

Keywords: shipping, decarbonization, ammonia; NO_x , N_2O , emission control, GHG

Emission Control Concepts for large two-stroke ammonia engines

Georgia Voniati, Athanasios Dimaratos, Grigorios Koltsakis, Leonidas Ntziachristos

Laboratory of Applied Thermodynamics, Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece

https://doi.org/10.18453/rosdok_id00004637

Abstract

Decarbonizing the maritime sector to meet the ambitious IMO targets requires the integration of various technologies. Among the alternative fuels, ammonia (NH₃) is a promising candidate; however, its combustion generates NO_x , NH_3 , and N_2O , a potent greenhouse gas (GHG). The current study explores emissions control strategies for NH₃-fueled marine engines, employing both conventional and advanced catalytic technologies in simulated NH3 engine exhaust to eliminate the unwanted N-species from the combustion process. Small-scale experiments are conducted on a synthetic gas bench (SGB) using three catalytic samples: two SCR technologies (vanadium-based (V-SCR) and iron-based (Fe-SCR)), and a platinum-based NH₃ oxidation catalytic (Pt-AOC). These experiments provide reaction kinetics information which are then integrated into physico-chemical models. The V-SCR reaction scheme employed commonly used reactions, whereas the Fe-SCR required specific modifications to its chemical reaction scheme. The models are then used to examine two scenarios concerning the relative engine-out concentrations of NO_x, NH₃ and N₂O: (1) low NO_x with high NH₃ and N₂O, and (2) high NO_x with lower NH₃ and N₂O levels. Simulation results indicate that NO_x could be optimized to meet the IMO limits with minimum NH₃ slip in both cases. However, high levels of NH₃ in the exhaust gas can result to significantly increased N₂O production in the exhaust aftertreatment system. In the meantime, N_2O decomposition using a cobalt-based catalyst is being examined, though the potential effects of NO_x, NH₃ and SO₂ remain to be determined.

I. Introduction

International maritime shipping plays a crucial role in the global economy and trade. Nevertheless, vessel emissions have a significant impact both on the environment and the human health. In particular, the maritime sector is responsible for almost 3% of the global Greenhouse Gas (GHG) emissions, which is expected to further increase until 2050 [1]. Apart from GHG, the maritime sector is also a source of air pollutants, such as Nitrogen Oxides (NO_x), Sulfur Oxides (SO_x) and Particulate Matter (PM) emissions [2]. In efforts to mitigate global warming and environmental impact of shipping, the International Maritime Organization (IMO) has implemented more stringent regulations on ships' emissions, aiming to at least 70% reduction in GHG by 2040, and ultimately to net-zero GHG emissions around 2050 [3]. In parallel, NO_x emissions must adhere to Tier III standards (3.4 g/kWh for vessels powered by low-speed two-stroke engines) within Emission Control Areas (ECAs), and Tier II standards (14.4 g/kWh for vessels powered by low-speed two-stroke engines) globally. Regarding SO_x emissions, the IMO has implemented a global sulfur cap, setting a maximum limit of 0.50% fuel sulfur content that decreases to 0.10% within Sulfur Emission Control Areas (SECAs) [4].

In pursuit of this goal, the introduction of alternative fuels such as liquified natural gas (LNG), methanol, ethanol, liquid petroleum gas (LPG), ammonia and hydrogen can significantly reduce emissions and minimize environmental and health risks. Among the alternative fuels, ammonia (NH₃) is one of the most promising solutions for fueling marine engines as it is carbon-free, it is easily stored in liquid form, and can be produced utilizing renewable energy sources such as wind, solar, or hydroelectric power [5]. However, the poor combustion properties of NH₃ (high autoignition temperature, low flame speed, low flammability) preclude a stable combustion with pure ammonia. Consequently, a pilot-fuel with higher cetane number (i.e., Diesel) is used to initiate the combustion produces Nitrous Oxide (N₂O), unburnt NH₃ and NO_x emissions [5]. The former is one of the strongest GHG, with Global Warming Potential (GWP) over 100-year period equal to almost 300 [8]. NO_x and NH₃ (from fuel combustion and the Exhaust Aftertreatment System (EATS) respectively), are commonly targeted emissions species. Conversely, N₂O has always been treated as an unwanted product of the EATS rather as an engine emission to be targeted by a catalytic device. Therefore, the EATS of NH₃ fueled engines needs to adapt in order to simultaneously control all unwanted N-species.

The application of a Selective Catalytic Reduction (SCR) system (vanadium-based usually in marine applications) is commonly employed to reduce NO_x emissions by utilizing NH₃ or urea as the reducing agent [9]. In the case of ammonia combustion, NO_x can undergo direct reaction with the unburnt NH₃, or NH₃ can be directly injected upstream of the SCR to ensure adequate reductant availability. Ammonia slip can be minimized with an ammonia slip catalyst (ASC), however oxidation of NH₃ can promote NO_x and N₂O formation. Advanced SCR formulations are studied towards N₂O abatement. Iron-based catalysts (Fe-SCR) can be advantageous due to their ability to simultaneously reduce NO_x and N₂O by NH₃ [10,11]. It would be highly desirable to convert N₂O via catalytic thermal decomposition without the need of a reducing agent. Cobalt-based catalysts have been reported to promote such thermal N₂O decomposition [12-16], albeit only at rather high temperatures.

Based on the above, it is evident that the catalytic technologies must be developed and adopted to simultaneously reduce the unwanted N-species of NH_3 engine exhaust. However, NH_3 engines, particularly large two-stroke ones, used in the maritime sector are not yet commercially available. Consequently, the exact exhaust gas conditions for designing an emission control system are not

precisely known. Even if the exhaust gas characteristics of NH_3 engines were available from measurements, designing an emission control system through trial and error would be prohibitive due to the enormous testing costs on large two-stroke marine engines. Therefore, it is imperative to develop accurate and predictive models of the aftertreatment system that are applicable under a wide range of conditions to ensure the coverage of all possible scenarios. The development of such models is essentially the main target of the present work which is conducted within the EU-funded ENGIMMONIA project.

