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Harry Poppe

Applications of the Bartsch-Poppe duality approach

1 Introduction

In the papers [1], [2], [3] by R. Bartsch and H.Poppe a general duality system was defined
and studied:

(X, Y,Xd, Xdd, J :→ Xdd) .

Here X, Y are spaces, Xd is the first dual space of X with respect to Y,Xdd denotes the
second dual space of X w. r. t. Y and J is the canonical map as is known, from classical
examples.

The map J we define by the evaluation map ω: let X, Y be nonempty sets,

ω : X × Y X → Y, ∀(x, h) ∈ X × Y X : ω(x, h) := h(x) .

Hence we find:

∀x ∈ X : Jx = ω(x, ·), ω(x, ·) : Y X → Y : ∀h ∈ Y X : ω(x, ·)(h) = ω(x, h) = h(x) .

In short we call it the B/P duality approach.

In the papers [1], [2], [3] this general duality approach was applied to well known examples
of representation theorems.

Let for instance X be a unital commutative Banachalgebra, or let X be a Boolean ring.

We used suitable spaces Y and defined then the dual spaces Xd and Xdd and proved the
Gelfand and the Stone representation theorem respectively using the general B/P duality
approach.

We also obtained new results. For example, [2], theorem 5.4 shows the embedding of a
vector lattice X into Xdd, in [3], theorem 4.5 one finds the representation of an unital,
noncommutative C∗-algebra.

What is the aim of this paper?
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1. We want to improve the definitions of the first dual space Xd and the second dual
space Xdd of a given space, X as were defined in [1]. For this purpose we will repeat
in short the very basic definitions and some results of the B/P duality approach.

2. We apply the B/P duality approach to get new, well arranged proofs of

(a) the representation of a nonunital commutative C∗-algebra (Gelfand-Naimark the-
orem)

(b) the embedding theorem of Kadison.

2 The duality approach

2.1 Abstract definition

Let X, Y be sets or spaces. Y X means of course the set of all functions from X to Y .

Now we will define an abstract scheme of duality.

Definition 2.1 1. Let be A ⊆ Y X , A ̸= ∅.

We call A to be the first dual space of X with respect to Y .

2. We use here the definition of the map J . Let B ⊆ Y A, B ̸= ∅; let further be: J : X →
Y A, hence as we know:

∀x ∈ X : Jx = ω(x, ·), ω(x, ·) : A→ Y : ∀h ∈ A : ω(x, ·)(h) = ω(x, h) = h(x) .

If J(X) ⊆ B, i. e. ∀x ∈ X : ω(x, ·) ∈ B then we call B to be the second (abstract) dual
space of X w. r. t. Y .

Remarks 2.2 (a) If we in definition 2.1 only consider sets X, Y we cannot formulate nice
properties or prove useful theorems concerning the abstract dual spaces A,B. But of
course this is possible for spaces X, Y , where we can use the special properties of these
spaces to give A,B concrete forms.

(b) We will consider spaces with algebraic, order, and topological structures, where topolo-
gies can be derived from metrics, norms or inner products. We also use measurable
spaces.

We put emphasis on spaces with algebraic and topological structures.

2.2 Concrete definition of the first and of the second dual space

2.2.1 The first dual space Xd of a space X with respect to a space Y At first
glance we can say:
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Xd consists of homomorphism fromX to Y . But this can only work if we state an assumption.

Basic Assumption 2.3 X and Y belong to the same class of spaces.

We consider three simple examples:

(a) X and Y are vector spaces over R If necessary we add: dimX = dimY .

Then X and Y are in the same class of spaces.

(b) Let be X and Y C∗-algebras over C; X and Y are commutative. If X has no unit
element and Y has an unit then X and Y do not belong to the same class of spaces.

(c) Let X, Y be lattices. Then of course X and Y fullfill (2.3).

In case (a) the first dual space is well known. Let

Y = R, Xd = {h : X → R|h is linear } .

If X is a topological vector space, then we get:

Xd = {h : X → R|h is linear and h is continuous}.

Here we consider a continuous map as a topological homomorphism. In case (b) we cannot
set Y = C since the C∗-algebra C has an unit and, hence Y = C contradicts assumption
(2.3). We will later come back to this example.

In case (c) we at once can write:

Xd = {h : X → Y |h is a lattice-homomorphism}.

Let X, Y be spaces with algebraic or order operations. By the basic assumption (2.3) we
find for each operation in X a corresponding operation in Y .

By A(X, Y ) we denote the set of all such pairs of operation in X and Y respectively.

We assume ∅ ̸= A(X, Y ) and A(X, Y ) is a finite set.

Definition 2.4 (a) H(X, Y ) = {h : X → Y |h is a homomorphism for each pair of
operations from A(X, Y )}

(b) If both spaces X, Y have also a topology then we consider H(X, Y ) ∩ C(X, Y ), where
C(X, Y ) is the space of all continuous functions from X to Y . Xd = H(X, Y ) or
Xd = H(X, Y ) ∩ C(X, Y ) and we also find:

Xd ⊆ H(X, Y ) or Xd ⊆ H(X, Y ) ∩ C(X, Y ) .

If this is possible and useful we provide Xd with a topology η, τp ≤ η where τp denotes
the pointwise topology.
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We call Xd to be the first dual space of X with respect to Y . To define the pointwise
topology τp for Xd we must have a topology for Y . As we soon will see, in some cases we
indeed will use τp. Hence we come to:

Basic Assumption 2.5 Y always has a topology. If for Y no topology is given we will
define: Y is provided with{

the discrete topology, if X has no topology
the trivial topology, if X has a topology

If we want that all h ∈ H(X, Y ) are continuous too and X has no topology we provide
X also with the discrete topology. The elements of Xd are functions or maps. Using the
operations in Y and in X we want to define corresponding operations in Xd too. In most
cases we define these operations pointwise. For instance let be in X and in Y an addition is
defined:

X = (X,+), Y = (Y,+) .

If now h1, h2 ∈ Xd:

h1 + h2 : ∀x ∈ X : (h1 + h2)(x) := h1(x) + h2(x) ∈ Y .

If for example we have X = Y than we can h1, h2 also compose: h1 ◦ h2.

Definition 2.6 If X, Y are spaces and we have defined Xd then for Xd there exists two
possibilities:

1. X and Xd belong to the same class of spaces

2. X and Xd do not belong to the same class of spaces.

Now let us consider some examples to clear up the situation.

Examples 2.7 1. Let X be a normed vector space over R and let be Y = R.

Xd = {h : X → R |h is linear and his continuous} .

With pointwise defined vector operations and the sup-norm (on bounded sets) Xd is a
normed vector space over R too. Hence X and Xd belong to the same class of spaces.

2. Let X = (X, ∥ · ∥) a R-normed space again, Y = R and Xd = {h : X → R |h is linear
and continuous and ∥h∥ = 1}. But here Xd is no vector space:

we assume that Xd is a vector space, hence

h ∈ Xd ⇒ 2h ∈ Xd ,

but ∥2h∥ = 2∥h∥ = 2 ̸= 1, a contradiction.

Thus X and Xd do not belong to the same class of spaces.
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3. Let X be a vector lattice (a Riesz space), R with natural order also is a vector lattice.
It is known that Xd = {h : X → R| h is linear and order bounded} is a vector lattice
too, showing that X and Xd belong to the same class of spaces.

4. In the paper [2], definition 5.1 we find for a vector lattice

X : Xd = {h : X → R |h is a linear lattice homomorphism} .

the following example 5.3 shows that (in general) Xd is no vector lattice.

Hence X and Xd do not belong to the same class of spaces.

Remarks 2.8 (a) If X and Xd belong to the same class of spaces we can define the
second dual space by: Xdd := (Xd)d. But otherwise we must find a suitable definition
of Xdd.

(b) As special cases of definition (2.4) we get:

X and Y respectively have only:

(b.a) topologies

(b.b) algebraic operations

(b.c) lattice operations

Case (b.a) was treated in our paper [2], concerning (b.b) in [1], 5. Some examples and
applications, [1], page 290 we considered two communicative rings X, Y with units.

(c) Let (X,A, µ) be a measure space, where X is a set, A is a σ-algebra of subsets of X
and µ : A→ [0,+∞] is a measure.

Let p ∈ R, 1 ≤ p <∞, let f : X → R∪ {−∞,∞} be measurable. Then the Lp-norm of f is
given by

∥f∥p =
(∫

X

|f |p
) 1

p

.

f : X → R is called p-integrable or a Lp-function if f is measureable and ∥f∥p <∞.

Lp(µ) = {f : X → R | f is A-measurable and ∥f∥p <∞} .

Lp(µ) = (Lp(µ), ∥ · ∥p) is a normed space, even a Banach space. Hence

(Lp(µ))d = {h : Lp(µ) → R |h is linear and continuous}.

Now let be p ∈ R and 1 < p <∞ and let q be defined by 1
p
+ 1

q
= 1.

There exists a isomorphic and isometric map from Lq(µ) onto (Lp(µ))d.



8 H. Poppe

This result has the advantage that we can much better work with Lq(µ) than with (Lp(µ))d.
This situation we find by many dual spaces Xd, especially if the space X is a normed space.
This procedure, where the dual space will be replaced by a better space we also will apply to
the two following examples in this paper, where we will use the B/P duality approach. But
here the starting spaces X are not only normed spaces.

Precise definitions and proofs of the above statements about Lp(µ)-spaces one finds in modern
books on measure and integration theory, for instance in [7].

Now we come back to 2.6. Following [1], definition 4.1, page 282 we define:

Definition 2.9 We say that Xd has the defect D,D, if X and Xd do not belong to the
same class of spaces; not the defect D, non D, otherwise.

Now we can define the second dual space.

2.2.2 The second dual space Xdd with respect to a space Y .

Definition 2.10 Let X, Y be spaces in the sense of 2.2, (b). X, Y fulfill basic assump-
tion 2.3. According to basis assumption 2.5 Xd has a topology η with τp ≤ η, since τp is
defined.

Part 1

Xdd =


(
(Xd, η)d, µ

)
if non D(

C((Xd, τp), (Y, σ)), µ
)

if D

where C(·, ·) means the space of continuous maps.

Here we also assume:
τp ≤ µ .

Xdd is called the second dual space of X w. r. t. Y, σ, η, µ.

By [1], lemma 4.1, page 283 and corollary 4.1, page 284 we know that J(X) ⊆ Xdd holds.

Basic Assumption 2.11 X and Xdd are in the same class of spaces.

Part 2

Xdd =

Xdd as defined in part 1, if (2.11) holds

J(X) otherwise

Remark 2.12 The operations in Xdd we define pointwise using the operations in Xd and
in Y . See also [1], page 283.
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3 The Gelfand-Naimark theorem for nonunital commutative
C∗-algebras

At first we will repeat some well-known definitions and results:

Let X be a commutative nonunital C∗-algebra.

Then X1 = X ×C is a commutative C∗-algebra with unit, if we provide X1 with the defined
algebraic operations and the C∗-norm for X1.

The unit for X1 is then (0, 1) ∈ X × C.

The map: x→ (x, 0) from X to X1 is a ∗-isomorphic, isometric homomorphism onto X×{0}
with ∥(x, 0)∥ = ∥x∥.

Thus we can identify X with X × {0} ⊆ X1 and by this way X can be considered as a
subspace of X1.

x → (x, 0) is also an uniform bijective map implying that X × {0} is complete since X is
complete hence X × {0} is a closed subspace of X1; this set is even a maximal ideal in X1.

We state:

Proposition 3.1 X×{0} = {(x, 0)|x ∈ X} is a nonunital C∗-subalgebra of X1 = X×C.

3.1 The first dual spaces of X,X1 and the second dual space of X

According to definition 2.4 we can define:

Xd = {h : X → C |h is a *-homomorphism and h is continuous}
= {h : X → C |h is a *-homomorphism} ,

Xd
1 = {g : X1 → C | g is *-homomorphismus} .

If 0 is the zero-homomorphism, by definition 3.2 of [1], page 281, 0 ∈ Xd, but by lemma 4.2
of [1], page 288, 0 /∈ Xd

1 , hence Xd
1\{0} is the new dual space.

For X1 we know the second dual space

Xdd
1 =

(
C((Xd

1\{0}, τp),C), τ∥·∥
)
,

where τp is the pontwise topology and τ∥·∥ = τu is the uniform topology generated by the
sup-norm, [1], [3], and the Gelfand-Naimark theorem for unital algebras. We can use the
sup-norm here because ((Xd

1\{0}), τp) is compact and Hausdorff and thus Xdd consists of
bounded functions:

Xdd
1 =

(
Cb((X

d
1\{0}, τp),C), τu

)
.

Remark 3.2 Concerning the Gelfand-Naimark theorem for unital C∗-algebras look at [8]
and relevant books and papers.



10 H. Poppe

3.2 Preliminaries

At first we show a result, which is important for our purposes: the dual spaces (Xd, τp) and
(Xd

1\{0}, τp) are homeomorphic. Moreover we consider a simple criterion that a continuous
function already belongs to the space of continuous functions vanishing at infinity.

And we need the Stone-Weierstrass theorem for the case that the basic space is not compact
but only locally compact.

It is nearby that there exists a connection between the first dual space Xd of X and the first
dual space Xd

1 of the unital extension, X1 = X × C, of X.

Indeed:
∀(h, (x, α)) ∈ Xd ×X1 : h̃ : h̃(x, α) = h(x) + α

By the following proposition we show that holds:

∀h ∈ Xd : h̃ ∈ Xd
1 .

This proposition is well known (see for instance [4]). We will not prove the proposition.

Proposition 3.3 1. h̃(0, 1) = 1

2. h̃ is uniquely determined by h

3. h̃ is a ∗-homomorphism and thus h̃ is continuous

4. h̃ is an extension of h

5. If 0 ∈ Xd is the zero-element then 0̃ is not, the zero-element of

Xd
1 : ∀(x, α) ∈ X1 : 0̃(x, α) = 0̂(x) + α = 0 + α = α .

6. If g ∈ Xd
1\{0} then g|(X × {0}) ∈ Xd

Now we can define the map

G : Xd → Xd
1\{0} : ∀h ∈ Xd : G(h) = h̃ .

By proposition 3.3 we know that h̃ ∈ Xd
1\{0}

Theorem 3.4 (a) The map G is bijective

(b) G is neither linear nor multiplicative

(c) G : (Xd, τp) → (Xd
1\{0}, τp) is continuous

(d) G : (Xd, τp) → (Xd
1\{0}, τ) is open
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Proof. (a) G is injective:

∀(h1, h2) ∈ Xd ×Xd, h1 ̸= h2

and we assume

G(h1) = G(h2); h1 ̸= h2 ⇒ ∃x0 ∈ X : h1(x0) ̸= h2(x0), h̃1 = h̃2

h̃1(x0, 0) = h̃2(x0, 0) ⇒ h1(x0) + 0 = h2(x0) + 0

⇒ h1(x0) = h2(x0) ,

a contradiction.

G is surjective too:

∀ f ∈ Xd
1\{0}, f ̸= 0 ,

(a.a) f = 0̃: we know:

0 ∈ Xd and hence G(0) = 0̃ = f ;

(a.b) f ̸= 0̃, by 3.3, 6.:

f |X × {0} ∈ Xd,G(f |X × {0})

= ( ˜f |X × {0}) : ∀(x, α) ∈ X1 : (f |X × {0})(x, α)
= (f |X × {0})(x) + α = f(x, 0) + α = f(x, 0) + 1α

= f(x, 0) + αf(0, 1) = f(x, 0) + f(0, α) = f(x, α) .

