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1. Einleitung

1.1 Stammzellen und CSM14.1-Zellen
In die Nutzung von Stammzellen als Grundlage zukiinftiger neurologischer
Therapieoptionen setzt man grole Erwartungen. Die Vorstellung, einen Verlust von
Neuronen durch gezielte Transplantation von Nervenzellen ausgleichen zu konnen, ist
konzeptionell unmittelbar einsichtig und dem Ideal einer kausalen Therapie sehr nahe.
Theoretisch gibt es kaum eine neurologische Erkrankung, die, wenn sie mit Zellverlust
oder Zelldegeneration einhergeht, nicht potentiell direkt oder indirekt von einem
Zellersatz profitieren konnte. Dabei reicht das Spektrum einer theoretisch denkbaren
Zellersatztherapie von relativ umschriebenen Neuronenverlusten wie bei Morbus
Parkinson oder Chorea Huntington iiber komplexere Ausfille wie bei Morbus
Alzheimer bis hin zu diffusen Ausfillen im Rahmen von Hypoxien und Ischdmien.
Schlielich gibt es Moglichkeiten, die Kompatibilitidt transplantierter neuronaler
Stammzellen mit der zelluldren Umgebung eines Empféngergehirns zu nutzen, um sie
als genetisch modifizierte Zellen, die Wachstumsfaktoren oder andere wiinschenswerte
Faktoren produzieren, in das erkrankte Gehirn einzubringen.
Es bestehen heute schon Erfahrungen mit der Transplantation von unreifem fetalen
Gewebe aus dem ventralen Mesenzephalon in das Corpus striatum von Parkinson-
Patienten (Brundin et al. 1998), und erste experimentelle Therapien dieser Art sind
auch mit einigem Erfolg bei Patienten mit Chorea Huntington durchgefiihrt worden
(Bachoud-Levi et al. 2000). Der Therapieerfolg bei diesen Studien war zwar weder
einheitlich noch durchschlagend, der Beweis der grundsétzlichen Machbarkeit wurde
jedoch gefiihrt. Es ist zu vermuten, dass die im Transplantat enthaltenen neuronalen
Stamm- oder Vorlduferzellen hierbei die fiir den therapeutischen Effekt
verantwortlichen Zellen sind.
Das therapeutische Wissen {iber den Einsatz definierter Stammzellpopulationen
stammt zur Zeit noch weitergehend aus Tierversuchen. Experimentelle
Transplantationsstudien bei Tiermodellen des M. Parkinson wurden in den letzten 30
Jahren durchgefiihrt. An Nagetieren und nichtmenschlichen Primaten, bei denen zuvor
experimentell ein Morbus Parkinson induziert wurde, wurden die Effekte der
Transplantation an einem breiten Spektrum von Zellen untersucht: chromaphine Zellen
aus dem Nebennierenmark (Freed et al. 1990; Aecbischer et al. 1991), zervikale
Sympathikusganglien-Zellen (Itakura et al. 1994), humane Neuroblastomazellen

(Manaster et al. 1992), Sertoli-Zellen aus dem Hoden (Sanberg et al. 1997; Liu et al.



1999), humane retinale Pigmentepithelzellen (Subramanian et al. 1998), Glomus
caroticum-Zellen (Espejo et al. 1998; Luquin et al. 1999), humane
Amnionepithelzellen (Kakishita et al. 2000), um nur einige Beispiele anzufiihren. Die
besten Ergebnisse in diesen priklinischen Studien wurden mit Transplantaten von
dopaminergem Gewebe aus dem ventralen Mesenzephalon von unterschiedlichen
Spezies erzielt (Herman und Abrous 1984; Bjorklund und Lindvall 2000).

Trotz voreiliger klinischer Einsédtze zeigen die heutigen Ergebnisse, dass die Zeit fiir
die Klinik noch nicht reif ist, aber sich ihr mit groBer Geschwindigkeit ndhert. Einige
grundsitzliche Fragen sind noch zu kldren, bevor Stammzellen wirklich klinisch
einsetzbar werden. Man muss sich genaue Kenntnisse davon verschaffen, was
Stammzellen kdnnen, was mit ihnen nicht moglich ist, welches ihre physiologische
Funktion ist und wie weit sich diese therapeutisch einsetzen 1483t.

Der grofite Teil der neurobiologischen Stammzellforschung hat sich bislang auf die
Zellkultur konzentriert, die darauf basierenden neuen Therapieformen zielen in der
Regel priméar auf eine Transplantation von neuronalen Stammzellen in das erkrankte
Gehirn ab. Neuronale Stammzellen lassen sich aus embryonalem und adultem
Hirngewebe verschiedener Spezies gewinnen und beliebig in Kultur bringen (Gage
2000).

Unter einer Stammzelle versteht man nach der Definition eine undifferenzierte Zelle,
aus der durch Zellteilung entweder zwei neue Stammzellen hervorgehen koénnen
(symmetrische Teilung) oder aber eine neue Stammzelle und eine Zelle, die
Ausgangspunkt fiir eine Ausdifferenzierung ist (asymmetrische Teilung). Im frithen
Embryonalstadium entstehen Stammzellen, die noch totipotent sind, da sie alle Zell-
und Organtypen hervorbringen konnen, jedoch kein vollstindiges Individuum. Die
sogenannten ,.,embryonalen Stammzellen* sind pluripotent. Im weiteren Verlauf der
Entwicklung entstehen in den einzelnen Geweben gewebespezifische Stammzellen,
aus denen die Zellen des betreffenden Gewebes hervorgehen konnen. Diese Zellen
werden als multipotent bezeichnet. Der Begriff der ,,Vorlduferzelle* wird in der Regel
dann verwendet, wenn unklar ist, ob eine Zelle die Kriterien einer Stammzelle erfiillt.
Gleichzeitig kann unter einer Vorlduferzelle ein Zelltyp verstanden werden, der aus
einer multipotenten Stammzelle hervorgegangen ist, teilungsfihig, aber nur noch
unipotent ist. Diese Zellen werden hdufig auch als Progenitoren oder ,,Precursors®

bezeichnet.
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Neuronale Stammzellen sind unreife Zellen des Zentralnervensystems und zeichnen
sich durch ihre Fahigkeit aus, sich zeitlebens zu teilen, sich selbst zu erneuern und
reife Nerven- und Gliazellen hervorzubringen. Obwohl das Gehirn traditionell als
Organ mit sehr geringer regenerativer Féhigkeit angesehen wurde, konnte in den
letzten Jahren gezeigt werden, dass selbst im erwachsenen Nervensystem neuronale
Stammzellen existieren (Reynolds und Weiss 1992; Richards et al. 1992). Neuronale
Stammzellen des fetalen und des erwachsenen Gehirns sind in der Lage, in der
Zellkultur (in vitro) und nach Transplantation (in vivo) die neuralen Anteile des
Gehirns (Neurone, Astrozyten und Oligodendrozyten) zu bilden. Deshalb werden sie
als mogliches Ausgangsmaterial flir die Zellersatztherapie bei neurologischen
Erkrankungen angesehen.

Neuronale Stammzellen wurden erstmals 1992 aus dem Vorderhirn der erwachsenen
Maus extrahiert (Reynolds und Weiss 1992; Richards et al. 1992). Wihrend die
urspriingliche Publikation von Reynolds und Weiss (1996) noch von Zellen aus dem
Striatum spricht, wurde spéter klar, dass es sich genaugenommen um Zellen der
subventrikuldren Zone handelte. Hier befindet sich eine Population von Stamm- und
Vorlauferzellen, die auch im Erwachsenenalter noch in groBerer Zahl neue
Nervenzellen produziert. In vitro zeigten diese Zellen die Charakteristika der
Multipotenz (Reynolds und Weiss 1996).

Die neuronalen Stammzellen haben nur ein beschrinktes Potential sich in vitro zu
teilen. Die Immortalisierung von Vorlduferzellen des Zentralnervensystems bietet eine
Moglichkeit, dieses Problem zu umgehen. Durch die Immortalisierung bleiben die
Zellen in einem kontinuierlichen Zellzyklus. Dariiber hinaus ist es mdglich, die Zellen
genetisch so zu veridndern, dass sie in der Lage sind, verschiedene Wachstumsfaktoren
oder Enzyme zu produzieren. Zur Immortalisierung wurden die Zellen am héufigsten
mit Genen verschiedener Isoformen von myc, neu, p3, adenoviralem E1A und SV40
Large-T-Antigen transfiziert. Diese Gene kodieren  Onkoproteine, die
temperatursensitiv sind und fiir die Eigenschaft der Zellen, sich uneingeschriankt zu
vermehren, verantwortlich sind (Bartlett et al. 1988; Frederiksen et al. 1988). Die von
uns verwendeten Progenitorzellen der Zelllinie CSM14.1 (Durand et al. 1990) sind aus
dem ventralen Mesenzephalon von El14-Ratten gewonnen und temperatursensitiv
immortalisiert. Fiir die Immortalisierung wurden sie mit einem retroviralen Vektor
transfiziert (Durand et al. 1990). Er enhédlt das Gen fiir die temperatursensitive

Expression des Large-T-Antigens des Simian-Virus-40 (SV40). SV40 ist ein kleines
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Virus mit doppelstrdngiger DNS. Large-T-Antigen ist ein multifunktionales
Phosphoprotein, 85 kDa schwer, und notwendig fiir die Replikation des SV40-Virus.
Es ist als Inaktivator des Tumorsupressorproteins bekannt und wird auch fiir die
Untersuchung der Kontrolle der Zellvermehrung und Transformation benutzt.

Das Proliferationspotenzial der so verdnderten Zellen kann man leicht steuern. Bei der
sogenannten permissiven Temperatur von 33° C + 10% FCS im Kulturmedium sind
die Zellen in der Lage, sich uneingeschrinkt zu vermehren (Martinez-Serano und
Bjorklund 1997; Cattaneo und Conti 1998; Whittemore und Onifer 2000). Mit der
Erhohung der Temperatur auf 39° C, die sogenannte nicht permissive Temperatur, und
Serumreduktion (1% FCS) (Winkler et al. 1998) wird das Large-T-Antigen inaktiviert.
Die Zellen verlieren ihr Potenzial sich ungehindert zu vermehren, aber erwerben die
Moglichkeit fiir eine gliale oder neuronale Differenzierung. CSM14.1-Zellen
exprimieren das antiapoptotische Gen Bcl-2 (Anton et al. 1995) und das mit ihm
verbundene Bag-1 Protein (Kermer et al. 2002). Bcl-2 beeinfluBt das Uberleben
immortalisierter mesenzephaler neuronaler Zelllinien nach der Transplantation und
spielt eine protektive Rolle gegen viele Tod-induzierende Stimuli (Zhong et al. 1993;
Anton et al. 1995). Bag-1 ist ein Regulator der neuronalen Differenzierung in vitro und
ein Marker der neuronalen Differenzierung in vivo im reifenden Nervensystem von
Mausen.

In fritheren Experimenten unserer Arbeitsgruppe wurde nachgewiesen, dass CSM14.1-
Zellen in vitro ein neurogenes Potenzial besitzen (Haas und Wree 2002). Die Zellen
wurden 14 Tage kultiviert. Nach der Temperaturerhohung (von 33° C auf 39° C) und
einer Serumreduktion (von 10% FCS auf 1% FCS) verdnderten sich die kleinen,
epitheloiden Zellen morphologisch. Nach einer Woche in Kultur besallen sie
multipolare Perikarya und édhnelten reifen Neuronen. Am 14. Kulturtag, dem letzten
Tag der Kultivierung, waren die Fortsdtze linger geworden und bildeten ein Netzwerk.
Zu diesem Zeitraum wurden die Zellen immunzytochemisch und mittels Western Blot
untersucht. Es zeigte sich, dass die Expression des Markes unreifer Progenitorzellen
(Nestin) stark abnahm. Die Expression der untersuchten neuronalen Marker (NeuN,
NSE, MAPS) stieg gegeniiber den bei 33° C kultivierten Zellen in der Konzentration
an. Die Zellen wurden auch auf ihr dopaminerges Differenzierungspotenzial
untersucht. Nach Kultivierung bei 39° C waren sie deutlich positiv fiir Nurrl, fiir das
Schrittmacherenzym der Dopaminsynthese Tyrosinhydroxylase (TH) und fiir den
Marker dopaminerger Neurone Aldehyddehydrogenase 2 (ALDH2). Beziiglich der
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untersuchten neurotrophen Faktoren GDNF und CNTF konnte gezeigt werden, dass sie
nur GDNF exprimieren (Haas und Wree 2002; Petrov et al., 2004).

Die von unserer Arbeitsgruppe durchgefiihrten Transplantationen der CSM14.1-Zellen
in das adulte Rattenhirn zeigen dariiber hinaus, dass CSM14.1-Zellen im Wirtgewebe
iiberleben und differenzieren, ohne Tumore zu bilden (Petrov et al. 2004; Haas et al.
2005).

Aufgrund der potentiellen Bedeutung der CSM14.1-Zellen fiir Transplantationen in
experimentellen Tiermodellen ist es notwendig, eine weiterflihrende Charakterisierung
der CSM14.1-Zellen unter unterschiedlichen Differenzierungsbedingungen in vitro zu
erarbeiten. Eine Prédifferenzierung der CSMI14.1-Zellen in vitro mit Hilfe von
Zytokinen erscheint aussichtsreich, um den gewiinschten Transmitterphinotyp vor der
Transplantation zu induzieren. In einigen Studien, die diese Strategie zum Einsatz
gebracht haben, wurde der Einfluss von Zytokinen auf mesenzephale subependymale
Progenitorzellen in vitro untersucht (Ling et al. 1998; Potter et al. 1999; Carvey et al.
2001; Storch et al. 2001). Diese Autoren haben einen Zytokincocktail aus IL1, IL11,
LIF und GDNF verwendet und die Progenitorzelllinie auf die neuronale und
dopaminerge Differenzierung untersucht. Eine steigende TH- und Nurrl-Expression
zusammen mit einer Zellmorphologie, die der von TH-positiven Neuronen dhnelte,
wurde nachgewiesen. Nach den vielversprechenden Ergebnissen in vitro wurden die
Populationen von aus neuronalen oder embryonalen Stammzellen pridifferenzierten
dopaminergen Vorldufern im Nagetiermodell des M. Parkinson transplantiert und eine
funktionelle Verbesserung demonstriert (Studer et al. 1998; Kawasaki et al. 2000;
Sanchez-Pernaute et al. 2001; Sawamoto et al. 2001a, b; Storch et al. 2001, Barberi et
al. 2003).

Zytokine sind Glycoproteine, die iiberwiegend von Zellen des Immunsystems
sezerniert werden. Die Zellen des Monozyten-Makrophagen-Systems und die
Endothelzellen sezernieren ebenfalls Zytokine (Nicola und Hilton 1998; Allan und
Rothwell 2001). Diejenigen Zytokine, die von Leukozyten produziert werden,
bezeichnet man als Interleukine. Sie wirken iiber spezifische Rezeptoren. Sie
kontrollieren und koordinieren zahlreiche Zellsysteme in Organismen. Zytokine
regulieren die Hematopoese, die Aktivierung und Reifung der Immunzellen und ihr
Zusammenspiel wihrend der Immunantwort sowie die Entwicklung des

Nervensystems (Nicola und Hilton 1998; Allan und Rothwell 2001; Ostenfeld und
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Svendsen 2003). Einige werden im ZNS sezerniert und deshalb auch
neuroregulatorische Zytokine genannt. Zu ihnen gehoren: IL1, IL11, LIF und GDNF.
Interleukin 1 (IL1) wird vor allem von Makrophagen produziert. Es gibt zwei Formen
von IL1: o und B. Sie besitzen unterschiedliche Strukturen, zeigen aber &hnliche
Aktivititen und aktivieren dieselben Rezeptoren. IL1 ist der Hauptmediator jeder
Infektion durch die Aktivierung verschiedene Zelltypen (Dinarello 1998). Gleichzeitig
ist IL1 der wichtigste Mediator bei der immunologischen Antwort des Gehirns nach
jeder Infektion, einem Trauma und bei neurodegenerativen Prozessen (Hopkins und
Rothwell 1995; Rothwell und Luheshi 2000). Im gesunden Gehirn reguliert IL1
Schlaf-, Temperatur- und Hungerzentren und wirkt dabei somnogen, pyrogen und
anorektisch (Vitkovic et al. 2000). Im geschéddigten Gehirn ist die Expression von IL1
hauptséchlich in der Mikroglia hochreguliert (Giulian et al. 1986) und wird zum
Hauptmediator zwischen Mikroglia und Astrozyten. Die Verbindung zwischen
Expression von IL1 und Aktivierung von Astrozyten wurde in vitro (Carman—Krzan et
al. 1991; Lee et al. 1993; Liu et al. 2000) und in vivo (Giulian et al. 1988; Sheng et al.
1996; Casamenti et al. 1998) nachgewiesen. IL1 ist fiir Neurone nicht toxisch, kann
aber die ischdmische (Yamasaki et al. 1995; Loddick und Rothwell 1996) und
zytotoxische (Lawrence et al. 1998) Lasion verstirken. Eine intranigrale Infusion von
IL1 5 Tage vor einer striatalen Injektion von 6-Hydroxydopamin (6-OHDA) schiitzt
signifikant die Perikarya der Neuronen in der Substantia nigra (Saura et al. 2003).

Der Einfluss von IL1 auf die Differenzierung von Stammzellen wurde bisher wenig
untersucht. /n vitro wurde eine stimulierende Wirkung auf die dopaminerge
Differenzierung von mesenzephalen subependymalen Progenitorzellen nachgewiesen
(Ling et al. 1998; Potter et al. 1999; Carvey et al. 2001).

Interleukin 11 (IL11), identifiziert als Plasmazytoma growth factor, gehort zur
Interleukin 6 (IL6)-Familie. Zu dieser Familie zdhlt man neben IL11 und IL6 auch:
Ciliary neurotrophic factor (CNTF), Leukemia inhibitory factor (LIF), Oncostatin M
(OSM) und Cardiotrophin-1 (Taga 1996). Alle sechs Zytokine teilen sich den Signal-
Transduktions-Rezeptor, gp130. Der gemeinsame Rezeptor erklért ihre fast identischen
Funktionen (Taga und Kishimoto 1997). IL11 wurde auf Grund seiner Fahigkeit zur
Induktion der Proliferation von Plasmazytomazellen isoliert (Hangoc et al. 1993).
Spéter wurde nachgewiesen, dass IL11 zahlreiche weitere Wirkungen hat. Es reguliert
hematopoetische Progenitorzellen (Musashi et al. 1991; Burstein et al. 1992; Hangoc et
al. 1993; Hawley et al. 1993), den Metabolismus von Knochen und die Synthese der
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akute-Phase-Proteine in der Leber (Taga 1996). Mehler et al. (1993) berichten, dass
IL11 eine neuronale Differenzierung hippokampaler Zellen in vitro induziert.
Yanagisawa et al. (2000) wiesen ebenfalls in vitro eine astrozytire Differenzierung
fetaler neuroepithelialer Zellen durch IL11 nach. Interessanterweise zeigten gp-130-
knock-out Méuse einen Verlust der Motoneurone im Nucleus n. facialis, Nucleus
ambiguus und im Vorderhorn des Riickenmarkes und der sensorischen Neurone im
Hinterhorn des Riickenmarkes (Nakashima et al. 1999). Diese Ergebnisse deuten
darauf hin, dass das gp130-Signal das Uberleben schon differenzierter Neurone
unterstiitzt (Nakashima et al. 1999). IL11 reguliert somit sowohl die Entwicklung von
Astrozyten als auch das Uberleben von Neuronen. IL11 allein hat keine stimulierende
Wirkung bei der Differenzierung von mesenzephalen Progenitorzellen zu DA-
Neuronen, es unterstiitzt jedoch die Wirkung von IL1 (Ling et al. 1998; Potter et al.
1999; Carvey et al. 2001).