Exhaust aftertreatment models rely on kinetic mechanisms and rate expressions that describe the intrinsic chemical properties of the active materials. In this study, experiments are performed to derive the respective kinetic information for three catalytic formulations of interest and introduce them in integrated physico-chemical models of the transient transport and the reaction processes in monolithic catalytic reactors. The models are then used to study possible scenarios concerning the relative engineout concentrations of NO_x, NH₃ and N₂O. The base scenario assumes an NH₃ to NO_x ratio of less than 1 (ANR<1) with low N₂O emissions, so additional NH₃ is injected upstream of the SCR, while the alternative scenario assumes low NO_x with high NH₃ (ANR>1) and higher N₂O emissions. The activity of the commonly used vanadium-based SCR (V-SCR) is compared to the Fe-SCR based technology. In the case of high NH₃ concentration in the exhaust, a dual-layer ASC is integrated to the aftertreatment system to handle the NH₃ slip. Particular emphasis is given to the formation/reduction of N₂O and the equivalent CO₂-emissions accounting for CO₂ emissions from pilot fuel as well.

2. Experimental and Modeling methods

2.1. Small-scale catalyst testing

The study of the catalyst chemistry is supported by measurements conducted on a Synthetic Gas Bench (SGB) setup (Figure 1). The flow rate and composition are regulated using the programmable mass flow controllers (MFCs). Moisture is introduced into the mixture via a pre-heated H_2O feed to avoid flue gas condensation. Subsequently, the mixture is heated to the desired temperature using a pre-heater system before traversing through the catalyst sample. The concentrations of the species at the outlet of the catalyst are quantified using an FTIR gas analyzer (AVL Sesam i60 FT SII).

Figure 1: Synthetic Gas Bench (SGB) schematic configuration.

Three small-scale catalyst samples were tested: two diesel state-of the-art samples (a V-SCR and a Pt-AOC), and an ammonia engine tailored sample (an Fe-SCR). The characteristics of the samples are listed in Table I. Both steady-state and light-off (temperature ramp) experiments are performed to derive kinetic information for the technologies of interest. These include NO_x reduction with NH₃, the effect of ANR on NO_x conversion, NH₃ slip and N₂O, the effect of N₂O addition in the feed gas as will be explained below.

Catalyst sample properties	V-SCR	Fe-SCR	Pt-AOC
Diameter x Length [mm x mm]	28 × 90	28 x 150	28 ×90
CPSI [-]	100	230	200
Wall thickness [mils]	2	9	2
Substrate material [-]	metal	cordierite	metal
Cell shape [-]	triangle	square	triangle

Table 1: Properties of the tested catalyst samples.

For the purpose of marine applications, it is crucial to assess also sulfur tolerance, as SO_2 is a predictable byproduct of conventional pilot-fuel combustion, particularly when high-S fuel is used (e.g., HFO). V-SCR catalysts have demonstrated sulfur tolerance [17]; therefore, this study focuses on exclusively examining the impact of SO_2 on the Fe-SCR catalyst. Firstly, the catalyst is exposed to SO_2 until saturation. Thereafter, an SCR experiment is conducted without any further S-exposure. Finally, potential desulfation as function of temperature is examined.

2.2. Mathematical model

The present study is performed using the *ExothermiaSuite®* simulation tool [18]. The underlying models uses common assumptions to model the flow and thermophysical and chemical phenomena in the catalyst channels. These include the assumption of uniform flow, temperature, and concentration distribution at the inlet of the channels, and negligible heat losses to the ambient. Consequently, a one-dimensional (1D) representation of a single channel is adopted.

Temperature and species concentrations within the channel are determined by solving quasi-steady state balance equations for the heat (equation 1) and mass (equation 2) transfer:

$$\rho_{\rm g} C_{\rm p,g} v_{\rm g} \frac{\partial T_{\rm g}}{\partial z} = -h * \left(\frac{S_{\rm F}}{\varepsilon}\right) * \left(T_{\rm g} - T_{\rm s}\right) \tag{1}$$

$$\frac{\partial (v_{g} y_{g,j})}{\partial z} = -k_{j} * \left(\frac{S_{F}}{\varepsilon}\right) * \left(y_{g,j} - y_{s,j}\right)$$
(2)

The wall surface temperature is calculated by the transient energy balance of the solid phase expressed as (equation 3):

$$\rho_{\rm s} C_{\rm p,s} \frac{\partial T_{\rm s}}{\partial t} = \lambda_{s,z} \frac{\partial^2 T_{\rm s}}{\partial z^2} + S \tag{3}$$

The surface concentrations are obtained by solving the concentration field inside the washcoat layer via the reaction-diffusion equation (equation 4):

$$-D_{w,j}\frac{\partial^2 y_{s,j}}{\partial w^2} = \sum_k n_{j,k} R_k$$
⁽⁴⁾

The solution of the concentration field in the washcoat layer is of particular importance for the case of technologies with multiple catalytic layers (ID + ID). In fact, this is the case with ASCs that usually contain both a precious metal (PGM) layer, particularly an AOC layer of the oxidation of NH₃, as well as an SCR layer on top (Figure 2). This combination comes with advantages concerning NH₃ reduction and selectivity properties of the ASC, as NO_x formed in the oxidation layer diffuses through the SCR layer where it can be reduced.

Figure 2: Dual-layer ASC schematic configuration.

2.3. Reaction Mechanisms

The SCR reactivity was described adapting commonly used SCR reaction schemes [19], including the standard, fast and NO₂ SCR reactions, as well as NH₃ and NO oxidation, and N₂O formation pathways as listed in Table 2. These reactions, commonly used in Diesel exhaust, are the starting point for developing the final models for the V- and Fe-SCR for the NH₃ engine exhaust.