Thus G is bijective

(b) Let be f, g ∈ Xd and f + g ∈ Xd, f ̸= 0, g ̸= 0;

G(f + g) = f̃ + g ;

let be (x, α) ∈ X1, α ̸= 0,

(f̃ + g)(x, α) = (f + g)(x) + α = f(x) + g(x) + α

̸= f̃(x, α) + g̃(x, α) = (f(x) + α) + (g(x) + α) .

Analogously one shows that G is not multiplicative too.

(c) Let (hi) be a net from Xd, h ∈ Xd and hi
τp→ h,

∀(x, α) ∈ X1; hi(x) → h(x) ⇒ hi(x) + α → h(x) + α in C ;⇒ h̃i(x, α) → h̃(x, α) ,

hence G(hi)
τp→ G(h).
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(d) Let be H ⊆ Xd be τp-open, we will show that G(H) is τp-open in

Xd
1\{0} : ∀f ∈ G(H)∃h ∈ H : f = h̃ = G(h) ;

now let be (fi) a net from G(H), fi
τp→ f ;

fi = h̃i, hi ∈ H. ∀× ∈ X : fi(x, 0) → fi(x, 0) ,

hence h̃i(x, 0) → h̃(x, 0) ⇒ hi(x) → h(x), hence hi
τp→ h; but then there exists io:

∀i ≥ io : hi ∈ H ⇒ ∀i ≥ io : fi = G(hi) ∈ G(H) .

Thus G(H) is τp-open in Xd
1\{0}.

Corollary 3.5 The map G is a topological map from (Xd, τp) onto ((Xd
1\{0}), τp).

Remark 3.6 The two dual spaces (Xd, τp) and (Xd
1\{0}, τp) respectively are topologically

equivalent, but (in general) not algebraically. We see here once more that in our duality
approach the essential space is the second dual space Xdd of X and not the first dual space
Xd of X. Of course Xd is necessary to construct Xdd, but in some sense Xd is not so
important.

When does a continuous function already vanish at infinity?

It is not hard to find an answer to this question.

Let X be a locally compact, non-compact Hausdorff space, and let αX = X ∪{∞}, ∞ /∈ X,
be the one-point – compactificativen of X. If f ∈ C(X,K), we define:

f∞ : αX → K :

f∞(x) =

f(x), x ∈ X

0, x = ∞ .

By the definition of a continuous function vanishing at infinity and by the definitions of the
topology for αX we see at once:

Proposition 3.7 (a) f ∈ C0(X,K) ⇔ f∞ is continuous in x = ∞ ⇔

(b) For each net (xi) from αX, ∀i : xi ̸= ∞, xi → ∞ in αX ⇒ f(xi) → 0 in K.

A Stone-Weierstrass theorem

Theorem 3.8 Let X be a locally compact noncompact Hausdorff space. Suppose A is
a closed, selfadjoint subalgebra of C0(X,C). If A separates the points of X and for every
x ∈ X there exists f ∈ A with f(x) ̸= 0 then A = C0(X,C).
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The homorphic image units

Theorem 3.9 Let X, Y be rings and h : X → Y a ring-homomorphism

(a) If h is surjective and e is a (multiplicative) unit in X then h(e) is an unit in Y .

(b) Let h be bijective and let ey be a unit in Y .

Then h−1(ey) is a unit in X.

We do not prove this proposition.

3.3 The second dual space of X

X is our starting space: X is a nonunital C∗-algebra. As in the case of an unital Banachal-
gebra or an unital C∗-algebra here also Xd has by Definition 2.9 the defect D and hence by
definition 2.10 we get:

Xdd =
(
C((Xd, τp),C), µ

)
,

where the topology µ still must be determined. And we have the canonical map

J : X → Xdd .

The constant function
1 : ∀h ∈ Xd : 1(h) = 1

is a multiplicative unit in Xdd . But this means that X and Xdd do not belong to the same
class of spaces. Hence according to definition 2.10 we must look at J(X) ⊆ Xdd and show
that X and J(X) belong to the same class of spaces.

X1 is an unital C∗-algebra and hence (Xd
1\{0}, τp) is compact and Hausdorff yielding by

corollary 3.5 that (Xd, τp) is compact and Hausdorff too. This implies that hold

Xdd =
(
Cb((X

d, τp),C), µ
)

But now we can choose µ = τ∥·∥sup : the uniform topology generated by the sup-norm.

Proposition 3.10

J(X) ⊆
(
Cb((X

d, τp),C), τ∥·∥sup
)

and J : X → J(X)

is an isomorphy and an isometry.

Proof.

J1 : X1 → Xdd
1 , J1(x, α) = ω((x, α), ·) .

J1 : X1 →
(
Cb((X

d
1\{0}, τp),C), τ∥·∥sup

)
= Xdd

1
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is a bijective, isomorphic and isometric map. X × {0} is a C∗-subalgebra of X1.

(J1|(X × {0}))(x, α) = J1(x, 0) = ω((x, 0), ·) = J(x, 0) ∈ J(X) .

Hence J maps X isomorphically and isometrically to J(X) = J(X × {0}).

We consider 0 ∈ Xd; 0 is either a τp-isolated point or a τp-accumulation point (clusterpoint)
of (Xd, τp).

If 0 is isolated then (Xd\{0}, τp) is still a compact Hausdorff space implying that

Xdd =
(
Cb((X

d\{0}, τp),C), τ∥·∥sup

)
.

Since 1 ∈ Xdd, X and Xdd do not belong to the same class of spaces. Hence 0 ∈ Xd must
be a τp accumulation point.

3.4 Proof of the Gelfand-Naimark theorem

Theorem 3.11 1. Xd has enough elements

2. (Xd\{0}, τp) is a Hausdorff, locally compact, noncompact topological space and
(X\{0}) ∪ {0} is the onepoint-compactification of (Xd\{0}, τp)

3. J : X →
(
Cb((X

d\{0}, τp),C, τ∥·∥sup
)

and J(X) =
(
C0((X

d\{0}, τp),C), τ∥·∥sup
)

4. J is an isomorphic and isometric map from X onto C0(X
d\{0}, τp),C)

5. X and J(X) = C0((X
d\{0}, τp),C) belong to the same class of spaces.

Proof. 1. X1 is a commutative, unital C∗-algebra, hence we know that Xd
1\{0} has enough

elements. But by the theorem 3.4 we get for the cardinal numbers:

|Xd| = |Xd
1\{0}| .

2. 0 ∈ Xd is a τp-accumulation point and hence it is well-known that 2. holds, since
(Xd, τp) is compact and Hausdorff.

3. At first we show that

J(X) ⊆ C0((X
d\{0}, τp),C) :

J(X) = {ω(x, ·)|x ∈ X} ,
ω(x, ·) : Xd → C : ∀h ∈ Xd : ω(x, ·)(h) = ω(x, h) = h(x) .

We consider ω(x, ·) for some x ∈ X; the zerohomomorphism fromXd is the point at
infinity of (Xd\{0}, τp). Let (hi) be an arbitrary net from Xd\{0} and hi

τp→ 0, then

hi(x) 7→ 0(x) = 0 ∈ C ⇒ ω(xi, ·)(hi) → 0
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showing by proposition 3.7 that

ω(x, ·) = Jx ∈ C0((X
d\{0}, τp),C)

holds.

If we can show that the assumptions of the Stone-Weierstrass theorem 3.8 are fullfilled
for J(X) then

J(X) =
(
C0((X

d\{0}, τp),C), τ∥·∥sup

)
.

Now, by proposition 3.10 J is an isometry from X into C0((X
d\{0}, τp),C) and thus

J(X) is closed in (
C0((X

d\{0}, τp),C), τ∥·∥sup

)
Corollary 3.7 of [3] shows that J(X) is selfadjoined too. J is injective and hence by
[1], proposition 4.5, page 290, J(X) separates the points of Xd\{0}; now finally:

∀h ∈ Xd\{0} ⇒ h ̸= 0 ⇒ ∃x ∈ X : h(x) ̸= 0 ∈ C ;

then x ̸= 0 holds too; now, ω(x, ·) ∈ J(X) and ω(x, ·)(h) = h(x) ̸= 0. Thus the
assumptions of the Stone-Weierstrass theorem are fulfilled.

4. This follows from 3. and from proposition 3.10.

5. X and
(
C0((X

d\{0}, τp),C), τ∥·∥sup

)
are commutative, nonunital C∗-algebras and hence

both spaces belong to the same class of spaces.

Corollary 3.12 Equivalent are:

(1) X has the unit e

(2) 0 ∈ Xd is an isolated point of (Xd, τp)

(3) (Xd, τp) is compact (and Hausdorff)

Proof. (1) ⇒ (2): this assertion follows from [1], lemma 4.3, page 389

(2) ⇒ (3): Since 0 is an isolated point then (Xd\{0})∪{0} cannot be the one-point compact-
ification of (Xd\{0}, τp) and thus (Xd\{0}, τp) is compact implying that (Xd, τp) is compact.

(3) ⇒ (1): We have
Xdd =

(
Cb((X

d, τp),C), τ∥·∥sup

)
because (Xd, τp) is compact and Hausdorff.

Hence the constant function 1 is unit in Xdd implying by proposition 3.10 that e := J−1(1)

is unit in X.
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4 The embedding theorem of Kadison

4.1 The spaces Xsa and S(X)

Let X be an unital C∗-algebra. By Xsa we denote the set of all selfadjoined elements of X
and by S(X) we mean the set of states of X.

Xsa ⊆ X is a real vector space and (Xsa, ∥ · ∥) is real Banach subspace of X. The unit e ∈ X

belongs to Xsa : e
∗ = e. For instance:

x ∈ X ⇒ x∗ ∈ X ⇒ x∗x ∈ X ,

but x∗x ∈ Xsa too: (x∗x)∗ = x∗x∗∗ = x∗x.

If X is commutative then of course Xsa is closed under multiplication.

4.2 The first and the second dual space of Xsa

According to our duality theory we define now the first dual space of Xsa.

e is the multiplicative unit in X and e ∈ Xsa. Hence we define:

Definition 4.1 (Xsa)
d = {h : Xsa → R|h is linear, continuous and h(e) = 1}

Remark 4.2 1. (Xsa)
d is not identical with the the Banachspace – dual

X ′
sa = {h : Xsa → R |h is linear and continuous} .

2. For (Xsa)
d does not hold:

h1, h2 ∈ (Xsa)
d ⇒ h1 + h2 ∈ (Xsa)

d : if h1 + h2 ∈ (Xsa)
d then (h1 + h2)(e) = 1 ,

but otherwise:
(h1 + h2)(e) = h1(e) + h2(e) = 2 ,

a contradiction.

Hence (Xsa)
d is no vectorspace.

From remark 4.2, 2. we get: (Xsa)
d has the defect D according to 2.9. Hence by 2.10 the

second dual space of Xsa reads:

Remark 4.3
(Xsa)

dd =
(
C((Xsa)

d, τp), (R, τ|·|), µ
)
,

where are: τ|·| the Euclidian topology and µ a topology for the space of continuous functions.
µ still must be specified.
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Remark 4.4 We don’t know the properties of ((Xsa)
d, τp), especially we don’t know wether

or not, ((Xd
sa), τp) is compact Hausdorff or not. But in exchange we find a Hausdorff and

compact space as the next proposition will show.

Proposition 4.5 The topological spaces (Xd
sa, τp) and (S(X), τp) are homeomorphic.

For the proof we need a result, which we provide by the following proposition.

For the C∗-algebra C we easily can prove the characterization of the convergence of a sequence
(zn), ∀n ∈ N : zn ∈ C, z ∈ C: let be ∀n ∈ N : zn = xn + iyn, z = x+ iy.

Then holds:
zn → z ⇔ xn → x and yn → y .

Somewhat more difficult to prove is the corresponding characterization in an arbitrary C∗-
algebra.

Proposition 4.6 Let X an unital C∗-algebra, Xsa denotes the set of all selfadjoint
elements of X. Let (xn) be a sequence in X, x ∈ X. Convergence means norm-convergence.
We write:

xn = an + ibn, x = a+ ib ; ∀n : an, bn ∈ Xsa, a, b ∈ Xsa .

Then holds: Equivalent are:

(1) xn → x

(2) an → a and bn → b

Proof. (2) → (1):

∥xn − x∥ = ∥(an − a) + i(bn − b)∥
≤ ∥an − a∥+ |i|∥bn − b∥
= ∥an − a∥+ ∥bn − b∥ → 0 ,

hence ∥xn − x∥ → 0 too.

(1) → (2):
∀n : an − a, bn − b ∈ Xsa ;

but then
(an − a)2, (bn − b)2 ∈ Xsa and (an − a)2, (bn − b)2

are positive.

Now, for instance
(bn − b)2 ≤ (an − a)2 + (bn − b)2 ,
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since [
(an − a)2 + (bn − b)2

]
− (bn − b)2 = (an − a)2 ≥ 0 .

But

0 ≤ (bn − b)2 ≤ (an − a)2 + (bn − b)2 ⇒ ∥(bn − b)2∥ ≤ ∥(an − a)2 + (bn − b)2∥ .

Otherwise: xn − x = (an − a) + i(bn − b) yielding

∥xn − x∥2 = ∥[(an − a) + i(bn − b)]∗[(an − a) + i(bn − b)]∥
= ∥[(an − a)− i(bn − b)][(an − a) + i(bn − b)]∥
= ∥(an − a)2 + (bn − b)2∥

Hence we get:

∥(bn − b)2∥ ≤ ∥xn − x∥2 ;

bn − b ∈ Xsa and hence bn − b is normal ∀n, which gives us:

∥(bn − b)2∥ = ∥(bn − b∥2 ;

thus

∥bn − b∥2 ≤ ∥xn − x∥2 ⇒ ∥bn − b∥ ≤ ∥xn − x∥ and ∥xn − x∥ → 0 ⇒ ∥bn − b∥ → 0 .

By this way we show

∥an − a∥ → 0

too.

Thus (1) ⇒ (2) is proved too.

Proof of proposition 4.5

We define a map φ:

φ : S(X) → (Xsa)
d : ∀h ∈ S(X) : φ(h) = h|Xsa

Lemma 4.7 φ is an injective and surjective map from S(X) to (Xsa)
d.

Proof of the lemma.

At first we show:

φ(S(X)) ⊆ (Xsa)
d : ∀h ∈ S(X) :
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1. φ(h) = h|Xsa is linear:

∀x1, x2 ∈ Xsa; ∀α1, α2 ∈ R ⇒ α1x1 + α2x2 ∈ Xsa ,

but this linear combination is also an element of X, hence

h(α1x1 + α2x2) = α1h(x1) + α2h(x2) ,

yielding:
(h|Xsa)(α1x1 + α2x2) = α1(h|Xsa)(x1) + α2(h|Xsa)(x2)

2. h continuous ⇒ φ(h) = h|Xsa is continuous

3. h ∈ S(X) ⇒ h(e) = 1;

e ∈ Xsa : 1 = h(e) = (h|Xsa)(e) ⇒ φ(h)(e) = (h|Xsa)(e) = 1 .