Leukemia inhibitory factor (LIF), ein weiteres Mitglied der IL6-Familie, kann von
verschiedenen Zellen exprimiert werden, u.a. von Osteoblasten (Greenfield et al.
1996), Mastzellen (Marshall et al. 1993), Fibroblasten (Elias et al. 1994) und
Astrozyten (Aloisi et al. 1994; Murphy et al. 1995). Von LIF ist bekannt, dass es in
vitro embryonale Stammzellen (aus der Maus) in einem undifferenzierten Stadium hélt
(Smith et al. 1988). LIF fordert zusammen mit dem Epidermal growth factor (EGF)
das Langzeitwachstum von ItNSC-Zellen (Wright et al. 2003). Im ZNS inhibiert LIF
die terminale Differenzierung olfaktorischer Rezeptoren (Moon et al. 2002) und
stimuliert die Reifung von sympathischen Neuronen im peripheren Nervensystem
(Nawa et al. 1991). Neuronale Stammzellen, die aus LIF-knock-out Médusen gewonnen
wurden, zeigen eine signifikante Reduktion der GFAP-Expression. LIF scheint damit
fiir die Entwicklung und Differenzierung von Astrozyten wichtig zu sein (Bonni et al.
1997; Koblar et al. 1998; Wright et al. 2003).

Zahlreiche Studien beschreiben, dass LIF die Wirkung verschiedenen Zytokine und
Wachstumsfaktoren beeinflufit, z.B. ILa (Ishimi et al. 1992; Hamilton et al. 1993;
Arici et al. 1995; Grosset et al. 1995), ILB (Hartner et al. 1994; Carlson und Hart,
1996; Carlson et al. 1996), Epidermal growth factor (Arici et al. 1995; Schluns et al.
1997), Oncostatin M (Heymann et al. 1995), Transforming growth factor  (Arici et al.
1995; Matsuoka et al. 1997; Schluns et al. 1997), Tumor necrosis factor a (Ishimi et al.
1992; Hamilton et al. 1993; Lorenzo et al. 1994; Arici et al. 1995), Platelet growth
factor (Arici et al. 1995) und Interferon y (Arici et al. 1995).
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LIF wird des weiteren mit der Entwicklung und der Reifung des ZNS in
Zusammenhang gebracht. /n vitro differenzieren Zellen aus der Neuronalleiste unter
Einfluss von LIF zu einem kleineren Teil in Astrozyten (Turnley und Bartlett 2000),
aber zu iiber 50% in sensorische Neurone (Murphy et al. 1990). LIF wird auch
,survival factor” genannt, weil er das Uberleben der sensorischen Neurone (Murphy et
al. 1995), der Neurone des Ganglion spirale (Marzella et al. 1997), des Ganglion
trigeminale (Horton et al. 1998) und der parasympathischen und der sympathischen
Ganglien (Adler et al. 1979; Manthorpe et al. 1980; Eckenstein et al. 1990; Leung et al.
1992; Heller et al. 1993) unterstiitzt. Obwohl die beiden Zytokine IL11 und LIF alleine
iberwiegend die Entwicklung von Astrozyten aus neuronalen Progenitorzellen
stimulierten, erhohen beide zusammen mit IL1 die Zahl der TH-immunreaktiven
Neurone (Ling et al. 1998; Potter et al. 1999; Carvey et al. 2001; Storch et al. 2001).
Die Autoren erklirten diese Wirkung mit dem gemeinsamen Rezeptor gp130. ILI
induziert die Expression von gp130, und dann folgt eine Uberstimulation durch die
beiden Agonisten (IL11 und LIF). Diese ,,Uberstimulation® soll verantwortlich sein fiir
die Differenzierung von neuronalen Progenitoren in TH-immunreaktive Neurone.

Glial cell line-derived neurotrophic factor (GDNF) (Lin et al. 1993) ist der potenteste
trophische Faktor, der gleichzeitig DA-Neurone und spinale Motoneurone beeinfluf3t.
GDNF gehort zur Gruppe der neurotrophen Faktoren, zu der auch Neuturin (Kotzbauer
et al. 1996), Persephin (Milbrandt et al. 1998) und Artemin/Neublastin (Lindsay und
Yancopoulous 1996; Unsicker 1996; Baloh et al. 1998; Rosenblad et al. 2000) gezahlt
werden. Diese Proteine regulieren Zellproliferation und Differenzierung (Kingsley
1994). Sie sind im sich entwickelnden Striatum hoch exprimiert, und zum Abschluss
der Entwicklung nimmt die Expression progressiv ab (Schaar et al. 1993; Stromberg et
al. 1993; Springer et al. 1994; Choi-Lundberg und Bohn 1995; Nosrat et al. 1996;
Suvanto et al. 1996; Pochon et al. 1997; Trupp et al. 1997). Die biologische Aktivitit
des GDNF ist von zwei Rezeptorkomplexen mediiert: glycosylphosphatidylinositol-
linked cell surface molecule a (GFR1-4a) und Rezeptorprotein Tyrosin kinase (Ret)
(Airaksinen und Saarma 2002; Baloh et al. 2000).

GDNF ist nicht exklusiv im Nervensystem anzutreffen, er wird auch in nicht-
neuronalem Gewebe wie Niere, Darm und Muskel gefunden (Hellmich et al. 1996;
Moore et al. 1996; Nosrat et al. 1996; Pichel et al. 1996; Sanchez et al. 1996; Suvanto
et al. 1996). GDNF wird ebenfalls von Astrozyten und Gliomazellen exprimiert
(Schaar et al. 1993; Moretto et al. 1996; Suter-Crazzolara und Unsicker 1996;
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Unsicker 1996; Verity et al. 1999). Knockout-Experimente zeigen die grofle
Bedeutung von GDNF: die Tiere sterben am ersten Tag nach der Geburt (Moore et al.
1996; Pichel et al. 1996; Sanchez et al. 1996).

GDNF steigert auch die Menge der iiberlebenden Zellen nach einer neuronalen
Transplantation in verschiedene Regionen des ZNS (Rosenblad et al. 1999; Trok et al.
1996; Granholm et al. 1997; Sautter et al. 1998). Injektionen von GDNF in das
Striatum steigern die Funktionalitit von nigralen DA-Transplantaten (Rosenblad et al.
1999; Granholm et al. 1997; Sautter et al. 1998). Es wurde nachgewiesen, dass GDNF
einen spezifischen trophischen Effekt auf DA-Neurone hat (Lin et al. 1993; Beck et al.
1995; Nakao et al. 2000). GDNF induziert die Ausbildung von DA-Fasern und deren
Verzweigung in vivo und in vitro und steigert die Anzahl iiberlebender TH-positiver
Neurone (Hudson et al. 1995; Johansson et al. 1995; Opacka und Brodie 1995;
Rosenblad et al. 1999; Sinclair et al. 1996; Aoi et al. 2000).

Eine Vorbehandlung mit GDNF hat einen neuroprotektiven Effekt gegen 6-OHDA-
Léasionen (Kearns und Gash 1995; Sauer et al. 1995; Shults et al. 1996), 1-Methyl-4-
Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-Injektionen (Tomac et al. 1995) und gegen
die Transektion des Tractus nigrostiatalis (Beck et al. 1995).

GDNF wird mit seinen neuroprotektiven und regenerativen Eigenschaften auch als
effektive Therapieoption bei Morbus Parkinson angesehen. Die Gabe von GDNF
wurde auch in klinischen Studien von Parkinson-Patienten untersucht, bei denen
GDNF intraparenchymal mit vielversprechenden Ergebnissen injiziert wurde. GDNF
lindert die Symptome und beeinfluit den Krankheitsverlauf (Kearns et al. 1997;
Aebischer und Ridet, 2001; Tuszynski et al. 2002; Gill et al. 2003; Kirik et al. 2004).

Eine Zusammenfasung der Literaturbefunde ergibt, dass die Behandlung von
Stammzellkulturen oder Kulturen aus embryonalem Gewebe in vitro mit einem
Cocktail aus IL1, IL11, LIF und GDNF zu einer deutlichen und signifikanten
Differenzierung zu Neuronen, insbesondere TH-positiven Neuronen fiihrt. Deshalb
wurden die CSM14.1-Zellen mit diesem Cocktail in vitro behandelt und auf TH-

Hochregulierung getestet.

1.2 Fragestellung der vorliegenden Arbeit
Um weitere Informationen zum Expressionsmuster spezieller neuronaler Proteine in

CSM14.1-Zellen unter Kultivierung bei nicht permissiver im Vergleich zu permissiver
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Temperatur und in unterschiedlichen Kulturmedien zu erhalten, sollen mittels Western
Blots und immunzytochemischen Untersuchungen folgende Fragen beantwortet
werden:

1. Wie verdndert sich das Expressionsmuster verschiedener neuronaler Proteine bei
Kultivierung der CSMI14.1-Zellen bei permissiver Temperatur (33° C) und
Serumreduktion (1% FCS)?

2. Welchen Einflu haben die Zytokine auf die Expression neuronaler Proteine bei
Kultivierung der Zellen in permissiver Temperatur (33° C) und nicht permissiver
Temperatur (39° C) unter Serumreduktion (1% FCS)?

3. Welchen Einflu3 haben Zytokine auf die Morphologie der Zellen bei Kultivierung in
nicht permissiver Temperatur (39° C) und Serumreduktion (1% FCS)?

2. Untersuchte Proteine
2.1 Intermediérfilamente

Diese Proteine haben eine filamentdse Form und einen Durchmesser von 8-12 nm.
Obwohl die Intermedidrefilamente (IF) in jeder eukaryoten Zelle nachgewiesen werden
kénnen, sind sie fiir das Uberleben der Zellen nicht direkt notwendig. Zusammen mit
Aktinfilamenten und Mikrotubuli bilden sie das Zytoskelett und sind zelltyp-
spezifisch. Nach Duprey und Paulin (1995) lassen sich die IFs in fiinf Klassen
unterteilen. IF der Klassen I und II sind saure und neutrale Zytokeratine, die in fast
allen epithelialen Zellen vorhanden sind. Zur Klasse III werden folgende Proteine
gezdhlt: glial fibrillary acidic protein (GFAP) in Astrozyten, Desmin und Synemin in
Muskelzellen, Peripherin spezifisch sowohl fiir peripheres Nervensystem als auch fiir
einige Neurone des Zentralnervensystemes und Vimentin in allen mesenchymalen
Geweben. Vimentin kommt auch in verschiedenen Zelltypen tempordr wihrend der
Entwicklung vor, z.B. in Neuronen, in Zellen mesenchymalen Ursprungs (z.B.
Fibroblasten), in unreifen Gliazellen und in Astrozyten. Zur Klasse IV der
Intermediérefilamente gehoren Neurofilamente und Internexin, die in reifen Neuronen
nachweisbar sind. Lamine A, B, C und Nestin sind Klasse V der IF. Lamine A, B und
C gehoren zu den Nuklearproteinen der inneren Kernmembran und sind in fast allen
Zelltypen vorhanden. Nestin kommt in neuronalen und muskulidren Progenitorzellen
vor. Duprey und Paulin (1995) zdhlen zu der letzten Gruppe: ,,noch andere nicht

klassifizierte* Intermedidrfilamente wie z.B. Filensin und Phalakinin. Yuan et al.
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(1997) zdhlen auch Transitin zu dieser Gruppe. Transitin ist ein Protein, das von

radialer Glia transitorisch wahrend der ZNS-Entwicklung exprimiert wird.

2.1.1 Nestin

Nestin (neuronal stem cell protein) ist ein intermedidres Filament-Protein, eng
assoziiert mit schnell proliferierenden Progenitorzellen wéhrend der Neuro- und
Myogenese. Es ist ein bekannter Proteinmarker fiir immature Neurone und wird diffus
im ZNS exprimiert (Frederiksen und McKay 1988; Lendahl et al. 1990; Dahlstrand et
al. 1992). Im Western Blot wird Nestin bei 200 kDa detektiert (Frederiksen et al.
1988). Nestin ist auch in immaturen Astrozyten (Frederiksen and McKay 1988;
Lendahl et al. 1990; Dahlstrand et al. 1992, 1995; Zimmerman et al. 1994; Johe et al.
1996; Messam et al. 2000) und immaturen Oligodendrozyten (Gallo and Armstrong
1994) nachgewiesen. Die Expression von Nestin wird in vitro und in vivo in
differenzierenden neuronalen und glialen Zellen stark herunterreguliert (White et al.
1994; Lin et al. 1995; Seidman et al. 1997; Haas und Wree 2002). Uber seine Funktion
existieren noch keine eindeutigen Befunde (Matsuda et al. 1996; Miyaguchi, 1997;
Cheng et al. 1999). Im Vergleich zu den anderen IF kann Nestin allein keine
Filamente aufbauen. Die Ursache dafiir ist vermutlich das sehr kurze N-terminale
Ende, das von grofler Bedeutung fiir die Formation von Filamenten ist (Fuchs und
Weber 1994; Herrmann und Aebi 2000). Aber Nestin ist Kopolymer mit Klasse III IF-
Proteinen wie Vimentin und reguliert ihre strukturellen Verdnderungen und ihren
Aufbau (Marvin et al. 1998; Eliasson et al. 1999; Steinert et al. 1999; Chou et al.
2003).

Nestin ist ein zuverldssiger Marker fiir die Identifikation von neuronalen Stammzellen
(bei Nagetieren) in verschiedenen Teilen des Gehirns und in immortalisierten
Progenitorzelllinien (Frederiksen et al. 1988; Cattaneo und McKay 1990; Redies et al.
1991; Renfranz et al. 1991; Valtz et al. 1991). Nestin-immunreaktive Gebiete befinden
sich auch im adulten Gehirn, jedoch nur in solchen Regionen, in denen postnatal noch
Neuro- und Gliogenese gefunden werden konnen, wie z.B. im Hippokampus (Cameron
und McKay 1998). In diesen Regionen sind proliferierende Stammzellen vorhanden.
Lokalisiert ist das filamentdse Nestin im Zytoplasma, besonders stark perinukleér, und

in den kurzen Ausldufern der Stammzellen. Die Kerne sind dabei ausgespart.
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2.1.2 GFAP (glial fibrillary acid protein)

GFAP gehort zu den IF-Proteinen der Astroglia und ist ein Klasse II1 IF. GFAP wurde
zum ersten Mal aus weillen Plaques von Patienten mit Multipler Sklerose isoliert (Eng
und Rubinstein, 1978) und seitdem als weit verbreiteter Proteinmarker fiir normale und
maligne Astrozyten vewendet (Deck et al. 1978; De Armond et al. 1980; Pekny et al.
1999; Eliasson et al. 1999; Rodriguez et al. 2001). Es ist das kleinste IF (8 nm) mit
einem Molekulargewicht von ~ 50 kDa. Es wird als spezifisch fiir das Zytoskelett von
Astrozyten (Duffy 1982; Reeves et al. 1989; Inagaki at al. 1994; Zhang 2001) und von
Ependymzellen angesehen und ist perinukledr und in Ausldufern verteilt (Duffy 1982;
Rutka et al. 1997; Gomes at al. 1999). Interesant ist, dass mit zunehmendem malignem
Potenzial der Astrozyten die Synthese von GFAP progressiv abnimmt (Eng und
Rubinstein 1978, Eng und Ghirnikar 1994; Duffy 1982). Immature Oligodendrozyten
und immature Choroidplexuszellen kdnnen ebenfalls GFAP-positiv sein (Jagadha et al.
1986; Dyer et al. 2000; Jalabi et al. 2003; Azzarelli et al. 2004).

Wihrend der Myelinisierung kann eine starke Zunahme der GFAP-Expression
nachgewiesen werden. In Ubereinstimmung damit zeigen Miuse mit einem GFAP-
Defekt Defizite in der Myelinisierung (Pekny et al. 1999; Liedtke et al. 1996; Brenner
et al. 2001; Shiroma et al. 2001).

2.2 Mikrotubulus-assoziierte Proteine

Mikrotubuli sind zusammen mit Aktin-Mikrofilamenten und Intermedidrfilamenten am
Aufbau des Zytoskeletts einer eukaryoten Zelle beteiligt, die in groBer Anzahl
besonders in den Neuronen und ihren Fortsdtzen vorhanden sind (Matus 1990; Ma et
al. 2000). Mikrotubuli sind beim Aufbau der Mitose-Spindel von elementarer
Bedeutung und wirken u.a. bei intrazelluldren Transportvorgidngen mit.

Der AuBlendurchmesser der stibchenformigen Mikrotubuli betrdgt 25 nm. Mikrotubuli
werden durch Polymerisation aus Dimeren o/ Tubulineinheiten gebildet. Die
Mikrotubuluswand besteht aus 13 longitudinal angeordneten Reihen (Protofilamente),
die um einen zentralen Hohlkérper angeordnet sind. Die Protofilamente sind so
gegeneinander versetzt, dass die Wand aus abwechselnd angeordneten o- und B-
Tubulin-Molekiilen aufgebaut ist. Die Bildung von Mikrotubuli steht in einem
Gleichgewicht zwischen Polymerisation und Depolymerisation, was als ,,dynamische

Instabilitit* bezeichnet wird (Kirschner und Mitchison 1986).
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Die Mikrotubuli sind parallel zueinander in den Nervenzellfortsitzen und zur
Plasmamembran angeordnet. Sie stehen untereinander iiber unterschiedliche
molekulare Briicken in Verbindung. Mikrotubuli sind die ersten zytoskelettalen
Komponenten, die wéihrend der Entwicklung in den Neuriten erscheinen (Bernhardt
und Matus 1984; Wang et al. 1998) und treten noch vor den Neurofilamenten auf.
Mikrotubuli bestehen neben Tubulin aus Motorproteinen und strukturgebenden
Proteinen, die wunter dem Begriff Mikrotubulus-assoziierte Proteine (MAP)
zusammengefasst werden. MAPs dienen zum einen der Stabilisierung der Mikrotubuli,
zum anderen vermitteln sie die Wechselwirkung der Mikrotubuli mit anderen
Zellbestandteilen (Céceres et al. 1984; Matus 1988, 1990; Tucker 1990; Boyne et al.
1995; Nothias et al. 1996; Ramoén-Cueto und Avila 1999).

Die MAPs werden mit zahlreichen Synonymen bezeichnet, und die Einteilung in
unterschiedliche Klassen wird von verschiedenen Autoren unterschiedlich
vorgenommen (Matus 1988; Tucker 1990; Riederer 1995). Sie werden meist in
Klassen MAPI1-5 eingeteilt, in einigen Klassen werden weitere Unterklassen
differenziert bzw. phosphorylierte und nicht-phosphorylierte Formen unterschieden
(Shea und Beermann 1994). Allgemein werden die MAPs in hochmolekulare (180-350
kDa — MAPla, MAP2, MAP3, MAP4, MAPS) und Tau (55- 68 kDa) Proteine
eingeteilt.

In der Embryonalentwicklung des Gehirns werden friihe und spite MAPs
unterschieden. Unterschiede liegen in ihrer Anzahl, molekularen Form und ihren
biochemischen Eigenschaften. Die ersten, die in sich entwickelnden neuronalen Zellen
erscheinen, sind MAPS5 (=MAPIb, =MAP1x, =MAP1.2), spiater werden sie durch
MAP1, MAP2a, MAP2b ersetzt.

