−pj
qpj )‖h‖Lq .

Using (2.9) the relation (2.11) holds for j + 1 and the induction is proved.

- Step 3 Let J be such that pJ+1 ≥ q > pJ . After J iterations we get by (2.11)

‖z‖Lq ≤ C6‖z‖LpJ+1 ≤ C6K(J + 1)‖z‖W 2,p ≤

C7K(J + 1)‖µz + h‖LpJ ≤ C8(Λ‖h‖Lq + ‖h‖LpJ ) ≤ C9‖h‖Lq ,

which is the claim.

2.2 Proof of Theorem 1

- Step 1: We prove the following inequality:

‖z⊥‖C1 ≤ C2‖h⊥‖Lq . (2.12)

We derive from (2.3)
z =

α

λ1 − µ
ϕ1 + z⊥, (2.13)

with z⊥ solution of
−∆z⊥ = µz⊥ + h⊥ in Ω ; z⊥ = 0 on ∂Ω. (2.14)

By the variational characterization of λ2:

λ2

∫
Ω

|z⊥|2 ≤
∫

Ω

|∇z⊥|2 = µ

∫
Ω

|z⊥|2 +

∫
Ω

z⊥h⊥.

Hence
‖z⊥‖L2 ≤ 1

λ2 − Λ
‖h⊥‖L2 .

By Lemma 2.1, we derive (2.12).

- Step 2: Close to the boundary:

We show now that on the boundary ∂z
∂ν

(x) > 0. and near the boundary z < 0.

Since ∂ϕ1/∂ν < 0 on ∂Ω, we set

A := min∂Ω|∂ϕ1/∂ν| > 0. (2.15)

By a continuity argument there exists ε > 0 such that

dist(x, ∂Ω) < ε ⇒ ∂ϕ1/∂ν(x) ≤ −A/2. (2.16)
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Hence by (2.12) to (2.16) , for any x ∈ Ω such that dist(x, ∂Ω) < ε, and if

0 < µ− λ1 <
αA

4C2‖h⊥‖Lq
,

we have
∂z

∂ν
(x) =

α

λ1 − µ
∂ϕ1

∂ν
(x) +

∂z⊥

∂ν
(x) ≥ α

λ1 − µ
∂ϕ1

∂ν
(x)− C2‖h⊥‖Lq ,

hence
∂z

∂ν
(x) ≥ α

2(λ1 − µ)

∂ϕ1

∂ν
(x) > 0. (2.17)

Therefore ∂z
∂ν

(x) > 0 on ∂Ω. Moreover since z = ϕ1 = 0 on ∂Ω, we deduce from (2.17) that,
for x ∈ Ω with dist(x, ∂Ω) < ε′ ≤ ε/2 (ε′ small enough),

z(x) ≤ α

2(λ1 − µ)
ϕ1(x) < 0,

where ε′ does not depend on µ.

- Step 3: Inside Ω:

We consider now Ωε′ := {x ∈ Ω, dist(x, ∂Ω) > ε′}. Set

B := min
Ωε′

ϕ1(x) > 0.

We have in Ωε′ by (2.12) and (2.13)

z(x) =
α

λ1 − µ
ϕ1(x) + z⊥(x) ≤ α

λ1 − µ
B + C2‖h⊥‖Lq < 0

if we choose
µ− λ1 <

αmin(B,A/2)

C2‖h⊥‖Lq
.

We derive now Theorem 1.

2.3 An example

Let N = 1, Ω =]0, 1[ and h = h1ϕ1 + h2ϕ2 with h1 > 0, h2 > 0. We note that

ϕ1(x)− sϕ2(x) = sinπx(1− 2scosπx) > 0 (2.18)

in Ω implies s ≤ 1/2. For this example, taking µ = λ1 + ε, ε > 0, we have:

z =
h1

λ1 − µ
ϕ1 +

h2

λ2 − µ
ϕ2 = −h1

ε

(
ϕ1 −

εh2

h1(λ2 − λ1 − ε)
ϕ2

)
.

If the Antimaximum Principle holds, z < 0 in Ω, and by (2.18), we have
εh2

h1(λ2 − λ1 − ε)
≤ 1

2
,

hence
ε ≤ h1(λ2 − λ1)

2h2(1 + h1
2h2

)
≤ h1(λ2 − λ1)

2h2

.

We obtain an estimate of δ(h) similar to that in Theorem 1.
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3 A non-cooperative system

Now we will consider the 2× 2 non-cooperative system depending on a real parameter µ:

−∆u = au + bv + µu + f in Ω, (S1)

−∆v = cu + dv + µv + g in Ω, (S2)

u = v = 0 on ∂Ω. (S3)

or shortly
−∆U = AU + µU + F in Ω , U = 0 on ∂Ω. (S)

Hypothesis (H1) We assume b > 0 , c < 0, and

D := (a− d)2 + 4bc > 0. (3.1)

3.1 Eigenvalues of the system

As usual we say that µ is an eigenvalue of System (S) if (S1)− (S3) has a non trivial solution
U = (u, v) 6= 0 for F ≡ 0 and we say that µ is a principal eigenvalue of System (S) if there
exists U = (u, v) with u > 0, v > 0 solution to (S) with F ≡ 0.

Notice that, since (S) is not cooperative, it is not necessarily true that there is a lowest prin-
cipal eigenvalue µ1 and that the Maximum Principle holds if and only if µ1 > 0 (Amann [2]).

We seek solutions u = pϕ1, v = qϕ1 to the eigenvalue problem where, as above, (λ1, ϕ1) is
the principal eigenpair for −∆ with Dirichlet boundary conditions.

Principal eigenvalues correspond to solutions with p, q > 0. The associated linear system is

(a+ µ− λ1)p + bq = 0,

cp + (d+ µ− λ1)q = 0,

and it follows from (H1) that (a+ µ− λ1) and (d+ µ− λ1) should have opposite signs. We
should have

Det(A+ (µ− λ1)I) = (a+ µ− λ1)(d+ µ− λ1)− bc = 0,

which implies by (H1) that the condition on signs is satisfied and this whatever the sign of
µ could be. (Notice that D > 0 implies that both roots are real and that D = 0 gives a real
double root).
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We have then shown directly that our system has (at least) two principal eigenvalues. Their
signs will depend on the coefficients. If, for example, a < λ1, d < λ1, the largest one is
positive. We will denote the two principal eigenvalues by µ−1 and µ+

1 where

µ−1 := λ1 − ξ1 < µ+
1 := λ1 − ξ2, (3.2)

where the eigenvalues of Matrix A are:

ξ1 =
a+ d+

√
D

2
> ξ2 =

a+ d−
√
D

2
.

Remark 3.1 Usually the Maximum Principle holds if and only if the first eigenvalue is
positive. Here by replacing −∆ by −∆ + K with K > 0 large enough we may get µ−1 > 0.
Nevertheless the Maximum Principle needs an additional condition (see Theorem 4 and its
remark).

3.2 Main Theorems

3.2.1 The case µ−
1 < µ < µ+

1

We assume in this subsection that the parameter µ satisfies:

(H2) µ−1 < µ < µ+
1 .

Theorem 2 Assume (H1), (H2), and

(H3) d < a,

(H4) f ≥ 0, g ≥ 0, f, g 6≡ 0, f, g ∈ Lq, q > N if N ≥ 2 ; q = 2 if N = 1.

Then there exists δ > 0, independent of µ, such that if

(H5) µ < µ−1 + δ,

we get

u < 0, v > 0 in Ω;
∂u

∂ν
> 0,

∂v

∂ν
< 0 on ∂Ω.

Remark 3.2 If in the theorem above we reverse signs of f, g, u, v that is f ≤ 0, g ≤
0, f, g 6≡ 0, then for µ satisfying (H5), we get

u > 0, v < 0 in Ω;
∂u

∂ν
< 0,

∂v

∂ν
> 0 on ∂Ω.

Note that the counterexample in subsection (3.3) shows that for f, g of opposite sign( fg < 0),
u or v may change sign.
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Theorem 3 Assume (H1), (H2), and

(H ′3) a < d,

(H ′4) f ≤ 0, g ≥ 0, f, g 6≡ 0 , f, g ∈ Lq, q > N if N ≥ 2 ; q = 2 if N = 1.

Then there exists δ > 0, independent of µ, such that if

(H5) µ < µ−1 + δ,

we obtain
u < 0, v < 0 in Ω;

∂u

∂ν
> 0,

∂v

∂ν
> 0 on ∂Ω.

Remark 3.3 If in the theorem above we reverse signs of f, g, u, v that is f ≥ 0, g ≤
0, f, g 6≡ 0, then for µ satisfying (H5), we get

u > 0, v > 0 in Ω;
∂u

∂ν
< 0,

∂v

∂ν
< 0 on ∂Ω.

Note that, by the changes used in the proof of the theorem above, the counterexample in
subsection (3.3) shows that for f, g with same sign (fg > 0), u or v may change sign.

3.2.2 The case µ < µ−
1

We assume in this Section that the parameter µ satisfies:

(H ′2) µ < µ−1 .

Theorem 4 Assume (H1), (H ′2), and

(H ′3) a < d,

(H ′′4 ) f ≥ 0, g ≥ 0, f, g 6≡ 0, f, g ∈ L2.

Assume also t∗g − f ≥ 0, t∗g − f 6≡ 0 with

t∗ =
d− a+

√
D

−2c
.

Then
u > 0, v > 0 in Ω;

∂u

∂ν
< 0,

∂v

∂ν
< 0 on ∂Ω.

Remark 3.4 As above we can reverse signs of f, g, u, v .
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3.3 Counterexample: a > d

We consider the system in 1 dimension

−u′′ = 4u + v + µu + f in I :=]0; π[,

−v′′ = −u + v + µv + g in I,

u(0) = u(π) = v(0) = v(π) = 0.

λ1 = 1 and λ2 = 4; ϕ1 = sin x, ϕ2 = sin 2x. We compute µ−1 = 1 − 5+
√

5
2

. Choose
f = ϕ1 − 1

2
ϕ2 ≥ 0 and g = kf with k 6= 0 to be determined later. We obtain

u = u1ϕ1 + u2ϕ2 and v = v1ϕ1 + v2ϕ2,

where
u1 =

k − µ
µ2 + 3µ+ 1

, u2 =
µ− k − 3

2(µ2 − 3µ+ 1)
,

1/ Choosing µ = −3 < µ−1 , we get v1 = −1 and v2 = 1−3k
38

. Therefore

−v = ϕ1 +
3k − 1

38
ϕ2,

and for 3k−1
38

> 1
2
, v changes sign. Hence Maximum Principle does not hold.

2/ Choosing µ−1 < µ = µ−1 + ε, k = µ−1 + ε2, we have

u2

u1

=

(
µ− k − 3

k − µ

)(
µ2 + 3µ+ 1

2(µ2 − 3µ+ 1)

)
=

(
3 + ε

ε

)( √
5− ε

(9 + 3
√

5)− (6 +
√

5)ε+ ε2

)
.

So that u2
u1
→∞ as ε→ 0. Hence for these f > 0, g < 0, u changes sign.

3.4 Proofs of the main results

3.4.1 Some computations and associate equation
In the following we introduce

γ1 =
1

2
(a+ d+ 2µ−

√
D) = λ1 + µ− µ+

1 ; (3.3)

γ2 =
1

2
(a+ d+ 2µ+

√
D) = λ1 + µ− µ−1 , (3.4)

and some auxiliary results used in the proofs of our results.
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Lemma 3.1 We have

(L1) µ < µ+
1 ⇔ γ1 < λ1.

(L2) µ−1 < µ ⇔ λ1 < γ2.

(L3)
√
D < a− d ⇔ d+ µ < γ1 < γ2 < a+ µ.

(L4)
√
D < d− a ⇔ a+ µ < γ1 < γ2 < d+ µ.

(L5) µ < µ+
1 + δ ⇔ γ1 < λ1 + δ.

(L6) µ < µ−1 + δ ⇔ γ2 < λ1 + δ.