Table 2; Basic SCR reaction scheme.

Reaction type	Reaction
NH3 storage/release	$NH_3 \leftrightarrow NH_3^*$
Standard SCR	$4 \text{ NH}_3 * + 4 \text{ NO} + \text{O}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$
Fast SCR	$4 \text{ NH}_3 * + 2 \text{ NO} + 2 \text{ NO}_2 \rightarrow 4 \text{ N}_2 + 6 \text{ H}_2\text{O}$
NO ₂ SCR	$NH_3 * + 3/4 NO_2 \rightarrow 7/8 N_2 + 3/2 H_2O$
N ₂ O formation pathways	$\begin{array}{c} 2 \ NH_3^* + 2 \ NO + O_2 \rightarrow N_2 + N_2O + 3 \ H_2O \\ 4 \ NH_3^* + 4 \ NO_2 \rightarrow 2 \ N_2 + 2 \ N_2O + 6 \ H_2O \end{array}$
NO oxidation to NO ₂	$NO + I/2 O_2 \leftrightarrow NO_2$
NH₃ oxidation	$\begin{array}{l} 4 \ NH_3 * + 5 \ O_2 \rightarrow 4 \ NO + 5 \ H_2O \\ 2 \ NH_3 * + 3/2 \ O_2 \rightarrow N_2 + 3 \ H_2O \\ 4 \ NH_3 * + 4 \ O_2 \rightarrow 2 \ N_2O + 6 \ H_2O \end{array}$

Ammonia oxidation on the Pt-AOC catalyst is approached with a simple kinetic model that gives a good representation of the overall reactions [20]. The common oxidation reactions used are listed in Table 3. These include the oxidation of NH_3 to N_2 and NO, the simultaneous oxidation of NH_3 and NO to N_2O and the oxidation of NO to NO_2 .

Table 3: Basic Pt-AOC	reaction scheme.
-----------------------	------------------

Reaction type	Reaction
NO oxidation to NO ₂	$NO + 1/2 O_2 \leftrightarrow NO_2$
NH ₃ and NO oxidation to N ₂ O	$2 \text{ NH}_3 + 2 \text{ NO} + 3/2 \text{ O}_2 \rightarrow 2 \text{ N}_2\text{O} + 3 \text{ H}_2\text{O}$
NH₃ oxidation	$\begin{array}{c} 4 \ NH_3 + 5 \ O_2 \rightarrow 4 \ NO + 5 \ H_2O \\ 2 \ NH_3 + 3/2 \ O_2 \rightarrow N_2 + 3 \ H_2O \end{array}$

3. Reaction model

3.1. V-SCR reaction model calibration

The results of the V-SCR activity tests are summarized in Figure 3 along with the respective calibrated model results. At temperatures above 300 °C, it is observed that the SCR process highly depends on the proportion of NO_x and NH₃ in the feed gas. When ANR is greater than 1, NO_x is almost fully converted, however this leads to increased NH₃ slip. When ANR is less than 1, partial NO_x conversion is achieved as expected from the SCR reaction stoichiometry (Table 2). Concerning N₂O, low selectivity (below 20 ppm) is observed in the temperature range below 500 °C. (Figure 3c). In order to examine the possible reduction of N₂O over the V-SCR catalyst, N₂O is added to the feed gas (Figure 3d). It is evident that N₂O flows through the catalyst unreacted at temperatures below 400 °C whereas N₂O is produced at 500 °C. The reaction rates of the reaction scheme listed in Table 2 are calibrated to fit the experimental determined NO_x, NH₃ and N₂O keeping the same values for the entire range of test conditions.

Figure 3: (a) NO_x conversion, (b) NH₃ slip, (c) N₂O without N₂O in the feed gas, under various NH₃/NO_x ratios, and (d) N₂O with 50 ppm and 100 ppm N₂O in the feed gas under ANR=1.0, over the V-SCR, based on the experimental data (symbols) and the model (solid lines) (Feed gas: 2000 ppm NO, ANR=0.8, 1.0, 1.5, 10% O₂, 15% H₂O, N₂ balance, GHSV=20,000 ^{h-1}).

3.2. Fe-SCR reaction model calibration

For the development of the reaction kinetic model of the Fe-SCR catalyst, several modifications of the commonly used reactions in SCR technologies (Table 2) were required. Figure 4 a shows NO_x and NH₃ conversion under SCR conditions According to the standard SCR reaction (4 NO + 4 NH₃ + O₂ \rightarrow 4 N₂ + 6 H₂O) equal number of moles of NO_x and NH₃ are expected to react. However, test results revealed an overconsumption of NH₃ compared to NO_x. This is also evident in Figure 4b, where Δ NH₃/ Δ NO_x is greater than 1 in the whole temperature range. This phenomenon has been documented in several previous studies [21-24]. Consequently, for the model development the stoichiometry of the typical standard SCR reaction was modified as below:

$$6 \text{ NH}_3^* + 5 \text{ NO} + 2 \text{ O}_2 \rightarrow 11/2 \text{ N}_2 + 9 \text{ H}_2\text{O}$$
(5)

The modified standard SCR reaction is able to successfully predict the overconsumption of NH_3 (solid lines of Figure 4).

Figure 4: (a) NO_x and NH₃ conversion under Standard SCR conditions, and (b) $\Delta NH_3/\Delta NO_x$ over the Fe-SCR, based on the experimental data (symbols) and the model (solid lines) (Feed gas: 1000 ppm NO, ANR=1.0, 10% O₂, 15% H₂O, N₂ balance, GHSV=14,000 ^{h-1}).