Weitere MAPs sind MAPIlc (= Kinesin, Dynein), MAP3 und MAP4. Dyneine und
Kinesine sind zwei Motor-Proteine, die am intrazelluldren Transport von Proteinen
oder Zellorganellen beteiligt sind. MAP3 ist ein Polypeptidpaar mit einem
Molekulargewicht von 180 kDa. Es werden MAP3a und 3b unterschieden. MAP4
besteht ebenfalls aus einer Gruppe von Polypeptiden mit einem Molekulargewicht von
ca. 210 kDa.

Die MAPs spielen eine wichtige Rolle in der neuronalen Morphogenese (Hirokawa
1994; Hirokawa et al., 1996). Die unterschiedlichen MAPs werden in ZNS und PNS
exprimiert. MAPS und MAP?2 sind als neurale MAPs bekannt. MAPS 148t sich in allen

Abschnitten von Neuronen wéhrend der frither neuronaler Entwicklung nachweisen
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(Tucker 1990). MAP2 ist in allen Stadien in Perikarya und Dendriten von Neuronen
nachweisbar (Sanchez et al. 2000). Axonale und dendritische Mikrotubuli enthalten
unterschiedliche MAPs (Caceres et al. 1986; Matus 1988; Sims et al. 1988; Tucker
1990; Riederer 1995). In Astrozyten des adulten Gehirns lassen sich MAP3 und

MAP4, wenn auch in geringen Konzentrationen, nachweisen.

2.2.1 MAP2

MAP?2 ist das meist untersuchte Protein, das zur MAP-Familie gehort. Es hat drei
Isoformen: MAP2a und MAP2b sind Proteine mit einem Molekulargewicht von 280
kDa und MAP2c¢ mit einem Gewicht von 70 kDa. MAP2c ist in den Zellkérpern,
Dendriten und Axonen unreifer Neurone lokalisiert. MAP2a und MAP2b findet man
hauptséchlich in den Dendriten reifender und reifer Neurone (Caceres et al. 1984,
1986; Huber und Matus 1984; Bernhardt und Matus 1984; Shaw et al. 1985; Fischer et
al. 1986; Higgins et al. 1988; Sims et al. 1988; Sato-Yoshitake et al. 1989; Tucker
1990; Pennypacker et al. 1991; Boyne et al. 1995; Honig et al. 1996; Wang et al. 1998;
Noraberg et al. 1999, Sanchez et al. 2000). MAP2b ist das erste Protein, das wéihrend
der Neuronalentwicklung exprimiert wird, danach wird es von MAP2a ersetzt (Tucker
1990).

MAP2 stabilisiert die Mikrotubuli und reguliert ihre mechanischen Eigenschaften
(Matus 1988, 1990; Mickey und Howard 1995; Illenberger et al. 1996; Felgner et al.
1997), ihre Organisation (Chen et al. 1992; Umeyama et al. 1993) und ihre
Wechselwirkung mit motorischen Proteinen (Ebneth et al. 1999; Trinczek et al. 1999)
und mit anderen Mikrotulus-assoziierten Proteinen (Schoenfeld und Obar 1994).
Gemeinsam mit Tau wird das MAP2 fiir die Erhaltung der neuronalen Polaritét
benotigt.

Im Kortex von embryonalen Miusen wurde MAP2 ab dem 14. Entwicklungstag
nachgewiesen und nimmt dann mit zunehmendem Alter zu (Crandall et al. 1986). Die
Expression von MAP2 verhilt sich proportional zum Grad der Differenzierung und

variiert mit dem Ausmal} der neuronalen Reifung (Sims et al. 1988).

2.2.2 MAPS
Mikrotubulus-assoziiertes Protein 5 (MAPS), bekannt auch als MAP1.2, MAPI1x oder
MAP1b (Matus 1988; Tucker 1990; Bloom und Endow 1995), ist ein hochmolekulares
Protein mit einem Gewicht von ~320 kDa. Eine Differenzierung von MAPS in MAP5a
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(phosphorylierte Form) und MAPSb (nicht-phosphorylierte Form) ist zusétzlich
moglich (Black et al. 1994). Ma et al. (2000) beschreiben und charakterisieren zwei
Isoformen des phosphorylierten MAPS5a, die in den Axonen des PNS vorhanden sind
und in Western Blots als zwei Proteinbdnder von 320 und 340 kDa nachgewiesen
werden kdnnen.

MAPS5 kommt hauptsidchlich im neuronalen Zytoskelett vor. Es ist notwendig fiir die
Entwicklung der Axone und Dendriten (Hummel et al. 2000; Roos und Kelly 2000).
Besonders in den Neuronen, die ihre Axone bilden, wird es stark exprimiert, weil es
die Mikrotubuli verbindet und stabilisiert (Mitchison und Kirschner 1988; Bradke und
Dotti 1987; Dotti et al. 1998).

Da MAPS5 in unreifen Neuronen wihrend des Axonenwachstums am hdochsten
exprimiert wird (Calvert und Anderton 1985; Garner et al. 1990; Fischer et al. 1991;
Ulloa et al. 1993a, b; Black et al. 1994; DiTella et al. 1996; Gordon-Weeks und
Fischer 2000; Gonzalez-Billault et al. 2001), nimmt man an, dass MAPS5 in der
neuronalen Morphogenese und im Nervenwachstum eine entscheidende Rolle spielt. In
unreifen Neuronen ist die bevorzuge Bildungsstelle von MAPS an den distalen
Mikrotubuli des Axons und der Growth cone- Region lokalisiert (Black et al. 1994;
DiTella et al. 1996).

Histologische Untersuchungen ergaben, dass in MAP5-defizienten Méusen das Corpus
callosum nicht gebildet wurde und die Ventrikel vergroert waren, die Myelinisierung
aufgehalten, die Axone kleiner und eine Desorganisation der Gehirnschichten
beobachtet wurde (Edelmann et al. 1996; Takei et al. 1997, 2000; Gonzalez-Billault et
al. 2001; Meixner et al. 2000). Diese Miuse und alle daraus stammenden MAPS5-
defizienten Zielllinien bieten einen interessanten Ausgangspunkt, die Funktion von
MAPS5 weiter aufzukldren, insbesondere hinsichtlich einer Beteiligung an
Nervenwachstum, Axonfiihrung, Synaptogenese oder Zellwanderung und zur
Erklarung seiner Funktionsweise durch Wechselwirkungen mit anderen Genprodukten.
Einige Studien beschreiben die Verbindung von MAPS5 mit Aktin-Filamenten in vitro
(Pedrotti und Islam 1996) und mit Stressfasern in vivo (Togel et al. 1998). Andere
Befunde weisen darauf hin, dass einige MAPS5 Proteine an der Plasmamembran von
Neuronen exprimiert werden und somit fiir eine Wechselwirkung zwischen MAP5 und
Myelin-assoziierten Glykoproteinen bei der Myelinisierung sprechen (Takei et al.
1997; Meixner et al. 2000; Tanner et al. 2000; Franzen et al. 2001). Zusammen mit

Tau reguliert MAPS die neuronale Migration, ein sehr wichtiges Ereignis in der
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Entwicklung des Nervensystems (Takei et al. 2000; Teng et al. 2001). MAPS wurde
auch in den Oligodendrozyten, in Zellkdrpern und Fortsdtzen, zusammen mit Tubulin
nachgewiesen (Fischer et al. 1990).

MAPS ist der fritheste Marker, der neuronale Progenitorzellen identifiziert, die nach
der nichsten mitotischen Teilung zu Neuronen werden (Cheng et al. 1999). Die
Farbungen zeigen eine diffuse Verteilung von MAPS im Zytoplasma, wobei
verschiedene Organellen ungefirbt verbleiben (Riederer 1995). Bei den von Riederer
(1995) zur Untersuchung der Entwicklung von MAPS in Katzengehirnen verwendeten
Antikorpern werden Farbungen in allen Teilen der Neurone gefunden, einschlieB8lich
struktureller Elemente im Nukleus und punktférmiger, matrixdhnlicher Elemente um
die Nukleoli. Die Nukleoli selbst sind dabei nicht gefirbt. Diese Beobachtungen
wurden in juvenilen und adulten Neuronen gemacht. Ein anderer Antikorper in der
Untersuchung von Riederer (1995) zeigt eine diffuse Kernfiarbung. Dabei sind der
perinukledre Raum, nicht jedoch die strukturellen Elemente des Kernes geféarbt. Bei
dem von Riederer (1995) in einer dhnlichen Studie verwendeten Antikorper konnten

keine Kernfarbungen festgestellt werden.

2.3 Neuronenspezifische Enolase (NSE)
NSE ist ein glykolytisches Enzym, typisch fiir Neurone und neuroendokrine Zellen. Es
gehort zur Familie der Enolase. Die Enolase, ein Enzym der Glykolyse, konvertiert 2-
Phospho-D-Glyzerat in Phosphoenolpyruvat (Grasso et al. 1977; Trapp et al. 1981;
Ledig et al. 1982; Vinores et al. 1986, 1987; Cooper 1994; Hattori et al. 1995;
Deloulme et al. 1996; Nogami et al. 1998). Es existiert in Form verschiedener
Isoenzyme, die aus unterschiedlichen Kombinationen der Untereinheiten o, 3 und y
aufgebaut sind. Die yy und ay Isoenzyme bezeichnet man als Neuronenspezifische
Enolase (Marangos et al. 1979, 1987). Das yy Isoenzym kommt ausschlieBlich in
Neuronen vor. Die a-Untereinheit kommt in Gliazellen und zahlreichen weiteren
nicht-neuronalen Zellen, z.B. der Leber vor, die B-Untereinheit im Muskelgewebe.
NSE wurde auch in Thrombozyten und Erythrozyten nachgewiesen (Marangos et al.
1980; Day und Thompson 1984). Das Vorkommen von NSE kann zur Identifizierung
von Neuronen (Marangos et al. 1980; Trapp et al. 1981) und auch als Index fiir
neuronale Differenzierung genutzt werden (Shinohara et al. 1986; Rabejac et al. 1994;
Nogami et al. 1998). NSE spielt auch eine wichtige Rolle fiir die Differenzierung der

Oligodendrozyten und ist herunterreguliert in maturen Zellen (Deloulme et al. 1996).
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Einige Autoren konnten mittels Western Blot sowie im Northern Blot NSE bzw. die
mRNA in kultivierten glialen Zellen (Astrozyten, Oligodendrozyten) und meningealen
Fibroblasten nachweisen (Deloulme et al. 1996, 1997; Sensenbrenner et al. 1997). In
vivo stellen sich differenzierende Oligodendrozyten in jungen Ratten (P8) mit NSE-
Antikorpern schwach dar, im adulten Rattengehirn ist der immunhistochemische
Nachweis von NSE in Oligodendrozyten und Astrozyten nicht mehr moglich (Vinores
et al. 1987; Deloulme et al. 1996). Vermutlich ist die Methode der Immunhistochemie
zu wenig sensitiv, um hier die sehr geringen Konzentrationen an NSE aufzuzeigen
(Deloulme et al. 1996, 1997). Neuronale Zellen in Kultur enthalten jedoch einen relativ
hohen Anteil an NSE (Deloulme et al. 1997).

Der Anstieg der NSE-Expression korreliert mit der funktionellen und morphologischen
Reifung von Neuronen (Marangos et al. 1980; Trapp et al. 1981; Rabejac et al. 1994;
Hattori et al. 1995; Gasse und Meyer 1995; Deloulme et al. 1996; Bakardjiev 1997).
Undifferenzierte, sich teilende neuronale Progenitoren in Kultur exprimieren nur
geringe Mengen an NSE. Mit Beginn der Differenzierung teilen sich die Zellen nicht
mehr und die Intensitit der Immunreaktivitit fiir NSE nimmt zu. Die Intensitdt kann
von Zelle zu Zelle variieren (Trapp et al. 1981; White et al. 1994; Gasse und Meyer
1995). Mittels Western Blots wurde eine zunehmende Expression von NSE bei
differenzierenden immortalisierten Stammzellen der Linie CSM 14.1 nachgewiesen
(Haas und Wree 2002).

NSE ist in Perikarya und Ausldufern immunzytochemisch nachweisbar (Trapp et al.
1981; Vinores et al. 1987; Rabejac et al. 1994; Gasse und Meyer 1995; Deloulme et al.
1996; Nogami et al. 1998). Im Soma ist NSE diffus verteilt (Hattori et al. 1995;
Deloulme et al. 1996).

2.4 Neuronenspezifisches Kernprotein (NeuN)
NeuN ist ein 46-48 kDa Kernprotein, das fiir die Identifikation postmitotischer
Neurone in Diagnostik und Forschung benutzt wird. Es wird von Neuronen in allen
Regionen des Gehirns, der Medulla spinalis und des peripheren Nervensystems
exprimiert (Mullen et al. 1992; Wolf et al. 1996; Sarnat et al. 1998; Todd et al. 1998).
Aber nicht alle Zellen zeigen die gleiche Stiarke der Immunreaktivitdt. Cajal-Retzius
Neurone, Purkinjezellen, Neurone des Nucleus olivaris inferior und dentatus und die
Zellen der sympathischen Ganglien sind NeuN-negativ (Sarnat et al. 1998). Im

Cerebellum der adulten Maus sind nur Kdrnerzellen und kleine Zellpopulationen in der
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unteren Molekularschicht NeuN-positiv (Weyer und Schilling 2003). Der Grund fiir
das Fehlen der Immunreaktivitdt in diesen Neuronen ist nicht bekannt (Sarnat et al.
1998; Todd et al. 1998). Nicht-neuronale Strukturen zeigen keine Reaktionen mit
NeuN-Antikorpern, weder im undifferenzierten noch im reifen Zustand (Mullen et al.
1992; Wolf et al. 1996; Sarnat et al. 1998; Todd et al. 1998). Die Immunreaktivitit ist
schon frith wahrend der Entwicklung und noch im adulten Hirn ausgepréigt (Mullen et
al. 1992; Sarnat et al. 1998). Die Stirke der Immunreaktivitit charakterisiert den
physiologischen Reifestatus postmitotischer Neurone (Mullen et al. 1992; Wolf et al.
1996; Sarnat et al. 1998; Weyer und Schilling 2003). Denn NeuN farbt Kerne unreifer
Nervenzellen nicht bis sie ein Stadium der Entwicklung erreicht haben, in dem sie die
ersten Kriterien der Differenzierung erfiillt haben (Sarnat et al. 1998).

NeuN befindet sich hauptsdchlich in Zellkernen, kann aber auch im Zytoplasma der
neuronalen Perikarya vorkommen (Mullen et al. 1992; Wolf et al. 1996; Todd et al.
1998). Dieses Muster variiert: es konnen nur das Zytoplasma oder der Nucleus, mit
Ausnahme des Nucleolus intensiv gefarbt werden, wahrend das Zytoplasma nur wenig
Reaktion zeigt (Mullen et al. 1992). Die unterschiedliche Immunreaktivitét ist von den
verwendeten Antikdrpern und von den untersuchten Neuronentypen abhidngig. Von
einigen Autoren wird eine NeuN-Farbung bis in die proximalen neuronalen Ausldufer

beschrieben (Mullen et al. 1992; Wolf et al. 1996).

2.5 Dopaminerge Differenzierung
Dopaminerge (DA) Neurone sind eine heterogene Population von Zellen, die in
Mesenzephalon, Hypothalamus, vorderem Thalamus, Bulbus olfactorius und Retina
verteilt sind. Sie enthalten den Neurotransmitter Dopamin. In den Wirbeltieren sind die
dopaminergen Neurone iliberwiegend in der Substantia nigra pars compacta und der
ventralen tegmentalen Area lokalisiert. Sie bilden die nigrostriatalen und
mesokortikolimbischen Bahnen, die eine zentrale Bedeutungen bei der motorischen
Kontrolle, der Kognition und Emotionen haben (Perrone-Capano und di Porzio 1996).
Die DA-Neurone der Substantia nigra, die zum Striatum projizieren, regulieren die
Motorik, und ihre Degeneration fiihrt zum Morbus Parkinson (Lindvall et al. 1984;
Bjorklund et al. 1997; Hirsch et al. 1988). Die dopaminergen Neurone aus der
ventralen tegmentalen Area projizieren zum Kortex und zum limbischen System und
regulieren u.a. Emotionen und Motivationen (Self et al. 1995). Eine Storung dieses

Systems kann mit Schizophrenie und Abhéngigkeitserkrankungen assoziiert sein (Ritz
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et al. 1987; Koob und Nestler 1997; Seeman et al. 1997). Bei diesen neurologischen
und psychiatrischen Erkrankungen der mesenzephalen dopaminergen Bahnen sind
Transplantationen der embryonalen dopaminergen Neurone erfolgversprechend
(Dunnett et al. 2001).

Die Entwicklung mesenzephaler DA-Neurone steht hauptsdchlich unter dem Einfluss
zweier Molekiile, ndmlich dem sonic hedgehog (Shh) und dem basischen
Fibroblastenwachstumsfaktor 8 (FGFS§). Shh wird in der ventralen neuralen Tube und
FGF8 in der Mesenzephalon-Rhombenzephalon-Grenze und in dem rostralen
Prosenzephalon exprimiert (Ericson et al. 1995; Wang et al. 1995; Crossley et al. 1996;
Ye et al. 1998).

Die zwei obengenannten Faktoren sind die Transkriptionsfaktoren, die fiir die Bildung
des nukledren Retinsdurerezeptors Nurrl (nuclear retinoic acid receptor 1) (Law et al.
1992; Zetterstrom et al. 1997) und des Homeobox Gens Ptx3/Pitx3 (Semina et al. 1997
und 1998; Smidt et al. 1997; Nunes et al. 2003) notwendig sind. In Ptx3-defizienten
Maiusen entwickeln sich DA-Neurone in der Substantia nigra nicht (Nunes et al. 2003),
und in Nurrl-defizienten Méuse findet keine Reifung von DA-Precursor-Zellen im
Mesenzephalon statt (Zetterstrom et al. 1996b; Saucedo-Cardenas et al. 1998; Le et al.
1999; Wallen et al. 1999).

2.5.1 Nurrl
Der nukledre Retinsdurerezeptor Nurrl (nuclear retinoic acid receptor 1) gehdrt zur
steroiden und thyroiden Superfamilie der nukledren Hormonrezeptoren. Nurrl wird im
embryonalen und postnatalen Rattengehirn (Castillo et al. 1998), und hier im
limbischen System und ventralen Mesenzephalon, einschlieBlich der DA-Neurone,
exprimiert (Zetterstrom et al. 1996a,b; Saucedo-Cardenas und Conneely 1996). Die
Expression beginnt am Embryonaltag (E) 10,5 in der ventralen mesenzephalischen
Flexur (Zetterstrom et al. 1996a, b), bevor die Expression von Tyrosinhydroxylase
(TH) an E11,5 beginnt.
Nurrl reguliert direkt die Transkription des TH-Gen-Promotors. Die Bindungsstelle
(TH-NBRE1) liegt in der proximalen Region des TH-Promotors (Iwawaki et al. 2000).
Nurrl reguliert die Entwicklung der DA-Neurone und fordert das Uberleben der
ventralen mesenzephalen Neurone und ihre Differenzierung zu DA-Neuronen

(Saucedo-Cardenas et al. 1998; Iwawaki et al. 2000).
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Im adulten Gehirn wird die Expression von Nurrl fortgesetzt, obwohl die Entwicklung
der DA-Neurone lidngst abgeschlossen ist (Le et al. 1999; Eells et al. 2002). Die
verbleibende Expression von Nurrl in den reifen DA-Neuronen deutet an, dass Nurrl
wichtig fiir deren normale Funktion ist. AuBBerdem reguliert Nurrl die Transkription
der Gene, die den Cocain-sensitiven Dopamin-Transporter (DAT) kodieren (Sacchetti
et al. 1999, 2001). DAT ist ein Transportprotein der Plasmamembran, das das
extrazellulire Dopamin in die Zelle aufnehmen kann und somit ein spezifischer
Marker fiir DA-Neurone ist.