By 1, 2 and 3 we get:
h|Xsa ∈ (Xsa)

d ,

hence φ(S(X)) ⊆ (Xsa)
d.

4. φ is injective:

∀f, g ∈ S(X): let be
φ(f) = f |Xsa = g|Xsa = φ(g)

We want to show: ∀x ∈ X : f(x) = g(x), hence f = g:

(a) x ∈ Xsa : f(x) = (f |Xsa)(x) = (g|Xsa)(x) = g(x)

(b) x ∈ X\Xsa : x = x1 + ix2, x1, x2 ∈ Xsa; f, g are linear on X:

f(x) = f(x1) + if(x2), g(x) = g(x1) + ig(x2) ,

but:
x1, x2 ∈ Xsa ⇒ f(x1) = g(x1), f(x2) = g(x2)

showing f(x) = g(x) and hence, finally f = g.

5. We show that φ is surjective too.

∀h ∈ (Xsa)
d: we define the function h̃:

∀x ∈ X : x = x1 + ix2, x1, x2 ∈ xsa ;

h̃ : X → C : h̃(x) = h(x1) + ih(x2)

Lemma 4.8 h̃ ∈ S(X) and φ(h̃) = h̃|Xsa = h
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Proof. (a) h̃ is linear.

We know that h is linear.
∀x, y ∈ X, ∀α, β ∈ C :

We can write:

x = x1 + ix2, y = y1 + iy2

α = α1 + iα2, β = β1 + iβ2

Now we can compute αx+ βy in X:

αx+ βy = (α1 + iα2)(x1 + ix2) + (β1 + iβ2)(y1 + iy2)

= α1x1 + iα2x1 + iα1x2 − α2x2 + β1y1 + iβ2y1 + iβ1y2 − β2y2

= α1x1 − α2x2 + β1y1 − β2y2 + i(α2x1 + α1x2 + β2y1 + β1y2) .

Then follows:

h̃(αx+ βy) = h(α1x1 − α2x2 + β1y1 − β2y2) + ih(α2x1 + α1x2 + β2y1 + β1y2)

= α1h(x1)− α2h(x2) + β1h(y1)− β2h(y)

+ iα2h(x1) + iα1h(x2) + iβ2h(y1) + iβ1h(y2)

= (α1 + iα2)h(x1) + (iα1 + i2α2)h(x2) + . . .

= (α1 + iα2)h(x1) + i(α1 + iα2)h(x2) + . . .

= (α1 + iα2)(h(x1) + ih(x2) + . . .

= αh̃(x) + . . . ;

hence h is linear:
h̃(αx+ βy) = αh̃(x) + βh̃(y) ,

(b) h̃ is continuous on X: let be (xn) a sequence from X, x ∈ X and ∥xn − x∥ → 0 for
n→ +∞; let further be:

∀n : xn = x1n + ix2n, x = x1 + ix2

we want to show:
h̃(xn) → h̃(x) :

by proposition 4.5 we get: xn → x⇔ x1n → x1 and x2n → x2 yielding:

h̃(xn) = h(x1n) + ih(x2n) → h(x1) + ih(x2) = h̃(x) ,

since h is continuous on (Xsa, ∥ · ∥).
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(c) h̃|Xsa = h : ∀x ∈ Xsa : x = x+ i · 0, hence:

(h̃|Xsa)(x+ i · 0) = h̃(x+ i · 0) = h(x) + ih(0) = h(x) ,

since 0 ∈ Xsa and h is linear yields: h(0) = 0

(d) h̃(e) = 1: e ∈ Xsa ⇒ h̃(e) = (h̃|Xsa)(e) = h(e) = 1 by (c).

By a well-known theorem of the C∗-algebra-theory follows by (a), (b) and (d) that h̃
is positive, yielding by another theorem:

∥h̃∥ = h̃(e) ,

and hence we have ∥h̃∥ = 1 too.

Thus we have shown:
h̃ ∈ S(X) and φ(h̃) = h .

Hence indeed we got: φ : S(X) → (Xsa)
d is injective and surjective.

Lemma 4.9 φ : (S(X), τp) → ((Xsa)
d, τp) is continuous.

Proof. Let be (hi) a net from S(X), h ∈ S(X) and hi
τp→ h; we want to show that φ(hi)

τp→
φ(h) holds: ∀x ∈ Xsa, then x ∈ X too and thus hi(x) → h(x) in R. Now,

φ(hi)(x) = (hi|Xsa)(x) → (h|Xsa)(x) ,

since x ∈ Xsa. Hence
φ(hi)

τp→ φ(h) in (Xsa)
d .

Finally we must still show:

Lemma 4.10 φ : (S(X), τp) → ((Xsa)
d, τp) is open:

Proof. Let G ⊆ S(X) be τp-open, we show: φ(G) is τp-open in (Xsa)
d: let be h ∈ φ(G) and

(hk) a net from (Xsa)
d such that hk

τp→ h.

φ is bijective, hence there exists g ∈ G,

∀k : gk ∈ S(X) : φ(g) = h = g|Xsa, ∀k : φ(gk) = gk|Xsa = hk .

Now we want to show:
gk

τp→ g in S(X) :

(a) ∀x ∈ Xsa : g(x) = (g|Xsa)(x) = φ(g)(x) = h(x); ∀k : gk(x) = hk(x). Hence
hk(x) → h(x) meaning that holds:

gk(x)
τp→ g on Xsa .
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(b) ∀x ∈ X\Xsa : x = x1 + ix2, x1, x2 ∈ Xsa; by (a) we get:

gk(x1) = hk(x1) → h(x1) = g(x1) ,

gk(x2) = hk(x2) → h(x : 2) = g(x2)

⇒ gk(x1) + igk(x2) → g(x1) + ig(x2) .

Now g ∈ S(X) and ∀k : gk ∈ S(X) showing that these functions are linear:

x = x1 + ix2 ⇒ g(x) = g(x1) + ig(x2),

∀k : gk(x) = gk(x1) + igk(x2)

But then follows:

gk(x) → g(x) on X\Xsa, and thus from (a), (b) we get:

gk(x) → g(x), ∀x ∈ X, gk
τp→ g .

Since g ∈ G and G is τp-open there exists ko:

∀k ≥ ko : gk ∈ G showing that holds:

∀k ≥ ko : φ(gk) = hk ∈ φ(G) ,

hence φ(G) is τ -open in (Xsa)
d.

Final proof of proposition 4.5. By lemma 4.7, 4.8, 4.9 and 4.10

φ : (S(X), τp) → ((Xsa)
d, τp)

is bijective, continuous and open yielding that φ is a topological map onto (Xsa)
d and thus

(S(X), τp) and ((Xsa)
d, τp) are homeomorphic.

Corollary 4.11 The first dual space of Xsa is a Hausdorff and compact topological space
w. r. t. the pointwise topology τp.

Proof. We know that the state space (S(X), τp) is a compact and Hausdorff space.

We come now back to the second dual space 4.3 of Xsa:

(Xsa)
dd =

(
C(((Xsa)

d, τp), (R, τ|·|)), µ
)

=
(
Cb(((Xsa)

d, τp), (R, τ|·|)), µ
)

=
(
Cb((S(X), τp), (R, τ|·|)), µ

)
,

where Cb(·, ·) of course means the space of bounded and continuous real functions.

Then for µ we can choose the sup-norm and hence the uniform topology.

We state now:
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1. (Xsa, ∥ · ∥) (and S(X), ∥ · ∥) and (R, | · |) both are real Banach spaces.

Xsa and R both have a multiplicative unit. Hence both spaces belong to the same class
of spaces.

2. (Xsa, ∥ · ∥) and ((Xsa)
dd, ∥ · ∥sup) are real Banach spaces; both have a multiplicative

unit. Xsa, (Xsa)
dd belong to the same class of spaces.

We still need a lemma.

Lemma 4.12
∀x ∈ Xsa : ∥x∥ ∈ σ(x) .

Proof. 1. 0 ∈ Xsa, but 0−1 does not exist and hence ∥0∥ = 0 ∈ σ(0).

2. x ∈ Xsa and x ̸= 0; x ∈ Xsa ⇒ σ(x) ⊆ R and x is normal and thus:

r(x) = s = sup
{
|x|
∣∣λ ∈ R and λ ∈ σ(x)

}
= ∥x∥ .

∥x∥ > 0 ⇒ ∃ sequence (λn) : ∀n : λn ∈ (σ(x), ∥x∥) such that λn → s.

σ(x) is Hausdorff and compact and thus σ(x) is sequentially compact and Hausdorff
too since (X, ∥ · ∥) is a metric space. Thus we find a subsequence (λnk

) of (λn) and
λ ∈ σ(x), λ > 0 : λnk

→ λ, but also λnk
→ s = ∥x∥, implying λ = ∥x∥ ∈ σ(x).

4.3 Proof of the Kadison embedding theorem

Theorem 4.13 Let X be an unital C∗-algebra. Then holds:

1. J : (Xsa, ∥ · ∥) → ((Xsa)
dd, ∥ · ∥sup) =

(
Cb((Xsa)

d, τp), (R, τ|·|), τ∥·∥sup
)

is an isometric
and isomorphic map onto (Xsa)

dd

2. J(Xsa) separates the points of (Xsa)
d

3. J(Xsa) is a closed subspace of (Xsa)
dd

Proof. By corollary 4.1 of [1], p. 284 we get: J(Xsa) ⊆ (Xsa)
dd. Now

(Xsa)
d ⊆ X ′

sa = {h : Xsa → R| his linear and h is continuous}
∀h ∈ Xd

sa ∃g ∈ S(X) : φ(g) = g|Xsa = h ;

hence

∥h∥ = ∥g|Xsa∥ = sup{|g(x)|
∣∣x ∈ xsa and

∥x∥ ≤ 1} ≤ sup{|g(x)|
∣∣ x ∈ X and ∥x∥ ≤ 1} = ∥g∥ = 1
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and thus ∥h∥ ≤ 1.

But then we can apply proposition 4.3, p. 287 of [1]. At first we get:

∀x ∈ Xsa : ∥J(x)∥sup ≤ ∥x∥ .

Moreover we have:

∀x ∈ Xsa, x ̸= 0, by lemma 4.12 we know: either ∥x∥ ∈ σ(x) or −∥x∥ ∈ σ(x). Let us
consider −∥x∥: there exists h ∈ S(X) : h(x) = −∥x∥; but x ∈ Xsa =⇒ h(x) = h

∣∣Xsa(x)

showing that h|Xsa ∈ Xd
sa and h|Xsa(x) = −∥x∥, implying |h|Xsa(x)| = |−∥x∥| = ∥x∥ and

hence ∥x∥ ≤ |h|Xsa|. Of course this last result we get also if ∥x∥ ∈ σ(x). This implies by
the above mentioned proposition that holds ∥x∥ ≤ ∥J(x)∥sup. Hence we have:

∀x ∈ Xsa : ∥J(x)∥sup = ∥x∥ ,

yielding that J : Xsa → J(Xsa) is an isometric map.

Now J is then an injective map onto J(Xsa) and thus the homomorphy theorem 4.4, p. 284
of [1] shows that J is an isomorphic map for real Banach spaces too, meaning that point 1.
of our theorem is proved, but only for J : Xsa → J(Xsa).

Proposition 4.3 of [1] shows also 2.. J(Xsa) separates the points of (Xsa)
d.

Since J is an isometric map J is an uniform isomorphy too, yielding that J(Xsa) is a complete
subspace of (Xdd

sa , ∥ · ∥) since Xsa is complete.

Thus we proved 3.:

J(Xsa) is a closed subspace of (Xsa)
dd.

Concluding we find:

e ∈ Xsa ⇒ ω(e, ·) ∈ (Xsa)
dd, but: ∀h ∈ (Xsa)

d : ω(e, ·)(h) = h(e) = 1 ,

showing that the constant function ω(e, ·) ≡ 1 belongs to J(Xsa).

But this result together with assertions 2., 3. shows that J(Xsa) = (Xsa)
dd by the theorem

of Stone-Weierstrass.

Now our proof is complete.

Concluding remarks We consider our basic assumptions 2.3, 2.5 and 2.11:

(1) X and Y belong to the same class of spaces

(2) Y always has a topology

(3) X and Xdd are in the same class of spaces
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As we have shown in our text the general procedure runs as follows:

We start with the space X and want to define the second dual space of X and to embedd X
into Xdd using the canonical map J . To do so we must choose a suitable space Y such that
(1) is fulfilled. Then we can define the first dual space Xd of X with respect to Y , where (2)
holds. According to the properties of Xd we are able to define the second dual space Xdd of
X w. r. t. Y such that (3) is fulfilled and J : X → Xdd embedds X into or onto Xdd.
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Laure Cardoulis

An inverse Problem for a parabolic System in an
unbounded Guide

ABSTRACT. In this article we consider a two-by-two parabolic system defined on an un-
bounded guide with coefficients depending both on the space variable and on the time vari-
able. The main aim of this paper is to obtain a stability result for the coefficients depending
on the space variable. Using Carleman inequalities adapted for the guide, we obtain Hölder
estimates of these coefficients in any finite portion of the guide with boundary measurements,
given two sets of initial conditions.

KEY WORDS. inverse problems, Carleman inequalities, heat operator, system, unbounded
guide

1 Introduction

Let ω be a bounded connex domain in Rn−1, n ≥ 2 with C2 boundary. Denote Ω = R × ω

and Q = Ω× (0, T ), Σ = ∂Ω× (0, T ). We consider the following problem


∂tu = ∆u+ αϕ1u+ βϕ2w + g1 in Q,

∂tw = ∆w + γϕ3u+ δϕ4w + g2 in Q,

u(., 0) = a1, w(., 0) = a2 in Ω,

u = a3, w = a4 in Σ,

(1.1)

where α, β, γ, δ are bounded coefficients defined on Ω such that

α, β, γ, δ ∈ Λ1(M0) = {f ∈ L∞(Ω), ∥f∥L∞(Ω) ≤M0} for some M0 > 0,

and ϕ1, ϕ2, ϕ3, ϕ4 are bounded coefficients defined on [0, T ] such that for i = 1, · · · , 4

ϕi ∈ Λ2(M0) = {f ∈ C1([0, T ]), f(
T

2
) ̸= 0 and ∥f∥C1([0,T ]) ≤M0}.

The main problem is to estimate the coefficients (α, β, γ, δ) from boundary observations of
(u,w).
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We will consider two sets of Cauchy and Dirichlet conditions A and B and denote

G = (g1, g2), A = (a1, a2, a3, a4), B = (b1, b2, b3, b4), ρ = (α, β, γ, δ, ϕ1, ϕ2, ϕ3, ϕ4),

ρ̃1 = (α̃, β̃, γ̃, δ̃, ϕ1, ϕ2, ϕ3, ϕ4), ρ̃2 = (α, β̃, γ̃, δ̃, ϕ̃1, ϕ2, ϕ3, ϕ4), ρ̃3 = (α, β̃, γ̃, δ̃, ϕ1, ϕ2, ϕ3, ϕ4).

(1.2)
Let two positive reals l, L be such that l < L. Denote

ΩL = (−L,L)× ω and Ωl = (−l, l)× ω.