3.4.2 Proofs of Theorems 2 and 3

Proof of Theorem 2, a > d:

We introduce now
w = u+ tv, (3.5)

with

t =
a− d+

√
D

−2c
=

2b

a− d−
√
D

(3.6)

so that
−∆w = γ1w + f + tg inΩ; (3.7)

w|∂Ω = 0.

We remark that

t =
b

γ1 − d− µ
=

b

a+ µ− γ2

=
γ1 − a− µ

c
=
d+ µ− γ2

c
. (3.8)

Note first that Hypothesis (H3) implies t > 0 and a − d >
√
D. By (H2), (H4), and (L1)

in Lemma 3.1, γ1 < λ1, and we apply the Maximum Principle which gives w > 0 on Ω and
∂w
∂ν
< 0 on ∂Ω. We compute

a+ µ− b

t
= a+ d+ 2µ− γ1 = γ2, (3.9)

and since v = (w − u)/t, we derive

−∆u = (a+ µ− b

t
)u+

b

t
w + f = γ2u+

b

t
w + f,
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where b
t
w + f > 0. From (H5) and (L6), γ2 ≤ λ1 + δ1, where

δ1 := δ(
b

t
w + f), (3.10)

we deduce from the Antimaximum Principle that u < 0 on Ω and ∂u
∂ν

> 0 on ∂Ω. Hence
cu+ g > 0.

Now (H2), (L1) and (L3) imply d+µ < γ1 < λ1 and the Maximum Principle applied to (S2)

gives v > 0 on Ω and ∂v
∂ν
< 0 on ∂Ω.

We apply now Section 1 to estimate δ1.

h :=
b

t
w + f = (γ1 − d− µ)w + f = σϕ1 + h⊥. (3.11)

First we compute σ:

Set f = αϕ1 + f⊥, g = βϕ1 + g⊥, w = κϕ1 + w⊥. Since

−∆w = γ1w + f +
b

γ1 − d− µ
g,

we calculate:
σ = α + (γ1 − d− µ)κ = α

λ1 − d− µ
λ1 − γ1

+ β
b

λ1 − γ1

.

Now we estimate ‖h⊥‖L2 .

−∆w⊥ = γ1w
⊥ + f⊥ +

b

γ1 − d− µ
g⊥.

The variational characterization of λ2 gives

(λ2 − γ1)‖w⊥‖L2 ≤ ‖f⊥‖L2 +
b

γ1 − d− µ
‖g⊥‖L2 .

We derive from ( 3.11)

‖h⊥‖L2 ≤ ‖f⊥‖L2 + (γ1 − d− µ)‖w⊥‖L2 ≤ λ2 − d− µ
λ2 − γ1

‖f⊥‖L2 +
b

λ2 − γ1

‖g⊥‖L2 .

Reasoning as in Lemma 2.1, we show that there exists a constant C3 such that

‖h⊥‖Lq ≤ C3

(
λ2 − d− µ
λ2 − γ1

‖f⊥‖Lq +
b

λ2 − γ1

‖g⊥‖Lq
)
. (3.12)

In fact for proving (3.12) we use the same sequence than that in Lemma 2.1 and we show
by induction that

‖z⊥‖Lpj ≤ K(j)
(
‖f⊥‖Lq + ‖g⊥‖Lq

)
.
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Now we apply the Antimaximum Principle to the equation

−∆u = γ2u+ h.

This is possible since by (L6) in Lemma 3.1, λ1 < γ2 < λ1 + δ2 = λ1 + δ(h) where, as in
Theorem 1, δ(h) = Kσ

‖h⊥‖Lq
.

Moreover we notice that λ1 − γ1 = µ+
1 − µ ≤ µ+

1 − µ−1 and therefore, since α > 0 and β > 0

by (H4),

σ = α
λ1 − d− µ
λ1 − γ1

+ β
b

λ1 − γ1

≥ A := α
λ1 − d− µ+

1

µ+
1 − µ−1

+ β
b

µ+
1 − µ−1

,

and from (3.12), we obtain

‖h⊥‖Lq ≤ B := C3

(
λ2 − d− µ−1
λ2 − λ1

‖f⊥‖Lq +
b

λ2 − λ1

‖g⊥‖Lq
)
.

From the computation above we can choose δ2 = KA
B which does not depend on µ, and the

result follows.

Proof of Theorem 3, a < d:
We deduce this theorem from Theorem 2 by change of variables. Set â = d, d̂ = a , û = v,
v̂ = −u and f̂ = g , ĝ = −f . f̂ ≥ 0, ĝ ≥ 0, imply û < 0, v̂ > 0. We get Theorem 3.

3.4.3 Proof of Theorem 4
Since a < d, we have t∗ = d−a+

√
D

−2c
> 0. With now the change of variable w = −u + t∗v, as

in [4] (see also [11]) , we can write the system as

−∆u = γ1u+ (b/t∗)w + f inΩ, (3.13)

−∆v = γ1v − cw + g inΩ (3.14)

−∆w = γ2w + (t∗g − f) inΩ, (3.15)

u = v = w = 0 on ∂Ω.

Now µ < µ−1 , and it follows from (L2) in Lemma 3.1 that γ1 < γ2 < λ1. From (3.15) it
follows from the Maximum Principle that w > 0. Then in (3.14) −cw + g > 0, and again
by the Maximum Principle v > 0. Finally, since (b/t∗)w + f > 0 in (3.13), again by the
Maximum Principle u > 0.
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Subdensity as a convenient concept for
Bounded Topology

ABSTRACT. A subdensity space is a special case of a density space, which also occur under
the name of hypernear space in [17]. Hence, most of classical spaces, like topological spaces,
uniform spaces, proximity spaces, contiguity spaces or nearness spaces, respectively can be
immediately described and studied in this general framework. Moreover, the more specific
defined subdensity spaces allow us to consider and integrate the fundamental species of b-
topological and b-near spaces, too, as presented and studied in [19]. In this paper it is shown
that b-proximal spaces also can be involved, and b-topological spaces then have an alternate
description by different corresponding subdensity spaces.

At last, we establish a one-to-one correspondence between suitable subdensity spaces and
their related strict topological extensions [1]. This relationship generalizes the one of
LODATO, studied by him in the realm of generalized proximity spaces [20].

KEY WORDS AND PHRASES. Bounded Topology; b-topological space; b-proximal space;
strict topological extension

1 Basic Concepts

As usual PX denotes the power set of a set X, and we call BX ⊂ PX a bornology (on X)
[8], if it possesses the following properties, i.e.

(b0) ∅ ∈ BX ;

(b1) B2 ⊂ B1 ∈ BX imply B2 ∈ BX ;

(b2) x ∈ X implies {x} ∈ BX ;

(b3) B1, B2 ∈ BX imply B1 ∪ B2 ∈ BX .

The elements of BX are called bounded sets. Then, for bornologies BX ,BY a function f :

X −→ Y is called bi-bounded iff f satisfies
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(bib1) fBX : ={f [B] : B ∈ BX} ⊂ BY ;

(bib2) f−1BY : ={f−1[D] : D ∈ BY } ⊂ BX .

Evidently, for corresponding power sets each map f : X −→ Y is bi-bounded. As an
instructive example we consider for sets X, Y as bornologies in each case the set of all finite
subsets of those. Then, for each map f : X −→ Y and some B ∈ BXfi : ={D ⊂ X : D is
finite} we look at the power set on B and consider the restriction f |B of f on B. Then f |B
is bi-bounded.

Then we make use of the following notations: For collections ρ, ρ1, ρ2 ⊂ PX we put:

ρ2 << ρ1 iff ∀F2 ∈ ρ2∃F1 ∈ ρ1 F1 ⊂ F2;

ρ1 ∨ ρ2 : ={F1 ∪ F2 : F1 ∈ ρ1, F2 ∈ ρ2};
sec ρ : ={D ⊂ X : ∀F ∈ ρD ∩ F 6= ∅}.

Definition 1.1 We call a triple (X,BX , N) consisting of a set X, bornology BX and a
function N : BX −→ P (P (PX)) an episd-space (shortly esd-space) iff the following axioms
are satisfied:

(esd1) ρ2 << ρ1 ∈ N(B), B ∈ BX , ρ2 ⊂ PX imply ρ2 ∈ N(B);

(esd2) B ∈ BX implies BX 6∈ N(B) 6= ∅;

(esd3) ρ ∈ N(∅) implies ρ = ∅;

(esd4) x ∈ X implies {{x}} ∈ N({x});

(esd5) ∅ 6= B2 ⊂ B1 ∈ BX imply N(B2) ⊂ N(B1);

(esd6) {clN(F ) : F ∈ ρ} ∈ N(B), ρ ⊂ PX,B ∈ BX imply ρ ∈ N(B), where clN(F ) : ={x ∈
X : {F} ∈ N({x})};

(esd7) ρ1 ∨ ρ2 ∈ N(B), ρ1, ρ2 ⊂ PX,B ∈ BX imply ρ1 ∈ N(B) or ρ2 ∈ N(B);

(esd8) B ∈ BX implies clN(B) ∈ BX ;

(esd9) ρ ∩ BX ∈ N(B), B ∈ BX\{∅}, ρ ⊂ PX imply ρ ∈ N(B).

If ρ ∈ N(B) for some B ∈ BX , then we call ρ a B-collection (in N). For esd-spaces
(X,BX , N), (Y,BY ,M) a function f : X −→ Y is called bi-bounded sd-map (shortly bibsd-
map iff it satisfies (bib1), (bib2) and

(sd) B ∈ BX and ρ ∈ N(B) imply fρ : ={f [F ] : F ∈ ρ} ∈M(f [B]).

We denote by ESD the corresponding category.
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Remark 1.2 In a former paper [19] it was shown, that the category b-TOP of b-topological
spaces and b-continuous maps as well as the category b-NEAR of b-nearness spaces and
b-near maps can be fully embedded into ESD. In our following research we will establish
a further equivalent description of b-topological spaces by means of different esd-spaces
resulting into an alternate description of the category TOP, if the given bornology BX of the
considered esd-space is saturated, which means X is an element of BX . Moreover, we focus
our attention on so called b-proximal spaces which also can be integrated into the above
defined concept. Then, in a natural way, we will characterize those esd-spaces which can be
extended to a certain topological one. In case of saturation this new established connection
deliver us the well-known famous theorem of LODATO [20] up to isomorphism.

Definition 1.3 For a set X let BX be a bornology. A function t : BX −→ PX is called
a b-topological operator (b-topology) (on BX) iff the following axioms are satisfied, i.e.

(b-t1) B ∈ BX implies t(B) ∈ BX ;

(b-t2) t(∅) = ∅;

(b-t3) B ∈ BX implies B ⊂ t(B);

(b-t4) B1 ⊂ B2 ∈ BX imply t(B1) ⊂ t(B2);

(b-t5) B ∈ BX implies t(t(B)) ⊂ t(B);

(b-t6) B1, B2 ∈ BX imply t(B1 ∪ B2) ⊂ t(B1) ⊂ t(B2).

Then the triple (X,BX , t) is called a b-topological space. For b-topological spaces (X,BX , tX),
(Y,BY , tY ) a function f : X −→ Y is called b-continuous map iff it is bi-bounded and satisfies
the following condition, i.e.

(cont) B ∈ BX implies f [tX(B)] ⊂ tY (f [B]).

We denote by b-TOP the corresponding category [19].

Example 1.4 For a set X let BXf be denote the set of all finite subsets of X. Thus,
BXf defines a bornology on X. Then, for a fixed set D ∈ BXf we establish a b-topology
tD : BX −→ PX by setting tD(∅) : = ∅ and tD(B) : =B ∪D, otherwise.

Remark 1.5 If BX is saturated, then a b-topological space can be considered as topological
space and vice versa. Moreover, if for bornologies BX ,BY with saturated BXf : X −→ Y is
constant map, then f is automatically b-continuous.

Lemma 1.6 For a b-topological space (X,BX , t) we set: Nt(∅) : ={∅} and Nt(B) : ={ρ ⊂
PX : B ∈ sec{t(F ) : F ∈ ρ ∩ BX}}, otherwise.