Die Rolle von Nurrl fiir das Uberleben von Dopaminprogenitoren und differenzierten
Neuronen durch die Regulation verschiedener Faktoren und Rezeptoren ist in Nurrl-
defizienten Zellen untersucht worden. Durch ein Defizit von Nurrl resultiert ein
Verlust der Expression von c-ret, dem Tyrosinkinase-Signaltransduktionsrezeptor von
GDNF (Saucedo-Cardenas et al. 1998; Wallen et al. 1999; Airaksinen und Saarma
2002) und der Bindungsstelle fiir Nurrl im BDNF-Gen (Shintani et al. 1992).

Die Differenzierung der immortalisierten Progenitorzelllinie CSM14.1 ist in vitro mit
einer Hochregulierung von Nurrl verbunden (Haas und Wree 2002). Diese Ergebnisse
zeigen eindeutig, dass in den nicht differenzierten CSM14.1-Zellen Nurrl exprimiert
wird und seine Konzentration in den ersten 3 Tagen der Differenzierung zunimmt.
Danach nimmt die Expressionstirke ab, und die Konzentration ist nach 14 Tagen
Differenzierung niedriger als in den undifferenzierten Zellen. Die Expression von
Nurrl in den Stammzellen fordert ihre Differenzierung und Reifung zu DA-Neuronen
(Wagner et al. 1999; Kim et al. 2002, 2003; Volpicelli et al. 2004).

Die Funktion von Nurrl ist nicht nur auf die Bildung, die Differenzierung und die
Protektion von DA-Neuronen beschriankt. Eine ,,missense” Mutation des Nurrl-Gen
wurde bei der Schizophrenie und bipolaren Erkrankungen nachgewiesen (Buervenich
et al. 2000). Ein Polymorphismus im Intron 6 des Nurrl-Gens beim Menschen ist mit
Morbus Parkinson assoziiert (Xu et al. 2002). Und im Mesenzephalon von

Kokainabhingigen ist Nurrl herunterreguliert (Bannon et al. 2004).

2.5.2 Tyrosinhydroxylase (TH)
Katecholamine werden aus dem gemeinsamen Prekursor Tyrosin synthetisiert. Aus

Tyrosin wird DOPA , das dazu notwendige Enzym ist die Tyrosinhydroxylase (TH).
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TH + BH4 AADC + B6 DBH PNM

tyrosine — 5 L-dopa — > dopamine —, norepinephrine — epinephrine
COMT MAO ¢ COMT COMT coMT
x v v
v
3-o0-methyldopa DOPAC 3MT

comt /M0

v

vanillactic acid HVA MHPG V.

Abb. 1: Wege des Katecholamin-Stoffwechsels

TH: Tyrosinhydroxylase; AADC: aromatic L-amino acid decarboxylase; DBH:
dopamine B-hydroxylase; PNM: phenylethanolamine N-methyltransferase; COMT:
catechol-O-methyl transferase; MAO: monoamine oxidase; DOPAC: 34-
dihydroxyphenylacetic acid; 3MT: 3-O-methyldopa; HVA: homovanillic acid; NM:
normetanephrin; M: metanephrin; ALD-L: aromatic amino-acid decarboxylase;
MHPG:  3-methoxy-4-hydroxyphenylglycol ; VMA: vanillylmandelic acid
(www.web.indstate.edu)

TH ist das ,,rate-limiting* Enzym bei der Synthese von Katecholaminen (D1 Porzio et
al. 1990), die die Hauptmediatoren in vielen physiologischen Funktionen des ZNS und
des PNS sind (Nagatsu et al. 1964). Die Regulation von TH spielt daher eine sehr
wichtige Rolle bei der Wirkung katecholaminerger Neurone (Kumer et al. 1996). Die
Expression von TH beginnt bei der Ratte am Embryonaltag 11,5 in der intermediéren
Zone der neuralen Tube und in der sympathikoadrenergen Anlage, die ihren Ursprung
von Neuralleistenzellen (neural crest cells) nimmt (Kalsbeek und Buijs 1992; Di
Porzio et al. 1990; Zetterstrom et al. 1996a, b; Perrone-Capano und Di Porzio 1996).
Die Expression von TH wurde auch im adulten Gehirn nachgewiesen, aber nur in
bestimmten Gruppen von Neuronen: Substantia nigra pars compacta, der ventralen
tegmentalen Area, den sympathischen Ganglien und der Glandula suprarenalis
(Hokfelt et al. 1984; Zetterstrom et al. 1996a, b).

Das Protein besitzt ein Molekulargewicht von 60-68 kDa. Es setzt sich aus vier
Untereinheiten zusammen. TH 146t sich im Gehirn ausschlieBlich in Neuronen
nachweisen (Takeshima et al. 1994; Andreeva et al. 1996). TH wird iiblicherweise als
Marker flir dopaminerge Neurone verwendet (Andreeva et al. 1996; Cheung et al.

1997; Haas und Wree 2002).
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TH-immunreaktive Neurone in Kultur treten in drei verschiedenen Formen auf: als
bipolare ovale, multipolare und als tripolare pyramidale Zellen. Die tripolare Form
kommt am hiufigsten vor. TH-immunreaktive Neurone besitzen typischerweise zwei
bis fiinf dicke und gerade Primédrausldufer, die sich nur spérlich baumartig aufzweigen
(Cheung et al. 1997). Astroglia stimuliert die Entwicklung der TH-Expression und
fordert die Differenzierung mesenzephaler, dopaminerger TH-immunreaktiver
Neurone in vitro (Lieth et al. 1989). Immunhistochemische Férbungen mit Anti-TH
stellen in der Regel das Zytoplasma und die Ausléufer der Neurone dar.

Die Untersuchung zu einer moglichen TH-Expression der CSM14.1-Zellen wurde
durchgefiihrt, um zu priifen, ob sie eventuell fiir eine Transplantation bzw. eine
Dopaminsubstitutionstherapie in einem tierexperimentellen Modell des Morbus
Parkinson geeignet sein konnten (Haas und Wree 2002). Eine Zunahme von TH unter
Differenzierungsbedingungen in vitro wurde mittels Western Blots nachgewiesen, aber
immunzytochemisch konnte TH nicht detektiert werden. /n vivo wurde eine Expression
von TH in transplantierten CSM14.1-Zellen immunhistochemisch innerhalb der
degenerierten Substantia nigra pars compacta auf der ldsionierten Seite nach der
Transplantation wie auch entlang und zwischen den dopaminergen Neuronen auf der

kontralateralen intakten Seite nachgewiesen (Petrov et al. 2004).
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3. Material und Methoden

3.1 Zellkultur
Zur Kultur wurden CSM14.1-Zellen im Tiefkiihlschrank bei -150° C gelagert. Sie

wurden unter warmem Wasser aufgetaut und in Gewebekultur-Petrischalen (Greiner,
Frickenhausen, Deutschland) in gesittiger Wasserdampfatmosphére in 5% CO; / 95%
Luft bei 33° C inkubiert. Die Kultivierung erfolgte in Dulbecco’s modified Eagle’s
Medium (DMEM, angereichert mit Glutamax, 1000 mg/L D-Glukose,
Natriumpyruvat; Gibco) mit 10% fetalem Kéilberserum (FCS, Gibco) und 10 U/ml
Penicillin, 10 ul/ml Streptomycin (Gibco). Am nédchsten Tag wurde das Medium
gewechselt. Nach drei Tagen wurden die konfluenten Zellkulturen mittels Trypsin
(Gibco) dissoziiert und zentrifugiert (10 min, 600 rpm) (Labofuge 200, Haereus,
Osterode, Deutschland). Der Uberstand wurde abgenommen und die Zellen wieder in
Néhrmedium resuspendiert. Nach drei Passagen (die Zellen wurden jeden dritten Tag
passagiert) wurden die Zellen fiir weitere Kultivierungen und Analysen der
Differenzierung unter verschiedenen Bedingungen eingest:

- auf Poly-L-Lysin-beschichteten (5 g auf 50 ml H20, Sigma, Deisenhofen,
Deutschland) Falcon-Kulturobjekttragern (Fischer Scientific, Schwerte, Deutschland),
- in Multidish 24 Wells (Nunclon Delta Si, Ddnemark) mit eingelegten, Poly-L-Lysin-
beschichteten Deckgldschen und

- in Petrischalen (Greiner, Frickenhausen, Deutschland).

Fir die histologische Féarbung mit Kresylviolettacetat (Sigma) und fiir die
immunzytochemische Darstellung verschiedener Proteine wurden die suspendierten
Zellen zuerst gezéhlt und in DMEM + 10% FCS so verdiinnt, dass die Konzentration
der Zellen ~2000 Zellen pro 1 ml betrug. In jede Kammer der Multidish 24 Wells
wurde 1 ml der Zellsuspension eingebracht.

Fiir Western Blots wurden andere Zellsuspensionen vorbereitet. Nach der Zellzahlung
wurden die Zellen in DMEM + 10% FCS so weit verdiinnt, dass 2 ml Medium 500000
Zellen enthielten. Die vorbereiteten Petrischalen fiir die verschiedenen Experimente
wurden mit 8 ml DMEM + 10% FCS gefiillt und ihnen dann 2 ml der Zellsuspension
hinzugefiigt (10 ml DMEM + 10% FCS enthielten 500000 Zellen). Die Zellkulturen
wurden tiber Nacht bei 33° C kultiviert, um ein Anheften der Zellen auf dem Substrat
zu gewihrleisten. Danach erfolgte die Behandlung der Zellkulturen mit

unterschiedlichen Medien (10% oder 1% FCS) ohne (-) oder mit (+) Zusatz des

31



Zytokincocktails bei permissiver (33° C) oder bei nicht permissiver Temperatur (39°

O):

Temperatur Kulturdauer FCS Zytokincocktail
1. 33°C 2d 10% -
2. 33°C 3d 1% -
3. 33°C 7d 1% -
4. 33°C 10d 1% -
5. 33°C 14d 1% -
6. 33°C 3d 1% +
7. 33°C 7d 1% +
8. 33°C 10d 1% +
9. 33°C 14d 1% +
10.  39°C 3d 1% -
1. 39°C 7d 1% -
12.  39°C 10d 1% -
13. 39°C 14d 1% -
14.  39°C 3d 1% +
15.  39°C 7d 1% +
16. 39°C 10d 1% +
17. 39°C 14d 1% +

3.1.1 Behandlung mit DMEM + 10% FCS, Kontrollmedium

Die Stammzellen brauchen fiir ihre Vermehrung ein Medium, das reich an Néhrstoffen
und frei von Bakterien und anderen schidlichen Substanzen ist. Deshalb werden
verschiedene Medien produziert, die den Bediirfnissen unterschiedlicher
Stammzelllinien entsprechen. Das Ziel dabei ist, eine moglichst groe Menge der
Stammzellen, und gleichzeitig deren Eigenschaften als Stammzellen zu erhalten.

Das Kontrollmedium DMEM (Gibco), angereichert mit D-Glucose und Glutamin, ist
ein Kulturmedium, das standardméaBig eingesetzt werden kann. Als Antibiotikum bzw.
Antimykotikum werden dem Medium 10 U/ml Penicillin und 10 pl/ml Streptomycin
(beides von Gibco) zugesetzt. Ein optimales Wachstum kann aber nur erreicht werden,
wenn dem als Grundlage verwendeten Medium DMEM ein Serum zugesetzt wird, in

diesem Fall 10% fetales Kédlberserum. Fetales bovines Serum (FBS; Synonyme: FCS,

32



FKS) ist heute ein unverzichtbares Supplement in Zellkultursystemen. Seren bestehen
als Naturprodukte aus einer grofen Anzahl bekannter, aber auch unbekannter
Inhaltsstoffe, deren Konzentration und Zusammensetzung schwankt. Sie enthalten z.B
Hormone, Bindungsproteine, Anheftungsfaktoren und Aminosduren. Die in dieser
Studie verwendeten Seren entstammen alle derselben Charge- Nummer (Gibco).
CSM14.1-Zellen, die zwei Tage unter permissiven Kulturbedingungen kultiviert
wurden, wurden als Kontrollen bei 33° C + 10% FCS gewonnen, da sie schon
konfluent waren. Fiir die Nissl-Farbung und Immunzytochemie wurden alle Kulturen
wie folgt aufgearbeitet: Nach der Spiilung mit 0,1 M Phosphatpuffer (PBS: 8 g NacCl,
0,2 g KCI, 1,42 g Na,HPO4 x 2H,0, 0,27 g NaH,POg4, auf 1000 ml mit Aqua dest.
aufgefiillt und auf pH 7,4 eingestellt, alle Reagenzien von Serva, Heidelberg,
Deutschland) wurden die Zellen eine Stunde bei Raumtemperatur (RT) mit 4%
Paraformaldehyd (PFA, in PBS, Serva) fixiert.

Zu den entsprechenden Zeitpunkten wurden auch Proben fiir Western Blots
vorbereitet. Das Medium wurde aus den Petrischalen abgesaugt und die Proben mit
PBS gespiilt, um tote Zellen zu entfernen. Dann wurden die Kulturen fiir 20 min mit
Trypsin-Losung im Brutschrank (33° C) inkubiert, um die Zellen vom
Petrischalenboden abzuldsen. Die Zellsuspension wurde in 10 ml Zentrifugenrdhrchen
iiberfiihrt. Vor dem Zentrifugieren (10 min 600 rpm) wurden die Zellen mehrfach
trituriert. Danach wurde der Uberstand abgenommen und das restliche Trypsin durch
die Zugabe von DMEM + 10% FCS neutralisiert und die Zellen gleichzeitig
resuspendiert. Nach der Zellzahlung wurden die Zellen erneut zentrifugiert (10 min
600 rpm), der Uberstand abgenommen und die Zellen in PBS resuspendiert, so dass die
Konzentration 1.000.000 Zellen/ 100 pl PBS betrug. Diese Zellsuspensionen wurden
im Tiefkiihlschrank bei -20° C bis zur weiteren Aufarbeitung gelagert.

3.1.2 Behandlung mit DMEM + 1% FCS
Neuronale Stammzellen sind unreife Zellen des Zentralnervensystems und zeichnen
sich durch ihre Fahigkeit aus 1) sich zeitlebens zu teilen, 2) sich selbst zu erneuern und
3) reife Nerven- und Gliazellen hervorzubringen. Sie bendtigen bestimmte
Bedingungen, bei denen sie sich differenzieren konnen. Fiir unsere temperatursensitiv
immortalisierten mesenzephalen CSM14.1-Progenitorzellen (Durand et al. 1990) sind
diese Bedingungen die Temperaturerh6hung auf 39° C und die Serumreduktion im

Medium. Dieses serumreduzierte Medium wurde von Winkler et al. (1998) als
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Differenzierungsmedium bezeichnet. Es enthdlt DMEM mit Glutamax und Glucose,
Antibiotikum — 10 U/ml Penicillin, 10 pul/ml Streptomycin und nur 1% FCS.

Im Zellkulturmedium DMEM + 1% FCS wurden die Zellen bei 33° C oder bei 39° C
bis zu 14 Tagen kultiviert. Alle Reagenzien fiir Zellkulturen wurden von Gibco Life
Technologies (Karlsruhe, Deutschland) bezogen. Das Medium (ohne Zytokine) wurde
jeden dritten Tag gewechselt. Die Proben wurden an den Kulturtagen 3, 7, 10 und 14
nach der Spiilung mit PBS eine Stunde bei Raumtemperatur (RT) mit 4% PFA fixiert
(fiir Nissl-Farbung und Immunzytochemie). Die Proben fiir die Western Blots wurden

auch an den Tagen 3, 7, 10 und 14 gewonnen und (s.0.) aufgearbeitet.

3.1.3 Behandlung mit DMEM + 1% FCS + Zytokine
Fiir die Wirkung der Zytokine auf die dopaminerge Differenzierung immortalisierter
CSM14.1-Zellen sind keine Daten bekannt. Ling et al (1998) und Carvey et al (2001)
untersuchten in vitro bei fetalen mesenzephalen Zellen, die aus 14,5 Tage alten
Rattenembryonen gewonnen wurden, die Wirkung von 19 Zytokinen und deren
Potenzial, einen DA-Phenotyp bei diesen Progenitorzellen zu induzieren. Sie fanden,
dass nur die Interleukinela und B (IL1 a, B) die Expression des DA-Markers TH
induzieren konnte. Und obwohl zahlreiche Zellen in den zytokinbehandelten Kulturen
TH-positiv waren, zeigten sie nicht die Morphologie reifer TH-exprimierender
Neurone. Die Zellen hatten kleine, runde Perikarya mit wenigen kurzen Ausldufern.
Um die TH-Expression morphologisch zu festigen, untersuchten Ling et al. (1998) die
Zusammenwirkung von verschiedenen Zytokinen, die das Uberleben und die
morphologische Entwicklung der mesenzephalen Progenitorzellkulturen beeinflussen,
zusammen mit IL1 in einem Cocktail. Nach der Behandlung der Zellkulturen mit
einem Zytokincocktail, der neben IL1 auch IL11, LIF (Leukemia inhibitory factor) und
GDNF (Glial cell line-derived neurotrophic factor) enthielt, nahm die Menge der
Zellen, die die Morphologie reifer TH-exprimierender Neurone zeigten und
immunreaktiv fiir Dopa-Dekarboxylase, DA-Transporter (DAT) und DA waren, zu.
Gleichzeitig wurde in den Zellkulturen auch die typische Morphologie dopaminerger
Neurone beobachtet. Die Autoren erkldrten diese Wirkung mit dem gemeinsamen
Rezeptor gp130 von IL11 und LIF. IL1 induziert die Expression von gp130, und dann
folgt eine Uberstimulation durch die beiden Agonisten (IL11 und LIF). Diese
., Uberstimulation” soll verantwortlich sein fiir die Differenzierung von neuronalen

Progenitoren in TH-immunreaktive Neurone.
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Entsprechend den Angaben von Ling et al. (1998), Potter et al. (1999) und Carvey et
al. (2001) verwendeten wir einen Zytokincocktail zur dopaminergen Differenzierung
folgender Zusammensetzung:

IL1 - 100 pg/ml

IL11 - 1 ng/ml

LIF - 1 ng/ml

GDNF - 10ng/ml

Das Zellkulturmedium DMEM + 1% FCS wurde mit dem Zytokincocktail versetzt und
die Zellen bei 33° C oder bei 39° C bis zu 14 Tagen kultiviert. Kontrollkulturen
wurden ohne Zytokine kultiviert. Das Medium ohne oder mit Zytokinen wurde jeden
dritten Tag gewechselt. Die Proben wurden am Kulturtag 3, 7, 10 und 14 nach der
Spiilung mit PBS eine Stunde bei Raumtemperatur (RT) mit 4% PFA fixiert (fiir Nissl-
Farbung und Immunzytochemie). Die Proben fiir die Western Blots wurden auch an

den Tagen 3, 7, 10 und 14 gewonnen und, wie oben geschrieben wurde, aufgearbeitet.