The first result of this paper gives a Hölder stability result (3.4) for the coefficients α, β, γ, δ
and is the following (see Theorem 3.1)

∥α− α̃∥2L2(Ωl)
+ ∥β − β̃∥2L2(Ωl)

+ ∥γ − γ̃∥2L2(Ωl)
+ ∥δ − δ̃∥2L2(Ωl)

≤ K

(∫
γL×(0,T )

1∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2) dσ dt

+

∫
γL×(0,T )

1∑
k=0

(|∂ν(∂kt (uB − ũB))|2 + |∂ν(∂kt (wB − w̃B))|2) dσ dt)

)κ

where K is a positive constant, κ ∈ (0, 1), γL is a part of the boundary (see (2.2)), and
assuming that the hypothesis (3.3) is satisfied. We consider in the above result VA = (uA, wA)

(resp. ṼA = (ũA, w̃A)) a solution of (1.1) associated with the coefficients (ρ,G,A) (resp.
(ρ̃1, G,A)) and VB = (uB, wB) (resp. ṼB = (ũB, w̃B)) a solution of (1.1) associated with the
coefficients (ρ,G,B) (resp. (ρ̃1, G,B)) where A is a set of Cauchy and Dirichlet conditions
and B is a suitable change of initial and boundary conditions. The above result is an
improvement of results obtained in [5] with different and less restrictive hypotheses but with
two choices of Cauchy and Dirichlet conditions A and B. In abbreviated form we will call
A and B the two sets of initial conditions. It is an improvement because on one hand the
hypotheses, though quite differents, are easier to satisfy than in [5] and on the other hand
there are no observation terms of the solutions (u,w) at a fixed time on the right-hand side
of the estimate, such as ∥(uA − ũA)(.,

T
2
)∥2H2(ΩL)

(see [5]). The idea of choosing two different
sets of initial conditions can be found in [2] for a hyperbolic equation in a bounded domain
(see also [6] for a hyperbolic system).
A consequence of the above result is given in Theorem 3.2 where the measurements are given
for only one component (for example u) and is the following (see (3.6))

∥α− α̃∥2L2(Ωl)
+ ∥β − β̃∥2L2(Ωl)

+ ∥γ − γ̃∥2L2(Ωl)
+ ∥δ − δ̃∥2L2(Ωl)

≤ K
(
∥uA − ũA∥2H2([0,T ],H2(ω′∩ΩL))

+ ∥uA − ũA∥2H1([0,T ],H4(ω′∩ΩL))
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+∥uB − ũB∥2H2([0,T ],H2(ω′∩ΩL))
+ ∥uB − ũB∥2H1([0,T ],H4(ω′∩ΩL))

+

∫
γL×(0,T )

1∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (uB − ũB))|2) dσ dt)

)κ

where K > 0, κ ∈ (0, 1) and ω′ is a neighborhood of γL, ω′ being a subdomain of Ω such
that γL ⊂ ∂ω′, and assuming that α = α̃ and β = β̃ in ω′. We can relax the hypothesis that
the coefficients α and β are supposed known in ω′ when these coefficients are in H2(Ω) and
we obtain a similar result with the L2-norms replaced by the H2-norms for the coefficients
α and β on the left-hand side of the above estimate and additional terms such as ∥(uA −
ũA)(.,

T
2
)∥2H4(ΩL)

on the right-hand side of this estimate (see (3.7)).
The third result gives a Hölder result (3.10) for the coefficients ϕ1, β, γ, δ (assuming also
that ϕi ∈ C2([0, T ])) and is the following (see Theorem 3.3)

2∑
i=0

∥∂it(ϕ1 − ϕ̃1)∥2L2((0,T )) + ∥β − β̃∥2L2(Ωl)
+ ∥γ − γ̃∥2L2(Ωl)

+ ∥δ − δ̃∥2L2(Ωl)

≤ K

(
1∑

k=0

(∥∂kt (uA − ũA)(·,
T

2
)∥2H2(ΩL)

+ ∥∂kt (uB − ũB)(·,
T

2
)∥2H2(ΩL)

)

+∥∂2t (uA − ũA)(·,
T

2
)∥2L2(ΩL)

+ ∥∂2t (uB − ũB)(·,
T

2
)∥2L2(ΩL)

) + ∥(wA − w̃A)(·,
T

2
)∥2H2(ΩL)

+∥(wB − w̃B)(·,
T

2
)∥2H2(ΩL)

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2) dσ dt

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (uB − ũB))|2 + |∂ν(∂kt (wB − w̃B))|2) dσ dt)

)κ

where K is still a positive constant, κ ∈ (0, 1), and ϕ̃1 belongs to a set of admissible coeffi-
cients (namely Λ3(M3), see (3.8)). In the above case we denote VA = (uA, wA) (resp. ṼA =

(ũA, w̃A)) a solution of (1.1) associated with (ρ,G,A) (resp. (ρ̃2, G,A)) and VB = (uB, wB)

(resp. ṼB = (ũB, w̃B)) a solution of (1.1) associated with (ρ,G,B) (resp. (ρ̃2, G,B)). So
this third result gives a determination of one coefficient depending on the time variable. Be
careful that the meanings of ṼA and ṼB are not the same in Theorems 3.1 and 3.2 on one
hand and Theorem 3.3 on the other hand.
Finally the fourth theorem gives a Hölder result (3.11) for the following reaction-diffusion
system 

∂tu = ∆u+ αϕ1u+ βϕ2w +Θ1 · ∇u+Θ2 · ∇w + g1 in Q,

∂tw = ∆w + γϕ3u+ δϕ4w +Θ3 · ∇u+Θ4 · ∇w + g2 in Q,

u(., 0) = a1, w(., 0) = a2 in Ω,

u = a3, w = a4 in Σ,

(1.3)



30 L. Cardoulis

where all the coefficients α, β, γ, δ, ϕ1, ϕ2, ϕ3, ϕ4, Θ1,Θ2,Θ3,Θ4 are bounded. We present here
a result for the four coefficients β, γ, δ,Θ1 (and assuming that Θ1 has the form Θ1 = ∇ξ1).
So denote now

Θ = (Θ1, · · · ,Θ4), Θ̃ = (Θ̃1,Θ2,Θ3,Θ4). (1.4)

We get the following result

∥β − β̃∥2L2(Ωl)
+ ∥γ − γ̃∥2L2(Ωl)

+ ∥δ − δ̃∥2L2(Ωl)
+ ∥Θ1 − Θ̃1∥(L2(Ωl))n

≤ K

(
∥(uA − ũA)(.,

T

2
)∥2H3(ΩL)

+ ∥(uB − ũB)(.,
T

2
)∥2H3(ΩL)

+

∫
γL×(0,T )

1∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2) dσ dt

+

∫
γL×(0,T )

1∑
k=0

(|∂ν(∂kt (uB − ũB))|2 + |∂ν(∂kt (wB − w̃B))|2) dσ dt)

)κ

where K is a positive constant, κ ∈ (0, 1). This time we denote VA = (uA, wA) (resp.
ṼA = (ũA, w̃A)) a solution of (1.3) associated with (ρ,G,A,Θ) (resp. (ρ̃3, G,A, Θ̃)) and
VB = (uB, wB) (resp. ṼB = (ũB, w̃B)) a solution of (1.3) associated with (ρ,G,B,Θ) (resp.
(ρ̃3, G,B, Θ̃)).
Note that all our results imply uniqueness results. Up to our knowledge, there are few results
concerning the simultaneous identification of more than one coefficient in each equation (see
for examples [1, 2, 5, 6, 9, 10]) and note that in these papers the coefficients only depend
on the space variable. Also notice that there are very few results where the measurements
are given with only one component. Here the first and fourth theorems (Theorems 3.1 and
3.4) extend some results obtained in [5, Theorem 3.2] but with hypotheses (see (3.2) and
(3.3)) less restrictive than in [5]. The second result (Theorem 3.2) gives a result for four
coefficients depending on the space variable and with measurements of only one component.
The third theorem (Theorem 3.3) also gives a result for four coefficients but one of each
depending on the time variable. Furthermore, usually the papers investigate the case of
bounded domains and give results with observations on a subdomain of the domain (see for
example [1, 2, 10]). Here we present results with observations on a part of the boundary
(see Theorems 3.1, 3.3, 3.4). Besides, because of our unbounded domain and our choice
of weight functions (2.3), we will use cut-off functions in time and in the direction x1 (see
for example [12] where cut-off functions are removed but in a bounded domain). Finally,
usually the results have observations terms with data of the solution at a fixed time (such
as ∥(uA − ũA)(.,

T
2
)∥2H2(ΩL)

, see for example [5, 7, 8]). We have been able to remove them
in Theorems 3.1, 3.2i) thanks to the properties of the weight functions. So the theorems
presented here give stability results for four coefficients for a system defined on an unbounded
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domain, with boundary measurements in Theorems 3.1, 3.3 and 3.4, measurements for only
one component in Theorem 3.2, with a time variable coefficient in Theorem 3.3. These
results extend previous results for one equation [7, 8] or for a system [5] defined on an
unbounded guide. Last we recall that the method of Carleman estimates used for solving
inverse problems has been initiated by [3].
This Paper is organized as folows: in Section 2, we recall the weight functions adapted for
our unbounded domain and the Carleman estimate (2.6) as well as the crucial inequality
(2.4) for our Hölder estimates. Then in Section 3 we state and prove our results.

2 Carleman estimate

Denote QL = ΩL × (0, T ) = (−L,L) × ω × (0, T ), x = (x1, · · · , xn) ∈ Rn, x′ = (x2, · · · , xn)
and define the operator

A0u = ∂tu−∆u.

Let l > 0, following [7] we are going to carry out special weight functions allowing us to
avoid observations on the cross section of the wave guide in our inverse problem. For this
we consider some positive real L > l and we choose â = (a1, a

′) ∈ Rn \ Ω such that if
d̂(x) = |x′ − a′|2 − x21 for x ∈ ΩL, then

d̂ > 0 in ΩL, |∇d̂| > 0 in ΩL. (2.1)

Moreover we define

ΓL = {x ∈ ∂ΩL, < x− â, ν(x) >≥ 0} and γL = ΓL ∩ ∂Ω. (2.2)

Here < ., . > denotes the usual scalar product in Rn and ν(x) is the outwards unit normal
vector to ∂ΩL at x. Notice that γL does not contain any cross section of the guide. From
[14]-[15] we consider weight functions as follows: for t ∈ (0, T ), if M1 > sup0<t<T (t−T/2)2 =
(T/2)2,

ψ(x, t) = d̂(x)−
(
t− T

2

)2

+M1 and ϕ(x, t) = eλψ(x,t). (2.3)

The constant λ > 0 will be set in Proposition 2.2 and is usually used as a large parameter
in Carleman inequalities. Since we will not use it, we will consider λ fixed in the article. We
recall from [7] and [8] the following result.

Proposition 2.1 There exist T > 0, L > l, â ∈ Rn \ΩL and ϵ > 0 such that (2.1) holds
and, setting

OL,ϵ = (ΩL × ((0, 2ϵ) ∪ (T − 2ϵ, T ))) ∪ (((−L,−L+ 2ϵ) ∪ (L− 2ϵ, L))× ω × (0, T )),
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we have
d1 < d0 < d2 (2.4)

where
d0 = inf

Ωl

ϕ (·, θ) , d1 = sup
OL,ϵ

ϕ, d2 = sup
ΩL

ϕ (·, θ) and θ =
T

2
.

From now on and from simplicity we denote θ = T
2

throughout the paper. These two above
estimates (2.4) will be fruitful in Section 3 to solve our inverse problem. In the sequel C will
be a generic positive constant. When needed, we will specify its dependency with respect
to the different parameters. We will use the following notations: Let α = (α1, · · · , αn) be a
multi-index with αi ∈ N ∪ {0}. We set ∂αx = ∂α1

1 · · · ∂αn
n , |α| = α1 + · · ·+ αn and define

H2,1(QL) = {u ∈ L2(QL), ∂
α
x∂

αn+1

t u ∈ L2(QL), |α|+ 2αn+1 ≤ 2}

endowed with its norm

∥u∥2H2,1(QL)
=

∑
|α|+2αn+1≤2

∥∂αx∂
αn+1

t u∥2L2(QL)
.

We recall now a global Carleman-type estimate proved in [7, Proposition 4.2] or in [8, Propo-
sition 3], based on a classical Carleman estimate (see Yamamoto [14, Theorem 7.3]). The key
difference with the classical Carleman inequality in [14, Theorem 7.3] is to remove, on the
cross-sections of ΩL, the boundary condition and the observation. For that we need cut-off
functions in time. On the other hand, to manage our infinite wave guide we also need to con-
sider cut-off functions in space but only in the infinite direction x1. These cut-off functions
will induce additive terms coming from the commutator between the evolution operator and
these cut-off functions. Let χ, η be C∞ cut-off functions such that χ,∇χ,∆χ ∈ Λ1(M0),

0 ≤ χ ≤ 1, 0 ≤ η ≤ 1,

χ(x) = 0 if x ∈ ((−∞,−L+ ϵ) ∪ (L− ϵ,+∞))× ω),

χ(x) = 1 if x ∈ (−L+ 2ϵ, L− 2ϵ)× ω,

η(t) = 0 if t ∈ (0, ϵ) ∪ (T − ϵ, T ), η(t) = 1 if t ∈ ×(2ϵ, T − 2ϵ). (2.5)

with ϵ defined in Proposition 2.1.

Proposition 2.2 [7, Proposition 4.2] There exist a value of λ > 0 and positive constants
s0 and C = C(λ, s0) such that

I(u) =

∫
QL

(
1

sϕ
(|∂tu|2 + |∆u|2) + sϕ |∇u|2 + s3ϕ3|u|2

)
e2sϕdx dt

≤ C∥esϕA0u∥2L2(QL)
+ Cs3e2sd1∥u∥2H2,1(QL)

+ Cs

∫
γL×(0,T )

|∂νu|2e2sϕdσ dt, (2.6)

for all s > s0 and all u ∈ H2,1(QL) satisfying u(., 0) = u(., T ) = 0 in ΩL, u = 0 on
(∂Ω ∩ ∂ΩL)× (0, T ). We denote ∂νu = ν · ∇u and recall that A0u = ∂tu−∆u.
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Since the method of Carleman estimates requires several time differentiations, we assume
in the following that u,w (solution of (1.1) or (1.3)) belong to H = H2([0, T ], H2(Ω)) ∩
W 2,∞(Ω× (0, T )) for Theorems 3.1, H = H3([0, T ], H4(Ω))∩W 4,∞(Ω× (0, T )) for Theorem
3.2, H = H3([0, T ], H2(Ω)) ∩W 3,∞(Ω × (0, T )) for Theorem 3.3, H = H2([0, T ], H3(Ω)) ∩
W 3,∞(Ω× (0, T )) for Theorem 3.4, satisfying the a-priori bound

∥u∥H < M2 and ∥w∥H < M2 for given M2 > 0.

From now on, we use the notation f(θ) = f(., θ) for any function f defined on Q.

3 Inverse problem

3.1 Preliminary lemmas

From [11, Lemma 4.2], we derive the following result, also used in [7] or [5, Lemma 3.1].