The experimental findings on the influence of the inlet ANR are depicted in Figure 5a with symbols. When ANR is less than 1, the catalyst performance is limited by the lack of NH₃ to further react with NO_x. When abundant NH₃ is present (ANR>1), NO_x conversion increases at temperatures above 350 °C. At temperatures below 300 °C and in excess of NH₃, NO_x conversion is significantly reduced. To capture this phenomenon in the model, it was necessary to include an inhibition term $(1 + k \times C_{NH3}^2)$ in the reaction rate of the modified standard SCR (reaction 5):

$$\mathbf{R} = \mathbf{k} \cdot \Psi_{\mathbf{S}} \cdot \psi_{\mathbf{S}_{\mathbf{NH}_3}} \cdot \mathbf{C}_{\mathbf{NO}} \cdot \mathbf{C}_{\mathbf{O}_2} / (1 + \mathbf{k} \cdot \mathbf{C}_{\mathbf{NH}_3}^2)$$
(6)

The introduction and calibration of the inhibition term results in a good accuracy between the model and the experiment (solid lines of Figure 5a). The conversion of NO_x with and without the inhibition term for the case of ANR=3.0, is shown in Figure 5b.

Excess NH₃ leads to increased concentrations of NH₃ slip, while in the case of stoichiometric ANR or deficiency of NH₃, NH₃ completely reacts with NO_x (Figure 5c). Selectivity of N₂O is maintained at low levels (<10 ppm) and it is not affected by NH₃/NO_x ratio (Figure 5d).

In order to explain the NO_x emissions as function of temperature (Figure 6a), it was necessary to add an SCR reaction with N₂O acting as a 'promoting' species. This is realized by adding N₂O in both the reactants and products (standard SCR + N₂O):

$$NH_3^* + NO + \frac{1}{4}O_2 + N_2O \rightarrow N_2 + \frac{3}{2}H_2O + N_2O$$
(7)

8th Rostock Large Engine Symposium 2024

Figure 5: (a) Comparison of the experimental data and the model of (a) NO_x conversion under various ANR including the inhibition term, (b) under ANR=3.0 with and without the inhibition term, (c) NH₃ slip under various ANR ratios, and (d) N₂O selectivity under various ANR ratios, over the Fe-SCR (Feed gas: 1000 ppm NO, ANR=0.7, 1.0, 3.0, 10% O₂, 15% H₂O, N₂ balance, GHSV=14,000 ^{h-1}).

This way, the reaction is activated only in the presence of N_2O with no effect on the N_2O concentration in the exhaust gas. The addition of this reaction resulted in very good accuracy of the model both in the presence and absence of N_2O (solid lines of Figure 6a). Figure 6b shows that in the presence of N_2O , reaction 7 is dominant while the reaction rate of the modified standard SCR (reaction 5) decreases due to competition between the two reactions.

Finally, N₂O conversion under various NH₃ concentrations is examined (Figure 7). As ANR increases, N₂O conversion also increases reaching a maximum at ANR=1.4. Further increase of NH₃ in the feed gas has a negative effect on N₂O reduction, especially at the lower temperatures (350 °C and 400 °C). To model N₂O conversion, the global reaction of direct reduction of N₂O by NH₃ (reaction 8) [25, 26] together with the global reaction of the simultaneous reduction of NO and N₂O by NH₃ (reaction 9) [27] are added to the reaction scheme:

$$2 \text{ NH}_3^* + 3 \text{ N}_2\text{O} \rightarrow 4 \text{ N}_2 + 3 \text{ H}_2\text{O}$$
(8)

 $2 \text{ NH}_3^* + 2 \text{ NO} + \text{N}_2\text{O} \rightarrow 3 \text{ N}_2 + 3 \text{ H}_2\text{O}$

Figure 6: (a) NO_x conversion with and without N₂O and (b) reaction rates of the Standard SCR + N₂O and the modified stoichiometry SCR in the presence and absence of N₂O, over the Fe-SCR, based on the experimental data (symbols) and the model (solid lines) (Feed gas: 1000 ppm NO, ANR=1.0, 0 and 100 ppm N₂O, 10% O₂, 15% H₂O, N₂ balance, $GHSV=14,000^{h-1}$).

For the efficient modeling of N₂O conversion in the whole range of ANR it was necessary to include an NH₃ inhibition term $(1 + k \times C_{NH3}^{1.5})$ to the reaction rate of the direct reduction of N₂O by NH₃ (reaction 8) as:

$$R_{r} = k \cdot \Psi_{S} \cdot \psi_{S_{NH_{2}}} \cdot C_{N20} / (1 + k \cdot C_{NH_{3}}^{1.5})$$
(10)

Figure 7: N₂O conversion under various NH₃/NO_x ratios, based on the experimental data (symbols) and the model without (dashed line) and with (solid line) the inhibition term, over the Fe-SCR. (Feed gas: 1000 ppm NO, variable NH₃, 100 ppm N₂O, 10% O₂, 15% H₂O, N₂ balance, GHSV=14,000 ^{h-1}).

(9)

Considering all the necessary modifications, the final Fe-SCR reaction scheme adopted is summarized in Table 1 Table 4.

Table 4: Fe-SCR reaction scheme.