3.2 Zellzahlbestimmung

CSM14.1-Zellen wurden unter permissiven Kulturbedingungen (33° C, 10% FCS) auf
Petrischalen (Greiner) kultiviert. Das Medium wurde jeden dritten Tag gewechselt.
Nach drei Passagen wurde die Zellzdhlung durchgefiihrt und die Proben fiir die
Immunzytochemie und den Western Blot vorbereitet. Am Tag der Entnahme wurden
die Kulturen mit PBS gespiilt und durch Trypsinierung (Gibco) vom Boden der
Petrischalen abgelost. Die Zellsuspensionen wurden 10 min bei 400 g zentrifugiert
(Labofuge 200, Haereus, Osterode, Deutschland), der Uberstand abgenommen und die
trypsinierten Zellsuspensionen mit DMEM + 10% FCS gewaschen. Zur Einstellung
der Zellzahl wurde ein Aliquot der Zellsuspension mit Trypanblau verdiinnt (1:1) und
in der Neubauer-Zihlkammer gezédhlt. Trypanblau ist ein Farbstoff, der nur in tote
Zellen eindringen kann, so dass eine Unterscheidung zwischen toten und vitalen Zellen
moglich wird. Nur die nicht geférbten, vitalen Zellen werden gezihlt.

Nach der Zellzahlbestimmung wurden die Petrischalen fiir den Western Blot und die
Multidish 24 fir die Immunzytochemie vorbereitet. In die Multidish 24 wurden
Kulturgldschen (10 mm Durchmesser) gelegt, die mit Poly-L-Lysin beschichtet waren.
Nach 2 Stunden Trocknungszeit wurden die Zellen ausgesit. Die Zellzahl pro Kammer

betrug ~ 2000 Zellen.
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Die Zellen, die bei 33° C + 10% FCS kultiviert wurden, wurden nach 2 Tagen fixiert;
bei allen Zellen, die in serumreduziertem Medium kultiviert wurden, erfolgte die
Fixierung an Tag 3, 7, 10 oder 14. Am Tag der Entnahme wurde mit PBS gespiilt und
mit 4% PFA fixiert.

Fiir die Untersuchungen mittels Western Blot wurde die Zellen in einer solchen Menge
ausgesit, so dass die Kontrolle (33° C, 10% FCS) und die Proben an Tag 3, 7, 10 und
14 (33° C + 1% FCS; 39° C + 1% FCS ohne Zytokine, 39° C + 1% FCS mit
Zytokinen) zum vorgesehenen Kulturende vergleichbare Zellzahlen enthielten. Dazu
waren aufwendige Voruntersuchungen zum Wachstumsverhalten der Zellen
notwendig, die hier nicht beschrieben werden sollen. Am Tag der Entnahme wurden
die Zellen mit PBS gespiilt und durch Trypsinierung (Gibco) vom Boden der
Petrischalen abgelost. Die Zellsuspensionen wurden 10 min bei 400 g zentrifugiert
(Labofuge 200, Haereus, Osterode, Deutschland), der Uberstand abgenommen und die
trypsinierten Zellsuspensionen mit DMEM + 10% FCS neutralisiert. Nach diesem
Schritt wurde die Anzahl vitaler Zellen mit Trypanblau ermittelt, und es erfolgte
wiederum eine Zentrifugation fiir 10 min bei 400 g, ein Abnehmen des Uberstandes
und schlieBlich die Zugabe von PBS, so dass 1000000 Zellen pro 100 pl PBS

suspendiert wurden. Die so vorbereiteten Proben wurden im Tiefkiihlschrank gelagert.

3.3 Bestimmung der Proteinkonzentration

Die Proben fiir Western Blots (1000000 Zellen pro 100 ul PBS) wurden zur Lyse der
Zellen dreimal unter fliessendem warmem Wasser aufgetaut und bei -20° C wieder
eingefroren. Die so gewonnenen Zellsuspensionen wurden einer Messung der
Gesamtproteinkonzentration unterzogen. Fiir die Proteinmessung wurden ein BCA-Kit
(Pierce Chemical Co, Rockford, IL, USA) und ein Spektrophotometer (Model DU640,
Beckman, Fullerton, CA, USA) nach den Herstellerangaben verwendet.

Nach Ermitteln der Gesamtproteinkonzentration wurden entsprechende Proteinmengen
aus den Lysaten entnommen, so dass alle Proben vergleichbare Proteinmengen
enthielten. Diese Proben wurden mit SDS-Probepuffer (Laemmli 1970) verdiinnt, so
dass in einem Endvolumen von 200 pl 200 pg Protein enthalten waren. Der Lysepuffer
bestand aus folgenden Reagenzien: 52 ml Aqua dest., 1 g SDS (Serva), 5 g Glycerin
(Roth), 92,5 mg EDTA (Roth), 0,4 g TRIS (Serva), 10 mg Bromphenolblau (Roth), 2,5
ml B-Mercaptoethanol (Roth). Diese Proben wurden fiir 30 min bei 60° C denaturiert
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(Thermo-Block TDB-120, Dry-Block Thermostate, Kisker-Biotech, Miinchen,
Deutschland).

3.4 Western Blot
Die elektrophoretische Auftrennung der Proteine wurde in SDS-Polyacrylamidgelen
mit einem Gradienten von 4-15% (ready to use mini Criterion Gels, Bio-Rad,
Miinchen, Deutschland) durchgefiihrt. Jede Probentasche wurde mit 20 pl Lysepuffer
(entsprechend 20 pg Gesamtprotein) der jeweiligen Probe gefiillt.
Unter Verwendung einer Mini-Elekrophoresekammer (Criterion-Cell, Bio-Rad), bei
konstanter Stromspannung von 170 V, dauerte die Elektrophorese ca. 1 h. Der
Elektrodenpuffer bestand aus 3 g TRIS (Serva), 14,4 g Glycin (Roth), 1 g SDS (Serva)
und einem Liter H,O. Als Marker wurde ein Molekulargewichtsstandard von 6,5-175
kDa verwendet (Bio-Rad).
Aus dem Polyacrylamidgel wurden Proteine auf eine Nitrozellulosemembran
(Amersham Pharmacia Biotech, Freiburg, Deutschland) iibertragen. Zuvor wurde die
Membran ca. 30 min in Transferpuffer aktiviert. Der Transferpuffer bestand aus 5,8 g
TRIS (Serva), 2,9 g Glycin (Roth), 0,375 g SDS (Serva), 200 ml Methanol (JT Baker,
Deventer, Holland) und 800 ml H,O. Es wurde fiir eine Stunde ein konstanter Strom
von 0,8 A pro cm? Geloberfliche auf die Blotkammer (Model Semi-Phor, Hoefer, San
Francisco, CA, USA) angelegt. Die Spannungs- und Stromquelle fir die
Gelelekrophorese und den Semidry Blot war ein Power Supply 1500 (Hoefer).
Nach beendetem Transfer wurde die Membran in PBS gewaschen und zur Abséttigung
unspezifischer Bindungsstellen fiir 1 h bei Raumtemperatur in Blocklésung (0,1 M
PBS, pH 7.4, 0,1% Tween 20 und 1% BSA) geschwenkt. AnschlieBend wurde die
Membran mit dem Primirantikorper (gelost in Blockldsung) iiber Nacht bei 4° C
inkubiert.
Als Primirantikorper wurden Antikorper gegen: B-Aktin (1: 3000, aus der Maus,
monoklonal, Sigma), SV40 Large T (1: 500, aus der Maus, monoklonal, Becton-
Dikinson), Neuronenspezifische Enolase (NSE, 1: 1000, aus Kaninchen, polyklonal,
Chemicon), neuronenspezifisches Kernprotein (NeuN 1: 5000, aus der Maus,
monoklonal, Chemicon), Tyrosinhydroxylase (TH, 1: 3000, aus der Maus,
monoklonal, Sigma), Nurrl (1: 1000, aus der Maus, monoklonal, Becton-Dikinson)
und saures Gliafaserprotein (GFAP, 1: 4000, aus der Maus, monoklonal, Sigma)

verwendet.
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AnschlieBend wurde die Membran viermal in 0,1 M PBS (pH 7,4) und 0,1% Tween 20
(PBS-T) gewaschen. Als zweiter Antikorper wurde ein mit dem Enzym Peroxidase
kovalent verbundener IgG-Antikorper (anti-mouse, 1: 5000 oder anti-rabbit 1: 10000,
beide Vector Laboratories, Burlingam, CA, USA) (ebenfalls in Blockldsung)
verwendet. Zur Bindung des zweiten Antikorpers wurde die Nitrozellulosemembran
fiir 1 h bei Raumtemperatur geschwenkt. Nach dem viermaligen Waschen in PBS-T
konnten die an der Membran gebundenen Antikorper mit Hilfe des ECL- Kits
(Amersham Pharmazia Biotech) detektiert werden. Die Membranen wurden fiir 1 min
mit ECL- Detektionskit inkubiert und anschliessend die nach der Chemoluminiszenz-
Methode positiv markierten Banden unter Verwendung eines 100NIF-Rontgenfilms
(Agfa, Mortsel, Belgien) detektiert.

Als Positivkontrollen wurden Lysate aus Substantia nigra, Kortex und Striatum
vorbereitet und SW13-Zelllysat (vom Hersteller des Antikorpers mitgeliefert) fiir
Nurrl. Die Gewebelysate wurden von Rattengehirnen gewonnen und mit Lysepuffer
verdiinnt. Fiir 50 mg Gewebe wurde 1 ml SDS-Puffer zugegeben. Es wurde mit

Mikropistil gut zerkleinert und 30 min bei 60° C denaturiert.

3.5 Immunzytochemie

Die Immunzytochemie dient dem spezifischen Nachweis von Proteinen in einzelnen
Zellen, Zellkulturen und Geweben. Die ersten Berichte iiber erfolgreich durchgefiihrte
Untersuchungen mittels Immunzytochemie wurden bereits in den Jahren 1950 und
1955 veroffentlicht (Coons und Kaplan 1950; Coons et al. 1955). Mit Hilfe der
Immunzytochemie koénnen daher antigene Strukturen in Schnittprdaparaten und
Zellkulturen prizise lokalisiert werden, z. B. Zellbestandteile und Sekretionsprodukte
wie Zytoskelett, Zelladhdsionsmolekiile, Molekiile der extrazelluliren Matrix,
Hormone, Rezeptoren, Immunglobuline und auch Erreger (Heitz et al. 2001).

Die Immunzytochemie gliedert sich in drei Schritte: die Vorbehandlung der Priparate,
die Inkubation mit den spezifischen Antikorpern und die Detektion der entstandenen
Antigen-Antikorper-Komplexe.

Die Vorbehandlung dient zum einen der Erhaltung der morphologischen Struktur
(Fixierung) des Gewebes oder der Zellen, zum anderen der Permeabilisierung und der
Absittigung unspezifischer Bindungsstellen in den Préparaten. Es darf dabei aber nicht
iibersehen werden, dass die Fixierung des Gewebes zur Denaturierung oder Ausféllung

von Proteinen und damit zur Maskierung antigener Strukturen fiihrt. Daher miissen
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diese oft durch Vorbehandlung der Schnittpriaparate mit proteolytischen Enzymen (z.B.
Trypsin, Pronase) oder durch Wirmebehandlung (z.B. Mikrowelle, Wasserbad,
Dampfgarer, Autoklav) mit verschiedenen Puffern (z.B. Zitratpuffer, Tris-EDTA-
Puffer) demaskiert werden. Im angloamerikanischen Sprachraum wird dieses als
mantigen retrieval bezeichnet. Gewisse Antikdrper erkennen keine denaturierten
Strukturen, weshalb fiir ihre Anwendung nur Gefrierschnitte oder speziell praparierte
Gewebe (z.B. Periodat-Lysin-Paraformaldehyd-Fixation oder Gefriertrocknung)
genutzt werden konnen (Heitz et al. 2001).

Im Anschlufl an die Vorbehandlungen erfolgt die Inkubation der Préparate mit den
spezifischen Antikorpern. Je nach Versuchsansatz erfolgt meist eine weitere
Inkubation mit einem markierten Sekunddrantikorper, der gegen den ersten gerichtet
ist. Die Detektion der Ag-Ak-Komplexe stellt den letzten Arbeitskomplex dar, die je
nach Markierungsstrategie der Antikdrper meist mit Hilfe enzymatischer Methoden
oder iiber Immunfluoreszenzverfahren erfolgt. Je nachdem, ob die Antikdrper in der
Lage sind, nur ein Epitop oder mehrere Epitope (Epitop: Sequenz von 5 — 10
Aminosduren, gegen die die Antigen-Bindungsstellen des eingesetzten Antikorpers
gerichtet sind) eines Antigens zu binden, werden monoklonale von polyklonalen
Antikorpern  unterschieden. Die  Antigen-Antikdrper-Komplexe konnen —auf
unterschiedliche Art und Weise sichtbar gemacht werden. Fiir diese Reaktion werden
zum Nachweis der im Gewebe gebundenen primédren Antikorper zwei prinzipiell
unterschiedliche Methoden eingesetzt, die sogenannte direkten und indirekten
Nachweismethoden. Die direkte Markierung ist die einfachste immunzytochemische
Methode. In einem ,,One-Step-Verfahren* wird der spezifische, markierte Antikorper
mit dem Prédparat inkubiert und unmittelbar sichtbar gemacht. Bei den direkten
Methoden werden die primdren Antikdrper mit einem sogenannten Markermolekiil
(z.B. fluoreszierender Farbstoff, Enzym, kolloidales Gold) gekoppelt, das nach der
Immunreaktion im Gewebe nachgewiesen werden kann. Fluoreszierende Farbstoffe
geben auf die Exitation durch Ultrablau- oder Ultraviolett-Bestrahlung sichtbares Licht
mit definierter Wellenldnge ab. Man bendtigt zur Beobachtung fluoreszierender
Farbstoffe ein mit geeigneten Filterkombinationen ausgeriistetes Auflichtmikroskop.
An primdre Antikorper gekoppelte Enzyme (z.B. Meerrettichperoxidase, alkalische
Phosphatase) konnen nach Ablauf der Immunreaktion ein zugegebenes farbloses
Substrat in einen unldslichen (prizipitierenden) Farbstoff verwandeln, der am Ort der

Antigen-Antikdrper-Bindung nun lichtmikroskopisch nachgewiesen werden kann
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(Heitz et al. 2001). Bei den indirekten Methoden werden die Antigen-Antikdrper-
Reaktionen im Gewebe indirekt, d.h. mit Hilfe zusétzlicher immunologischer
Reaktionen, sichtbar gemacht. Es werden meist gegen den primdren Antikorper
gerichtete sekundire Antikorper eingesetzt, die selbst ein Markermolekiil tragen oder
einen mit Markermolekiilen oder Enzymen versehenen Komplex als dritte Stufe
binden (briickenbildende Antikorper).

Zahlreiche Variationen von indirekten Methoden sind beschrieben worden. Alle fithren
durch den sequentiellen Ablauf mehrerer Reaktionen zu einer kaskadenartigen
Verstiarkung (Amplifikation) des Nachweissignals. Bei diesen Entwicklungen handelt
es sich um mehrstufige Nachweismethoden, wobei entweder immunologische
Bindungen verschiedener gegeneinander gerichteter Antikdrper (sogenannte
Peroxidase-Anti-Peroxidase- oder PAP-Technik und Alkalische-Phosphatase-Anti-
Alkalische-Phosphatase- oder APAAP-Technik) oder chemische Affinitdt, z.B.
zwischen Avidin und Biotin (Avidin-Biotin-Komplex- oder ABC-Technik) ausgenutzt
werden (Schmitt et al. 2004).
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Abb. 2: Immunologische Verfahren zur spezifischen Darstellung von Proteinen in
Geweben und Zellen (Immunzytochemie) (aus: Heitz et al. (2001): S. 19)

3.5.1 DAB-Firbung
Diese Methode nutzt die hohe Affinitdt von Avidin und Biotin zueinander. Bei der
Avidin-Biotin-Methode wird der am Antigen gebundene Erstantikorper von einem
biotinylierten Sekundérantikdrper erkannt. Das Biotin des Sekundérantikorpers wird

von einem Komplex aus Avidin und Peroxidase gekoppelten Biotin gebunden, es
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kommt zur Bildung groBerer Komplexe und somit zu einer Signalverstirkung, die
durch die enzymatische Aktivitit der Peroxidase sichtbar gemacht wird (Abb. 2).

Als Detektionssystem diente ein biotinylierter Pferd-Anti-Maus-Antikdrper und ein
Avidin-Biotin-Peroxidase-Komplex. Diaminobenzidin Tetrahydrochlorid (DAB) ist
ein Chromogen, das sehr héufig fiir die Lokalisierung der Peroxidasereaktion
angewendet wurde. DAB firbt die Proben braun. Wir haben das Vectastain-Kit
(Vector Laboratories) verwendet.

Die fixierten CSM14.1-Zellproben wurden nach kurzem Waschen in TRIS-Puffer
(TRIS, 0,1 M, pH 7,4) zur Abblockung endogener Peroxydasen fiir 10 min bei RT in
einer Losung aus 3% H,0, (in TRIS geldst, Sigma) inkubiert und danach wieder mit
TRIS-Puffer dreimal gewaschen. Dann erfolgte eine Inkubation fiir 1 h bei RT in einer
Losung aus TRIS-Puffer, 3% bovinem Serumalbumin (BSA, Sigma), 5% Normal
horse serum (NHS, Gibco) und 0,05% Triton-X100 (Sigma) zum Neutralisieren
unspezifischer Bindungsstellen.

AnschlieBend wurden die Priparate liber Nacht bei 4° C mit dem entsprechenden
Primérantikdrper (Anti-Tyrosinhydroxylase, 1: 500, mouse monoclonal), gelost in
einer Losung, die TRIS, 1% BSA und 0,025% Triton-X100 enthélt, inkubiert. Am
néchsten Tag wurden nicht gebundene Primérantikorper mit TRIS heruntergewaschen.
Nach dreimaligem Waschen in TRIS erfolgte die Inkubation iiber Nacht bei 4° C mit
Sekundérantikorpern, die gegen die jeweilige Primérantikorperspezies gerichtet waren
(gelost in TRIS, 1% BSA und 0,025% Triton-X100). SchlieBlich wurden die
markierten Strukturen mittels eines ABC-Kits (Vector Laboratories, Burlindame,
USA) nach der bekannten Avidin-Biotin-Methode visualisiert. Nach Dehydrierung in
einer aufsteigenden Alkoholreihe erfolgte das Eindecken der Priparate in DePeX

(Serva).

3.5.2 Fluoreszenzmarkierung
Die fixierten, auf Kulturgldschen geziichteten Proben wurden dreimal mit TRIS- Puffer
(TRIS, 0,1 M, pH 7.4, Sigma) gewaschen. Um unspezifische Bindungsstellen zu
neutralisieren und damit spéter ein spezifisches Ergebnis zu erzielen, wurden die
Kulturen danach 1 Stunde mit einer Losung aus 0,1 M TRIS- Puffer (pH 7.4), 3%
bovinem Serumalbumin (BSA, Sigma), 0,05% Triton und 2% normalem Ziegenserum
(NGS, Gibco) vorinkubiert. Triton dient hierbei der Offnung der Zellmembran, damit

die Antikorper ihre intrazelluldren Epitope erreichen konnen. Der erste Antikorper
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wurde in einer Losung aus TRIS, 1% BSA, 0,025% Triton je nach Anleitung oder
entsprechend den Ergebnissen von Vorversuchen in der gewiinschten
Endkonzentration (1: 100 bis 1:1000) verdiinnt. Die Primérantikdrperinkubation
erfolgte liber Nacht bei 4° C. Danach wurden die Praparate wieder dreimal in TRIS
gewaschen. Die Inkubation mit Fluorochrom-konjugierten Sekundirantikérpern
(TRIS, BSA 1%, 0,025% Triton) erfolgte iiber Nacht bei 4° C. Am néchsten Tag
wurde die Zweitantikdrperlosung entfernt und 5 min mit DAPI- Stammlosung (DAPI,
Roth, + TRIS) inkubiert. DAPI (4',6-Diamidino-2-phenylindoldihydrochlorid) ist ein
Fluoreszenzfarbstoff, der zur Gruppe der Indol-Farbstoffe gehort. DAPI wird zur
DNA-Farbung, speziell zur Kernfarbung, verwendet. Nach dem dreimaligen Waschen
in TRIS wund einmal kurz in Aqua dest. wurden die Proben mit
Fluoreszenzeindeckmedium (Glycerol, Polyvinilalkohol, Aqua dest.,, TRIS)
eingedeckt.