Lemma 3.1 There exist positive constants s1 and C such that∫
ΩL

e2sϕ(θ)(f(θ))2 dx ≤ Cs

∫
QL

e2sϕf 2 dx dt+
C

s

∫
QL

e2sϕ(∂tf)
2 dx dt

for all s ≥ s1 and f ∈ H1(0, T ;L2(ΩL)).

For the sake of completeness, we recall its proof.

Proof. Consider η defined by (2.5) and any w ∈ H1(0, T ;L2(ΩL)). Since η(θ) = 1 and
η(0) = 0, we have∫

ΩL

w(x, θ)2dx =

∫
ΩL

(η(θ)w(x, θ))2dx =

∫
ΩL

∫ θ

0

∂t(η
2(t)|w(x, t)|2)dt dx

= 2

∫ θ

0

∫
ΩL

η2(t)w(x, t)∂tw(x, t)dx dt+ 2

∫ θ

0

∫
ΩL

η(t)∂tη(t)|w(x, t)|2dx dt.

As 0 ≤ η ≤ 1, using Young’s inequality, it comes that for any s > 0,∫
ΩL

w(x, θ)2 dx ≤ Cs

∫
QL

|w|2dx dt+ C

s

∫
QL

|∂tw|2dx dt. (3.1)

Then we can conclude replacing w by esϕf in (3.1).

The following lemma will be only used for Theorem 3.4. It is a classical lemma for a
first order partial differential operator but which necessites a strong positivity condition
(3.2). This condition is nevertheless weaker than the one used in [8] or [5] (which was
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|∇d̂ · ∇ũ(θ)| ≥ R > 0 in ΩL). So we follow an idea developed in [13] for Lamé system in
bounded domains, also used for example in [8] or in [5]. The lemma below will be used in
the proof of Theorem 3.4 with (v1, · · · , v4) = (w̃B(θ), ũA(θ), w̃A(θ), ũB(θ)). Recall that d̂ is
defined by (2.1).

Lemma 3.2 Assume that the following assumption

|v1∇d̂ · ∇v2 − v3∇d̂ · ∇v4| ≥ R in ΩL for some R > 0 (3.2)

holds. Consider the first order partial differential operator Pf = v1∇f · ∇v2 − v3∇f · ∇v4.
Then there exist positive constants s′1 > 0 and C > 0 such that for all s ≥ s′1,

s2
∫
ΩL

e2sϕ(θ)f 2 dx ≤ C

∫
ΩL

e2sϕ(θ)|Pf |2 dx,

for all f ∈ H1
0 (ΩL).

Proof. The proof follows [8] or [5]. Let f ∈ H1
0 (ΩL). Denote w = esϕ(θ)f and Qw =

esϕ(θ)P (e−sϕ(θ)w). So we get Qw = Pw − sλϕ(θ)w(P d̂). Therefore we have∫
ΩL

|Qw|2 dx ≥ s2λ2
∫
ΩL

(ϕ(θ))2w2(P d̂)2 dx− 2sλ

∫
ΩL

ϕ(θ)(Pw)w(P d̂) dx.

So ∫
ΩL

|Qw|2 dx ≥ s2λ2
∫
ΩL

(ϕ(θ))2w2(P d̂)2 dx− sλ

∫
ΩL

ϕ(θ)(Pw2)(P d̂) dx.

Thus integrating by parts∫
ΩL

|Qw|2 dx ≥ s2λ2
∫
ΩL

(ϕ(θ))2w2(P d̂)2 dx+ sλ

∫
ΩL

w2∇ · (ϕ(θ)(P d̂)(v1∇v2 − v3∇v4)) dx.

And we can conclude for s sufficiently large.

3.2 Statements of results

3.2.1 First result Consider VA = (uA, wA) (resp. ṼA = (ũA, w̃A)) a strong solution of
(1.1) associated with (ρ,G,A) defined by (1.2) (resp. (ρ̃1, G,A)) where A is a set of initial
and boundary conditions. Consider also VB = (uB, wB) (resp. ṼB = (ũB, w̃B)) a strong
solution of (1.1) associated with (ρ,G,B) (resp. (ρ̃1, G,B)) and where B is another set of
initial and boundary conditions. Assume that all the coefficients α, β, γ, δ, α̃, β̃, γ̃, δ̃, belong
to Λ1(M0) and all the coefficients ϕi to Λ2(M0) (for i = 1, · · · , 4).
Our main result is the following
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Theorem 3.1 Let l > 0. Let T > 0, L > l and â ∈ Rn \ Ω satisfying the conditions of
Proposition 2.1. Assume that

|ũA(·, θ)w̃B(·, θ)− ũB(·, θ)w̃A(·, θ)| ≥ R in ΩL for some R > 0. (3.3)

Then there exists a sufficiently small number τ0 > 0 such that if τ ∈ (0, τ0),

1∑
k=0

∫
γL×(0,T )

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2

+|∂ν(∂kt (uB − ũB))|2 + |∂ν(∂kt (wB − w̃B))|2)dσ dt ≤ τ

then the following Hölder stability estimate holds

∥α− α̃∥2L2(Ωl)
+ ∥β− β̃∥2L2(Ωl)

+ ∥γ− γ̃∥2L2(Ωl)
+ ∥δ− δ̃∥2L2(Ωl)

≤ Kτκ for all τ ∈ (0, τ0). (3.4)

Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, L, l, M0, M1, M2, T and â.

3.2.2 Second result As a consequence of Theorem 3.1, we can give a stability result
with measurements of only one component. Theorem 3.2i) gives an estimate of the four
coefficients α, β, γ, δ ∈ L2(Ω) when α = α̃ and β = β̃ in a neighborhood ω′ of the boundary
of interest γL. That means that these two coefficients α and β are supposed known in ω′.

We relax this last hypothesis in Theorem 3.2ii) where an estimate of these four coefficients
is given for α, β ∈ H2(Ω). Consider VA = (uA, wA) (resp. ṼA = (ũA, w̃A)) a strong solution
of (1.1) associated with (ρ,G,A) defined by (1.2) (resp. (ρ̃1, G,A)). Consider also VB =

(uB, wB) (resp. ṼB = (ũB, w̃B)) a strong solution of (1.1) associated with (ρ,G,B) (resp.
(ρ̃1, G,B)). Assume that all the coefficients α, β, γ, δ, α̃, β̃, γ̃, δ̃, belong to Λ1(M0) and all
the coefficients ϕi to Λ2(M0) (for i = 1, · · · , 4). For Theorem 3.2ii) we also suppose that
α, β, α̃, β̃ ∈ Λ′(M0) = {f ∈ H2(Ω), ∥f∥H2(Ω)∥ ≤M0} and ϕi ∈ C2([0, T ]).

Theorem 3.2 Let l > 0. Let T > 0, L > l and â ∈ Rn \ Ω satisfying the conditions of
Proposition 2.1. Let ω′ be a neighborhood of γL, ω′ ⊂ ΩL+ϵ such that γL ⊂ ∂ω′, ∂ω′ being
C2. Assume that the hypothesis(3.3) holds and that we also have

|βϕ2| ≥ R > 0 in QL. (3.5)

i) We suppose that α = α̃ and β = β̃ in ω′.

Then there exists a sufficiently small number τ0 > 0 such that if τ ∈ (0, τ0),

∥uA − ũA∥2H2([0,T ],H2(ω′∩ΩL))
+ ∥uA − ũA∥2H1([0,T ],H4(ω′∩ΩL))

+∥uB − ũB∥2H2([0,T ],H2(ω′∩ΩL))
+ ∥uB − ũB∥2H1([0,T ],H4(ω′∩ΩL))
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+

∫
γL×(0,T )

1∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (uB − ũB))|2) dσ dt ≤ τ

then the following Hölder stability estimate holds

∥α− α̃∥2L2(Ωl)
+ ∥β − β̃∥2L2(Ωl)

+ ∥γ − γ̃∥2L2(Ωl)
+ ∥δ − δ̃∥2L2(Ωl)

≤ Kτκ for all τ ∈ (0, τ0).

(3.6)

ii) We suppose that α, β, α̃, β̃ ∈ H2(Ω).

Then there exists a sufficiently small number τ0 > 0 such that if τ ∈ (0, τ0),

∥(uA − ũA)(·, θ)∥2H4(ΩL)
+ ∥(uB − ũB)(·, θ)∥2H4(ΩL)

+ ∥uA − ũA∥2H3([0,T ],H2(ω′∩ΩL))

+∥uA− ũA∥2H2([0,T ],H4(ω′∩ΩL))
+∥uB− ũB∥2H3([0,T ],H2(ω′∩ΩL))

+∥uB− ũB∥2H2([0,T ],H4(ω′∩ΩL))

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (uB − ũB))|2) dσ dt ≤ τ

then the following Hölder stability estimate holds

∥α− α̃∥2H2(Ωl)
+ ∥β − β̃∥2H2(Ωl)

+ ∥γ − γ̃∥2L2(Ωl)
+ ∥δ− δ̃∥2L2(Ωl)

≤ Kτκ for all τ ∈ (0, τ0).

(3.7)

Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, L, l, M0, M1, M2, T ,
∥g0∥(C1(ω′))n and â.

3.2.3 Third result Now we present a result for the four coefficients (ϕ1, β, γ, δ). We
consider here VA = (uA, wA) (resp. ṼA = (ũA, w̃A)) a strong solution of (1.1) associated
with (ρ,G,A) defined by (1.2) (resp. (ρ̃2, G,A)). Consider also VB = (uB, wB) (resp. ṼB =

(ũB, w̃B)) a strong solution of (1.1) associated with (ρ,G,B) (resp. (ρ̃2, G,B)). Assume
that all the coefficients α, β, γ, δ, β̃, γ̃, δ̃, belong to Λ1(M0) and all the coefficients ϕi, ϕ̃1 to
Λ2(M0) (for i = 1, · · · , 4). Let the set of admissible coefficients

Λ3(M3) = {f ∈ C2([0, T ]), |∂2t (f − ϕ1)(t)| ≤M3|(f − ϕ1)(θ)| for all t ∈ [0, T ]} (3.8)

with M3 a positive constant.
Our result is the following.

Theorem 3.3 Let l > 0. Let T > 0, L > l and â ∈ Rn \ Ω satisfying the conditions of
Proposition 2.1. We suppose that ϕ̃1 ∈ Λ3(M3). Assume that Assumption (3.3) holds and
that

|α| ≥ R > 0 in ΩL. (3.9)
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Then there exists a sufficiently small number τ0 > 0 such that if τ ∈ (0, τ0),

1∑
k=0

(∥∂kt (uA − ũA)(·, θ)∥2H2(ΩL)
+ ∥∂kt (uB − ũB)(·, θ)∥2H2(ΩL)

) + ∥∂2t (uA − ũA)(·, θ)∥2L2(ΩL)

+∥∂2t (uB − ũB)(·, θ)∥2L2(ΩL)
+ ∥(wA − w̃A)(·, θ)∥2H2(ΩL)

+ ∥(wB − w̃B)(·, θ)∥2H2(ΩL)

+

∫
γL×(0,T )

2∑
k=0

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2) dσ dt ≤ τ,

then the following Hölder stability estimate holds

∥β− β̃∥2L2(Ωl)
+∥γ− γ̃∥2L2(Ωl)

+∥δ− δ̃∥2L2(Ωl)
+

2∑
i=0

∥∂it(ϕ1−ϕ̃1)∥2L2(0,T ) ≤ Kτκ for all τ ∈ (0, τ0).

(3.10)
Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, L, l, M0, M1, M2, M3, T , â.

Remark 1 • Notice that the hypothesis ϕ̃1 ∈ Λ3(M3) is satisfied when ϕ̃1 ∈ C2([0, T ])

is such that ϕ1(θ) ̸= ϕ̃1(θ) and supt∈[0,T ] |∂t(ϕ1−ϕ̃1)(t)|
|ϕ1(θ)−ϕ̃1(θ)|

≤ M3. Moreover note also that if ϕ̃1 ∈
C2([0, T ]) is such that ϕ1(θ) ̸= ϕ̃1(θ), then if we denote f1 = ϕ1 − ϕ̃1, we have f1(θ) ̸= 0.
Therefore t 7→ | f1(t)

f1(θ)
| is bounded on [0, T ] so there exists a positive constant C0 such that

for all t ∈ [0, T ], |f1(t)| ≤ C0|f1(θ)|. Similarly there exists a positive constant C1 such that
|∂tf1(t)| ≤ C1|f1(θ)| and there exists a positive constant C2 such that |∂2t f1(t)| ≤ C2|f1(θ)|.
Note also that if ϕ̃1 ∈ Λ3(M3) and ϕ̃1(θ) = ϕ1(θ), then ∂2t (ϕ̃1 − ϕ1) = 0 in [0, T ]. Therefore
ϕ̃1 has the form ϕ̃1(t) = ϕ1(t) + k(t− θ) with k any real.
• Moreover if the function ϕ1 is more regular, for example if ϕ1 ∈ Cp([0, T ]) with p ≥ 2, then
Theorem 3.3 is still valid with a more generalized admissible set of coefficients Λ′

3(M3) =

{f ∈ Cp([0, T ]), |∂pt (f − ϕ1)(t)| ≤ M3|(f − ϕ1)(θ)| for all t ∈ [0, T ]}. But in this case, be-
cause of our method, the observations terms at the fixed time θ on the right-hand side of
the estimate (3.10) would demand more regularity.
• On the contrary, we can relax some of the observations terms on u (uA and ũA) at θ on the
right-hand side of (3.10) and only have ∥(u− ũ)(·, θ)∥2H2(ΩL)

but for a more restrictive admis-
sible set of coefficients Λ′′

3(M3) = {f ∈ C2([0, T ]), |∂it(f−ϕ1)(t)| ≤M3|(f−ϕ1)(θ)| for all i =
0, 1, 2 and t ∈ [0, T ]}.

3.2.4 Fourth result Finally, we consider the system (1.3). Consider VA = (uA, wA)

(resp. ṼA = (ũA, w̃A)) a strong solution of (1.3) associated with (ρ,G,A,Θ) defined by
(1.2) and (1.4) (resp. (ρ̃3, G,A, Θ̃)). Consider also VB = (uB, wB) (resp. ṼB = (ũB, w̃B))
a strong solution of (1.3) associated with (ρ,G,B,Θ) (resp. (ρ̃3, G,B, Θ̃)). Assume that
all the coefficients α, β, γ, δ, β̃, γ̃, δ̃, belong to Λ1(M0) and all the coefficients ϕi to Λ2(M0)
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(for i = 1, · · · , 4). Moreover we suppose that Θi, Θ̃1 belong to (Λ1(M0))
n ∩ (L2(Ω))n (for

i = 1, · · · , 4) and there exist functions ξ1, ξ̃1 such that

Θ1 = ∇ξ1, Θ̃1 = ∇ξ̃1 in Ω.