Reaction type	Reaction
NH ₃ storage/release	$NH_3 \leftrightarrow NH_3^*$
Modified Standard SCR	$6 \text{ NH}_3^* + 5 \text{ NO} + 2 \text{ O}_2 \rightarrow 11/2 \text{ N}_2 + 9 \text{ H}_2\text{O}$
Standard SCR (+N ₂ O)	$NH_3^* + NO + 1/4 O_2 + N_2O \rightarrow N_2 + 3/2 H_2O + N_2O$
Fast SCR	$NH_3^* + \frac{1}{2} NO + \frac{1}{2} NO_2 \rightarrow N_2 + \frac{3}{2} H_2O$
N ₂ O formation pathways	$2 \text{ NH}_3^* + 2 \text{ NO} + \text{O}_2 \rightarrow \text{N}_2 + \text{N}_2\text{O} + 3 \text{ H}_2\text{O}$
	$2 \operatorname{INH}_3^{\circ} + 2 \operatorname{INO}_2 \rightarrow \operatorname{IN}_2^{\circ} + \operatorname{IN}_2^{\circ} + 3 \operatorname{H}_2^{\circ} + 3 \operatorname{H}$
NO oxidation to NO ₂	$NO + 1/2 O_2 \leftrightarrow NO_2$
NH_3 oxidation to N_2	$NH_3^* + 3/4 O_2 \rightarrow \frac{1}{2} N_2 + 3/2 H_2O$
N_2O reduction by NH_3	$2 \text{ NH}_3{}^* + 3 \text{ N}_2\text{O} \rightarrow 4 \text{ N}_2 + 3 \text{ H}_2\text{O}$
Simultaneous reduction of NO and	$2 \text{ NH}_2 + 2 \text{ NO} + \text{N}_2 \text{ O} \rightarrow 3 \text{ N}_2 + 3 \text{ H}_2 \text{ O}$
N ₂ O by NH ₃	$2 1 1 1 3 + 2 1 1 0 + 1 1 2 0 \rightarrow 3 1 1 2 + 3 1 2 0$

3.3. Pt-AOC reaction model calibration

The experimental results compared to the simulation model of the Pt-AOC catalyst are presented in Figure 8. Here the focus is not only on NH₃ reduction, but also on the formation of the unwanted NO_x and N₂O. The concentration of NH₃ decreases sharply from 200 °C to 250 °C and is completely oxidized around 300 °C. Production of N₂O is observed above 200 °C and increases significantly up to a maximum of 100 ppm at 250 °C. Above that temperature, formation of NO ad NO₂ are favored while N₂O is simultaneously decreasing. It is worth noting that the calibrated model using the common reactions of Table 3, is capable of capturing the complex trends with respect to N₂O and NO_x byproducts in the whole temperature range.

Figure 8: Comparison of the NH₃, NO, NO₂ and N₂O outlet concentrations for NH₃ oxidation over the Pt-AOC based on the experimental data (symbols) and the model (solid lines) (Feed gas: 250 ppm NH₃, 50 ppm NO, 6% O₂, 15% H₂O, 15 ppm SO₂, N₂ balance, GHSV=20,000 ^{h-1}).

4. Sulfur saturation of the Fe-SCR

The Fe-SCR was initially exposed to 110 ppm SO₂ at 225 °C until saturation (approximately 25 minutes) as presented in Figure 9a. The maximum SO₂ stored on the catalytic sites is calculated equal to 1.13 g/l. Thereafter, an SCR experiment is conducted without any further S-exposure (Figure 9b). Compared to the fresh catalyst, reduced NO_x conversion is observed at temperatures below 300 °C. At higher temperatures, NO_x conversion efficiency was not affected by S-saturation. Concerning N₂O, the saturated catalyst shows similar activity to the fresh (Figure 9c). The desulfation at high temperatures is examined as depicted in Figure 9d. The catalyst is initially exposed at a high temperature (above 400 °C) for 30 minutes and then NO_x conversion is measured at 250 °C where NO_x conversion reduction was observed. At a desulfation temperature of 450 °C the catalyst efficiency is partially retrieved while the catalyst activity is fully recovered at 600 °C.

8th Rostock Large Engine Symposium 2024

Figure 9: (a) Exposure of the Fe-BEA catalyst to SO₂, (b) NOx conversion of the fresh and s-saturated catalyst, (c) N₂O conversion of the fresh and s-saturated catalyst, (d) Desulfation of the catalyst at high temperatures (Feed gas (a): 110 ppm SO₂, 1000 ppm NO, ANR=1.0, 15% H₂O, 10% O₂, N₂ balance, GHSV=14,000 h⁻¹; Feed gas (b), (c), (d): 1000 ppm NO, ANR=1.0, 100 ppm N₂O, 15% H₂O, 10% O₂, N₂ balance, GHSV=14,000 h⁻¹).

5. Model Application in Marine Engine Exhaust

The objective of this section is to illustrate the application of modeling in the design phase of the NH₃ marine engine EATS. Given that NH₃ engines are still under development and yet commercially available, precise data on their exhaust gas conditions and emission concentrations remain unavailable. Consequently, the exhaust gas conditions of low-speed marine diesel engines are used as a basis, assuming a high-pressure (pre-turbo) EATS [28,29].

Ammonia combustion is likely to produce high levels of unburnt NH₃. It is well known that the molar ratio of NH₃/NO_x in the exhaust gas is very critical for the operation of the SCR. Recent studies [30,31] show that N₂O formation occurs in locations with significant unburnt NH₃ which is eliminated when unburnt NH₃ decreases and NO_x emissions increase. Based on these trends, two scenarios are examined: (1) high NO_x emissions with low NH₃ and N₂O (ANR<1), and (2) high unburnt NH₃ and N₂O with low NO_x emissions (ANR>1).

The simulated inlet conditions of the EATS are detailed in Table 5.

Table 5: Assumed inlet conditions of the EATS.

Engine Load [%]	25	50	75	100
Exhaust gas temperature [°C]	290	310	350	410
Exhaust gas pressure [bar]	1.4	2.1	3.1	4.0
Exhaust gas mass flow rate [kg/s]	4	9	12	15
Exhaust gas composition for ANR <i and="" low="" n2o<="" td=""><td colspan="4">1000 ppm NO, 500 ppm NH₃, 30 ppm N₂O, 10% H₂O, 10% O₂, N₂ balance</td></i>	1000 ppm NO, 500 ppm NH ₃ , 30 ppm N ₂ O, 10% H ₂ O, 10% O ₂ , N ₂ balance			
Exhaust gas composition for ANR>I and high N2O	1000 ppm NO, 3000 ppm NH ₃ , 100 ppm N ₂ O, 10% H ₂ O, 10% O ₂ , N ₂ balance			

In the case of NH₃ shortage and low N₂O (ANR<1), NH₃ injection upstream of the SCR is required as shown in Figure 10a to achieve the regulated NO_x limit of 3.4 g/kWh. In the case of excessive NH₃, a dual-layer ASC is placed downstream of the SCR to treat the unreacted NH₃ of the deNO_x process (Figure 10b). The ASC is assumed to be a combination of an SCR layer and a precious metal-based layer (AOC). The composition of the SCR layer is identical to the SCR catalyst prior the ASC. In both scenarios the commonly used V-SCR is compared to Fe-SCR.