Bei allen Experimenten wurden Negativ-Kontrollen mitgefiihrt. Dabei entspricht die
immunzytochemische Prozedur der oben beschriebenen, nur der spezifische
Primérantikérper wurde bei der Primérantikorper-Inkubation weggelassen.

Die Angaben iiber die verwendeten Antikorper und deren Verdiinnung finden sich in

Abschnitt 3.8.

3.6 Immunzytochemische Auswertung
Die Untersuchung der Préparate erfolgte unter Verwendung des Leitz Aristoplan-
Mikroskops (Leitz, Wetzlar, Deutschland) und unter Verwendung der entsprechenden
Filtereinheiten. Dieses Forschungsmikroskop verfiigt {iber einen Filterblocksatz fiir die
Fluoreszenzmikroskopie. Es konnten blau (DAPI), grin (CY?) und rot (CY?)
emittierende Fluoreszenzen detektiert werden. Fiir DAPI wurde ein UV-Filter
verwendet. Die Priparate wurden mit einem Kameraaufsatz fiir Kleinbildfilme
dokumentiert und die Dias spéter mittels eines Diascanners digitalisiert.
In den immunzytochemisch gefarbten Priparaten wurde dariiber hinaus die Intensitét
der jeweiligen Markierungen mit den verschiedenen Antikdrpern im
Fluoreszenzmikroskop analysiert und qualitativ eingeschitzt. Die relative
Markierungsintensitét der Zellen wurde beurteilt und wie folgt bewertet:
— keine spezifische Markierung
+ schwach immunreaktiv

+ + méfBig immunreaktiv
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+++ stark immunreaktiv

3.7 Morphologie an Zellkulturen
Zur Visualisierung der gesamten Zell-Morphologie wurden Kulturen mit Kresylviolett
(Sigma) gefarbt. Kresylviolett (Acetat) gehdrt zu den Oxazin-Farbstoffen. Diese
Farbstoffe binden an basophile Strukturen wie RNA und DNA. Dieser Farbstoft stellt
besonders gut den Zellkern, die Nissl-Schollen des Somas, aber auch die Zellausldufer
dar (Romeis 1989). Die Zellen wurden in Multidish 24 Wells (Nunclon Delta Si,
Dianemark) fiir 14 Tage kultiviert. Vor der Aussaat wurden die Zellen zuerst gezdhlt
und in DMEM + 10% FCS Zellsuspension vorbereitet. Hierzu wurde die
Konzentration der Zellen so eingestellt, dass 1 ml ~2000 Zellen enthielt. In jede
Kammer der Multidish 24 Wells wurde 1 ml der Zellsuspension und damit ca. 2000
Zellen eingebracht. Nach 14-tagiger Kulturdauer wurden die Kulturen fixiert, zweimal
fiir 5 min in Aqua dest gespiilt und fiir 30 min in einer Kresylviolettazetatlosung (0,1%
in H,O) gefarbt. Nach wiederholtem Waschen in Aqua dest. und Dehydrierung in einer

aufsteigenden Alkoholreihe wurden die Priparate mit DePeX (Serva) eingedeckt.

3.8 Verwendete Primir- und Sekundirantikorper

3.8.1 Antikorpern fiir Western Blot

1. Primérantikorper gegen ml Blocklosung ul Antikorper

1. Large T (ms) 1: 500 30 ml 60 ul

monoklonal, Becton-Dickinson

2. B-Aktin (ms) 1: 3000 30 ml 10 pl

monoklonal, Sigma

3. NSE (rb) 1: 1000 30 ml 30 ul
polyklonal, Chemicon

4. NeuN (ms) 1: 5000 30 ml 6 ul

monoklonal, Chemicon
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5. Nurrl (ms) 1: 1000 30 ml 30 ul

monoklonal, Becton-Dickinson

6. GFAP (ms) 1: 400 30 ml 75 ul

monoklonal, Sigma

7. TH (ms) 1: 3000 30 ml 10 ul

monoklonal, Sigma

2. Sekundérantikorper (Vector Laboratories, Burlingame, CA, USA)

Anti-Maus IgG 1: 5000 30ml 6 ul

Anti-Kaninchen IgG 1: 10000 30 ml 3ul

3.8.2 Antikorpern fiir Inmunzytochemie

1. Primérantikorper
Anti-Nestin (ms) 1: 500, monoklonal, Becton-Dickinson
Anti-GFAP (ms) 1: 400, monoklonal, Sigma
Anti-MAPS5 (ms) 1: 500, monoklonal, Sigma
Anti-MAP2 (ms) 1: 500, monoklonal, Sigma
Anti-NeuN (ms) 1: 1000, monoklonal, Chemicon
Anti-NSE (rb) 1: 250, polyklonal, Chemicon

Anti-Nurrl (ms) 1: 1000, monoklonal, Becton-Dickinson

ms = aus der Maus; rb = aus dem Kaninchen
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2. Sekundérantikorper

CY3 (Cyanin-Farbstoff 3- rote Fluoreszenz) Anti-Maus, polyklonal, aus Ziege,
Verdiinnung 1: 500, Dianova.

CY3 (Cyanin-Farbstoff 3— rote Fluoreszenz) Anti-Kaninchen, polyklonal, aus Ziege,
Verdiinnung 1: 500, Dianova.

Biotinylierter Anti-Maus Antikorper, polyklonal, aus Ziege, Verdiinnung 1: 80,

Dianova.

3.9 Morphometrie, Stereologie, Bildanalyse und Statistik
In Western Blots und Nissl-Farbungen der Zellkulturen wurden die Unterschiede
quantifizierbarer Parameter sowohl zwischen Kontrollproben und verschiedenen
experimentellen Proben, als auch zwischen unterschiedlichen experimentellen Proben

ermittelt.

Auswertung der Western Blots: Die Expression der untersuchten Proteine wurde
mittels Densitometrie und nachfolgender statistischer Auswertung mit dem nicht
parametrischen Mann-Whitney Test bzw. U-Test untersucht. Es wurden fiinf bis sechs
Western Blots pro untersuchtem Protein ausgewertet, die an verschiedenen Tagen mit
gleichen Protokollen und Bedingungen erstellt wurden. Dabei wurden gleiche
Belichtungs- und Entwicklungszeiten beachtet, um die Ergebnisse vergleichen zu
konnen. Die optimalen Protein-spezifischen Belichtungszeiten wurden in
Vorversuchen iiber eine Folge unterschiedlicher Zeiten bestimmt. Genau der
Belichtungszeitpunkt, der eine deutliche Identifikation aber keine Uberbelichtung im
Sinne einer vollstindigen Schwirzung der Banden zulieB, wurde als optimale
Belichtungszeit festgelegt. Die Entwicklungszeit betrug fiir jeden Blot stets 5 min. Die
Bestimmung der optischen Dichten (OD) wurde bildanalytisch unter Verwendung des
KS400 (Zeiss-Vision) durchgefiihrt. Die optische Dichte wurde mittels eines Schwarz-
und Weissreferenzbildes unter Korrektur der mittleren Intensitit des Blot-
Hintergrundes berechnet (Oberholzer et al. 1996). Hierzu wurden die Blots bei einer
optischen Auflosung von 600 dpi und einem Grauwertumfang von 256
Intensitdtswerten (8 Bit) mit einem transparenten Flachbett-Scanner (Duoscan, Agfa)
eingescannt. Diese Auflésung erwies sich in Voruntersuchungen als optimal im
Vergleich mit hoheren Auflosungen. Die ODs der Kontrollproben (33° C + 10% FCS)
und der experimentellen Proben (33° C + 1% FCS, 39° C + 1% FCS) wurden mit Hilfe
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des nicht parametrischen U-Tests nach Mann-Whitney auf signifikante Unterschiede
getestet (SPSS 11.01). Dieser Test wurde verwendet, da aufgrund der geringen
Stichprobengréflen (< 20) keine zuverldssige Aussage iiber die Verteilung der
Messwerte gemacht werden konnte. Zur Beschreibung der Daten wurden arithmetische

Mittelwerte, Standardabweichungen und Standardfehler berechnet.

Auswertung der Nissl-Farbung: Fiir jede ausgewertete Kulturbedingung wurden 8
separate Kulturen angelegt und untersucht, womit eine Stichprobengréfie von n = 8
vorliegt. Die Projektionsflichen der Zellen (40x Objektiv), die Zellzahlung (10x
Objektiv) und die Fortsatzmessung (10x Objektiv) wurden an einem Lichtmikroskop
(Zeiss), dass mit einem Projektionsspiegel ausgestattet ist, durchgefiihrt (Abb. 3).
Unter dem Projektionsspiegel wurde ein Leuchttisch platziert, auf den Zahlgitter fiir
jeden der drei oben genannten Parameter gelegt und in das mikroskopische Bild
projiziert wurden. Zunédchst wurde ein auszuwertendes Gesichtsfeld unter dem
Mikroskop eingestellt und anschlieBend das Zahlgitter (zufillig verdreht und
verschoben) unter den Projektionsspiegel gelegt (Abb. 3).

Das Grid P3 zur Messung der Projektionsflichen der Zellen wurde fiir jede Probe
viermal unterschiedlich und zuféllig positioniert. Als Treffer wurden die Somata der
Zellen gezdhlt, die die Kreuze des Grids treffen oder beriihren. Da der vertikale und
horizontale Abstand der Grid-Kreuze bei der Verwendung des 40x Objektivs 45 um im
mikroskopischen Bild betrégt, 146t sich nach dem Prinzip von Cavalieri (Howard and
Reed 1998) der Anteil der Projektionsflachen der Zellen an der Auswertungsflache (4
x 0,070875 mm?) bestimmen. Um die mittlere Projektionsfliche einer Zelle zu
berechnen, muss noch die Zelldichte ermittelt werden. Dies erfolgte unter dem 10x
Objektiv. Das benutzte Grid F3 hat sechs Rahmen mit sogenannten verbotenen Linien.
Auch dieses Grid wurde nach Einstellung des auszuwertenden Gesichtsfeldes zufillig
unter dem Projektionsspiegel platziert. Es wurden die Zellen gezéhlt, die in den
Ziahlrahmen des Grids liegen, aber ihre linke und untere verbotene Linie nicht
beriihren. Die Zellen, deren Somata auerhalb der Rahmen liegen, aber die rechte und
obere Linie tangential beriihren, wurden mitgezdhlt. Nach der Ermittlung des
Mittelwertes wurden die Zelldichte (ZD) pro mm?* ZD = [Zellen / mm?] und der

Standardfehler ausgerechnet.
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7D = 20

naxa
Q: Treffer (Anzahl der Uberlagerungen vom MeBgitter und den
auszuwertenden Strukturen)
na: Anzahl der MeBfelder
a: GroBe eines MeBfeldes (0,04 mm?, 10x Objektiv)

Nachdem bekannt ist, wieviele Zellen pro mm? vorkommen, wurde ermittelt, wie grof3

die mittlere Projektionsfliche einer Zelle (area): area = [um? / Zelle] ist.

area = a(p) x ZQ‘

Q: Anzahl der Schnittpunkte zwischen Zellen und Mef3gitter
a(p): Flache zwischen 4 Mefgitter-Punkten (0,002025 mm?, 40x Objektiv)
n b n n n
3% (Zp,» XP,J—X,/"XZP,- T P X Py +AX Y DX pi
2 i=1 \/Z i=1 i=1 i=1
CE = n240
Z D,
i=l
> pi: Anzahl der Zellen, die in den Zdhlrahmen des MeBgrids liegen
b/ a: mittlere Profil Form: 5 (Gundersen und Jensen 1987)
n: Anzahl der Testauswertungen: 6

Die Liange der gebildeten Fortsdtze wurde mit dem Grid L1 und dem 10x Objektiv
bestimmt. Das Grid wurde fiir jede Probe viermal zufillig unter dem
Projektionsspiegel positioniert. Als Zéhlkriterium wurden die Fortsétze nur an solchen
Zellen ausgewertet, an denen die Zellkerne eindeutig diagnostizierbar waren. Es
wurden diese Fortsdtze gezdhlt, die zu entsprechenden Zellen mit erkennbaren Kernen
gehoren und die, die sich mit den Linien des Messgrids kreuzten. Die Zellkerne sollen
nicht die verbotenen Linien des Grids beriihren. In der Folge wurden die mittlere
Fortsatzlange (MFL) pro Zelle: MFL = [um / Zelle] und der Standardfehler berechnet
(Weibel 1979, S. 33f).
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Txd

MFL = x I(a)
d: vertikaler Abstand zwischen Testlinien (0,0036 mm, 10x Objektiv)
I(a): Anzahl der Schnittpunkte zwischen Zellfortsdtzen und Testlinien

Die Anzahl der auszuwertenden Messgrids wurde gemidfl Gundersen und Jensen
(1987) in Form einer Testauswertung bestimmt. Hierzu wurde der coefficient of error
(CE) fiir die Zellzahl berechnet, der mit 7% fiir die Auswertung von 6 Messgrids
deutlich kleiner als der Schwellwert von 25% ist, so dass nicht mehr, sondern eher
weniger Messfelder ausgewertet werden mussten. Wére eine groBere Variabilitdt der
Zelldichten in den Préparaten vorhanden, wiirde der CE bei gleichbleibender Anzahl

der ausgewerteten Messgrids grofer.

Um die stereologischen Werte von unterschiedlichen Experimenten statistisch zu

untersuchen, wurde der nicht parametrische U-Test nach Mann-Whitney verwendet.
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Abb.3: Stereologische Auswertung
von histologischen Préparaten
a) Grid fiir Zellzahlung (Grid F3)
b) Grid fiir die Messung
der Zellfldchen (Grid P3)
"~ ¢) Grid fiir die Messung
,  der Fortsatzlange (Grid L1)
| d) Mikroskop mit dem
Projektionsspiegel und
Leuchttisch
e) mikroskopisches Bild
mit projiziertem Grid

MaBstab: 100 um
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4. Ergebnisse

Im Folgenden wird die Expression der unterschiedlichen neuronalen Markerproteine in
den CSM14.1-Zellen unter den verschiedenen experimentellen Kulturbedingungen
beschrieben. Die Ergebnisse der Zellkulturen unter permissiver Temperatur und
Serumreduktion (33° C, 1% FCS) werden ausfiihrlich dargestellt, die unter nicht
permissiver Temperatur und Serumreduktion (39° C, 1% FCS) nur in Zusammenhang
mit der Wirkung des eingesetzten Zytokincocktails. Abschliefend werden die durch
den Zytokincocktail verursachten Verdnderungen der Proteinexpression bei Kulturen
unter permissiver und nicht permissiver Temperatur beschrieben. Neben den
Verinderungen der Proteinexpression werden auch Anderungen in der Morphologie

der Zellen dargestellt.

4.1 Kulturen bei 33° C + 1% FCS

Im ersten Schritt wurde das Differenzierungsverhalten der CSM14.1-Zellen unter
kontrollierten Bedingungen (permissive Temperatur 33° C, Serumreduktion auf 1%
FCS, Kulturdauer bis zu 14 Tagen) mittels semiquantitativem Western Blot und
immunzytochemischen Methoden untersucht. Als Vergleich dienten Kulturen, die bei

33° C + 10% FCS in undifferenziertem Zustand gehalten wurden.

Entwicklung der Zellzahl (Abb. 4): Wurden 1,5 Mio Zellen an Tag 0 ausgesét, fanden
sich an den Kulturtagen 3, 7, 10 und 14 folgende Zellzahlen:
Tag 3: 12,3 Mio Zellen

Tag 7: 16,1 Mio Zellen
Tag 10: 18,3 Mio Zellen

Tag 14: 9,9 Mio Zellen
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Abb. 4: Absolute Anzahl der Zellen in drei Petrischalen. Es wurden am Tag 0 1,5 Mio
ausgesit. Wahrend der Kultur (33° C + 1% FCS) wurde die Zellzahl an den Tagen 3,
7, 10 und 14 ermittelt.

Wihrend der untersuchten Periode (14 Tage) nahm die Zellzahl bis zum 10. Tag stark
zu, danach wieder ab. Ab dem 10. bis 14. Kulturtag wurden in den Zellkulturen tote
Zellen beobachtet.

Subjektiv wurden kaum Unterschiede in der Morphologie der Zellen wahrend der 14-
tigigen Kulturdauer (33° C + 1% FCS) und im Vergleich zu Zellen, die bei
permissiver Temperatur 33° C + 10% FCS kultiviert wurden, festgestellt. In den
histologischen Prdparaten hatten die Zellen kleine Perikarya und den Phenotyp
epitheloider Zellen. Die flachen, epitheloiden Zellen bildeten nur wenige kurze
Ausldufer aus (Abb. 5A, C, D), und es wurden auch nach 14 Tagen noch Mitosen
beobachtet. Diese Zellmorphologie kontrastierte mit dem Bild von Zellen, die bei nicht
permissiver Temperatur von 39° C + 1% FCS kultiviert wurden (Abb. 5B).
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Abb. 5:  Kresylviolett-gefirbte = CSMI14.1-Zellen  bei  unterschiedlichen
Kulturbedingungen. (A) 3 Tage, 33° C + 10% FCS: die undifferenzierten epitheloiden
Zellen haben kleine Perikarya. (B) 14 Tage, 39° C + 1% FCS: die differenzierenden
Zellen dhneln multipolaren Neuronen mit deutlichen Ausldufern. (C) 3 Tage, 33° C +
1% FCS, (D) 14 Tage, 33° C + 1% FCS: Die Zellen an Tag 3 und 14 unterscheiden
sich nur unwesentlich von undifferenzierten Zellen in A, die flachen, epitheloiden
Zellen bilden nur wenige kurze Ausldufer aus. MaBstab = 35 um (A-D)
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Entwicklung der Proteinexpression: Es wurde untersucht, ob die Serumreduktion die
Expression von Zellproteinen beeinflusst. Mittels Immunzytochemie und Western
Blots wurden verschiedene Proteine gesucht, die fiir Progenitorzellen, differenzierende
und ausdifferenzierte dopaminerge Neurone und Gliazellen typisch sind.