Theorem 3.4 Let l > 0. Let T > 0, L > l and â ∈ Rn \ Ω satisfying the conditions of
Proposition 2.1. Assume that Assumptions (3.2) and (3.3) are satisfied with (v1, · · · , v4) =
(w̃B(·, θ), ũA(·, θ), w̃A(·, θ), ũB(·, θ)).
If ξ1 = ξ̃1 and Θ1 = Θ̃1 on ∂Ω ∩ ∂ΩL, then there exists a sufficiently small number τ0 > 0

such that if τ ∈ (0, τ0),

1∑
k=0

∫
γL×(0,T )

(|∂ν(∂kt (uA − ũA))|2 + |∂ν(∂kt (wA − w̃A))|2 + |∂ν(∂kt (uB − ũB))|2

+|∂ν(∂kt (wB − w̃B))|2)dσ dt+ ∥(uA − ũA)(·, θ)∥2H3(ΩL)
+ ∥(uB − ũB)(·, θ)∥2H3(ΩL)

≤ τ

then the following Hölder stability estimate holds

∥β − β̃∥2L2(Ωl)
+ ∥γ − γ̃∥2L2(Ωl)

+ ∥δ − δ̃∥2L2(Ωl)
+ ∥Θ1 − Θ̃1∥(L2(Ωl))n ≤ Kτκ (3.11)

for all τ ∈ (0, τ0).

Here, K > 0 and κ ∈ (0, 1) are two constants depending on R, L, l, M0, M1, M2, T and â.

3.3 Proofs of theorems

3.3.1 Proof of Theorem 3.1 Let VA = (uA, wA) (resp. ṼA = (ũA, w̃A)) be a solution of
(1.1) associated with (ρ,G,A) (resp. (ρ̃1, G,A)) and VB = (uB, wB) (resp. ṼB = (ũB, w̃B))
be a solution of (1.1) associated with (ρ,G,B) (resp. (ρ̃1, G,B)). We decompose the proof
in several steps.
• First step:
Denote V = (u,w) = VA, Ṽ = (ũ, w̃) = ṼA and

U = u− ũ, W = w − w̃, a = α− α̃. b = β − β̃, c = γ − γ̃, d = δ − δ̃. (3.12)

Then (U,W ) satisfy the following system
∂tU = ∆U + αϕ1U + βϕ2W + aϕ1ũ+ bϕ2w̃ in Q,

∂tW = ∆W + γϕ3U + δϕ4W + cϕ3ũ+ dϕ4w̃ in Q,

U = W = 0 on Σ.

(3.13)

Define
y0 = ηχU, z0 = ηχW, y1 = ∂ty0, z1 = ∂tz0 (3.14)
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We deduce that (yi, zi) for i = 0, 1 satisfy the following systems
∂ty0 = ∆y0 + αϕ1y0 + βϕ2z0 + aηχϕ1ũ+ bηχϕ2w̃ +R1 in QL,

∂tz0 = ∆z0 + γϕ3y0 + δϕ4z0 + cηχϕ3ũ+ dηχϕ4w̃ +R2 in QL,

y0 = z0 = 0 on ∂ΩL × (0, T )

(3.15)

with

R1 = −(∆χ)ηU − 2η∇χ · ∇U + χ∂tηU, R2 = −(∆χ)ηW − 2η∇χ · ∇W + χ∂tηW.

We have 
∂ty1 = ∆y1 + αϕ1y1 + βϕ2z1 +R3 in QL,

∂tz1 = ∆z1 + γϕ3y1 + δϕ4z1 +R4 in QL,

y1 = z1 = 0 on ∂ΩL × (0, T ),

(3.16)

with
R3 = aχ∂t(ηϕ1ũ) + bχ∂t(ηϕ2w̃) + ∂tR1 + αy0∂tϕ1 + βz0∂tϕ2,

R4 = cχ∂t(ηϕ3ũ) + dχ∂t(ηϕ4w̃) + ∂tR2 + γy0∂tϕ3 + δz0∂tϕ4.

• Second step: we estimate
∑1

i=0(I(yi) + I(zi)) by the Carleman inequalities (2.6).
Note that all the terms in A0yi or A0zi with derivatives of χ or η will be bounded above
by Ce2sd1 with C a positive constant (see Proposition 2.1 for the definitions of d1 and d2).
Moreover all the terms such as

∫
QL
e2sϕy2i dx dt on the right-and side of the estimates (2.6)

will be absorbed by I(yi) for s sufficiently large. So we have for s sufficiently large,

1∑
i=0

(I(yi) + I(zi)) ≤ C

∫
QL

e2sϕ(a2 + b2 + c2 + d2)χ2 dx dt+ Cs3e2sd1

+Cs

∫
γL×(0,T )

e2sϕ
1∑
i=0

(|∂νyi|2 + |∂νzi|2) dσ dt.

Since e2sϕ ≤ e2sϕ(θ) ≤ e2sd2 we get

1∑
i=0

(I(yi)+ I(zi)) ≤ C

∫
QL

e2sϕ(a2+ b2+ c2+ d2)χ2 dx dt+Cs3e2sd1 +Cse2sd2F0(γL) (3.17)

with F0(γL) =
∫
γL×(0,T )

∑1
i=0(|∂νyi|2 + |∂νzi|2) dσ dt.

• Third step: now we estimate
∫
ΩL
e2sϕ(θ)|∂itf(θ)|2 dx and

∫
ΩL
e2sϕ(θ)|∆f(θ)|2 dx for f = y0

or f = z0 and i = 0, 1. By Lemma 3.1, we have (since ϕ ≥ 1 and 1
ϕ
≥ 1

d2
)∫

ΩL

e2sϕ(θ)|y0(θ)|2 dx ≤ Cs

∫
QL

e2sϕy20 dx dt+
C

s

∫
QL

e2sϕy21 dx dt ≤
C

s2
(I(y0) + I(y1)),∫

ΩL

e2sϕ(θ)|∂ty0(θ)|2 dx ≤ Cs

∫
QL

e2sϕy21 dx dt+
C

s

∫
QL

e2sϕ|∂ty1|2 dx dt ≤ CI(y1),
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∫
ΩL

e2sϕ(θ)|∆y0(θ)|2 dx ≤ Cs

∫
QL

e2sϕ|∆y0|2 dx dt+
C

s

∫
QL

e2sϕ|∆y1|2 dx dt ≤ Cs2(I(y0)+I(y1)).

Notice that the three above inequalities are satisfied replacing (y0, y1, y2) by (z0, z1, z2).
Therefore∫

ΩL

e2sϕ(θ)(|y0(θ)|2 + |∂ty0(θ)|2 + |∆y0(θ)|2 + |z0(θ)|2 + |∂tz0(θ)|2 + |∆z0(θ)|2) dx

≤ Cs2
1∑
i=0

(I(yi) + I(zi)).

So using (3.17) we deduce that∫
ΩL

e2sϕ(θ)(|y0(θ)|2 + |∂ty0(θ)|2 + |∆y0(θ)|2 + |z0(θ)|2 + |∂tz0(θ)|2 + |∆z0(θ)|2) dx

≤ Cs2
∫
QL

e2sϕ(a2 + b2 + c2 + d2)χ2 dx dt+ Cs5e2sd1 + Cs3e2sd2F0(γL). (3.18)

At last in this step, denote
R = (R1, R2, R3, R4). (3.19)

• Fourth step: here we estimate
∫
ΩL
e2sϕ(θ)(a2 + b2 + c2 + d2)χ2 dx.

We choose now the two sets of conditions A and B and consider VA, ṼA, VB and ṼB. From
now on, each function f defined in the precedent steps is denoted either fA or fB when it
is related either by the conditions A or B. Denote now F0A(γL) = F0(γL) associated with
(VA, ṼA), and F0B(γL) = F0(γL) associated with (VB, ṼB) (see (3.17) in the second step):

F0A(γL) =

∫
γL×(0,T )

1∑
i=0

(|∂νyiA|2 + |∂νziA|2) dσ dt, F0B(γL) =∫
γL×(0,T )

1∑
i=0

(|∂νyiB|2 + |∂νziB|2) dσ dt.

Let RA be defined by (3.19) for (VA, ṼA) (resp. RB for (VB, ṼB)). Multiplying the first
equation of (3.15) written for y0A by w̃B and the first equation of (3.15) written for y0B by
w̃A and subtracting, we eliminate the term in b and we get

aηχϕ1(ũAw̃B − ũBw̃A) = w̃B(∂ty0A −∆y0A − αϕ1y0A − βϕ2z0A −R1A)

−w̃A(∂ty0B −∆y0B − αϕ1y0B − βϕ2z0B −R1B). (3.20)

By hypothesis (3.3), applying (3.20) for t = θ, since η = 1 in a neighborhood of θ we get∫
ΩL

e2sϕ(θ)a2χ2(ϕ1(θ))
2 dx ≤ C

∫
ΩL

e2sϕ(θ)
(
|∂ty0A(θ)|2 + |∂ty0B(θ)|2 + |∆y0A(θ)|2 + |∆y0B(θ)|2
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+|y0A(θ)|2 + |z0A(θ)|2 + |y0B(θ)|2 + |z0B(θ)|2
)
dx+ Ce2sd1 .

But ϕ1 ∈ Λ2(M0) . So from (3.18) applied for y0A, y0B, z0A, z0B we obtain∫
ΩL

e2sϕ(θ)a2χ2 dx ≤ Cs2
∫
QL

e2sϕ(a2+b2+c2+d2)χ2 dx dt+Cs5e2sd1+Cs3e2sd2F1(γL) (3.21)

with F1(γL) = F0A(γL) + F0B(γL). Similarly we can replace a by b on the left-hand side of
(3.21), still using (3.15) for y0A and y0B. Indeed

−bηχϕ2(ũAw̃B − ũBw̃A) = ũB(∂ty0A −∆y0A − αϕ1y0A − βϕ2z0A −R1A)

−ũA(∂ty0B −∆y0B − αϕ1y0B − βϕ2z0B −R1B).

So we have∫
ΩL

e2sϕ(θ)(a2+b2)χ2 dx ≤ Cs2
∫
QL

e2sϕ(a2+b2+c2+d2)χ2 dx dt+Cs5e2sd1+Cs3e2sd2F1(γL).

(3.22)
We do the same to obtain c and d using this time (3.15) for z0A and z0B and the hypothesis
(3.3). Therefore∫
ΩL

e2sϕ(θ)(c2+d2)χ2 dx ≤ Cs2
∫
QL

e2sϕ(a2+b2+c2+d2)χ2 dx dt+Cs5e2sd1+Cs3e2sd2F1(γL).

(3.23)
Adding (3.22) and (3.23), we have∫

ΩL

e2sϕ(θ)(a2 + b2 + c2 + d2)χ2 dx dt ≤

Cs2
∫
QL

e2sϕ(a2 + b2 + c2 + d2)χ2 dx dt+ Cs5e2sd1 + Cs3e2sd2F1(γL).

Now we proceed as in [2, 11, 12] in order to prove that s2
∫
QL
e2sϕ(a2 + b2 + c2 + d2)χ2 dx dt

can be absorbed by the left-hand side of the above estimate for s sufficiently large (s ≥ s2).
Indeed

s2
∫
QL

e2sϕ(a2+ b2+ c2+d2)χ2 dx dt =

∫
ΩL

e2sϕ(θ)(a2+ b2+ c2+d2)χ2(

∫ T

0

s2e2s(ϕ−ϕ(θ)) dt) dx.

But ϕ− ϕ(θ) = −eλ(d̂+M1)(1− e−λ(t−θ)
2
) and there exists a positive constant C such that

ϕ − ϕ(θ) ≤ −C(1 − e−λ(t−θ)
2
). Therefore

∫ T
0
s2e2s(ϕ−ϕ(θ)) dt ≤

∫ T
0
s2e−2sC(1−e−λ(t−θ)2 ) dt uni-

formly in x. Moreover by the Lebesgue convergence theorem, we have∫ T

0

s2e−2sC(1−e−λ(t−θ)2 ) dt→ 0 as s→ ∞.
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Thus for s sufficiently large, we get∫
ΩL

e2sϕ(θ)(a2 + b2 + c2 + d2)χ2 dx ≤ Cs5e2sd1 + Cs3e2sd2F1(γL).

Since e2sd0 ≤ e2sϕ(θ) in Ωl and χ = 1 in Ωl, we deduce that

e2sd0(∥α− α̃∥2L2(Ωl)
+∥β− β̃∥2L2(Ωl)

+∥γ− γ̃∥2L2(Ωl)
+∥δ− δ̃∥2L2(Ωl)

) ≤ Cs3(e2sd2F1(γL)+s
2e2sd1)

which can be rewritten

∥α−α̃∥2L2(Ωl)
+∥β−β̃∥2L2(Ωl)

+∥γ−γ̃∥2L2(Ωl)
+∥δ−δ̃∥2L2(Ωl)

≤ Cs3(e2s(d2−d0)F1(γL)+s
2e2s(d1−d0)).

(3.24)
As d1 − d0 < 0 and d2 − d0 > 0, we can optimize the above inequality with respect to s (see
for example [5, 7, 8]). Indeed, note that if F1(γL) = 0, since (3.24) holds for any s ≥ s2

and d1 − d0 < 0 we get (3.4). Now if F1(γL) ̸= 0 is sufficiently small (F1(γL) <
d0−d1
d2−d0 ), we

optimize (3.24) with respect to s. Indeed denote

f(s) = e2s(d2−d0)F1(γL) + e2s(d1−d0) and g(s) = e2s(d2−d0)F1(γL) + s2e2s(d1−d0).

We have f(s) ∼ g(s) at infinity. Moreover the function f has a minimum in

s3 =
1

2(d2 − d1)
ln(

d0 − d1
(d2 − d0)F1(γL)

) and f(s3) = K ′F1(γL)
κ

with κ = d0−d1
d2−d1 and K ′ = (d0−d1

d2−d0 )
d2−d0
d2−d1 + (d0−d1

d2−d0 )
d1−d0
d2−d0 . Finally the minimum s3 is sufficiently

large (s3 ≥ s2) if the following condition F1(γL) ≤ τ0, with τ0 = d0−d1
(d2−d0)e2s2(d2−d1)

, is satisfied.
So we conclude for Theorem 3.1.

3.3.2 Proof of Theorem 3.2 We keep the notations of the proof of Theorem 3.1. In
this theorem, we want to remove all the observation terms on w obtained in Theorem 3.1
and express them in terms of u. So we look at the terms

∫
γL×(0,T )

e2sϕ|∂νzi|2 dσ dt for i = 0, 1

appearing in step 2 of Theorem 3.1. Recall that zi = 0 outside ΩL−ϵ and γL ⊂ ∂ω′.

As in [4, Lemma 2] we choose g0 ∈ C2(ω′,Rn) such that g0 = ν on the C2-boundary ∂ω′

where ν is the normal vector to ∂ω′. We have by integration by parts for any integer i = 0, 1,∫
ω′×(0,T )

e2sϕ∆zi g0 · ∇zi dx dt = −
∫
ω′×(0,T )

∇(e2sϕg0 · ∇zi) · ∇zi dx dt

+

∫
∂ω′×(0,T )

e2sϕg0 · ∇zi ∂νzi dσ dt.