Figure 10: Model exhaust layouts for the two cases examined: (a) shortage of NH_3 with low N_2O , and (b) excess of NH_3 with high N_2O in the exhaust gas.

Besides NO_x and NH₃ control, CO₂ equivalent emissions are calculated at the system outlet, accounting for both N₂O (originating from NH₃ combustion and the EATS), and CO₂ from pilot-fuel combustion (CO₂-equivalent = N₂O x 300 + CO₂ from pilot fuel). For the latter, 5% Diesel pilot-fuel is assumed.

Based on the assumed marine engine exhaust gas conditions presented in Table 5 and the weighting factors of the legislated E3 test cycle [32], it is estimated that a NO_x conversion rate in the order of 75% is required to comply with the Tier III limit of $3.4 \text{ gNO}_x/\text{kWh}$.

In the scenario of NH₃ shortage (ANR<1) and low N₂O emissions, where only the SCR is utilized, the minimum deNO_x requirement is met when NH₃ is injected at a target ANR of around 0.75. The volume of each technology is chosen in order to meet both NO_x and NH₃ limits, the latter set at 10 ppm. For the V-SCR the volume is equal to 1000 liters. When the Fe-SCR is used, the volume is increased to 1400 liters.

Applying the simulation model to the four loads of the E3 test cycle under the conditions specified in Table 5, NH_3 slip, N_2O and CO_2 -equivalent emissions are calculated at the system outlet as depicted in Figure 11. For the V-SCR, nearly all NH_3 is predicted to be consumed during NO_x reduction,

resulting in NH₃ slip of less than 5 ppm, with minimal N₂O formation. When the V-SCR is replaced by the Fe-SCR catalyst, NH₃ slip is reduced to the limit of 10 ppm. Notably, N₂O emissions significantly reduce at 75% and 100% engine load, benefiting from the catalyst's ability to reduce both NO_x and N₂O. Consequently, the CO₂-equivalent emissions of the Fe-SCR are lower compared to those of the V-SCR catalyst. This scenario proposes a significant reduction of GHG emissions compared to Dieselonly operation of 70% that can even reach 90% at full load when the Fe-SCR is implemented.

Figure 11: Model predictions for NH₃ slip, N₂O and CO₂-equivalent emissions over 100-year GWP at the SCR system outlet in the case of lack of NH₃ (ANR<1) and low N₂O in the exhaust gases. (Exhaust gas composition: 1000 ppm NO, 500 ppm NH₃, 30 ppm N₂O, 10% H₂O, 10% O₂, N₂ balance).

Figure 12 presents NO_x, NH₃, N₂O and CO₂-equivalent emissions for the case of excessive engineout NH₃ (ANR>1) and high N₂O emissions.

For excessive NH₃ (ANR>1) and high N₂O emissions, the volume of the SCR catalysts in both technologies is assumed to be equal to 1000 liters. The volumes of the ASC catalysts are iteratively determined to reduce NH₃ below 10 ppm. For the V-SCR + ASC system, the ASC volume is 845 liters while for the Fe-SCR + ASC the respective volume is 700 liters. In this case, NO_x, NH₃, N₂O and CO₂-equivalent emissions are depicted in Figure 12. Increased ANR values lead to unreacted NH₃ at the SCR outlet, which is efficiently oxidized in the ASC (below 10 ppm). However, this oxidation process in the ASC promotes the formation of NO_x and N₂O. In the case of the Fe-SCR the N₂O emissions are significantly decreased compared to the V-SCR, especially at higher loads due to the deN₂O

capability of Fe-based catalysts. However, N_2O levels in both cases remain extremely high leading to unacceptable CO_2 -equivalent emissions.

Figure 12: Model predictions for NO_x, NH₃ slip, N₂O and CO₂-equivalent emissions over 100-year GWP at the system outlet in the case of excessive NH₃ in the exhaust gases (ANR>1) (Feed gas: 1000 ppm NO, 3000 ppm NH₃, 100 ppm N₂O, 10% H₂O, 10% O₂, N₂ balance).

6. Preliminary results with Co-based deN₂O catalyst

Following the preliminary target to reduce N_2O emissions from ammonia combustion, N_2O decomposition of a cobalt-based catalyst is currently being tested and evaluated on the SGB. The preliminary experimental results are depicted in Figure 13. A first indication is that high N_2O conversion is achieved at elevated temperatures, however the effect of NO and NH₃ are yet to be determined to conclude the catalyst activity.

Thereafter, a model will be developed to be adapted in the EATS of ammonia-fueled engines.

Figure 13: N_2O conversion (experimental) over the cobalt-based catalyst (Feed gas: 100 ppm N_2O , 10% H_2O , 10% O_2 , 10 ppm SO_2 , N_2 balance, GHSV=20,000 h^{-1}).

7. Conclusions & Future work

The main findings of the combined testing and modeling work presented here are summarized below:

- The performance of the V-SCR and the Pt-AOC catalysts are well predicted with commonly used literature reaction schemes.
- In the case of the Fe-SCR, special modifications of the chemical reaction scheme are necessary to accurately describe the occurring processes. These include the modification of the standard SCR reaction stoichiometry, inhibition of the modified standard SCR reaction by NH₃ at high NH₃ inlet concentrations and low temperatures, addition of the typical standard SCR with N₂O in both the reactants and products, and the inhibition of the direct N₂O reduction by NH₃ at high inlet concentrations of NH₃.
- Fe-SCR catalyst material was found to be sulfur tolerant in the operating range of large twostroke marine engines.