Es wurden Zellen wihrend der 14-tdgigen Kulturdauer (33° C + 1% FCS) untersucht
und die Ergebnisse mit Zellen verglichen, die bei permissiver Temperatur 33° C + 10%
FCS kultiviert wurden. Auf diese Weise konnten wir die Verdnderungen in der
Proteinexpression wahrend der Kulturdauer feststellen und die Ergebnisse der Western
Blots auf statistisch signifikante Unterschiede testen. Die Expression folgender
Proteine wurde untersucht: Large-T-Antigen, Nestin, MAPS5, MAP2, NSE, NeuN,
Nurrl, TH, GFAP. Mit Ausnahme von Nestin, MAPS5, MAP2 und Large-T-Antigen
wurden alle immunzytochemisch und mittels Western Blots dargestellt. MAPS5, MAP2
und Nestin wurden nur mittels Immunzytochemie nachgewiesen. Der Grund dafiir war,
dass die Western Blots fiir diese schweren Proteine (MAP5 340- 320 kDa; MAP2 280
und 70 kDa; Nestin ~200 kDa) trotz mehrfacher Versuche misslangen. Large-T-
Antigen wurde nur mittels Western Blot untersucht. Auf eine immunzytochemische

Darstellung des Large-T-Antigens wurde aus Kostengriinden verzichtet.

Nestin (Abb. 6A - C):

Nestin ist eng assoziiert mit schnellproliferierenden Progenitorzellen. Es ist ein
bekannter Proteinmarker fiir unreife Neurone: Nestin wurde mittels Immunzytochemie
dargestellt. Nestin ist im Zytoplasma der Zellen lokalisiert, besonders stark perinukledr
und in den kurzen Ausldufern. Die Kerne sind dabei ausgespart. Die Immunreaktivitét
der Zellen unterschiedlicher Kulturdauer (3, 7, 10 und 14 Tage, 33° C + 1% FCS) und
der Kontrollen (33° C + 10% FCS) wurde verglichen. In CSM14.1-Zellen 146t sich
eine intensive Nestin-Expression unter permissiven Kulturtemperaturen (33° C + 10%
FCS) nachweisen. Nach dem Wechsel des Mediums (1% FCS) zeigt sich keine
deutliche Abnahme der Expression wéhrend der Kultivierung bis zu 14 Tagen (Abb.
6A - C).

MAPS5 (Abb. 6D - F):

MAPS wurde mittels Immunzytochemie untersucht. Es wird bereits stark exprimiert in

den unreifen Neuronen, die Axone bilden. MAP5 14Bt sich immunzytochemisch als

53



eine mifBige bis starke, iiberwiegend diffuse Anfirbung im gesamten Zytoplasma
einschlieBlich der Zellausldufer nachweisen. Eine perinukleér stirkere Markierung ist

oft deutlich.

Die Immunreaktivitidt der Zellen unterschiedlicher Kulturdauer (3, 7, 10 und 14 Tage,
33° C + 1% FCS) und der Kontrollen (33° C + 10% FCS) wurde verglichen. In
CSM14.1-Zellen 148t sich eine deutliche (mafige bis starke) MAPS-Expression unter
permissiven Kulturtemperaturen (33° C + 10% FCS) nachweisen. Nach dem Wechsel
des Mediums (1% FCS) zeigt sich keine deutliche Zunahme der Expression wéhrend

der Kultivierung bis zu 14 Tage (Abb. 6D - F).

MAP2:

MAP2, ein Marker fiir reife Neurone, wird u. a. in den Dendriten reifer Neurone
nachgeweisen. Weder bei CSM14.1-Zellen, die unter serumreduzierten Bedingungen
(33° C + 1% FCS) kultiviert wurden, noch bei den Kontrollen (33° C + 10% FCS)
konnte zu irgendeinem Zeitpunkt MAP2-Immunreaktivitit, die von der
Negativkontrolle unterscheidbar war, nachgewiesen werden (ohne Abbildung). Eine

kausale Erklarung fiir diese Befunde kann nicht gegeben werden.

Large-T-Antigen (Tabelle 1, Abb. 11B, Abb. 7):

Large-T-Antigen wurde mittels Western Blot untersucht; es wird bei 85 kDa detektiert.
Nach der Erhohung der Temperatur auf 39° C wird das Gen deaktiviert, die Zellen
stoppen ihre Teilung und starten mit ihrer Differenzierung. Obwohl dieses Gen
temperatursensitiv ist, wurde bei serumreduzierten Bedingungen (33° C + 1% FCS)
erst am Tag 10 eine deutliche Abnahme des Large-T-Antigens gegeniiber Tag 3 und 7
beobachtet. Bei den Proben, die am 14. Kulturtag gewonnen wurden, nahm die
Expression von Large-T-Antigen weiter ab, das Protein konnte aber noch
nachgewiesen werden. Die bleibende Aktivitdt dieses Genes erklédrt auch die rasch
zunehmende Zellzahl bis Kulturtag 10 und sowie die geringe Expression am Tag 14
die deutliche Abnahme der Zellzahl an diesem Kulturtag. Die Verdnderungen der
Large-T-Antigen-Expression wurden mittels Densitometrie quantifiziert. Eine
Belichtungszeit von 5 min wurde ausgewihlt. Die Abnahme der Large-T-Antigen-

Expression ab einschlieBlich Tag 10 ist statistisch signifikant (p < 0,05).
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Abb. 6: A — C: Nestin-Immunreaktivitit in CSM14.1-Zellen bei unterschiedlichen
Kulturbedingungen. (A) 3 Tage, 33° C + 10% FCS, (B) 7 Tage, 33° C + 1% FCS, (C)
14 Tage, 33° C + 1% FCS: die Nestin-Expression zeigt keine auffillige Abnahme
wihrend der Kulturdauer. D — F: MAPS5- Immunreaktivitét. (D) 3 Tage, 33° C + 10%
FCS, (E) 7 Tage, 33° C + 1% FCS, (F) 14 Tage, 33° C + 1% FCS: auch die MAP5-
Expression zeigt keine deutlichen Verdnderungen wihrend der Kulturdauer. Maf3stab =
25 um (B), =35 um (A, C - F).
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Die Mittelwerte (MW) der optischen Dichten der Large-T-Antigen-Banden sind
Tabelle 1 zu entnehmen und in Abb. 7 als Balkendiagramme dargestellt. Auch im
Vergleich zu serumbhaltigen Kontrollkulturen (33° C + 10% FCS) war das

immortalisierende Genprodukt Large-T-Antigen signifikant reduziert vorhanden (p <

0,05).

Kontrolle 3d 7d 10d 14d
33°C, 33°C, 33°C, 33°C, 33°C,
10% FCS 1% FCS 1% FCS 1% FCS 1% FCS
Mittelwert 215,1 220,9 216,6 98,5 72,3
Standard- 3,7 3,15 5,93 11,98 10,29
fehler
Standard- 9,80 8,91 16,78 33,88 29,10
abweichung

Tabelle 1: Optische Dichten in Western Blots (n = 5), Large-T-Antigen, mit
Standardfehlern und Standardabweichungen fiir Kontrollkulturen (33° C + 10% FCS)
und fiir serumreduzierte Kulturen (33° C + 1% FCS) an den Kulturtagen (d) 3, 7, 10
und 14.
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Abb. 7: Mittelwerte der optischen Dichten der Large-T-Antigen-Banden, =+
Standardfehler. Serumreduzierten Kulturen (33° C + 1% FCS) der Tage 10 und 14
weisen eine signifikant reduzierte Large-T-Antigen-Expression auf (* p < 0,05).
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Die Expression der Proteine NSE, NeuN, Nurrl und TH wurde sowohl mittels

Immunzytochemie und als auch mittels Western Blots untersucht.

NSE (Abb. 8A, B, Abb. 11C):

In Western Blots wird NSE bei ~39kDa detektiert. Der Anstieg der NSE-Expression
korreliert mit der funktionellen und morphologischen Reifung von Neuronen.

Western Blot: NSE detektiert sich schwach in Zellkulturen bei 33° C + 10% FCS.
Wihrend der Kulturdauer von 14 Tagen bei 33° C + 1% FCS nahm die NSE-
Expression in den Zellkulturen leicht zu und blieb unveridndert nachweisbar (Abb.
11C).

Immunzytochemie: Die NSE-Immunreaktivitit findet sich diffus im Zytoplasma
verteilt und reicht in die proximalen Abschnitte der Zellfortsdtze hinein. Die Kerne
werden teilweise durch die zytoplasmatische Immunreaktivitit iiberdeckt. Die NSE-
Immunreaktivitdt wurde in den Zellkulturen an Tag 3, 7, 10 und 14 bei 33° C + 1%
FCS dargestellt und mit der in Zellkulturen bei 33° C + 10% FCS verglichen und
bewertet. NSE 1d6t sich unter allen Kulturbedingungen in den Zellkérpern und in den
proximalen Auslidufern maBig bis stark nachweisen (Abb. 8A, B), Serumreduktion

veriandert die NSE-Immunreaktivitit nicht.

Die nur in Western Blots sichtbare leichte Zunahme der Expression von NeuN und fast
unverdnderte NSE-Expression weisen darauf hin, dass die Serumreduktion auf 1%
FCS bei unverinderter Temperatur (33° C) ein nicht ausreichender Stimulus ist, um
eine deutliche neuronale Differenzierung von CMS14.1 Zellen hervorzurufen.

Die geringen Verdnderungen der Expression von NeuN und NSE wurden nur in
Western Blots beobachtet. In der Immunzytochemie konnte keine Veridnderungen in
der Expression dieser Proteine gesehen werden. Wahrscheinlich sind die leichten
Verdanderungen in der Proteinexpression, die in Western Blots beobachtet wurden,
nicht ausreichend, um sie auch mit der weniger sensitiven immunzytochemischen

Darstellung sichtbar machen zu kénnen.
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A B
Abb. 8: NSE-Immunreaktivitit in CSMIl4.1-Zellen bei unterschiedlichen
Kulturbedingungen. (A) 3 Tage, 33° C +~ 19% FCS, (B) 14 Tage, 33° C + 1% FCS: die
NSE-Expression verdndert sich durch Serumreduktion nicht wesentlich. Mal3stab = 35
um

A B

Abb. 9: NeuN-Immunreaktivitit in CSMI14.1-Zellen bei unterschiedlichen
Kulturbedingungen. (A) 3 Tage, 33° C + 10% FCS, (B) 14 Tage, 33° C + 1% FCS: ein
deutlicher Unterscheid ist nicht sichtbar. Maf3stab = 35 pm

NeuN (Abb. 9A, B, Abb. 11D):

In Western Blots erscheint NeuN mit einem unspezifischen Band bei 48 kDa und
einem spezifischen Band bei 46 kDa. Das unspezifische Band erscheint, wenn in den
untersuchten Proben auch unreife Neurone vorhanden sind. Das spezifische Band ist
zu beobachten, wenn die untersuchten Proben auch reife Neurone enthalten.

Western Blot: Das unspezifische Band bei 48 kDa war bei den Kulturen bei 33° C +
10% FCS nachweisbar. Am Tag 3 bei 33° C + 1% FCS wurde die NeuN-Expression
hochreguliert und blieb konstant wahrend der Kulturdauer. Ein spezifisches Band bei
46 kDa wurde zu keinem Zeitpunkt nachgewiesen (Abb. 11D).

Immunzytochemie: Das Kernprotein NeuN findet sich bei positiver Inmunreaktion im

Kern und teilweise auch im Zytoplasma. Die NeuN-Expression in den Kulturen an Tag
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3, 7, 10 und 14 bei 33°C + 1% FCS und den Zellkulturen bei 33° C + 10% FCS
wurden miteinander verglichen. Alle Zellkulturen zeigten schwache bis miflige NeuN-
Expression. Mit immunzytochemischer Darstellung konnte die in Western Blots nach

Serumreduktion darstellbare Hochregulation von NeuN nicht nachgewiesen werden
(Abb. 9A, B).

Nurrl (Tabelle 2, Abb. 10):

Der fiir frithe dopaminerge Neurone charakteristische nukledre Retinsdurerezeptor
wird durch die Immunzytochemie im Zellkern lokalisiert. In Western Blots wird Nurrl
bei 72 kDa detektiert.

Western Blot: In Western Blots 1d6t sich Nurrl sehr gut nachweisen. Eine
Belichtungszeit von 30 sek wurde festgelegt. Die Nurrl-Expression verdndert sich
durch Serumreduktion und wéhrend der Kulturdauer bis zu 14 Tagen nicht (Abb.
13A). Mittels Densitometrie und des nachfolgenden nicht parametrischen Mann-
Whitney-Testes wurden die Nurrl-Banden der Kontrollen (33° C + 10% FCS) und der
serumreduzierten Kulturen (Tag 3, 7, 10, 14) ausgewertet (Tabelle 2, Abb. 10). Die
Expressionen innerhalb der untersuchten Kulturbedingungen sind statistisch nicht

signifikant unterschiedlich (Abb. 10).

Kontrolle 3d 7d 10d 14d
33°C, 33°C, 33 C, 33 C, 33 C,
10% FCS 1% FCS 1% FCS 1% FCS 1% FCS
Mittelwert 200,71 202,8 201,1 210,0 207,3
Standard- 11,15 3,15 10,37 9,10 7,10
fehler
Standard- 31,55 8,91 29,33 25,73 20,08
abweichung

Tabelle 2: Optische Dichten in Western Blots (n = 5), Nurrl, mit Standardfehlern und
Standardabweichungen fiir Kontrollkulturen (33° C + 10% FCS) und fiir
serumreduzierte Kulturen (33° C + 1% FCS) an den Kulturtagen (d) 3, 7, 10 und 14.
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Abb. 10: Mittelwerte der optischen Dichten der Nurrl-Banden, + Standardfehler.
Wihrend der Kulturdauer in serumreduzierten Medium (33° C + 1% FCS) dndert sich
die Nurrl-Expression nicht signifikant, Kontrolle: 33° C + 10% FCS.

Immunzytochemie: Weder bei CSMI14.1-Zellen, die unter serumreduzierten
Bedingungen (33° C + 1% FCS) kultiviert wurden, noch bei den Kontrollen (33° C +
10% FCS) konnte zu irgendeinem Zeitpunkt Nurrl-Immunreaktivitit, die von der
Negativkontrolle unterscheidbar war, nachgewiesen werden (ohne Abbildung). Eine

kausale Erklarung fiir diese Befunde kann noch nicht gegeben werden.

TH (Tabelle 3, Abb. 12, Abb. 13B):

Tyrosinhydroxylase ist das Schrittmacherenzym im Katecholamin-Stoffwechsel und
steuert die Produktion von Adrenalin, Noradrenalin und Dopamin. In Western Blots
wird TH nach Literaturangaben bei 60-68 kDa detektiert.

Western Blot: In unseren Blots wurde TH als solitires, schwaches Band bei 68 kDa in
den Kulturen mit 10% FCS detektiert (Abb. 13B). Eine Belichtungszeit von 10 min
wurde ausgewidhlt. Die TH-Expression verdndert sich durch Serumreduktion und
wihrend der Kulturdauer bis zu 14 Tagen (Tabelle 3, Abb. 12). Diese steigende TH-
Expression wurde quantifiziert. Signifikante Unterschiede (p < 0,05) wurden zwischen
den Kulturen bei 33° C + 10% FCS und denen bei 33° C + 1% FCS an Tag 7 (p =
0,009) und 10 (p = 0,021) berechnet. Am Tag 14 unter Serumreduktion nahm die TH

Expression wieder ab und erreichte das Niveau der Kontrollprobe. Die Mittelwerte
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Abb. 11: Western Blots von Lysaten von CSMI14.1-Zellen unterschiedlicher
Kulturbedingungen und Kulturdauer (K = 3 Tage, 33° C + 10% FCS; 3d, 7d, 10d, 14d:
3 - 14 Tage, 33° C + 1% FCS). Jede Probentasche wurde mit 20 ul Lysepuffer
(entsprechend 20 pg Gesamtprotein) der jeweiligen Probe gefiillt; (A) Das
housekeeping Protein B-Aktin (~42 kDa) zeigt vergleichbare Banden in allen Proben.
(B) Das immortalisierende Large-T-Antigen (~85 kDa) zeigt eine deutliche Abnahme
am Tag 10 und 14. (C) NSE (~39 kDa) zeigt keine Verdnderungen. (D) NeuN (~46
und ~48 kDa) zeigt eine leichte Zunahme ab dem 3. Kulturtag, danach blieb die
Expression konstant.

K = CSM14.1-Zellen bei 33° C + 10% FCS; Sn = Substantia nigra; Cx = Kortex; M =
nachgetragene Banden des Proteinmarkers.
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(MW) der optischen Dichten der TH-Banden sind Tabelle 3 zu entnehmen. Sie sind in
Abb. 12 als Balkendiagramme dargestellt.

Immunzytochemie: Immunhistochemische Firbungen stellen in der Regel das
Zytoplasma und die Ausldufer der dopaminergen Neurone dar. Weder die Zellkulturen
bei 33° C + 10% FCS noch die Zellkulturen bei 33° C + 1% FCS an Tag 3, 7, 10 und
14  zeigten TH-positive Immunreaktivitit, die unterscheidbar von den
Negativkontrollen war. Es konnte keine TH-Immunreaktivitit zu irgendeinem
Zeitpunkt bei der permissiven Temperatur (33° C) und 1% FCS nachgewiesen werden.
In Hirnschnittpraparaten lassen sich TH-immunreaktive Neurone reproduzierbar

darstellen (Petrov et al., 2004).

Zusammenfassend kann festgestellt werden, dass CSMI14.1-Zellen unter
Kulturbedingungen von 33° C und 1% FCS (Serumreduktion) eine nur sehr geringe
neuronale Differenzierung aufweisen. Diese geringen Verdnderungen in der
Expression neuronaler Markerproteine bei 33° C-Kulturen stehen im Kontrast zu der
bekannten starken neuronalen Differenzierung der Zellen, wenn sie unter der nicht
permissiven Temperatur von 39° C und Serumreduktion kultiviert werden (Haas und

Wree 2002).

Kontrolle 3d 7d 10d 14d
33°C, 33°C, 33°C, 33°C, 33°C,
10% FCS 1% FCS 1% FCS 1% FCS 1% FCS
Mittelwert 96,6 115,3 121,7 130,9 103,7
Standard- 6,50 6,36 8,05 12,67 11,30
Fehler
Standard- 18,39 17,99 22,77 35,84 31,96
abweichung

Tabelle 3: Optische Dichten in Western Blots (n = 5), TH, mit Standardfehlern und

Standardabweichungen fiir Kontrollkulturen (33°
serumreduzierte Kulturen (33° C + 1% FCS) an den Kulturtagen (d) 3, 7, 10 und 14.

C + 10% FCS) und fir
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Abb. 12: Mittelwerte der optischen Dichten der TH-Banden, + Standardfehler.
Serumreduzierte Kulturen (33° C + 1% FCS) der Tage 7 und 10 weisen eine
signifikant erhdhte TH-Expression auf (* p < 0,05) Kontrolle: 33° C + 10% FCS.

GFAP:

Parallel zu den neuronalen Markern wurde auch die Expression des Markers fiir
Astroglia, GFAP, untersucht. GFAP ist theoretisch im gesamten Zellkérper und in den
Fortsidtzen nachweisbar. Im Western Blot wird GFAP bei 50 kDa detektiert. In den
CSM14.1-Zellen (33° C + 1% FCS) wurde weder bei den immunhistochemischen
Untersuchungen noch in Western Blots eine GFAP-Expression gefunden. Die
CSM14.1-Zellen exprimieren kein GFAP, auch nicht in Kultur bei nicht permissiver

Temperatur (39° C) und Serumreduktion (Haas und Wree 2002).