So ∫
ω′×(0,T )

e2sϕ∆zi g0 · ∇zi dx dt = −
∫
ω′×(0,T )

∇(e2sϕg0 · ∇zi) · ∇zi dx dt
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+

∫
∂ω′×(0,T )

e2sϕ |∂νzi|2 dσ dt.

and we get∫
γL×(0,T )

e2sϕ|∂νzi|2 dσ dt ≤ Cs

∫
(ω′∩ΩL)×(0,T )

e2sϕ(|∇zi|2 + |∆zi|2) dx dt. (3.25)

From the first equation in (3.15) we have

βϕ2z0 = ∂ty0 −∆y0 − αϕ1y0 − aηχϕ1ũ− bηχϕ2w̃ −R1 in QL. (3.26)

By the same way, from (3.16) we have

βϕ2z1 = ∂ty1 −∆y1 − αϕ1y1 −R3 in QL. (3.27)

i) First assume that a = b = 0 in ω′. From hypothesis (3.5), (3.25)-(3.27) we get

1∑
i=0

∫
γL×(0,T )

e2sϕ|∂νzi|2 dσ dt ≤ Cs
1∑
i=0

∫
(ω′∩ΩL)×(0,T )

e2sϕ(|∇∂tyi|2+ |∇(∆yi)|2+ |∇yi|2+ |yi|2

+|∆∂tyi|2 + |∆(∆yi)|2 + |∆yi|2) dx dt+ Cse2sd1 .

So
1∑
i=0

∫
γL×(0,T )

e2sϕ|∂νzi|2 dσ dt ≤ Cse2sd1 + Cse2sd2G0(ω
′)

with G0(ω
′) = ∥y0∥2H1(0,T,H4(ω′∩ΩL))

+ ∥y0∥2H2(0,T,H2(ω′∩ΩL))
.

Therefore (3.17) is still valid with sF0(γL) replaced by s2G1(γL) = s2
∫
γL×(0,T )∑1

i=0 |∂νyi|2 dσ dt+ s2G0(ω
′). Thus we follow the proof of Theorem 3.1 substituting F0(γL)

by G1(γL). The rest of the proof (steps 3 and 4) remains unchanged.

ii) Here we suppose that α, β, α̃, β̃ ∈ H2(Ω). We will need to differentiate y0 and z0 twice
with respect to t (in order to get (3.35)) and we have

∂ty2 = ∆y2 + αϕ1y2 + βϕ2z2 + ∂tR3 + α∂tϕ1y1 + β∂tϕ2z1 in QL,

∂tz2 = ∆z2 + γϕ3y2 + δϕ4z2 + ∂tR4 + γ∂tϕ3y1 + δ∂tϕ4z1 in QL,

y2 = z2 = 0 on ∂ΩL × (0, T ).

(3.28)

Therefore

βϕ2z2 = ∂ty2 −∆y2 − αϕ1y2 − ∂tR3 − α∂tϕ1y1 − β∂tϕ2z1 in QL. (3.29)

Notice that we can take
∑2

k=0

∫
γL×(0,T )

(|∂ν(∂kt (uA− ũA))|2+ |∂ν(∂kt (wA− w̃A))|2+∂ν(∂kt (uB−
ũB))|2 + |∂ν(∂kt (wB − w̃B))|2)dσ dt as observation terms in (3.4). So we apply (3.25) for
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i = 0, 1, 2.

From (3.25)-(3.29) we get

2∑
i=0

∫
γL×(0,T )

e2sϕ|∂νzi|2 dσ dt ≤ Cs
2∑
i=0

∫
(ω′∩ΩL)×(0,T )

e2sϕ(|∇∂tyi|2+|∇(∆yi)|2+|∇yi|2+|yi|2

+ |∆∂tyi|2 + |∆(∆yi)|2 + |∆yi|2

+ (a2 + b2)χ2 + |∇(aχ)|2 + |∇(bχ)|2 + |∆(aχ)|2 + |∆(bχ)|2) dx dt+ Cse2sd1 .

So
2∑
i=0

∫
γL×(0,T )

e2sϕ|∂νzi|2 dσ dt ≤ Cse2sd2G̃0(ω
′) + Cse2sd1

+Cs

∫
QL

e2sϕ((a2 + b2)χ2 + |∇(aχ)|2 + |∇(bχ)|2 + |∆(aχ)|2 + |∆(bχ)|2) dx dt

with G̃0(ω
′) = ∥y0∥2H2(0,T,H4(ω′∩ΩL))

+ ∥y0∥2H3(0,T,H2(ω′∩ΩL))
.

Thus the estimate (3.17) becomes

2∑
i=0

(I(yi) + I(zi)) ≤ Cs3e2sd1 + Cs2e2sd2G̃1(γL)

+Cs2
∫
QL

e2sϕ((a2+b2+c2+d2)χ2+ |∇(aχ)|2+ |∆(aχ)|2+ |∇(bχ)|2+ |∆(bχ)|2) dx dt (3.30)

with G̃1(γL) =
∫
γL×(0,T )

∑2
i=0 |∂νyi|2 dσ dt+ G̃0(ω

′).

As in the third step of Theorem 3.1 when we get (3.18), by Lemma 3.1 we have

1∑
i=0

∫
ΩL

e2sϕ(θ)(|yi(θ)|2 + |∇yi(θ)|2 + |∆yi(θ)|2 + |zi(θ)|2 + |∇zi(θ)|2 + |∆zi(θ)|2) dx

≤ Cs2
2∑
i=0

(I(yi) + I(zi)).

So from (3.30)

1∑
i=0

∫
ΩL

e2sϕ(θ)(|yi(θ)|2 + |∇yi(θ)|2 + |∆yi(θ)|2 + |zi(θ)|2 + |∇zi(θ)|2 + |∆zi(θ)|2) dx

≤ Cs4
∫
QL

e2sϕ((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2) dx dt

+Cs5e2sd1 + Cs4e2sd2G̃1(γL). (3.31)
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Now we estimate
∫
ΩL
e2sϕ(θ)((a2+b2+c2+d2)χ2+|∇(aχ)|2+|∆(aχ)|2+|∇(bχ)|2+|∆(bχ)|2) dx

as in the fourth step of Theorem 3.1. We consider two sets of initial conditions A and B and
the corresponding solutions VA, ṼA, VB, ṼB of (1.1). As in (3.20)-(3.23) we get∫

ΩL

e2sϕ(θ)(a2 + b2 + c2 + d2)χ2 dx ≤ C

∫
ΩL

e2sϕ(θ)(|∂ty0A(θ)|2 + |∂ty0B(θ)|2 + |∆y0A(θ)|2

+|∆y0B(θ)|2 + |y0A(θ)|2 + |y0B(θ)|2 + |∂tz0A(θ)|2 + |∂tz0B(θ)|2 + |∆z0A(θ)|2

+|∆z0B(θ)|2 + |z0A(θ)|2 + |z0B(θ)|2) dx+ Ce2sd1 .

So from (3.31) we obtain∫
ΩL

e2sϕ(θ)(a2 + b2 + c2 + d2)χ2 dx ≤ Cs5e2sd1 + Cs4e2sd2G2(γL)

+Cs4
∫
QL

e2sϕ((a2+b2+c2+d2)χ2+|∇(aχ)|2+|∆(aχ)|2+|∇(bχ)|2+|∆(bχ)|2)) dx dt (3.32)

with G2(γL) = G̃1A(γL) + G̃1B(γL).

We apply the same ideas for ∇(aχ),∇(bχ),∆(aχ),∆(bχ).

For any integer 1 ≤ i ≤ n, taking the space derivative with respect to xi in (3.20), we obtain

∂xi(aχ)ηϕ1(ũAw̃B − ũBw̃A) + aηχϕ1∂xi(ũAw̃B − ũBw̃A)

= ∂xi (w̃B(∂ty0A −∆y0A − αϕ1y0A − βϕ2z0A −R1A))

−∂xi (w̃A(∂ty0B −∆y0B − αϕ1y0B − βϕ2z0B −R1B) . (3.33)

Therefore by hypothesis (3.3) we deduce that∫
ΩL

e2sϕ(θ)|∇(aχ)|2 dx ≤ C

∫
ΩL

e2sϕ(θ)(aχ)2 dx+ Ce2sd1

+

∫
ΩL

e2sϕ(θ)(|∇∂ty0A(θ)|2 + |∇∆y0A(θ)|2 + |∇y0A(θ)|2 + |∇z0A(θ)|2

+|∇∂ty0B(θ)|2 + |∇∆y0B(θ)|2 + |∇y0B(θ)|2 + |∇z0B(θ)|2) dx.

From (3.31)-(3.32) we get∫
ΩL

e2sϕ(θ)|∇(aχ)|2 dx ≤ Cs5e2sd1+Cs4e2sd2G2(γL)+Ce
2sd2(∥y0A(θ)∥2H3(ΩL)

+∥y0B(θ)∥2H3(ΩL)
)

+Cs4
∫
QL

e2sϕ((a2+b2+c2+d2)χ2+ |∇(aχ)|2+ |∆(aχ)|2+ |∇(bχ)|2+ |∆(bχ)|2) dx dt. (3.34)

Taking again the space derivative with respect to xi in (3.33) we obtain∫
ΩL

e2sϕ(θ)|∆(aχ)|2 dx ≤ Cs5e2sd1+Cs4e2sd2G2(γL)+Ce
2sd2(∥y0A(θ)∥H4(ΩL)+∥y0B(θ)∥H4(ΩL))
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+Cs4
∫
QL

e2sϕ((a2+b2+c2+d2)χ2+ |∇(aχ)|2+ |∆(aχ)|2+ |∇(bχ)|2+ |∆(bχ)|2) dx dt. (3.35)

Similarly for b, so from (3.32),(3.34),(3.35) we have∫
ΩL

e2sϕ(θ)((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2) dx

≤ Cs5e2sd1 + Cs4e2sd2G2(γL) + Ce2sd2(∥y0A(θ)∥H4(ΩL) + ∥y0B(θ)∥H4(ΩL))

+Cs4
∫
QL

e2sϕ((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2) dx dt.

As in the proof of Theorem 3.1 (see the fourth step) we can absorb the last term of the above
estimate by the left-hand side so we deduce that for s sufficiently large∫

ΩL

e2sϕ(θ)((a2 + b2 + c2 + d2)χ2 + |∇(aχ)|2 + |∆(aχ)|2 + |∇(bχ)|2 + |∆(bχ)|2) dx

≤ Cs5e2sd1 + Cs4e2sd2G3(γL)

with G3(γL) = G2(γL)+∥y0A(θ)∥H4(ΩL)+∥y0B(θ)∥H4(ΩL) and we conclude as for Theorem 3.1.

3.3.3 Proof of Theorem 3.3 Let VA = (uA, wA) (resp. ṼA = (ũA, w̃A)) be a solution of
(1.1) associated with (ρ,G,A) (resp. (ρ̃2, G,A)) and VB = (uB, wB) (resp. ṼB = (ũB, w̃B))
be a solution of (1.1) associated with (ρ,G,B) (resp. (ρ̃2, G,B)). As for Theorems 3.1 and
3.2 we decompose the proof in several steps.
• First step: We keep the notations of (3.12)

V = (u,w) = VA, Ṽ = (ũ, w̃) = ṼA, U = u− ũ, W = w− w̃, b = β− β̃, c = γ− γ̃, d = δ− δ̃.

and now define
f1 = ϕ1 − ϕ̃1.

We still define (see (3.14)) (for i = 0, 1, 2)

y0 = ηχU, z0 = ηχW, yi = ∂ity0, zi = ∂itz0.

The systems (3.13), (3.15), (3.16) become
∂tU = ∆U + αϕ1U + βϕ2W + αf1ũ+ bϕ2w̃ in Q,

∂tW = ∆W + γϕ3U + δϕ4W + cϕ3ũ+ dϕ4w̃ in Q,

U = W = 0 in Σ,

and (yi, zi) for i = 0, 1 satisfy the following systems
∂ty0 = ∆y0 + αϕ1y0 + βϕ2z0 + αf1ηχũ+ bϕ2ηχw̃ + S1 in QL,

∂tz0 = ∆z0 + γϕ3y0 + δϕ4z0 + cϕ3ηχũ+ dϕ4ηχw̃ + S2 in QL,

y0 = z0 = 0 on ∂ΩL × (0, T )

(3.36)
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with

S1 = R1 = −(∆χ)ηU − 2η∇χ · ∇U + χ∂tηU, S2 = R2 = −(∆χ)ηW − 2η∇χ · ∇W + χ∂tηW.

We have 
∂ty1 = ∆y1 + αϕ1y1 + βϕ2z1 + S3 in QL,

∂tz1 = ∆z1 + γϕ3y1 + δϕ4z1 + S4 in QL,

y1 = z1 = 0 on ∂ΩL × (0, T ),

with
S3 = ∂t (αf1ηχũ+ bϕ2ηχw̃) + ∂tS1 + αy0∂tϕ1 + βz0∂tϕ2,

S4 = R4 = ∂t (cϕ3ηχũ+ dϕ4ηχw̃) + ∂tS2 + γy0∂tϕ3 + δz0∂tϕ4.

We also have
∂ty2 = ∆y2 + αϕ1y2 + βϕ2z2 + ∂tS3 + α∂tϕ1y1 + β∂tϕ2z1 in QL,

∂tz2 = ∆z2 + γϕ3y2 + δϕ4z2 + ∂tS4 + γ∂tϕ3y1 + δ∂tϕ4z1 in QL,

y2 = z2 = 0 on ∂ΩL × (0, T ).

• In the second step we estimate
∑2

i=0(I(yi) + I(zi)) as in Theorem 3.1 and we get

2∑
i=0

(I(yi) + I(zi)) ≤ C

∫
QL

e2sϕ(b2 + c2 + d2)χ2 dx dt+ C

∫
QL

e2sϕχ2(
2∑
i=0

(∂itf1)
2) dx dt

+Cs3e2sd1 + Cse2sd2F̃0(γL) (3.37)

with F̃0(γL) =
∫
γL×(0,T )

∑2
i=0(|∂νyi|2 + |∂νzi|2) dσ dt (nearly same definition as before since

(3.17)).
Now following the proof of Theorem 3.1 we look at (3.18) in this context. First note that
because of the fourth step of this proof, we can no longer use the estimates of the Laplacian
terms in (3.18) and contrary to Theorems 3.1, 3.2, 3.4, we have to take care of the powers
of s on the right-hand sides of our estimates. In fact we could only look at the estimate of∫
ΩL
e2sϕ(θ)|∂tz0(θ)|2 dx but because of the remarks given just after the proof of this theorem,

we will keep more terms. So we will not estimate
∫
ΩL
e2sϕ(θ)|∂tz0(θ)|2 dx as in Theorems 3.1,

3.2, 3.4 (see the third step of Theorem 3.1) and for that, we need to differentiate twice y0
and z0 with respect to t. Thus∫

ΩL

e2sϕ(θ)|∂tz0(θ)|2 dx ≤ Cs

∫
QL

e2sϕ|z1|2 dx dt+
C

s

∫
QL

e2sϕ|z2|2 ≤
C

s2
(I(z1) + I(z2)).

So we have (coming from Lemma 3.1 as in (3.18)) and by (3.37)∫
ΩL

e2sϕ(θ)(y0(θ)|2 + |∂ty0(θ)|2 + |z0(θ)|2 + |∂tz0(θ)|2) dx ≤ C

s2

2∑
i=0

(I(yi) + I(zi))
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≤ C

s2

∫
QL

e2sϕ(b2+c2+d2)χ2 dx dt+
C

s2

∫
QL

e2sϕχ2(
2∑
i=0

(∂itf1)
2) dx dt+Cse2sd1+

C

s
e2sd2F̃0(γL).