The simulation study of the marine engine aftertreatment applications provided the following results:

- For low NH₃ and N₂O levels in the exhaust gas (ANR<1), NO_x conversion is optimized to comply with Tier III limits by NH₃ injection upstream of the SCR, resulting in low NH₃ slip levels. In addition, there is a significant reduction in CO₂-equivalent emissions by 70% to 90% (depending on the SCR technology) compared to diesel-only operation.
- For abundant NH₃ and high N₂O in the exhaust gas (ANR>1), unreacted NH₃ of the deNO_x process can be efficiently managed with an ASC. However, NH₃ oxidation promotes the formation of very high N₂O emissions, causing CO₂-equivalent emissions to reach up to 7 times the levels of diesel-only operation, rendering this configuration impractical.

Based on the above, an appropriate control strategy and optimization of the exhaust aftertreatment system, together with engine tuning of NH_3 combustion is essential to tackle both noxious and GHG

emissions. As the ultimate goal is complete decarbonization of the maritime sector, the future steps include:

- Further experimental investigation on the performance of the deN_2O cobalt-based catalyst followed by model development using the test data.
- Application of the new catalyst models in the exhaust gas stream of NH₃ engines.
- Development and optimization of the complete exhaust aftertreatment system and controls for NH₃ marine engine applications.

Funding

This work has been funded by the ENGIMMONIA project, which has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement Nr. 955413.

Acknowledgments

The authors would like to acknowledge support of this work by Ecospray for providing the V-based and Pt-based catalyst samples and TOPSOE for providing the Fe-based catalyst sample and useful discussions during the experimental campaign.

Nomenclature

A. Latin letters

- $C_{\rm P}$ Specific heat capacity $J/(kg \cdot K)$
- $D_{\rm w}$ Effective diffusivity m^2/s
- *h* Heat transfer coefficient $W/(m^2 \cdot K)$
- k_i Mass transfer coefficient *m*/s
- *n* Stoichiometric coefficient -
- R_k Reaction rate *mol*/($m^3 \cdot s$)
- S Heat source term W/m^3
- $S_{\rm F}$ Monolith specific surface area m^2/m^3
- T Temperature K
- v Velocity m/s
- w Dimension perpendicular to wall surface -
- y_i Molar fraction -
- z Axial coordinate along monolith m

B. Greek letters

- ε Macroscopic void fraction -
- λ Thermal conductivity W/($m \cdot K$)
- ρ Density kg/m³

C. Subscripts and Superscripts

- g Exhaust gas
- j Species index
- k Reaction index
- s Solid

Literature

- [1] International Maritime Organization. Fourth IMO GHG Study Full Report; International Maritime Organization: London, UK, 2020.
- [2] Liu, L.; Wu, J.; Liu, H.; Wu, Y.; Wang, Y. Investigation of combustion and emission characteristics in a low-speed marine engine using ammonia under thermal and reactive atmospheres. Int. J. Hydrogen Energy 2024, 1237-1247.
- [3] IMO Marine Environment Protection Committee. Eightieth Session (MEPC 80)-Summary Report; International Maritime Organization: London, UK, 2023.
- [4] Ni, P.; Wang, X.; Li, H. A review on regulations, current status, effects and reduction strategies of emissions for marine diesel engines. *Fuel* **2020**, 279, 118477.
- [5] Xu, L.; Xu, S.; Bai, X. S.; Repo, J. A.; Hautala, S.; Hyvönen, J. Performance and Emission Characteristics of an Ammonia/Diesel Dual-Fuel marine engine. *Renewable and Sustainable Energy Reviews* 2023, 185, 113631.
- [6] DNV GL AS Maritime. Comparison of Alternative Marine Fuels Report, SEA/LNG Ltd, Norway 2019.
- [7] Rodríguez, C.G.; Lamas, M.I.; Rodríguez, J.d.D.; Abbas, A. Possibilities of Ammonia as Both Fuel and NOx Reductant in Marine Engines: A Numerical Study. J. Mar. Sci. Eng. 2022, 10, 43.
- [8] Wang, Q.; Yang, W.; Dang, H.; Li, L.; Wu, R.; Wang, Y.; Zhao, Y. Enhancement of N₂O Decomposition Performance by co-doping of Ni and Y to Co₃O₄ catalyst. J. Environmental Chemical Engineering 2024, 12, 112463.
- [9] Nova, I.; Tronconi, E. Fundamental and Applied Catalysis Urea-SCR Technology for deNO_x after Treatment of Diesel Exhausts; Springer: Berlin/Heidelberg, Germany, 2014.
- [10] Han, J.; Wang, A.; Isapour, G.; Härelind, H.; Skoglundh, M.; Creaser, D.; Olsson, L. N₂O Formation during NH₃-SCR over Different Zeolite Frameworks: Effect of Framework Structure, Copper Species, and Water. *Ind. Eng. Chem. Res.* 2021, 60, 17826–17839.
- [11] Wang, A.; Wang, Y.; Walter, E.D.; Kukkudapu, R.K.; Guo, Y.; Lu, G.; Weber, R.S.; Wang, Y.; Peden, C.H.F.; Gao, F. Catalytic N₂O decomposition and reduction by NH₃ over Fe/Beta and Fe/SSZ-13 catalysts. J. Catal. **2018**, 358, 199–210.
- [12] Zabilskiy, E. In-situ XAS Study of Catalytic N₂O Decomposition over CuO/CeO₂ Catalysts. ChemCatChem 2021, 13, 1814–1823.
- [13] Komvokis, V.G.; Marnellos, G.E.; Vasalos, I.A.; Triantafyllidis, K.S. Effect of Pretreatment and Regeneration Conditions of Ru/γ-Al₂O₃ Catalysts for N₂O Decomposition and/or Reduction in O₂ -rich Atmospheres and in the Presence of NO_x, SO₂ and H₂O. *Appl. Catal. B Environ.* 2009, 89, 627–634.
- [14] Hermes, A.C.; Hamilton, S.M.; Hopkins, W.S.; Harding, D.J.; Kerpal, C.; Meijer, G.; Fielicke, A.; Mackenzie, S.R. Effects of Coadsorbed Oxygen on the Infrared Driven Decomposition of N₂O on Isolated Rh⁵⁺ Clusters. J. Phys. Chem. Lett. **2011**, 2, 3053–3057