Then (X,BX , Nt) is an esd-space such that t = clNt (see also Chapter 2).
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Proof: Firstly, we have to verify that Nt is satisfying the axioms (esd1) to (esd9).

to (esd1): ρ2 << ρ1 ∈ Nt(B), ρ ⊂ PX,B ∈ BX\{∅} and F ∈ ρ2 ∩ BX imply the existence
of F1 ∈ ρ1 with F1 ⊂ F2. Hence F1 ∈ ρ1 ∩ BX follows by applying (b1), and
B ∩ t(F1) 6= ∅ results by hypothesis. Consequently, B ∩ t(F2) 6= ∅ is valid
according to (b-t4), resulting into ρ2 ∈ Nt(B).

to (esd2): Let B ∈ BX ; in first case if B = ∅ we have ∅ ∈ Nt(B) by definition. In second
case if B 6= ∅ we get {B} ∈ Nt(B), since B ∩ t(B) 6= ∅ is valid.

Further suppose BX ∈ Nt(B), and without restriction B 6= ∅, otherwise B =

∅ contradicts. Then B ∈ sec{t(F ) : F ∈ BX} implies B ∩ t(∅) 6= ∅, which
contradicts too. Hence BX 6∈ Nt(B) follows.

to (esd3): evident by definition of Nt.

to (esd4): see especially proof of (esd2).

to (esd5): evident.

to (esd6): For {clNt(F ) : F ∈ ρ} ∈ Nt(B), ρ ⊂ PX,B ∈ BX let A ∈ ρ∩BX , we have to verify
B ∩ t(A) 6= ∅. Since clNt(A) ∈ {clNt(F ) : F ∈ ρ} we get B ∩ t(clNt(A)) 6= ∅ by
hypothesis. Note, that clNt(A) ⊂ t(A) ∈ BX is valid. Consequently B∩ t(t(A)) 6=
∅ follows, and B∩t(A) 6= ∅ results according to (b-t5), showing our made assertion.

to (esd7): ρ1 ∨ ρ2 ∈ Nt(B) and without restriction B 6= ∅ with ρ1 6= ∅ 6= ρ2 imply B ∈
sec{t(F ) : F ∈ (ρ1 ∨ ρ2) ∩ BX}. Now, let us suppose ρ1, ρ2 6∈ Nt(B). Hence
there exists F1 ∈ ρ1 ∩ BXB ∩ t(F1) = ∅ and F2 ∈ ρ2 ∩ BX B ∩ t(F2) = ∅. But
F1 ∪ F2 ∈ (ρ1 ∨ ρ2) ∩ BX , since BX is bornology and

∅ = (B ∩ t(F1)) ∪ (B ∩ t(F2)) = B ∩ (t(F1) ∪ t(F2)) = B ∩ t(F1 ∪ F2)

according to (b-t4) and (b-t6), respectively which contradicts.

to (esd8): evident.

to (esd9): B ∈ BX\{∅} and ρ ∩ BX ∈ Nt(B), ρ ⊂ PX imply B ∈ sec{t(F ) : F ∈ (ρ ∩
BX) ∩ BX}, and ρ ∈ Nt(B) results. To show the equality t = clNt is valid let
without restriction B ∈ BX\{∅}, then x ∈ clNt(B) is equivalent to the statement
{B} ∈ Nt({x}), which is further equivalent to {x} ∈ sec{t(F ) : F ∈ B ∩ BX}, at
last resulting into the statement x ∈ t(B) as equivalent to above.

Remark 1.7 As an interpretation of this Lemma we keep hold that every b-topological
space is induced by a certain esd-space.
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As a next step in our research we will introduce the concept of b-proximal spaces and related
facts.

Definition 1.8 For a bornology BX a relation δ ⊂ BX × BX is called b-proximal, and
the triple (X,BX , δ) a b-proximal space iff δ satisfies the following conditions, i.e.

(b-p1) B ∈ BX implies clδ(B) ∈ BX , where clδ(B) : ={x ∈ X : {x}δB};

(b-p2) ∅δ̄D and Bδ̄∅ for each B,D ∈ BX ;

(b-p3) Bδ(D1 ∪D2) iff BδD1 or BδD2 for each B,D1, D2 ∈ BX ;

(b-p4) x ∈ X implies {x}δ{x};

(b-p5) B1 ⊂ B ∈ BX and B1δD imply BδD for each D ∈ BX ;

(b-p6) B1δD and D ⊂ clδ(B), B ∈ BX imply B1δB.

(Hereby, δ̄ denotes the negation of δ). For b-proximal spaces (X,BX , δ), (Y,BY , γ) a function
f : X −→ Y is called b-proximal map iff f is bi-bounded and satisfies the following condition,
i.e.

(prox) BδD implies f [B]γf [D]. We denote by b-PX the corresponding category.

Remark 1.9 If BX is saturated, then a b-proximal space (X,BX , δ) may be considered as
a generalized proximity space and vice versa [14]. In special cases LEADER proximities as
well as LODATO proximities then can be easily recovered.

Proposition 1.10 For a b-topological space (X,BX , t) we set: BδtD iff B∩t(D) 6= ∅ for
each B,D ∈ BX . Then (X,BX , δt) defines a b-proximal space which additionally is additive
by satisfying

(add) (B1 ∪ B2)δD,B1, B2, D ∈ BX imply B1δD or B2δD.

Proof: straight forward.

Definition 1.11 A b-proximal space (X,BX , δ) is called symmetric iff in addition holds

(s) B1δB2 implies B2δB1 for each B1, B2 ∈ BX .

Remark 1.12 Here, we only note that if BX is saturated, then (X,BX , δ) can be essentially
considered as a LODATO proximity space [20] and vice versa. We denote by b-SPX the
corresponding full subcategory of b-PX.
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2 b-TOP, b-PX and b-SPX as fully embedded subcategories of ESD

Now, firstly let us start with the objects of b-PX.

Lemma 2.1 For a b-proximal space (X,BX , δ) we set: Nδ(∅) : ={∅} and Nδ(B) : ={ρ ⊂
PX : ρ ∩ BX ⊂ δ(B)}, where δ(B) : ={D ∈ BX : BδD}, otherwise. Then (X,BX , Nδ) is an
esd-space.

Proof: Straight forward. Here, we only will verify the validity of the axioms (esd6), (esd7)
and (esd8) in definition 1.1.

to (esd6): For ρ ⊂ PX let {clNδ(F ) : F ∈ δ} ∈ Nδ(B), we have to verify ρ ∩ BX ⊂ δ(B).
A ∈ ρ ∩ BX implies clNδ(A) ∈ {clNδ(F ) : F ∈ ρ}. Since A ∈ BX we claim
clNδ(A) ⊂ clδ(A), hence clNδ(A) ∈ BX . By hypothesis clNδ(A) ∈ δ(B) follows,
showing that BδclNδ(A) ⊂ clδ(A) is valid. But δ is satisfying (b-p6), and BδA

results, hence A ∈ δ(B) follows.

to (esd7): Without restriction let B ∈ BX\{∅} and ρ1 ∨ ρ2 ∈ Nδ(B), ρ1 6= ∅ 6= ρ2. If
supposing ρ1, ρ2 6∈ Nδ(B) we get F1, F2 6∈ δ(B) for some F1 ∈ ρ1 ∩ BX and
F2 ∈ ρ2 ∩ BX . Hence Bδ̄F1 and Bδ̄F2 implying Bδ̄(F1 ∪ F2) according to (b-p3),
note that BX is bornology. But F1∪F2 ∈ (ρ1∪ρ2)∩BX leads us to a contradiction.

to (esd8): B ∈ BX implies clδ(B) ∈ BX . We will show that clNδ(B) ⊂ clδ(B), then by (b1)
we get the desired result. x ∈ clNδ(B) implies {B} ∈ Nδ({x}), hence {B} ⊂
δ({x}), and {x}δB results, showing that x ∈ clδ(B) is valid.

Definition 2.2 An esd-space (X,BX , N) is called conic iff N satisfies the condition

(con) B ∈ BX implies
⋃
{ρ ⊂ PX : ρ ∈ N(B)} ∈ N(B).

Example 2.3 According to Lemma 1.6 we state that the esd-space (X,BX , Nt) is conic.

Remark 2.4 Here, we note that the esd-space (X,BX , Nδ) is conic, too. But in general
this property must not be necessary fulfilled, if, par example we look at the near subdensity
spaces considered in [19].

Lemma 2.5 For a conic esd-space (Y,BY ,M) we put BγMD iff {D} ∈ M(B) for sets
B,D ∈ BY . Then (Y,BY , γM) is a b-proximal space such that NγM = M .

Proof: Straight forward. Here, we only will verify the validity of axiom (b-p6) in defini-
tion 1.8.
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to (b-p6): B1δD and D ⊂ clγM (B), B ∈ BY imply {D} ∈ M(B1), hence {clM(B)} <<
{clγM (B)} << {D} follows, and {clM(B)} ∈ M(B1) is valid. We get {B} ∈
M(B1), according to (esd6) which results in B1γMB. It remains to prove the
equality NγM = M . Without restriction let B ∈ BX\{∅} and ρ ∈ NγM (B), hence
ρ ∩ BX ⊂ γM(B). Now, we will show that γM(B) ⊂

⋃
{σ : σ ∈ M(B)} holds.

D ∈ γM(B) implies BγMD, hence {D} ∈ M(B) is valid with D ∈ {D}, and
D ∈

⋃
{σ : σ ∈ M(B)} follows. Consequently, ρ ∩ BX ∈ M(B) can be deduced

by applying (esd1), resulting into ρ ∈M(B) according to (esd9). The reverse case
is easily to verify.

Theorem 2.6 The full subcategory CON-ESD of ESD, whose objects are the conic esd-
spaces is isomorphic to the category b-PX.

Proof: Taking into account former results we further note that for a given b-proximal space
(X,BX , δ) the equality γNδ = δ is valid. Moreover, we claim that for each b-proximal map
f between b-proximal spaces f is bibsd-map between the corresponding esd-spaces and vice
versa.

Definition 2.7 A conic esd- space (X,BX , N) is called proximal iff N satisfies the con-
dition

(px) B ∈ BX\{∅} and ρ ∈ N(B) imply {B} ∈
⋂
{N(F ) : F ∈ ρ ∩ BX}.

Remark 2.8 Here, we note that for a given symmetric b-proximal space (X,BX , δ) the
corresponding esd-space (X,BX , Nδ) is proximal. Because for B ∈ BX\{∅} and ρ ∈ Nδ(B)

we have ρ∩BX ⊂ δ(B). Then, F ∈ ρ∩BX implies {B} ∈ Nδ(F ). Since by hypothesis BδF
is valid FδB results, because δ is symmetric.

Corollary 2.9 The full subcategory PX-ESD of CON-ESD, whose objects are the
proximal esd-spaces is isomorphic to the category b-SPX.

Proof: Here, we only note that for a given proximal esd-space the corresponding b-proximal
space is symmetric.

Proposition 2.10 Every proximal esd-space (X,BX , N) is closed by satisfying

(clo) B ∈ BX implies N(clN(B)) = N(B).

Proof: Without restriction let B ∈ BX\{∅} and ρ ∈ N(clN(B)), we will show that ρ∩BX ⊂
∪{σ : σ ∈ N(B)} is valid. F ∈ ρ ∩ BX implies {clN(B)} ∈ N(F ), since (X,BX , N) is
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proximal. Then {B} ∈ N(F ) follows by applying (esd6), and {F} ∈ N(B) results with
respect to (px). Consequently, F ∈ ∪{σ : σ ∈ N(B)} is valid, showing that ρ∩BX ∈ N(B),
according to (esd1). But this induce ρ ∈ N(B) by applying (esd9). The reverse inclusion
then can be easily verified with respect to (esd5).

Proposition 2.11 Every proximal esd-space (X,BX , N) is linked by satisfying

(lik) ρ ∈ N(B1 ∪ B2), B1, B2 ∈ BX imply {F} ∈ N(B1) ∪N(B2)∀F ∈ ρ ∩ BX .