Since ϕ ≤ ϕ(θ) we get∫
ΩL

e2sϕ(θ)(|y0(θ)|2 + |∂ty0(θ)|2 + |z0(θ)|2 + |∂tz0(θ)|2) dx ≤ C

s2

∫
ΩL

e2sϕ(θ)(b2 + c2 + d2)χ2 dx

+
C

s2

∫
QL

e2sϕ(θ)χ2(
2∑
i=0

(∂itf1)
2) dx dt+ Cse2sd1 +

C

s
e2sd2F̃0(γL). (3.38)

• Third step: here we estimate
∫
ΩL
e2sϕ(θ)χ2(b2 + c2 + d2) dx as in Theorem 3.1 with two

different sets of conditions A and B. We recall that each function f precendently defined is
denoted either fA or fB when it is related either by the conditions A or B.
For the coefficient b we can write from the first equation of (3.36)

−bηχϕ2(ũAw̃B − ũBw̃A) = ũB(∂ty0A −∆y0A − αϕ1y0A − βϕ2z0A − αf1ηχũA − S1A)

−ũA(∂ty0B −∆y0B − αϕ1y0B − βϕ2z0B − αf1ηχũB − S1B).

Note that the terms in f1 disappear in the above equality. For the coefficients c and d we
use the second equation of (3.36) and proceed as in Theorem 3.1. Indeed, for example for c,
we have

cηχϕ3(ũAw̃B − ũBw̃A) = w̃B(∂tz0A −∆z0A − γϕ3y0A − δϕ4z0A − S2A)

−w̃A(∂tz0B −∆z0B − γϕ3y0B − δϕ4z0B − S2B).

Therefore by hypothesis (3.3) and (3.38) we obtain for s sufficiently large∫
ΩL

e2sϕ(θ)(b2 + c2 + d2)χ2 dx ≤ C

s2

∫
QL

e2sϕ(θ)χ2(
2∑
i=0

(∂itf1)
2) dx dt+ Cse2sd1 + Ce2sd2F2(θ)

(3.39)
with F2(θ) = F̃0A(γL) + F̃0B(γL) + ∥∆y0A(θ)∥L2(ΩL) + ∥∆y0B(θ)∥L2(ΩL) + ∥∆z0A(θ)∥L2(ΩL) +

∥∆z0B(θ)∥L2(ΩL).

• Fourth step: we estimate now
∫
QL
e2sϕ(θ)χ2(

∑2
i=0(∂

i
tf1)

2) dx dt. Here again we use the two
different sets of coefficients A and B. From (3.36) for y0A and y0B, we get

αηχf1(ũAw̃B − ũBw̃A) = w̃B(∂ty0A −∆y0A − αϕ1y0A − βϕ2z0A − S1A)

−w̃A(∂ty0B −∆y0B − αϕ1y0B − βϕ2z0B − S1B). (3.40)

Applying (3.40) for t = θ, by hypotheses (3.3) and (3.9), using again (3.38) we obtain∫
ΩL

e2sϕ(θ)χ2(f1(θ))
2 dx ≤ C

s2

∫
QL

e2sϕ(θ)χ2(
2∑
i=0

(∂itf1)
2) dx dt
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+
C

s2

∫
ΩL

e2sϕ(θ)(b2 + c2 + d2)χ2 dx+ Cse2sd1 + Ce2sd2F2(θ). (3.41)

Deriving now (3.40) with respect to t, we have

(∂tf1)αη(ũAw̃B − ũBw̃A) + f1∂t(αηχ(ũAw̃B − ũBw̃A)) =

∂t(w̃B(∂ty0A−∆y0A−αϕ1y0A−βϕ2z0A−S1A)−w̃A(∂ty0B−∆y0B−αϕ1y0B−βϕ2z0B−S1B))

and evaluating this last equation at t = θ, still by hypotheses (3.3) and (3.9), we get∫
ΩL

e2sϕ(θ)χ2(∂tf1(θ))
2 dx ≤ C

∫
ΩL

e2sϕ(θ)χ2(f1(θ))
2 dx

+C

∫
ΩL

e2sϕ(θ)
1∑
i=0

(|∂itz0A(θ)|2 + |∂itz0B(θ)|2) + Ce2sd2F3(θ) (3.42)

with

F3(θ) =
2∑

k=0

(∥∂kt y0A(θ)∥2L2(ΩL)
+ ∥∂kt y0B(θ)∥2L2(ΩL)

)

+
1∑

k=0

(∥∂kt∆y0A(θ)∥2L2(ΩL)
+ ∥∂kt∆y0B(θ)∥2L2(ΩL)

).

From (3.38), (3.41) and (3.42) we have∫
ΩL

e2sϕ(θ)χ2((f1(θ))
2 + (∂tf1(θ))

2) dx ≤ C

s2

∫
QL

e2sϕ(θ)χ2(
2∑
i=0

(∂itf1)
2) dx dt

+
C

s2

∫
ΩL

e2sϕ(θ)(b2 + c2 + d2)χ2 dx+ Cse2sd1 + Ce2sd2F4(θ) (3.43)

with F4(θ) = F2(θ) + F3(θ).

Moreover by Taylor’s formula, we have

f1(t) = f1(θ) + ∂tf1(θ)(t− θ) + ∂2t f1(cθ)
(t− θ)2

2
and ∂tf1(t) = ∂tf1(θ) + ∂2t f1(c

′
θ)(t− θ)

with cθ, c′θ ∈ [0, T ]. Therefore, since ϕ̃1 ∈ Λ3(M3) the admissible set of coefficients, we get

2∑
i=0

(∂itf1)
2 ≤ C(f1(θ))

2 + (∂tf1(θ))
2),

so from (3.43) we deduce that for s sufficiently large∫
QL

e2sϕ(θ)χ2(
2∑
i=0

(∂itf1)
2) dx dt ≤ C

s2

∫
ΩL

e2sϕ(θ)(b2 + c2 + d2)χ2 dx+ Cse2sd1 + Ce2sd2F4(θ).

(3.44)
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• Fifth and last step: now addding (3.39) and (3.44) we obtain∫
ΩL

e2sϕ(θ)(b2 + c2 + d2)χ2 dx+

∫
QL

e2sϕ(θ)χ2(
2∑
i=0

(∂itf1)
2) dx dt ≤ Cse2sd1 + Ce2sd2F4(θ).

So∫
Ωl

e2sϕ(θ)(b2 + c2 + d2) dx+

∫
Ωl×(0,T )

e2sϕ(θ)(
2∑
i=0

(∂itf1)
2) dx dt ≤ Cse2sd1 + Ce2sd2F4(θ)

and we conclude as for Theorem 3.1 by optimizing the above inequality with respect to s.

Remark 2 • If the admissible set of coefficients is Λ′
3(M3) (thus less restrictive than

Λ3(M3)), then we would have to derive p− 1 times (3.40) with respect to t and that would
demand more regularity for the observation terms on u.
• On the contrary if the admissible set of coefficients is Λ′′

3(M3), so more restrictive than
Λ3(M3) (or if ϕ̃1 ∈ C2([0, T ]) is such that ϕ̃1(θ) ̸= ϕ1(θ) and supt∈[0,T ] |∂it(ϕ1−ϕ̃1)(t)|

|ϕ1(θ)−ϕ̃1(θ)|
≤ M3 for

i = 0, 1, 2), then we can drop (3.42) and (3.43) in the above proof. Therefore the result
remains valid without F3(θ) and so F4(θ) = F2(θ). Thus the observations terms on u are
only ∥(uA − ũA)(·, θ)∥2H2(ΩL)

and ∥(uB − ũB)(·, θ)∥2H2(ΩL)
.

3.3.4 Proof of Theorem 3.4 Here again we follow the method described before. Let
VA = (uA, wA) (resp. ṼA = (ũA, w̃A)) be a strong solution of (1.3) associated with (ρ,G,A,Θ)

defined by (1.2) and (1.4) (resp. (ρ̃3, G,A, Θ̃)). Consider also VB = (uB, wB) (resp. ṼB =

(ũB, w̃B)) a strong solution of (1.3) associated with (ρ,G,B,Θ) (resp. (ρ̃3, G,B, Θ̃)).
• As before, in a first step we define

V = (u,w) = VA, Ṽ = (ũ, w̃) = ṼA, U = u− ũ, W = w− w̃, b = β− β̃, c = γ− γ̃, d = δ− δ̃

and also
H = Θ1 − Θ̃1 = ∇h with h = ξ1 − ξ̃1.

Recall that for i = 0, 1,

y0 = ηχU, z0 = ηχW, y1 = ∂iy0, z1 = ∂tz0.

Then
∂ty0 = ∆y0 + αϕ1y0 + βϕ2z0 +Θ1 · ∇y0 +Θ2 · ∇z0 + bηχϕ2w̃ + η∇(χh) · ∇ũ+ T1 in QL,

∂tz0 = ∆z0 + γϕ3y0 + δϕ4z0 +Θ3 · ∇y0 +Θ4 · ∇z0 + cηχϕ3ũ+ dηχϕ4w̃ + T2 in QL,

y0 = z0 = 0 on ∂ΩL × (0, T )

(3.45)
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with

T1 = (∂tη)χU − (∆χ)ηU − 2∇χ · ∇(ηU)− ηUΘ1 · ∇χ− ηWΘ2 · ∇χ− ηh∇ũ · ∇χ

T2 = (∂tη)χW − (∆χ)ηW − 2∇χ · ∇(ηW )− ηUΘ3 · ∇χ− ηWΘ4 · ∇χ.

And

∂ty1 = ∆y1 + αϕ1y1 + βϕ2z1 +Θ1 · ∇y1 +Θ2 · ∇z1 + bηχ∂t(ϕ2w̃) + η∇(χh) · ∇∂tũ+ T3

in QL,

∂tz1 = ∆z1 + γϕ3y1 + δϕ4z1 +Θ3 · ∇y1 +Θ4 · ∇z1 + cηχ∂t(ϕ3ũ) + dηχ∂t(ϕ4w̃) + T4

in QL,

y1 = z1 = 0 on ∂ΩL × (0, T )

with
T3 = αy0∂tϕ1 + βz0∂tϕ2 + ∂tη(bχϕ2w̃ +∇(χh) · ∇ũ) + ∂tT1,

T4 = γy0∂tϕ3 + δz0∂tϕ4 + ∂tη(cχϕ3ũ+ dχϕ4w̃) + ∂tT2.

Thus we obtain
1∑
i=0

(I(yi) + I(zi)) ≤ C

∫
QL

e2sϕ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt+ Cs3e2sd1

+Cs
1∑
i=0

∫
γL×(0,T )

e2sϕ(|∂νyi|2 + |∂νzi|2) dσ dt.

We deduce that (see the third step of Theorem 3.1)
1∑
i=0

∫
ΩL

e2sϕ(θ)(|yi(θ)|2+|∇yi(θ)|2+|zi(θ)|2+|∇zi(θ)|2) dx+
∫
ΩL

e2sϕ(θ)(|∆y0(θ)|2+|∆z0(θ)|2) dx

≤ Cs2
1∑
i=0

(I(yi) + I(zi))

≤ Cs2
∫
QL

e2sϕ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt+ Cs5e2sd1 + Cs3e2sd2F0(γL) (3.46)

with F0(γL) defined by (3.17).
• In a second step we consider the solutions of (1.3) associated with two different sets of
initial conditions A and B and we recall that each function f precendently defined is denoted
either fA or fB when it is related either by the conditions A or B. As in the fourth step of
Theorem 3.1 we have a similar estimate to (3.23) for the coefficients c and d. Indeed, writing
(3.45) for z0A and z0B, by the hypothesis (3.3) and from (3.46) we have∫

ΩL

e2sϕ(θ)(c2 + d2)χ2 dx ≤

Cs2
∫
QL

e2sϕ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt+ Cs5e2sd1 + Cs3e2sd2F1(γL) (3.47)
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with F1(γL) defined by (3.21). Now we eliminate b in (3.45) in order to estimate the coefficient
h and we evaluate at t = θ. We use here the partial differential operator P defined in Lemma
3.2.

P (χh) = w̃B(θ)∇(χh) · ∇ũA(θ)− w̃A(θ)∇(χh) · ∇ũB(θ)

P (χh) = w̃B(θ)[∂ty0A(θ)−∆y0A(θ)− αϕ1y0A(θ)− βϕ2z0A(θ)

−Θ1 · ∇y0A(θ)−Θ2 · ∇z0A(θ)− T1A(θ)]

−w̃A(θ)[∂ty0B(θ)−∆y0B(θ)−αϕ1y0B(θ)−βϕ2z0B(θ)−Θ1 ·∇y0B(θ)−Θ2 ·∇z0B(θ)−T1B(θ)].
(3.48)

From Lemma 3.2 we have

s2
∫
ΩL

e2sϕ(θ)(∂xi(hχ))
2 dx ≤ C

∫
ΩL

e2sϕ(θ)|P (∂xi(χh))|2 dx.

So taking the space derivative with respect to xi (for i = 1, · · · , n) in (3.48), from (3.46) we
get that

s2
∫
ΩL

e2sϕ(θ)|∇(χh)|2 dx ≤ C

∫
ΩL

e2sϕ(θ)|∇(χh)|2 dx+

Cs2
∫
QL

e2sϕ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt

+ Ce2sd2(∥y0A(θ)∥2H3(ΩL)
+ ∥y0B(θ)∥2H3(ΩL)

) + Cs5e2sd1 + Cs3e2sd2F1(γL)

and for s sufficiently large,

s2
∫
ΩL

e2sϕ(θ)|∇(χh)|2 dx ≤ Cs2
∫
QL

e2sϕ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt

+Cs5e2sd1 + Cs3e2sd2F5(θ) (3.49)

with F5(θ) = F1(γL)+∥y0A(θ)∥2H3(ΩL)
+∥y0B(θ)∥2H3(ΩL)

. Now we look at the coefficient b. We
also use (3.45) for y0A and y0B

−bηχϕ2(ũAw̃B − ũBw̃A) = ũB(∂ty0A −∆y0A − αϕ1y0A − βϕ2z0A −Θ1 · ∇y0A −Θ2 · ∇z0A

−η∇(χh) · ∇ũA − T1A)− ũA(∂ty0B −∆y0B − αϕ1y0B − βϕ2z0B −Θ1 · ∇y0B

−Θ2 · ∇z0B − η∇(χh) · ∇ũB − T1B). (3.50)

Therefore, evaluating (3.50) at t = θ, still using hypothesis (3.3), from (3.46) we get∫
ΩL

e2sϕ(θ)b2χ2 dx ≤ C

∫
ΩL

e2sϕ(θ)|∇(χh)|2 dx
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+Cs2
∫
QL

e2sϕ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt+ Cs5e2sd1 + Cs3e2sd2F1(γL). (3.51)

Thus from (3.49)-(3.51) we obtain∫
ΩL

e2sϕ(θ)(bχ)2 dx ≤ Cs2
∫
QL

e2sϕ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt

+Cs5e2sd1 + Cs3e2sd2F5(θ). (3.52)

Finally adding (3.47), (3.49), (3.52), as in the proof of Theorem 3.1 we can neglect
s2
∫
QL
e2sϕ((b2 + c2 + d2)χ2 + |∇(χh)|2) dx dt by the left-hand side so we get∫

ΩL

e2sϕ(θ)((b2 + c2 + d2)χ2 + |∇(χh)|2) ≤ Cs5e2sd1 + Cs3e2sd2F5(θ)

and we conclude as in Theorem 3.1.
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