- [15] Xie, P.; Luo, Y.; Ma, Z.; Wang, L.; Huang, C.; Yue, Y.; Hua, W.; Gao, Z. CoZSM-11 Catalysts for N₂O Decomposition: Effect of Preparation Methods and Nature of Active Sites. *Appl. Catal. B Environ.* **2015**, 170, 34–42.
- [16] Farhan, K.M.; Thabassum, A.; Ismail, T.M.; Sajith, P.K. Theoretical Investigation into the Effect of Water on the N₂O Decomposition Reaction over the Cu-ZSM-5 Catalyst. *Catal. Sci. Technol.* 2022, 12, 1466–1475.
- [17] Busca, G.; Lietti, L.; Ramis, G.; Berti, F.; Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review. Applied Catalysis B: Environmental 18 1998, 1-36.
- [18] Exothermia, S.A. Exothermia Suite User Manual, version 2022.3; Gamma Technologies, LLC: Westmont, IL, USA, 2022.
- [19] Karamitros, D.; Koltsakis, G. Model-based optimization of catalyst zoning on SCR-coated particulate filters. *Chem. Eng. Sci.* 2017, 173, 514-524.
- [20] Colomb, M.; Nova, I.; Tronconi, E.; Schmeißer, V.; Brandl-Konrad, B.; Zimmermann, L.R. Experimental Modeling Study of a dual-layer (SCR + PGM) NH₃ slip monolith catalyst (ASC) for automotive SCR aftertreatment systems. Part I. Kinetics for the PGM Component and Analysis of SCR/PGM Interactions. *Appl. Catal. B Environ.* 2013, 142–143, 861–876.
- [21] Sjövall, H.; Blint, R. J.; Gopinath, A.; Olsson, L. A Kinetic Model for the Selective Catalytic Reduction of NO_x and NH₃ over an Fe-zeolite Catalyst. Ind. Eng. Chem. Res. 2010, 49, 39-52.
- [22] Nedyalkova, R.; Kamasamudram, K.; Currier, N. W.; Li, J.; Yezerets, A. Experimental evidence of the mechanism behind NH₃ overconsumption during SCR over Fe-zeolites. *Journal of Catalysis* 2013, 299, 101-108.
- [23] Bacher, V.; Perbandt, C.; Schwefer, M.; Siefert, R.; Pinnow, D.; Turek, T. Kinetics of ammonia consumption during the selective catalytic reduction of NO_x over an iron zeolite catalyst. *Applied Catalysis B: Environmental* **2015**, 162, 158-166.
- [24] Liu, Q.; Bian, C.; Ming, S.; Guo, L.; Zhang, S.; Pang, L.; Liu, P.; Chen, Z.; Li, T. The opportunities and challenges of iron-zeolite as NH₃-SCR catalyst in purification of vehicle exhaust. *Applied Catalysis A* 2020, 607, 117865.
- [25] Aika, K.; Oshihara, K. Nitrous oxide reduction with ammonia over Co-MgO catalyst and the influence of excess oxygen. *Catalysis Today* 1996, 29, 123-126.
- [26] Zhang, X.; Shen, Q.; He, C.; Ma, C.; Chen, J.; Li, L.; Hao, Z. Investigation of Selective Catalytic Reduction of N₂O by NH₃ over an Fe-Mordenite Catalyst: Mechanism and O₂ Effect. ASC Catal. 2012, 2, 512-520.
- [27] Coq, B.; Mauvezin, M.; Delahay, G.; Butet, J. B.; Kieger, Stephane. The simultaneous catalytic reduction of NO and N_2O by NH_3 using an Fe-zeolte-beta catalyst. Applied Catalysis B: Environmental **2000**, 27, 193-198.
- [28] Zhu, Y.; Xia, C.; Shreka, M.; Wang, Z.; Yuan, L.; Zhou, S.; Feng, Y.; Hou, Q.; Ahmed, S.A. Combustion and emission characteristics for a marine low-speed diesel engine with highpressure SCR system. *Environ. Sci. Pollut. Res.* 2020, 27, 12851–12865.

- [29] Zhu, Y.; Li, T.; Xia, C.; Feng, Y.; Zhou, S. Simulation analysis on vaporizer/mixer performance of the high-pressure SCR system in a marine diesel. *Chem. Eng. Process.-Process Intensif.* 2020, 148, 107819.
- [30] Northrop, W. F. Modeling nitrogen species from ammonia reciprocating engine combustion in temperature-equivalence ratio space. *Applications in Energy and Combustion Science* 17 2024, 100245.
- [31] Reggeti, S. A.; Northrop, W. F. Lean ammonia-fueled engine operation enabled by hydrogenassisted turbulent jet ignition. *Front. Mech. Eng.* **2024**, 10:1368717.
- [32] MARPOL, Annex VI—Regulations for the Prevention of Air Pollution from Ships, Appendix II—Test Cycles and Weighting Factors (Regulation 13). Available online: http://www.marpoltraining.com/MMSKOREAN/MARPOL/Annex_VI/app2.htm