Proof: evident.

Definition 2.12 A conic esd-space (X,BX , N) is called covered iff N satisfies the con-
dition

(cov) B ∈ BX\{∅} and ρ ∈ N(B) imply B ∈ sec{clN(F ) : F ∈ ρ ∩ BX}.

Example 2.13 With respect to example 2.3 we note that (X,BX , Nt) is a covered esd-
space.

Lemma 2.14 For a covered esd-space (X,BX , N) the restriction of clM on BX , denoted
by clbM is a b-topology on BX such that NclbM

= M .

Proof: Firstly, we only will verify the validity of the axioms (b-t5) and (b-t6), respectively
in definition 1.3. Then, the remaining is clear.

to (b-t5): x ∈ clbM(clbM(B)), B ∈ BX imply {clbM(B)} ∈M({x}), hence {clM(B)} ∈M({x})
is valid, and {B} ∈M({x}) results, according to (esd6). But then x ∈ clM(B) =

clbM(B) follows.

to (b-t6): B1, B2 ∈ BX and without restriction let B1 6= ∅ 6= B2 · x ∈ clbM(B1 ∪ B2) implies
{B1∪B2} ∈M({x}), by paying attention to the fact that BX is bornology. Since
{B1}∨{B2} = {B1∪B2}, we get {B1} ∈M({x}) or {B2} ∈M({x}) by applying
(esd7), resulting into x ∈ clbM(B1) ∪ clbM(B2). In showing the equality NclbM

= M

let without restriction B ∈ BX\{∅}. ρ ∈ NclbM
(B) implies B ∈ sec{clbM(F ) :

F ∈ ρ ∩ BX}, which is the same as B ∈ sec{clM(F ) : F ∈ ρ ∩ BX}. Since
(X,BX ,M) is conic, we know that

⋃
{σ : σ ∈M(B)} ∈M(B). Thus, it remains

to verify ρ ∩ BX ⊂ ∪{σ : σ ∈ M(B)}, because then ρ ∩ BX ∈ M(B) follows,
according to (esd1), and ρ ∈ M(B) is valid by applying (esd9). F ∈ ρ ∩ BX

implies B ∩ clM(F ) 6= ∅, hence x ∈ clM(F ) for some x ∈ B. Consequently,
{F} ∈M({x}) ⊂M(B) follows, showing that F ∈

⋃
{σ : σ ∈M(B)}, which put

an end of this. Then, the reverse inclusion is easily to verify.
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Theorem 2.15 The full subcategory COV-ESD of CON-ESD, whose objects are the
covered esd-spaces is isomorphic to the category b-TOP.

Proof: Taking into account former results we further note that for each b-continuous map
f between b-topological spaces f is bibsd-map between the corresponding esd-spaces and
vice versa.

Theorem 2.16 The category CON-ESD is bireflective in ESD.

Proof: For an esd-space (X,BX , N) we set: NC(∅) : ={∅} and NC(B) : ={A ⊂ PX :

{clN(A) : A ∈ A ∩ BX} ⊂
⋃
{ρ : ρ ∈ N(B)}}, otherwise. Then (X,BX , NC) is conic esd-

space, and 1X : (X,BX , N) −→ (X,BX , NC) is bibsd-map. In the following we only will
verify the validity of the axioms (esd6), (esd7) in definition 1.1 and that of axiom (con) in
definition 2.2. Then the remaining statements are obvious.

to (esd6): {clNC (A) : A ∈ A} ∈ NC(B), B ∈ BX\{∅},A ⊂ PX imply {clN(F ) : F ∈
{clNC (A) : A ∈ A} ∩ BX} ⊂

⋃
{ρ : ρ ∈ N(B)}. We will show that {clN(A) : A ∈

A ∩ BX} ⊂
⋃
{ρ : ρ ∈ N(B)}. A ∈ A ∩ BX implies clN(clNC (A)) ∈

⋃
{ρ : ρ ∈

N(B)}, since clNC (A) ∈ BX . Further we have the inclusion clNC (A) ⊂ clN(A)

is valid: x ∈ clNC (A) implies {A} ∈ NC({x}), hence clN(A) ∈ ρ for some ρ ∈
N({x}). {clN(A)} ∈ N({x}) holds by applying (esd1), and {A} ∈ N({x}) results
according to (esd6), hence x ∈ clN(A) follows. By hypothesis clN(clNC (A)) ∈ σ
for some σ ∈ N(B), and {clN(A)} ∈ N(B) follows by applying (esd6), again.
Consequently our assertion holds.

to (esd7): Let A1 ∨ A2 ∈ NC(B) and without restriction B ∈ BX\{∅} with A1 6= ∅ 6= A2.
Then {clN(A) : A ∈ (A1 ∨ A2) ∩ BX} ⊂

⋃
{ρ : ρ ∈ N(B)} follows. If supposing

A1,A2 6∈ NC(B) we can choose A1 ∈ A1 ∩ BX with clN(A1) 6∈
⋃
{ρ : ρ ∈ N(B)}

and A2 ∈ A2 ∩ BX with clN(A2) 6∈
⋃
{ρ : ρ ∈ N(B)}. Consequently, A1 ∪ A2 ∈

(A1 ∨ A2) ∩ BX follows, since BX is bornology. By hypothesis clN(A1 ∪ A2) ∈ A
for some A ∈ N(B), hence {clN(A1 ∪ A2)} ∈ N(B) is valid. But {clN(A1)} ∨
{clN(A2)} = {clN(A1 ∪ A2)} is holding, and consequently {clN(A1)} ∈ N(B) or
{clN(A2)} ∈ N(B) follows by applying (esd7) which contradicts.

to (con): Without restriction let B ∈ BX\{∅}. We have to verify
⋃
{A : A ∈ NC(B)} ∈

NC(B), which means that {clN(F ) : F ∈
⋃
{A : A ∈ NC(B)} ∩ BX} ⊂

⋃
{ρ :

ρ ∈ N(B)}. Now, let clN(F ) be given for F ∈
⋃
{A : A ∈ NC(B)} ∩ BX

hence F ∈ A for some A ∈ NC(B). By hypothesis there exists ρ ∈ N(B) with
clN(F ) ∈ ρ′, and clN(F ) ∈

⋃
{ρ : ρ ∈ N(B)} results. Now, let (Y,BY ,M) be a

conic esd-space and f : (X,BX , N) −→ (Y,BY ,M) be a bibsd-map, we have to
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show f : (X,BX , NC) −→ (Y,BY ,M) is bibsd-map, too. Since by hypothesis f
is bi-bounded, we will now verify the validity of axiom (sd) in definition 1.1.

to (sd): Without restriction let B ∈ BX\{∅} and A ∈ NC(B), hence by definition
{clN(A) : A ∈ A ∩ BX} ⊂

⋃
{ρ : ρ ∈ N(B)} is valid. It suffices to show

fA ∩ BY ∈ M(f [B]). Therefore its being enough to verify the validity of the
inclusion fA ∩ BY ⊂

⋃
{M : M ∈ M(f [B])}. D ∈ fA ∩ BY implies D = f [A]

for some A ∈ A. Then A ⊂ f−1[f [A]] = f−1[D] ∈ BX , and A ∈ BX fol-
lows. Hence clN(A) ∈ ρ for some ρ ∈ N(B) by hypothesis. Consequently,
fρ ∈ M(f [B]) follows with f [clN(A)] ∈ fρ. Since clM(f [A]) ⊃ f [clN(A)] we
get {clM(f [A])} ∈ M(f [B]), and {D} = {f [A]} ∈ M(f [B]) results, according to
(esd6). But then fA ∩ BY ∈ M(f [A]) is valid, since by hypothesis (Y,BY ,M) is
conic, and at last fA ∈M(f [B]) can be deduced by applying (esd9).

Theorem 2.17 The category COV-ESD is bicoreflective in CON-ESD.

Proof: For a conic esd-space (X,BX , N) we set: NCV (∅) : ={∅} and NCV (B) : ={ρ ⊂ PX :

B ∈ sec{clN(F ) : F ∈ ρ ∩ BX}}, otherwise. Then (X,BX , NCV ) is a covered esd-space,
and 1X : (X,BX , NCV ) −→ (X,BX , N) is bibsd-map. It is straight forward to verify that
(X,BX , NCV ) is a covered esd-space. In showing that 1X is bibsd-map let ρ ∈ NCV (B)

and without restriction B ∈ BX\{∅}. Consequently, B ∈ sec{clN(F ) : F ∈ ρ ∩ BX} holds
by definition of NCV . Now, we will verify that ρ ∩ BX is a subset of

⋃
{A : A ∈ N(B)}.

F ∈ ρ ∩ BX implies the existence of an element x ∈ B with x ∈ clN(F ). Hence {F} ∈
N({x}) ⊂ N(B) follows, showing that F ∈

⋃
{A : A ∈ N(B)} is valid. Now, let (Y,BY ,M)

be a covered esd-space and f : (Y,BY ,M) −→ (X,BX , N) be a bibsd-map, we have to show
f : (Y,BY ,M) −→ (X,BX , NCV ) is bibsd-map, too. Since by hypothesis f is bi-bounded we
will verify the validity of axiom (sd) in definition 1.1. Without restriction let B ∈ BY \{∅}
and ρ ∈ M(B), hence B ∈ sec{clM(F ) : F ∈ ρ ∩ BY }. For A ∈ fρ ∩ BX we have A = f [F ]

for some F ∈ ρ with f−1[A] ∈ BY , since f is bi-bounded. Consequently, F ∈ BY is valid,
and we can choose y ∈ clM(F ) for some y ∈ B by hypothesis. But f also satisfies (sd) in
definition 1.1, hence f(y) ∈ clN(A) ∩ f [B] results, concluding the proof.

3 Topological extensions and related esd-spaces

We will now consider the problem for finding a one-to-one correspondence between certain
topological extensions and their related esd-spaces. This question arises from a problem
formulated by LODATO in 1966 as follows:
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He asked for an axiomatization of the following binary nearness relation on the power set of
a set X: there exists an embedding of X into a topological space Y such that subsets A and
B are near in X iff their closures meet in Y .

Now, we will generalize and solve this problem for esd-spaces, involving also LODATO’s
result as a special case. At first, we define the category BTEXT of so-called bornotopological
extensions – shortly btop-extensions – and related morphisms (see also [19]).

Definition 3.1 Objects of BTEXT are triples E : =(e,BX , Y ), where X : =(X, tX),
Y : =(Y, tY ) are topological spaces (given by closure operators tX respectively tY ) with bornol-
ogy BX , so that iff B ∈ BX then tX(B) ∈ BX also holds.

e : X −→ Y is a function satisfying the following conditions:

(btx1) B ∈ BX implies tX(B) = e−1[ty(e[B])], where e−1 denotes the inverse image under e;

(btx1) tY (e[X]) = Y , which means that the image of X under e is dense in Y .

Morphisms in BTEXT have the form (f, g) : (e,BX , Y ) −→ (e′,BX′ , Y ′), where f : X −→
X ′ g : Y −→ Y ′ are continuous maps such that f is bi-bounded, and the following diagram
commutes

X
e //

f
��

Y

g
��

X ′
e′ // Y ′

.

If (f, g) : (e,BX , Y ) −→ (e′,BX′ , Y ′) and (f ′, g′) : (e′,BX′ , Y ′) −→ (e′′,BX′′ , Y ′′) are
BTEXT-morphisms, then they can be composed according to the rule (f ′, g′) ◦ (f, g) : =

(f ′ ◦ f, g′ ◦ g) : (e,BX , Y ) −→ (e′′,BX′′ , Y ′′), where “◦” denotes the composition of maps.

Remark 3.2 Observe, that axiom (btx1) in this definition is automatically satisfied if e :

X −→ Y is a topological embedding. Moreover, we admit an ordinary bornology BX , which
need not be necessary coincide with the power set PX.

Definition 3.3 We call such an extension E : =(e,BX , Y )

(i) strict iff E satisfies the condition

(st) {tY (e[A]) : A ⊂ X} forms a base for the closed subsets of Y [1];

(ii) symmetric iff E satisfies the condition

(sy) x ∈ X and y ∈ tY ({e(x)}) imply e(x) ∈ tY ({y}) [3].

Example 3.4 For a symmetric bornotopological extension E : =(e,BX , Y ) we consider the
triple (X,BX , N e), where N e is defined by setting:
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N e(∅) : ={∅} and
N e(B) : ={ρ ⊂ PX : tY (e[B]) ∈ sec{tY (e[F ]) : F ∈ ρ ∩ BX}}, otherwise.

Then (X,BX , N e) is a proximal esd-space such that for each B ∈ BX clNe(B) = tX(B).

Proof: Firstly, we will verify the above cited equality. Without restriction let B ∈ BX\{∅}.

to “⊂”: x ∈ clNe(B) implies {B} ∈ N e({x}), hence tY ({e(x)}) ∩ tY (e[B]) 6= ∅. Then we
can choose y ∈ tY (e[B]) with y ∈ tY ({e(x)}). Since by hypothesis E is symmetric,
we get e(x) ∈ tY ({y}). But then e(x) ∈ tY (e[B]) is valid, because t is topological.
Consequently, x ∈ tX(B) follows by applying (btx1) in definition 3.1.

to “⊃”: x ∈ tX(B) implies e(x) ∈ tY (e[B]) according to (btx1), hence {B} ∈ N e({x})
follows, resulting into x ∈ clNe(B). Further, we only will verify the validity of the
axioms (esd6) and (esd7), respectively. Then the remaining statements are clear.

to (esd6): {clNe(F ) : F ∈ ρ} ∈ N e(B), B ∈ BX\{∅}, ρ ⊂ PX imply tY (e[B]) ∈ sec{tY (e[A]) :

A ∈ {clNe(F ) : F ∈ ρ} ∩ BX}. Then F ′ ∈ ρ ∩ BX implies clNe(F ′) ∈ {clNe(F ) :

F ∈ ρ} ∩ BX , because clNe(F ′) = tX(F ′) ∈ BX by definition 3.1. By hypothesis
tY (e[B]) ∩ tY (e[tX(F ′)]) 6= ∅ follows. But e[tX(F ′)] ⊂ tY (e[F ′]) holds by apply-
ing (btx1), and tY (e[tX(F ′)]) ⊂ tY (e[F ′]) can be deduced, since tY is topological,
resulting into ρ ∈ N e(B).

to (esd7): Let ρ1∨ρ2 ∈ N e(B) and without restriction ρ1 6= ∅ 6= ρ2, B 6= ∅. By definition we
get tY (e[B]) ∈ sec{tY (e[F ]) : F ∈ (ρ1 ∨ ρ2) ∩ BX}. If supposing ρ1, ρ2 6∈ N e(B).
Then we can choose F1 ∈ ρ1∩BX with tY (e[B])∩ tY (e[F1]) = ∅ and F2 ∈ ρ2∩BX

with tY (e[B]) ∩ tY (e[F2]) = ∅. Hence F1 ∪ F2 ∈ (ρ1 ∨ ρ2) ∩ BX , since BX is
bornology. Consequently, tY (e[B])∩tY (e[F1∪F2]) 6= ∅ results. On the other hand
we have ∅ = tY (e[B]) ∩ (tY (e[F1]) ∪ tY (e[F2])) = tY (e[B]) ∩ tY (e[F1] ∪ e[F2]) =

tY (e[B]) ∩ tY (e[F1 ∪ F2]), which contradicts.

Definition 3.5 For a proximal esd-space (X,BX , N) and for B ∈ BXσ ⊂ PX is called
B-bunch in N iff σ satisfies the following conditions:

(bun1) ∅ 6∈ σ;

(bun2) F1 ∪ F2 ∈ σ iff F1 ∈ σ or F2 ∈ σ;

(bun3) B ∈ σ ∈ N(B);

(bun4) A ∈ σ and A ⊂ clN(F ) : F ∈ BX imply F ∈ σ;

(bun5) A ∈ σ ∩ BX implies {A} ∈
⋂
{N(F ) : F ∈ σ ∩ BX}.
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Proposition 3.6 For a proximal esd-space (X,BX , N) and for B ∈ BX\{∅} with x ∈ B
xN : ={A ⊂ X : x ∈ clN(A)} is a B-bunch in N . Moreover, xN is maximal element in
N({x}) \ {∅}, ordered by inclusion.

Proof: Evidently, xN is satisfying (bun1) and (bun2). B ∈ xN , since {B} << {{x}} ∈
N({x}) ⊂ N(B) and (esd6) are holding.

to (bun4): A ∈ xN and A ⊂ clN(F ), F ∈ BX imply x ∈ clN(A), hence x ∈ clN(F ) follows,
showing that F ∈ xN is valid.

to (bun5): A ∈ xN ∩ BX and F ∈ xN ∩ BX imply {A} ∈ N({x}) ⊂ N(clN(F )) = N(F ),
according to proposition 2.10.

Now, let σ ∈ N({x}) \ {∅} with xN ⊂ σ. For F ∈ σ we have {F} ∈ N({x}), and x ∈ clN(F )

follows, showing that σ = xN holds.

Definition 3.7 A proximal esd-space (X,BX , N) is called a bunch space iff N satisfies
the condition

(bun) B ∈ BX\{∅} and ρ ∈ N(B) imply ∀F ∈ ρ ∩ BX∃ B-bunch σ in N with F ∈ σ.

Proposition 3.8 The esd-space (X,BX , N e) is a bunch space.

Proof: For B ∈ BX\{∅}, ρ ∈ N e(B) let F ∈ ρ∩BX , hence by definition tY (e[B])∩tY (e[F ]) 6=
∅ holds, so that we can choose yF ∈ tY (e[B])∩tY (e[F ]). Now, we put t(yF ) : ={A ⊂ X : yF ∈
tY (e[A])}, hence F ∈ t(yF )·t(yF ) is a B-bunch in N e, since ∅ 6∈ t(yF ), and for A1∪A2 ∈ t(yF )

we have yF ∈ tY (A1∪A2) = tY (A1)∪ tY (A2), showing that A1 ∈ t(yF ) or A2 ∈ t(yF ) is valid.
If A1 ∈ t(yF ) and A1 ⊂ A2 ⊂ X, then yF ∈ ty(e[A1]) is valid with tY (e[A1]) ⊂ tY (e[A2]),
and consequently yF ∈ tY (e[A2]) follows, resulting into A2 ∈ t(yF ). By definition B ∈ t(yF )

holds, and t(yF ) ∈ N e(B), because for A ∈ t(yF ) ∩ BX we have yF ∈ tY (e[A]) ∩ tY (e[B]).
Now, let A ∈ t(yF ) and A ⊂ clNe(F ), F ∈ BX , hence yF ∈ ty(e[A]) ⊂ tY (e[clNe(F )]) =

tY (e[tX(F )]) ⊂ tY (e[F ]) follows by applying (btx1). Consequently, F ∈ t(yF ) results. At
last let A ∈ t(yF ) ∩ BX and F ∈ t(yF ) ∩ BX , then {A} ∈ N e(F ) follows, because yF ∈
tY (e[A]) ∩ tY (e[F ]) is valid. The above arguments are showing that (X,BX , N e) is bunch
space.

Convention 3.9 By SYBTEXT we denote the full subcategory of BTEXT , whose ob-
jects are the symmetric btop-extensions and by BUN the full subcategory of PX-ESD
whose objects are the bunch spaces.

Theorem 3.10 Let H : SYBTEXT −→ BUN be defined by

(a) for a SYBTEXT-object E : =(e,BX , Y ) we put H(E) : =(X,BX , N e);
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(b) for a BTEXT-morphism (f, g) : E −→ E ′ we put H(f, g) : = f .

Then H : SYBTEXT −→ BUN is a functor.

Proof: We already know that the image of H lies in BUN . Now, let (f, g) : (e,BX , Y ) −→
(e′,BX′ , Y ′) be a BTEXT -morphism: it has to be shown that f is bibsd-map.

By hypothesis f is bi-bounded. Without restriction let B ∈ BX\{∅} and ρ ∈ N e(B), we
have to verify that fρ ∈ N e′(f [B]). For showing this statement let A ∈ fρ ∩ BX′ , then we
claim tY ′(e

′[f [B]])∩ tY ′(e′[A]) 6= ∅, which would prove our assertion. We have A ∈ BX′ with
A = f [F ] for some F ∈ ρ. By hypothesis we get tY (e[B])∩ tY (e[F ]) 6= ∅. Note, that F is also
an element of BX , since F ⊂ f−1[f [F ]] = f−1[A] ∈ BX is valid, and f is bi-bounded. Now, we
can choose an element y ∈ tY (e[B])∩tY (e[F ]). Consequently, g(y) ∈ g[tY (e[B])]∩g[tY (e[F ])]

follows.

But the proposed diagram (see 3.1) commutes so that tY ′(g[e[B]]) = tY ′(e
′[f [B]]) and

tY ′(e
′[A]) = tY ′(g[e[F ]] = tY ′(e

′[f [F ]]) are valid, which put an end of this. Evidently, H
fulfills the remaining properties for being a functor.

4 Strict bornotopological extensions

In the previous section we have found a functor H from SYBTEXT to BUN . Now, we
are going to introduce a related one in the opposite direction.

Lemma 4.1 Let (X,BX , N) be a proximal esd-space. We set: Xb : ={σ ⊂ PX : σ is
B-bunch in N for some B ∈ BX\{∅}}, and for each Ab ⊂ Xb we put: tXb(Ab) : ={σ ∈
Xb : 4Ab ⊂ σ}, where 4Ab : ={F ∈ BX : ∀σ ∈ AbF ∈ σ}. (By convention 4Ab = BX if
Ab = ∅). Then tXb : PXb −→ PXb is a topological closure operator.

Proof: Firstly, we note that tXb(∅) = ∅, since ∅ 6∈ σ for each σ ∈ Xb. Now, let Ab be
a subset of Xb and consider σ ∈ Ab. Then F ∈ 4Ab implies F ∈ σ, hence Ab ⊂ tXb(Ab)

is valid. IfAb
1 ⊂ Ab2, then 4Ab2 ⊂ 4b

1 implying tXb(Ab1) ⊂ tXb(Ab2). For arbitrary subsets
Ab1, A

b
2 ⊂ Xb we consider an element σ ∈ Xb such that σ 6∈ tXb(Ab1) ∪ tXb(Ab2). Then we get

4Ab1 6⊂ σ and 4Ab2 6⊂ σ. We can choose F1 ∈ 4Ab1 with F1 6∈ σ and F2 ∈ 4Ab2 with F2 6∈ σ.
By (bun2) we get F1 ∪ F2 6∈ σ. On the other hand F1 ∪ F2 ∈ BX , since BX is bornology,
and F1 ∪ F2 ∈ 4Ab1 ∩ 4Ab2 ⊂ 4(Ab1 ∪ Ab2) imply σ 6∈ tXb(Ab1 ∪ Ab2). At last, let σ be an
element of tXb(tXb(Ab)), Ab ⊂ Xb, and suppose σ 6∈ tXb(Ab). We can choose F ∈ 4Ab, with
F 6∈ σ. By assumption we have 4tXb(Ab) ⊂ σ, hence F 6∈ 4tXb(Ab). Consequently, there
exists σ1 ∈ tXb(Ab) with F 6∈ σ1. But this implies 4Ab ⊂ σ1, and F ∈ σ1 results, which
contradicts.
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Theorem 4.2 For proximal esd-spaces (X,BX , N), (Y,BY ,M) let f : X −→ Y be a
bibsd-map. Define a function f b : Xb −→ Y b by setting for each σ ∈ Xb : f b(σ) : ={D ⊂ Y :

f−1[clM(D)] ∈ σ}. Then the following statements are valid:

(1) f b is a continuous map from (Xb, tXb) to (Y b, tY b);

(2) the composites f b ◦ eX and eY ◦ f coincide, where eX : X −→ Xb denotes that function
which assigns the {x}-bunch xN to each x ∈ X.

Proof: First, let σ be a B-bunch in N . We will show that f b(σ) is a f [B]-bunch in M .
It is easy to verify that f b(σ) satisfies the conditions (bun1) and (bun2), respectively (see
3.4). In order to establish (bun3) we observe that B ∈ σ ∈ N(B) is valid by hypothesis.
Since clM(f [B]) ⊃ f [B] we have f−1[clM(f [B])] ⊃ f−1[f [B]] ⊃ B. Then f [B] ∈ f b(σ)

results by applying (bun1). In showing f b(σ) ∈ M(f [B]), we will verify that {clM(D) :

D ∈ f b(σ)} << fσ (note, that f is satisfying (sd) in definition 1.1). For any D ∈ f b(σ)

we have f−1[clM(D)] ∈ σ, hence clM(D) ⊃ f [f−1[clM(D)]] ∈ fσ. By applying (esd6) we
obtain the desired result. Now, let D ∈ f b(σ) and D ⊂ clM(F ), F ∈ BY . We have to show
that f−1[clM(F )] ∈ σ. By hypothesis f−1[clM(D)] ∈ σ is valid. f−1[clM(F )] ∈ BX holds by
applying (esd8) and since f is bi-bounded. Consequently, f−1[clM(D)] ⊂ clN(f−1[clM(D)]) ⊂
clN(f−1[clM(F )]) follows, leading us to the desired result by applying (bun4) for σ. At
last let D ∈ f b(σ) ∩ BY . For F ∈ f b(σ) ∩ BY we have to show that {D} ∈ M(F ) is
valid. Since M is proximal, therefore it suffices to prove {F} ∈ M(D). By hypothesis
f−1[clM(D)] ∈ σ∩BX , note that f is bi-bounded. On the other hand if F ∈ f b(σ)∩BY we also
have f−1[clM(F )] ∈ σ∩BX . But σ satisfies (bun5), hence {f−1[clM(F )]} ∈ N(f−1[clM(D)]) is
valid. Consequently, {clM(F )} ∈ M(clM(D)) follows, since f satisfies (sd) and by applying
(esd5). But then {F} ∈ M(D) results according to (esd6) and proposition 2.10. Taking
all these facts into account we conclude that f b(σ) defines a f [B]-bunch in M , and thus
f b(σ) ∈ Y b is valid.

to (1): Let Ab ⊂ Xb, σ ∈ tXb(Ab) and suppose f(σ) 6∈ tY b(f b[Ab]). Then 4f b[Ab] 6⊂ f b(σ),
hence D 6∈ f b(σ) for some D ∈ 4f b[Ab], which means f−1[clM(D)] 6∈ σ. But
4Ab ⊂ σ implies f−1[clM(D)] 6∈ σ1 for some σ1 ∈ Ab. Consequently, D 6∈ f b(σ1)

results, which contradicts, because D ∈ 4f b[Ab] is valid.

to (2): Now, let x be an element ofX. We will prove the validity of the equation f b(eX(x)) =

eY (f(x)). To this end let D ∈ eY (f(x)). Then f(x) ∈ clM(D) follows, and x ∈
f−1[clM(D)] is valid. Consequently, f−1[clM(D)] ∈ xN = eX(x) holds, and D ∈
f b(eX(x)) results, proving the inclusion eY (f(x)) ⊂ f b(eX(x)). Conversely, we note
that {clM(D) : D ∈ f b(eX(x))} << feX(x) ∈ M({f(x)}), since by supposition f

satisfies (sd). But eY (f(x)) is maximal in M({f(x)}) \ {∅}, and thus we obtain the
desired result.
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Theorem 4.3 We obtain a functor G : BUN to SYBTEXT by setting:

(a) G(X,BX , N) : =(eX ,BX , Xb) for any bunch space (X,BX , N) with X : =(X, clN) and
Xb : =(Xb, tXb);

(b) G(f) : =(f, f b) for any bibsd-map f : (X,BX , N) −→ (Y,BY ,M).

Proof: With respect to (esd6), clN is topological closure operator, and by Lemma 4.1 this
also holds for tXb . Therefore we get topological spaces with bornology BX , and eX : X −→
Xb is a map according to theorem 4.2. Moreover, eX is a function satisfying (btx1) and
(btx2), respectively.

To establish (btx1) let B ∈ BX and suppose x ∈ clN(B). Then we get 4eX [B] ⊂ xN , hence
eX(x) ∈ tXb(eX [B]), which means x ∈ e−1

X [tXb(eX [B]). Conversely, let x be an element of
e−1
X [tXb(eX [B])]. Then by definition we have 4eX [B] ⊂ xN . Since B ∈ 4eX [B] we get
x ∈ clN(B). To establish (btx2) let σ ∈ Xb and suppose σ 6∈ tXb(eX [X]). By definition we
get 4eX [X] 6⊂ σ, so that there exists a set F ∈ 4eX [X] with F 6∈ σ. But then X ⊂ clN(F )

follows. Since B ∈ σ for some B ∈ BX\{∅} we get B ⊂ clN(F ), hence F ∈ σ, because σ
is satisfying (bun4). But this contradicts, and σ ∈ tXb(eX [X]) is valid. Moreover, we have
that f and f b are continuous maps (see also theorem 4.2), and the diagram

X
eX //

f
��

Xb

fb

��
Y

eY // Y b

commutes.

Finally, this establishes that the composition of bibsd-maps is preserved by G. In showing
(eX ,BX , Xb) is symmetric, let x be an element of X such that σ ∈ tXb({eX(x)}). We have to
prove xN ∈ tXb({σ}). By hypothesis we have xN ∩ B ⊂ σ and must show that 4{σ} ⊂ xN .
To this end let F ∈ 4{σ}, hence F ∈ σ∩BX follows. We already know that {x} ∈ σ is valid,
and consequently {F} ∈ N({x}) follows by applying (bun5). But this implies x ∈ clN(F ),
and F ∈ xN results. At last we will show that the image of G also is contained in ST-
SYBTEXT the full subcategory of SYBTEXT , whose objects are the strict symmetric
bornotopological extensions.

Corollary 4.4 The image of G is contained in ST-SYBTEXT.

Proof: Consider σ 6∈ Xb and let Ab be closed in Xb with σ 6∈ Ab. Then σ 6∈ tXb(Ab), hence
4Ab 6⊂ σ. We can find some F ∈ 4Ab such that F 6∈ σ. Now, for each σ1 ∈ Ab we have
F ∈ σ1, which implies4eX [F ] ⊂ σ1, becauseD ∈ 4eX [F ] implies F ⊂ clN(D) withD ∈ BX ,
and σ1 satisfies (bun4). Therefore we conclude σ1 ∈ tXb(eX [F ]), and Ab ⊂ tXb(eX [F ])
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results. On the other hand, since F 6∈ σ we have 4eX [F ] 6⊂ σ, hence σ 6∈ tXb(eX [F ]), and
tXb(eX [F ]) ⊂ Ab results, which put an end of this.

Theorem 4.5 Let H : SYBTEXT −→ BUN and G : BUN −→ SYBTEXT be the
above defined functors. For each object (X,BX , N) of BUN let t(BX ,N) denote the identity
map idX : H(G(X,BX , N)) −→ (X,BX , N). Then t : H◦G −→ 1BUN is natural equivalence
from H◦G to the identity functor 1BUN, i.e. idX : H(G(X,BX , N)) −→ (X,BX , N) is bibsd-
map in both directions for each object (X,BX , N), and the following diagram commutes for
each bibsd-map f : (X,BX , N) −→ (Y,BY ,M):

H(G(X,BX , N))
idX //

H(G(f))
��

(X,BX , N)

f
��

H(G(Y,BY ,M))
idY // (Y,BY ,M)

Proof: The commutativity of the diagram is obvious, because of H(G(f)) = f . It remains
to prove that idX : H(G(X,BX , N)) −→ (X,BX , N) is bibsd-map in both directions. Since
H(G(X,BX , N)) = (X,BX , N eX ) by definition of G respectively H, it suffices to show that
for each B ∈ BX\{∅} we have N eX (B) ⊂ N(B) ⊂ N eX (B). To this end assume ρ ∈
N eX (B), B 6= ∅. Then tXb(eX [B]) ∈ sec{tXb(F ) : F ∈ ρ ∩ BX}. Now, we will show that
ρ ∩ BX is subset of

⋃
{A : A ∈ N(B)}. Note, that (X,BX , N) is conic by assumption.

F ∈ ρ ∩ BX implies the existence of σ ∈ tXb(B) ∩ tXb(F ), hence 4eX [B],4eX [F ] ⊂ σ are
valid. Consequently, B,F ∈ σ∩BX result, and {F} ∈ N(B) follows, since σ satisfies (bun5).
Consequently, F ∈

⋃
{A : A ∈ N(B)} is valid, showing that ρ ∩ BX ∈ N(B). But then

ρ ∈ N(B) follows by applying (esd9). Conversely, let B ∈ BX\{∅} and ρ ∈ N(B). We
have to verify tXb(eX [B]) ∈ sec{tXb(F ) : F ∈ ρ ∩ BX} · F ∈ ρ ∩ BX implies the existence
of a B-bunch σ in N with F ∈ σ, according to (bun). Now, we claim that the following
statements are valid, i.e.

(a) σ ∈ tXb(eX [B]);

(b) σ ∈ tXb(eX [F ]).

to (a): We have to check that the inclusion 4eX [B] ⊂ σ is valid. A ∈ 4eX [B] implies
B ⊂ clN(A). Since B ∈ σ we get clN(A) ∈ σ, and A ∈ σ results, according to
(bun4). Note, that A ∈ BX by definition.

to (b): We must show that the inclusion 4eX [F ] ⊂ σ is valid. But by hypothesis we know
that F ∈ σ holds, hence this proving is as above.
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Corollary 4.6 For a btop-T1 extension E : =(e,BX , Y ), where e is topological embedding
and Y T1-space, then (X,BX , N e) is separated by satisfying

(sep) x, z ∈ X and {{z}} ∈ N e({x}) imply x = z.

Proof: For x, z ∈ X with {{z}} ∈ N e({x}) there exists y ∈ tY ({e(x)}) ∩ tY ({e(z)}). By
hypothesis e(x) = y = e(z) follows, and x = z results, because e is injective.

Corollary 4.7 For a separated proximal esd-space (X,BX , N) the function eX : X −→
Xb is injective.

Proof: For x, z ∈ X let eX(x) = eX(z), hence z ∈ clN({x}), and {{x}} ∈ N({z}) follows.
By hypothesis x = z results.

Remark 4.8 In making the main theorem of this paper more transparent we state that
a proximal esd-space (X,BX , N) is a bunch space iff it can be considered as subspace of a
topological space Y , such that the B-collections in N for non-empty bounded sets B are
characterized by the fact that their closures of bounded members in Y meet the closure
of B in Y . In case if BX is saturated, then proximal esd-spaces essentially coincide with
LODATO proximity spaces up to isomorphism. Hence the main theorem generalizes the one
of LODATO, presented by him in the past and where symmetric generalized proximities are
playing an important role, especially those arising from a family of bunches on a set X.
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René Bartsch

Vietoris hyperspaces as quotients of natural function
spaces

ABSTRACT. Hyperspaces form a powerful tool in some branches of mathematics: lots of
fractal and other geometric objects can be viewed as fixed points of some functions in suit-
able hyperspaces - as well as interesting classes of formal languages in theoretical computer
sciences, for example (to illustrate the wide scope of this concept). Moreover, there are
many connections between hyperspaces and function spaces in topology. Thus results from
hyperspaces help to get new results in function spaces and vice versa.

We give here a new description of the Vietoris hyperspace on the family K(Y ) of the
nonempty compact subsets of a regular topological space Y as quotient of the space C(βD, Y ),
endowed with compact-open topology τco, where βD is the Stone-Čech-compactification of
a discrete space.

1 Preliminary Definitions and Results

For a given set X we denote by P(X) the power set of X, by P0(X) the power set without
the empty set. By F(X) (resp. F0(X)) we mean the set of all filters (resp. ultrafilters) on
X; if ϕ is a filter on X, the term F0(ϕ) denotes the set of all ultrafilters on X, which contain
ϕ. For x ∈ X we denote by •x := {A ⊆ X| x ∈ A} the singleton filter on X, generated by
{x}. With S(X) := {•x| x ∈ X} we mean the family of all singleton filters on X.

For families A ⊆ P(X) and any M ⊆ X we set

M−A := {A ∈ A| A ∩M 6= ∅}

and
M+A := {A ∈ A| A ∩M = ∅} .

Then for a topological space (X, τ) on A ⊆ P0(X) the lower Vietoris topology τl,A is defined
by the subbase {O−A | O ∈ τ}, whereas the upper Vietoris topology τu,A on A comes from the
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subbase {(X \O)+A | O ∈ τ}. The Vietoris topology on A is τV,A := τl,A ∨ τu,A. In most cases
A is chosen as the family Cl(X) of the nonempty closed, or K(X) of the nonempty compact
subsets of a topological space (X, τ), or as the entire P0(X).
The Vietoris topology on A is also generated by the standard basis consisting of all sets

〈U1, ..., Un〉A :=

{
A ∈ A

∣∣∣∣∣ A ⊆
n⋃
i=1

Ui ∧ ∀i = 1, ..., n : A ∩ Ui 6= ∅

}

with open U1, ..., Un.
Whenever there is no doubt about A, we will omit it as sub- and superscript.

We will need some basic facts about the Stone-Čech-compactification of discrete spaces.

A discrete space (D, δ) clearly is T4 and Hausdorff, so its Stone-Čech-compactification is
homeomorphic to its Wallman extension, consisting in this case just of the set F0(D), where
the singleton filters are identified with their generating points via w : D → F0(D) : w(x) :=

•
x,

endowed with the topology generated from the base consisting of all sets F0(M), withM ⊆ D

(see [4], p. 176 ff).

Proposition 1.1 Let (D, δ) be a discrete topological space. Then for its Stone-Čech-
compactification (βD, δβ) hold

(a) For all M ⊆ D in B the closure M is clopen.

(b) δβ has a base consisting of clopen sets.

(c) All clopen sets C in (βD, δβ) are of the form C = C ∩D.

Proof: We use the homeomorphy of (βD, δβ) to the Wallman extension.

(a) + (b) We have w(M) = F0(M): from F0(M) = F0(D) \ F0(D \M) we conclude, that
F0(M) is closed and of course it contains w(M). So, w(M) ⊆ F0(M) follows. If there would
be a filter ϕ ∈ F0(M) which belongs not to w(M), then there would exist a base set F0(S),
S ⊆ D, of δβ s.t. ϕ ∈ F0(S) and F0(S) ∩ w(M) = ∅. But this implies M ∩ S = ∅, and
thus F0(S) ∩ F0(M) = ∅ - in contradiction to ϕ ∈ F0(S) ∩ F0(M). So, we have indeed
w(M) = F0(M), which is also open, because it belongs to our defining base of δβ.

(c) Let C ⊆ βD be clopen. Then for all c ∈ C there exists a basic open set F0(Mc) with
Mc ⊆ D, s.t. c ∈ F0(Mc) ⊆ C, because C is open. From closedness of C automatically
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follows compactness, because βD is compact, thus there are finitely many Mc1 , ...,Mcn with
C =

⋃n
i=1 F0(Mci). Now, for such finite union we have generally

⋃n
i=1 F0(Mci) = F0(

⋃n
i=1 Mci)

and it is clear, that w(
⋃n
i=1 Mci) = C ∩ w(D) holds.

For a topological space (Y, σ) - especially, if it is not T0 - we define an equivalence relation
on Y by

x ∼ y :⇔ (∀O ∈ σ : x ∈ O ↔ y ∈ O) .

Then the quotient space (Y/∼, σ∼) is obviously T0; we call it the T -zerofication of (Y, σ).
Let ν : Y → Y/∼ : ν(y) := [y]∼ be the canonical surjection. Because ν is continuous, the
space (Y/∼, σ∼) is compact, whenever (Y, σ) is.

Proposition 1.2 Let (X, τ) be a Tychonoff space, (Y, σ) a compact T3-space and f :

X → Y a continuous function. Then there exists a continuous extension F : βX → Y with
F|X = f .

Proof: The T -zerofication (Y/∼, σ∼) of (Y, σ) is also T3 (see [3], p. 191), and of course T0,
so it is T2. Because it is also compact, from the theorem of Stone-Čech we get a continuous
extension G : βX → (Y/∼, σ∼) of ν ◦f : X → Y/∼, where ν is the canonical surjection from
Y to Y/∼. Now, let α : Y/∼ → Y be a choice function, i.e. ∀[y]∼ ∈ Y∼ : α([y]∼) ∈ [y]∼.

Then

F : βX → Y : F (x) :=

{
f(x) ; x ∈ X

α ◦G(x) ; x ∈ βX \X

is continuous by [3], prop. 4.1.4(4), and is obviously an extension of f .

Proposition 1.3 Let (Y, σ) be a topological T3-space, K ⊆ Y compact and O ⊆ Y open
with K ⊆ O. Then an open set U exists with K ⊆ U ⊆ U ⊆ O. Especially, K ⊆ O holds.

Proof: K ⊆ O just means K ∩ (Y \ O) = ∅ and (Y \ O) is closed. Thus, by T3, for every
element k ∈ K there are Uk, Vk ∈ σ s.t. k ∈ Uk, Y \ O ⊆ Vk and Uk ∩ Vk = ∅. The Uk’s
cover K, so by compactness a finite subcover Uk1 , ..., Ukn exists. Let U :=

⋃n
i=1 Uki and

V :=
⋂n
i=1 VKi , so U, V are open, U ∩ V = ∅, K ⊆ U and Y \O ⊆ V hold, i.e.

K ⊆ U ⊆ Y \ V ⊆ O .

Now, Y \ V is closed, so we get

K ⊆ U ⊆ Y \ V = Y \ V ⊆ O .
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2 Vietoris Hyperstructure as final w.r.t. Function Spaces

Remember a wide class of function space structures, defined for Y X or C(X, Y ): the so called
set–open topologies, examined in [1], [5]. According to [5], we use the following convention:
Let X and Y be sets and A ⊆ X, B ⊆ Y ; then let be (A,B) := {f ∈ Y X | f(A) ⊆ B}. Now
let X be a set, (Y, σ) a topological space and A ⊆ P0(X). Then the topology τA on Y X

(resp. C(X, Y )), which is defined by the open subbase {(A,W )| A ∈ A,W ∈ σ} is called
the set–open topology, generated by A, or shortly the A–open topology.

We know

Lemma 2.1 [cf. [2], lemma 3.4] Let (X, τ), (Y, σ) be topological spaces, let A ⊆ P0(X)

contain the singletons and H ⊆ Y X be endowed with τA. Then the map

µX : H → P0(Y )A : f → µX(f) : ∀A ∈ A : µX(f)(A) := f(A),

is open, continuous and bijective onto its image, for P0(Y ) is equipped with Vietoris topology
σV , and P0(Y )A with the generated pointwise topology.

Now, the pointwise topology on P0(Y )A is just the product topology on
∏

A∈A P0(Y )A (with
all P0(Y )A being copies of P0(Y )). By chosing H := C(X, Y ), A := K(X) and consequently
replacing P0(Y ) by K(Y ), we have the following situation:

C(X, Y )
µX // K(Y )K(X) ∼=

∏
A∈K(X) K(Y )A

πA

zz
(K(Y ), σV )

Of course, by πA we mean the canonical projection from the product to the factor K(Y )A =

K(Y ).

From lemma 2.1 we get the continuity of µX , if C(X, Y ) is equipped with compact-open
topology, thus in this case all compositions πA ◦ µX are continuous, too.

Moreover, µX is even a homeomorphism onto its image and the product structure is initial
w.r.t. the projections. So, the question arises, whether or not the Vietoris topology σV on
K(Y ) is final w.r.t. all πA ◦ µX .

Lemma 2.2 Let (X, τ), (Y, σ) be topological spaces and let σV be the Vietoris topology
on K(Y ). Then for every O ∈ σV and every A ∈ K(X) the set (πA ◦ µX)−1(O) ⊆ C(X, Y )

is open w.r.t. the compact-open topology.
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Proof: Let A ∈ K(X) be given and let F ∈ Cl(Y ) be a closed subset of Y . Then
(πA ◦ µX)−1(F+) = {f ∈ C(X, Y )| f(A) ⊆ Y \ F} = (A, Y \ F ) ∈ τco. Let now O ∈ σ be
given, then

(πA ◦ µX)−1(O−) = {f ∈ C(X, Y )| f(A) ∩O 6= ∅} =
⋃
a∈A({a}, O) ∈ τco.

So, because the F+ and O− form a subbase of σV , for O ∈ σV the preimage (πA ◦ µX)−1(O)

is an element of τco.

Corollary 2.3 Let (Y, σ) be a topological space. For every topological space let C(X, Y )

be equipped with compact-open topology.

Then the Vietoris topology σV on K(Y ) is contained in the final topology w.r.t. all πA◦µ(X,τ)
,

(X, τ) ∈ B, A ∈ K(X, τ), for every class B of topological spaces.

Theorem 2.4 Let (Y, σ) be a T3-space and let (K(Y ), σV ) be its Vietoris Hyperspace of
compact subsets. Let furthermore δ be the discrete topology on Y × Y and denote by (Z, ζ)

the Stone-Čech-compactification of (Y × Y, δ).

Then σV is the final topology on K(Y ) w.r.t. πZ ◦ µZ : C(Z, Y )→ K(Y ), where C(Z, Y ) is
endowed with compact-open topology τco.

Proof: From Lemma 2.2 we know that σV is contained in the final topology w.r.t. πZ ◦µZ ,
so we only have to show, that every open set of the final topology also belongs to σV . Let
O be an open set of the final topology, i.e. (πZ ◦ µZ)−1(O) ∈ τco, and let A ∈ O.

We want to show, that there exist finitely many open sets U1, ..., Um ∈ σ s.t.
A ∈ 〈U1, ..., Um〉K(Y ) ⊆ O.

At first, chose any surjection s from Y onto A ⊆ Y . Then extend it to a surjection
fA : Y × Y → A by fA(y1, y2) := s(y1), just meaning, that fA maps such pairs with
equal first component to the same image.

Now, endowing Y × Y with discrete topology, we get fA being continuous. So, if (Z, ζ)

denotes the Stone-Čech-compactification of the discrete Y × Y , there exists a continuous
extension FA : Z → A of fA, by proposition 1.2.

Because FA is an extension of fA, we have

∀(a, b), (c, d) ∈ Y × Y : a = c =⇒ FA(a, b) = FA(c, d) . (1)

Because O is open in the final topology, there are finitely many compact subsets K1, ..., Kn ∈
K(Z) and open subsets O1, ..., On ∈ σ s.t. FA ∈

⋂n
i=1(Ki, Oi) ⊆ (πX ◦ µX)−1(O).
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We will improve the sets Ki and Oi a little in an appropriate manner.

(a) For eachKi and every k ∈ Ki there is an open neighbourhood Uk of k, s.t. FA(Uk) ⊆ Oi,
because FA is continuous. Now, ζ has a base consisting of clopen sets B of the form
B = B ∩ (Y × Y ). So, there exist always such a clopen Bk ⊆ Uk with k ∈ Bk and
FA(Bk) ⊆ Oi. The family of all Bk, k ∈ Ki is an open cover of Ki and consequently
there is a finite subcover {Bk1 , ..., Bkl}, by compactness of Ki. Now let

K ′i :=
l⋃

j=1

Bkj

and observe, that K ′i as a finite union of clopen sets is clopen again, hence it is compact
and of the form K ′i = K ′i ∩ (Y × Y ). Furthermore we have Ki ⊆ K ′i and consequently

FA ∈ (K ′i, Oi) ⊆ (Ki, Oi) .

(b) We want to have our K’s saturated in the sense, that whenever (a, b) ∈ K ∩ (Y × Y )

holds, then {a} × Y ⊆ K also holds. So, let us define

Di :=
⋃

a∈Y,∃b∈Y :
(a,b)∈K′i∩(Y×Y )

{a} × Y

and then K ′′i := Di. From the continuity of FA follows

FA(K ′′i ) = FA(Di) ⊆ FA(Di) (2)

and from (1) we get
FA(Di) = FA (K ′i ∩ (Y × Y )) . (3)

Of course, FA (K ′i ∩ (Y × Y )) ⊆ FA(K ′i) and FA(K ′i) is compact and fulfills FA(K ′i) ⊆
Oi, so by proposition 1.3 we get from (Y, σ) being T3

FA(K ′′i ) ⊆ FA(Di) ⊆ FA(K ′i) ⊆ Oi . (4)

Note, that all K ′′i are compact and clopen again, by construction as a closure of a
subset of Y × Y in the Stone-Čech-compactification (Z, ζ) of the discrete Y × Y .
Clearly, K ′′i ⊇ K ′i holds, yielding (K ′′i , Oi) ⊆ (K ′i, Oi), thus

FA ∈
n⋂
i=1

(K ′′i , Oi) ⊆
n⋂
i=1

(K ′i, Oi) . (5)
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(c) To cover Z (resp. A) with our compact sets, we add K ′′0 := Z (resp. O0 := Y ) and
find of course

FA ∈
n⋂
i=1

(K ′′i , Oi) =
n⋂
i=0

(K ′′i , Oi) .

For each z ∈ Z define
I(z) := {i ∈ {0, ..., n} | z ∈ K ′′i }

and then

C(z) :=
⋂
i∈I(z)

K ′′i \

 ⋃
j∈{0,...,n}\I(z)

K ′′j

 (6)

as well as
V (z) :=

⋂
i∈I(z)

Oi . (7)

Obviously for every z ∈ Z we have

FA(C(z)) ⊆ FA

 ⋂
i∈I(z)

K ′′i

 ⊆ ⋂
i∈I(z)

Oi = V (z)

implying FA ∈ (C(z), V (z)).

The family of all C(z) covers Z, because every z ∈ Z is contained at least in it’s own
C(z). Observe, that different C(z1) and C(z2) are disjoint: if y ∈ C(z1)∩C(z2) exists,
then I(z1) = I(y) = I(z2) follows, implying C(z1) = C(z2) by (6).

Obviously, there are only finitely many different sets C(z), V (z), because they are
uniquely determined by I(z), which is a subset of {0, ..., n} and this set has just finitely
many subsets. So, for simplicity, let us denote them by C1, ..., Cm and V1, ..., Vm,
respectively.

It is clear, that the Cj’s are clopen (thus compact) and saturated in the sense of para-
graph (b), by construction (6) from just clopen saturated K ′′i ’s.

For G ∈
⋂m
j=1(Cj, Vj) =

⋂
z∈Z(C(z), V (z)) we find

∀i ∈ {0, ..., n} : ∀z ∈ K ′′i : i ∈ I(z)

=⇒ : G(z) ∈ V (z) ⊆ Oi

=⇒ : G(K ′′i ) ⊆ Oi .

Consequently, we have

FA ∈
m⋂
j=1

(Cj, Vj) ⊆
n⋂
i=0

(K ′′i , Oi) (8)
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(d) At last, let us chose for every j = 1, ...,m an open set Uj ∈ σ s.t. FA(Cj) ⊆ Uj ⊆
Uj ⊆ Vj holds, as provided by proposition 1.3. Of course, we have then automatically
FA ∈ (Cj, Uj) ⊆ (Cj, Vj).
So, because the Cj’s cover Z, the FA(Cj)’s cover A, and so the Uj’s do.

With these Uj, j = 1, ...,m, we show A ∈ 〈U1, ..., Uj〉K(Y ) ⊆ O.

A ∈ 〈U1, ..., Um〉K(Y ) is clear, because the Uj’s cover A, as seen in paragraph (d), and
∅ 6= FA(Cj) ⊆ A ∩ Uj for all j = 1, ...,m.

Let
B ∈ 〈U1, ..., Uj〉K(Y ) (9)

be given.

Because every Cj is nonempty clopen and saturated in the sense of paragraph (b), Cj∩(Y×Y )

has the cardinality of Y . So, there exists a surjection tj : Cj ∩ (Y × Y )→ Uj ∩B (the range
is not empty by (9)).

Now, define
t : (Y × Y )→ B : t(x, y) := tj(x, y) for (x, y) ∈ Cj

This t is well defined, because the Cj’s are pairwise disjoint and cover Z by paragraph (c),
and it is a surjection onto B, because the Uj’s cover B by (9) and the tj are surjections
onto Uj ∩ B. Our t is continuous w.r.t. the discrete topology on Y × Y , so it extends to a
continuous T : Z → B.

By construction we have for each j ∈ {1, ...,m}

T (Cj ∩ (Y × Y )) ⊆ Uj , (10)

implying T (Cj) = T
(
Cj ∩ (Y × Y )

)
⊆ T (Cj ∩ (Y × Y )) ⊆ Uj by continuity, thus T (Cj) ⊆

Vj by choice of Uj in paragraph (d).

We find T ∈
⋂m
j=1(Cj, Vj) ⊆ (πZ ◦ µZ)−1(O), yielding B = πZ ◦ µZ(T ) ∈ O. This works for

every B ∈ 〈U1, ..., Um〉K(Y ), thus we have indeed 〈U1, ..., Um〉K(Y ) ⊆ O. Consequently, O is a
union of Vietoris-open subsets of K(Y ), just meaning O ∈ σV .

Remark 2.5 Of course, Y ×Y with discrete topology is homeomorphic to Y with discrete
topology for infinite Y . So, we used Y×Y here just for convenience concerning the description
of the „saturated“ subsets within the proof. Moreover, even for finite Y this proof works fine,
but wouldn’t do so with Y instead of Y × Y .
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Corollary 2.6 Let (Y, σ) be a T3-space. For every topological space let C(X, Y ) be
equipped with compact-open topology. Let B be a class of topological spaces, that contains the
Stone-Čech-compactification of a discrete space with cardinality at least card(Y ).
Then the Vietoris topology σV on K(Y ) is the final topology w.r.t. all πA ◦µ(X,τ)

, (X, τ) ∈ B,
A ∈ K(X, τ).

This characterization of the Vietoris hyperspace of the nonempty compact subsets of a reg-
ular space as a quotient (or more generally as a final object of a given class of spaces under
certain mappings) includes an easy possibilty to characterize the Vietoris hyperspace of the
nonempty closed subsets for Hausdorff T4-spaces.

Lemma 2.7 Let (Y, σ) be a Hausdorff T4-space. Then its Vietoris hyperspace on the
nonempty closed subsets (Cl(Y ), σV ) is homeomorphic to a subspace of the Vietoris hyper-
space (K(βY ), σβ) of compact subsets of the Stone-Čech-compactification of (Y, σ).

Proof:

(1) The map
α : Cl(Y )→ K(βY ) : α(A) := A

βY

is injective: Let A1 6= A2 ∈ Cl(Y ) be given, say w.l.o.g. ∃a ∈ A1 \ A2. Be-
cause Y is Tychonoff, we get a continuous f : Y → [0, 1] such that f(a) = 0

and f(A2) = {1}, and then by the theorem of Stone-Čech a continuous extension
F : βY → [0, 1] with F (a) = f(a) = 0 and F (A2) = f(A2) = {1}, thus by continuity
F (A2

βY
) ⊆ F (A2) = {1} = {1}, implying a 6∈ A2

βY and consequently A1
βY 6= A2

βY .

(2) α is continuous w.r.t. to σV , (σβ)V :

• Let O ∈ σβ and

A0 ∈ α−1
(
O−K(βY )

)
= {A ∈ Cl(Y )| AK(βY ) ∩O 6= ∅}
= {A ∈ Cl(Y )| A ∩O 6= ∅}

be given.

Because Y is a dense subspace of βY , we get ∅ 6= O ∩ Y ∈ σ and A0 ∈ (O ∩
Y )−Cl(Y ) ⊆ α−1 (O−K(βY )). Thus α−1 (O−K(βY )) is open in σV .

• Let O ∈ σβ and

A0 ∈ α−1
(
(βY \O)+K(βY )

)
= {A ∈ Cl(Y )| AK(βY ) ⊆ O}

be given.
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Now, βY is T3 and A0
K(βY ) is compact, so by proposition 1.3 we get an U0 ∈ σβ

with A0
K(βY ) ⊆ U0 ⊆ U0

K(βY ) ⊆ O. So, we have A0 ⊆ U0 ∩ Y ∈ σ and further-
more ∀A ∈ (Y \ U0)+Cl(Y ) : A

K(βY ) ⊆ U0
K(βY ) ⊆ O, yielding A0 ∈ (Y \ U0)+Cl(Y ) ⊆

α−1 ((βY \O)+K(βY )). Consequently, α−1 ((βY \O)+K(βY )) is open in σV .

Note, that we didn’t use T4 so far.

(3) α is an open map onto its image.
Let U1, ..., Un ∈ σ be given.

Let A ∈ 〈U1, ..., Un〉Cl(Y ).
We have A ⊆

⋃n
i=1 Ui ⇒ A ∩ (

⋂n
i=1(Y \ Ui)) = ∅. So, A and

⋂n
i=1(Y \ Ui) are

disjoint closed subsets of Y , which can be separated by a continuous function from
Y to [0, 1], according to T4. This function extends to a continuous function from βY

to [0, 1] by the Stone-Čech theorem, yielding ∅ = A
βY ∩

⋂n
i=1(Y \ Ui)

βY
, so we have

A
βY ⊆ βY \

(⋂n
i=1(Y \ Ui)

βY
)
.

Furthermore, A ∩ Ui 6= ∅ implies A 6⊆ Y \ Ui, and this yields by the same argument as
in (1), that AβY 6⊆ Y \ Ui

βY
, thus AβY ∩

(
βY \

(
Y \ Ui

βY
))
6= ∅.

So, let V0 := βY \
(⋂n

i=1(Y \ Ui)
βY
)

and for i = 1, ..., n we define Vi := βY \

(Y \ Ui
βY

) ∈ σβ.

Note, that
⋃n
i=1

(
βY \

(
Y \ Ui

βY
))
⊆ βY \

(⋂n
i=1(Y \ Ui)

βY
)
holds, i.e.

n⋃
i=1

Vi ⊆ V0 . (11)

So we get α(A) ∈ 〈V0, V1, ..., Vn〉K(βY ) from the above.
This for all A ∈ 〈U1, ..., Un〉Cl(Y ) yields

α(〈U1, ..., Un〉Cl(Y )) ⊆ 〈V0, V1, ..., Vn〉K(βY ) . (12)

If otherwise A ∈ Cl(Y ) is given with α(A) = A
βY ∈ 〈V0, V1, ..., Vn〉K(βY ), then for

i = 1, ..., n we get from ∅ 6= A
βY ∩Vi = A

βY ∩
(
βY \ (Y \ Ui

βY
)
)
, that AβY 6⊆ Y \ Ui

βY

and consequently A 6⊆ Y \ Ui, thus A ∩ Ui 6= ∅.
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Moreover, from A
βY ⊆ (

⋃n
k=0 Vk) = V0 we get

A ⊆ Y ∩ AβY ⊆ Y ∩

βY \ n⋂
i=1

Y \ Ui

βY


⊆ Y \
n⋂
i=1

Y \ Ui

βY

⊆ Y \
n⋂
i=1

Y \ Ui

⊆
n⋃
i=1

(Y \ (Y \ Ui)) =
n⋃
i=1

Ui

This yields
α−1(〈V0, V1, ..., Vn〉K(βY )) ⊆ 〈U1, ..., Un〉Cl(Y ) . (13)

So, from (12) and (13) we get

α(〈U1, ..., Un〉Cl(Y )) = α(Cl(Y )) ∩ 〈V0, V1, ..., Vn〉K(βY ) .
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