4.2 Experimente mit Zytokincocktail
Fiir die Vorbereitung dieses Experimentes wurden CSM14.1-Zellen aufgetaut und bei
permissiven Kulturbedingungen (33° C + 10% FCS) zwei Wochen kultiviert. Die
Zellkulturen wurden jeden dritten Tag passagiert. Nach den drei Passagen wurden die
Zellen gezdhlt und in den vorbereiteten Petrischalen (fiir Western Blot
Untersuchungen) und in Multidish 24 Wells (fiir histologische und
immunzytochemische Untersuchungen) eingesit. Es wurde die gleiche Zahl von Zellen
pro Petrischale (500000 Zellen) ausgerechnet. Auch jede Kammer von Multidish 24
Wells erhielt nach der Zellzdhlung vergleichbare Zellzahlen (2000 Zellen). Nach der
Ruhenacht im Brutschrank bei 33° C erfolgte die Behandlung der Zellkulturen mit den

unterschiedlichen Medien und Temperaturen. Die Kulturdauer betrug 14 Tage fiir jede
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Abb. 13: Western Blots von Lysaten von CSMI14.1-Zellen unterschiedlicher
Kulturbedingungen und Kulturdauer (K = 3 Tage, 33° C + 10% FCS; 3d, 7d, 10d, 14d:
3 - 14 Tage, 33° C + 1% FCS). Jede Probentasche wurde mit 20 ul Lysepuffer
(entsprechend 20 pg Gesamtprotein) der jeweiligen Probe gefiillt; (A) Nurrl (~72
kDa): die Nurrl-Expression #dndert sich nicht signifikant wihrend des
Kulturzeitraumes; (B) TH (~68 kDa): ein Anstieg der TH-Expression mit
zunehmender Kulturdauer ist erkennbar; Sn = Lysat aus der Substantia nigra der Ratte,
SWI13 = Lysat von SWI13-Zellen (Positivkontrolle des Antikorperherstellers von
Nurrl); M = nachgetragene Banden des Proteinmarkers.
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39° C + 1% FCS (mit und ohne Zytokincocktail) wurden quantifiziert. Es wurden die
Zellflache, die Zelldichte und die Zellfortsatzldnge bestimmt. Fiir die Quantifizierung
wurden die Nissl-Praparate von Tag 14 beider Kulturen verwendet. Die
entsprechenden Mittelwerte und Standardfehler sind in den Tabellen 4 und 5 und in

den Abbildungen 15 - 17 dargestellt.

Abb. 14: Kresylviolett-gefirbte CSM14.1-Zellen bei unterschiedlichen Kultur-
bedingungen. (A) 3 Tage, 33° C + 10% FCS: die undifferenzierten CSM14.1-Zellen
haben kleine Perikarya und die Morphologie epitheloider Zellen. (B) 14 Tage, 39° C +
1% FCS, ohne Zytokincocktail, (C) 14 Tage, 39° C + 1% FCS, mit Zytokincocktail:
Die bei nicht permissiver Temperatur (39° C) kultivierten Zellen zeigen den Phenotyp
multipolarer Neurone mit zahlreiche Ausldufern. Die Zellen unter Einflu von
Zytokinen weisen dariiber hinaus deutlich langere Fortsédtze auf. Maf3stab = 35 um.
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Flache der Zelldichte Zellfortsatzlénge

Zellsomata n/ mm? um / Zelle

um?/ Zelle
Mittelwert 2372,6 202,1 319,1
Standardfehler 96,75 6,04 21,05
Standard- 273,65 17,075 59,53
abweichung

Tabelle 4: Mittelwerte der Fliche der Zellsomata, der Zelldichte und der
Zellfortsatzlange + Standardfehlern und Standardabweichungen bei den Zellkulturen
(39° C + 1% FCS) ohne Zytokincocktail, Kulturdauer 14 Tage.

Flache der Zelldichte Zellfortsitzldnge

Zellsomata n/ mm? um / Zelle

um?/ Zelle
Mittelwert 2154,6 129,2 385,1
Standardfehler 176,78 7,83 10,02
Standard- 500,00 22,13 28,33
abweichung

Tabelle 5: Mittelwerte der Fldche der Zellsomata, der Zelldichte und der
Zellfortsatzldnge + Standardfehlern und Standardabweichungen bei den Zellkulturen
(39° C + 1% FCS) mit Zytokincocktail, Kulturdauer 14 Tage.
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Abb. 15: Zellzahl pro mm?, + Standardfehler in CSM14.1-Zellen (Tag 14, 39° C und
1% FCS), die ohne Zytokincocktail (Zytokine-) oder mit Zytokincocktail (Zytokine+)
kultiviert wurden. Zellkulturen, die mit Zytokincocktail behandelt wurden, weisen eine
signifikant niedrigere Zellzahl pro mm? auf (* p =0,001).
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Abb. 16: Mittlere Fliche der Zellsomata (um?) pro Zelle, + Standardfehler in
CSM14.1-Zellen (Tag 14, 39° C und 1% FCS), die ohne Zytokincocktail (Zytokine-)
oder mit Zytokincocktail (Zytokine+) kultiviert wurden. Zellkulturen, die mit
Zytokincocktail behandelt wurden, weisen keine signifikant verdnderte Zellfliche auf
(p > 0,05).
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Abb. 17: Mittlere Zellfortsatzlange (um) pro Zelle, = Standardfehler in CSM14.1-
Zellen (Tag 14, 39° C und 1% FCS), die ohne Zytokincocktail (Zytokine-) oder mit
Zytokincocktail (Zytokine+) kultiviert wurden. Zellkulturen, die mit Zytokincocktail
behandelt wurden, weisen eine signifikant groflere Zellfortsatzldnge pro Zelle auf (* p
<0,05).

Zusammenfassend ergeben sich nach der statistischen Auswertung der Nissl-gefarbten
Zellkulturen folgende Ergebnisse:

Zellzahl pro mm?* CSM14.1-Zellen (Tag 14, 39° C und 1% FCS), die ohne
Zytokincocktail (Zytokine-) oder mit Zytokincocktail (Zytokine+) kultiviert wurden,
unterscheiden sich signifikant beziiglich ihrer Zellzahl pro mm? (= Zelldichte). In den
Kulturen ohne Zytokin-Gabe kommen signifikant mehr Zellen pro mm? vor als in den
Kulturen, die Zytokine erhielten (p = 0,001).

Mittlere Zellflaiche (um?) des Perikaryons pro Zelle: CSM14.1-Zellen (Tag 14, 39° C
und 1% FCS), die ohne Zytokincocktail (Zytokine-) oder mit Zytokincocktail
(Zytokine+) kultiviert wurden, unterscheiden sich nicht signifikant beziiglich ihrer
mittleren Zellfliche (p > 0,05).

Mittlere Zellfortsatzlange (um) pro Zelle: CSM14.1-Zellen (Tag 14, 39° C und 1%
FCS), die ohne Zytokincocktail (Zytokine-) oder mit Zytokincocktail (Zytokine+)
kultiviert wurden, unterscheiden sich signifikant bezliglich ihrer mittleren
Zellfortsatzldnge. Zellkulturen, die mit Zytokincocktail behandelt wurden, weisen eine

signifikant grofere Zellfortsatzldnge pro Zelle auf (p = 0,02).

Im Folgenden werden der immunzytochemische Nachweise von TH und Nurrl und die

Expressionsanalyse in Western Blots von B-Aktin, NeuN, NSE, Nurrl, TH und GFAP
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in den Zellkulturen, die bei 39° C und 1% FCS ohne oder mit Zytokincocktail
(Kulturtage 3 — 14) kultiviert wurden, dargestellt. Diese Ergebnisse werden verglichen
mit den Resultaten, die in undifferenzierten Zellkulturen (33° C und 10% FCS)
gewonnen wurden. Die Ergebnisse der Zellkulturen, die bei 33° C und 1% FCS ohne
oder mit Zytokincocktail kultiviert wurden, werden nur kurz dargestellt, da sich hier

keine Unterschiede ergaben.

3-Aktin (Abb. 18):

Als interne Kontrolle fiir die Einbringung gleicher Proteinmengen bei den Western
Blots (20 pg Protein pro Spur) wurde B-Aktin als ,housekeeping™ Protein
nachgewiesen (Abb. 18). Aufgrund der identischen Bandendichte bei 42 kDa kann
davon ausgegangen werden, dass identische Proteinmengen in alle weiteren Blots

eingebracht worden sind.

ohne Zytokincocktail mit Zytokincocktail
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Abb. 18: B-Aktin Western Blot von Lysaten von CSM14.1-Zellen unterschiedlicher
Kulturbedingungen und Kulturdauer (K = 3 Tage, 33° C + 10% FCS; 3d, 7d, 10d, 14d:
3 - 14 Tage, 39° C + 1% FCS, ohne oder mit Zytokincocktail). Jede Probentasche
wurde mit 20 pl Lysepuffer (entsprechend 20 pg Gesamtprotein) der jeweiligen Probe
gefiillt. Das ,housekeeping* Protein B-Aktin (~42 kDa) zeigt vergleichbare
Bandendichten in allen Proben. M = nachgetragene Banden des Proteinmarkers.
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NSE (Abb. 19A):

Im Western Blot wird NSE bei ~39kDa detektiert. Neben den verschiedenen
Zelllysaten wurde als Positivkontrolle Gewebelysat aus dem Kortex einer adulten
Ratte verwendet.

NSE detektiert sich schwach bei der Kontrollprobe (CSM14.1-Zellen, kultiviert bei
33° C + 10% FCS). NSE wurde nach der Temperaturerhohung auf 39° C und
Serumreduktion auf 1% FCS kaum hochreguliert und blieb unveréndert wihrend der
Kulturdauer von 14 Tagen nachweisbar. Die zytokinbehandelten Kulturen zeigten am
Tag 3 eine verstirkte NSE-Expression. Die Expression nahm an Tag 7 leicht ab, blieb
aber weiter konstant nachweisbar. (Abb. 19A).

Diese Ergebnisse zeigen, dass eine Zytokin-Behandlung keinen wesentlichen Einfluss
auf die NSE-Expression hat und dass sich CSM14.1-Zellen bei 39° C + 1% FCS

unabhéngig von der Zytokin-Zugabe in Neurone differenzieren.

NeuN (Abb. 19B):

In Western Blot erscheint NeuN mit einem unspezifischen Band bei 48 kDa und einem
spezifischen Band bei 46 kDa. Das unspezifische Band wird sichtbar, wenn in den
untersuchten Proben unreife Neurone vorhanden sind. Wenn das spezifische Band
erscheint, kann dies mit dem Auftreten reifer Neurone erkldrt werden. Nur das
spezifische Band bei 46 kDa ist in Abb. 19B markiert.

Als Positivkontrolle wurde ein Gewebelysat aus der Substantia nigra einer adulten
Ratte verwendet. Das unspezifische Band bei 48 kDa war bei der Kontrollprobe (33° C
+ 10% FCS) deutlich sichtbar, da sie unreife CSM14.1-Zellen enthélt. Am Tag 3 nach
der Temperaturerhdhung auf 39° C und Serumreduktion auf 1% FCS wurde das
spezifische = Band sichtbar (Abb. 19B): die NeuN-Expression wurde
temperaturabhéngig hochreguliert. Das hochregulierte NeuN blieb wéhrend der
weiteren Kulturdauer bis zu 14 Tage konstant. Bei den Zellkulturen, die mit Zytokinen
behandelt wurden, wurde NeuN ebenfalls ab dem Tag 3 hochreguliert. Der Vergleich
der Blots ergab keinen Unterschied zwischen den Zelllysaten der Kulturen, die mit

oder ohne Zytokincocktail behandelt wurden (Abb. 19B).
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Abb. 19: Western Blot von NSE (A) und NeuN (B) von Lysaten von CSM14.1-Zellen
unterschiedlicher Kulturbedingungen und Kulturdauer (K = 3 Tage, 33° C + 10% FCS;
3d, 7d, 10d, 14d: 3 - 14 Tage, 39° C + 1% FCS, ohne oder mit Zytokincocktail). Jede
Probentasche wurde mit 20 pl Lysepuffer (entsprechend 20 pg Gesamtprotein) der
jeweiligen Probe gefiillt. (A): Die NSE-Expression (~39 kDa) zeigt keinen Unterschied
zwischen den Kulturen mit und ohne Zytokinen-Zugabe. Blots ergab keinen
Unterschied zwischen den Zelllysaten der Kulturen, die mit oder ohne Zytokincocktail
behandelt wurden. (B) NeuN (spezifische Bande bei 46 kDa) wird durch
Temperaturerhbhung unabhingig von der Zytokin-Behandlung hochreguliert. Sn =
Lysat aus Substantia nigra der Ratte. Cx- Kortex; M = nachgetragene Banden des
Proteinmarkers.
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Als Marker fiir eine dopaminerge Differenzierung wurden Nurrl und TH mittels
Western Blots und Immunzytochemie untersucht. Zum immunzytochemischen

Nachweis wurden DAB- und Fluoreszenzfiarbungen eingesetzt.

Nurrl (Tabelle 6, Abb. 20, Abb. 22A):

Nurrl, der nukledre Retinsdurerezeptor, reguliert die Transkription des TH-Gen-
Promotors und damit die Entwicklung der dopaminergen Neurone. Nurrl ist auch
wichtig fiir ihr Uberleben und ihre normale Funktion. Nurrl ist im Zellkern lokalisiert.
In Western Blots wird Nurrl bei ca. 72 kDa detektiert. Es werden zwei dicht
benachbarte Banden sichtbar (Abb. 22A). Zwei Positivkontrollen wurden benutzt:
SW13-Zelllysat (von der Firma Becton-Dickinson speziell —mitgelieferte
Positivkontrolle) und ein Gewebelysat aus der Substantia nigra einer adulten Ratte.
Western Blot: Nurrl wurde bereits von undifferenzierten CSM14.1-Zellen exprimiert.
Bei den nicht permissiven Kulturbedingungen (39° C + 1% FCS) nahm die Nurrl-
Expression bereits am Tag 3 zu und erreichte ihr Maximum am Tag 14.
Zytokinbehandelte Zellkulturen zeigten ebenfalls eine Zunahme am Tag 3, 7 und 10,
am Tag 14 folgte eine deutliche Herunterregulation (Abb. 22A). Quantifiziert wurden
die optische Dichte (OD) und Flachen (BF) der Banden in den Blots und deren
Standardabweichung und Standardfehler berechnet (Tabelle 6). Bei den Proben, die
nicht mit Zytokinen behandelt wurden, waren insgesamt die optischen Dichten der
Banden signifikant héher (p = 0,039) als bei den Proben, die Zytokincocktail erhielten
(Tabelle 6, Abb. 21). Untersucht wurde ferner, ob Unterschiede der optischen Dichten
zwischen den Proben des gleichen Kulturtages von behandelten und nicht mit
Zytokinen behandelten Zellen erkennbar sind. Ein signifikanter Unterschied wurde nur
fiir Tag 14 beobachtet. Die optischen Dichten bei den Proben des Tages 14 ohne
Zytokine sind signifikant grofler als die bei den Proben mit Zytokin-Gabe (OD, p =
0,006) (Abb. 20). Auch sind an Tag 14 die Bandenflichen bei den Kulturen ohne
Zytokine signifikant grofer als die der Proben mit Zytokin-Gabe (BF p = 0,01)
(Tabelle 6).

Immunzytochemie: Nurrl-Expression wurde auch mittels Immunzytochemie
untersucht. Es konnte weder in den Zellkulturen bei 39° C + 1% FCS ohne
Zytokincocktail noch bei zytokinbehandelten Zellkulturen Nurrl-Immunreaktivitit, die

von Negativkontrolle unterscheidbar war, dargestellt werden (ohne Abbildung).
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TH- OD TH- Nurrl-OD Nurrl-
Bandenfliche Bandenfliche
Mittelwert 125,1 2,97 144,8 35,79
Standard- 7,19 0,76 11,51 0,76
abweichung
Standard- 1,04 0,11 1,66 0,11
fehler

Tabelle. 6: Mittelwerte der optischen Dichten und der Bandenfldchen der Nurrl- und
TH- Banden, + Standardfehler und Standardabweichungen fiir die Zellkulturen (39° C
+ 1% FCS) mit und ohne Zytokincocktail. Es wurden alle Kulturtage (3 — 14)
zusammengefaBt. Die Bandenflichen sind in mm? angegeben.
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Abb. 20: Mittelwerte der optischen Dichten der Nurrl-Banden, + Standardfehler fiir
Kontrollkulturen (33° C + 10% FCS) und fiir Kulturen (39° C + 1% FCS) an den
Kulturtagen 3, 7, 10 und 14, die ohne oder mit Zytokincocktail kultiviert wurden. Die
zytokinbehandelten Zellen weisen an Tag 14 eine signifikant niedrige Nurrl-
Expression auf (p** > 0,05). Im Vergleich zu den Kontrollkulturen (33° C + 10%
FCS) zeigen die Zellkulturen bei 39° C ohne und mit Zytokincocktail eine signifikant
hohere Nurrl-Expression (p* < 0,001).




TH (Tabelle 6, Abb. 21, Abb. 22B):

Mit der Abnahme der Expression von Nurrl in den DA-Neuronen beginnt die
Synthese von Tyrosinhydroxylase. Das Protein besitzt ein Molekulargewicht von 60-
68 kDa. Die optimale Belichtungszeit betrug 5 min. Als Positivkontrolle wurde ein
Lysat aus der Substantia nigra einer adulten Ratte vorbereitet. Fiir die Darstellung der
TH-Expression wurden die immunhistochemischen Fiarbungen DAB und
Immunfluoreszenz angewendet.

Western Blot: In den Zellkulturen bei 39°C + 1% FCS ohne Zytokincocktail wurde die
TH-Expression im Vergleich zu Kontrollkulturen (33° C + 10% FCS) ab Tag 3
hochreguliert und blieb hoch bis Tag 14 (Abb. 22B). Bei den entsprechenden
Zellkulturen mit Zytokincocktail folgte nach dem Anstieg an Tag 3 eine leichte
Herunterregulation bis Tag 14 (Abb. 21, 22B). Die TH-Expression in den Zelllysaten
mit und ohne Zytokincocktail nach Temperaturerhohung und Serumreduktion wurde
quantifiziert und miteinander verglichen. Die Proben des 3., 7., 10. und 14. Kulturtages
gingen in die Analyse ein. Es wurde die optische Dichte (OD) und Bandenflidche (BF)
gemessen und die Standardfehler und die Standardabweichungen berechnet (Tabelle 6,
Abb. 21). Es wurden keine statistisch signifikanten Unterschiede berechnet, das heif3t,
dass die Behandlung mit Zytokincocktail die TH-Expression nicht signifikant
beeinfluft.

Immunzytochemie: Mit der Immunzytochemie konnte weder in den Zellkulturen bei
33° C + 10% FCS noch in den Zellkulturen bei 39° C + 1% FCS (mit oder ohne
Cytockincocktail) an Tag 3, 7, 10 und 14 eine TH-positive Immunreaktivitit
nachgewiesen werden, die unterscheidbar von den Negativkontrollen war. Bis jetzt
konnte unsere Arbeitsgruppe mit dem benutzten Antikdrper bei CSM14.1-Zellen keine
TH-Expression in vitro mittels Fluoreszenz nachweisen. In Hirnschnittpraparaten

lassen sich TH-immunreaktive Neurone allerdings reproduzierbar darstellen (Petrov et

al., 2004).
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Abb. 21: Mittelwerte der optischen Dichten der TH Banden, + Standardfehler fiir
Kontrollkulturen (33° C + 10% FCS) und fiir Kulturen (39° C + 1% FCS) an den
Kulturtagen 3, 7, 10 und 14, die ohne Zytokincocktail oder mit Zytokincocktail
kultiviert wurden. Wéhrend der Kulturdauer von 14 Tagen weisen die TH-Expression
keinen Unterschied zwischen den Zellkulturen, die mit oder ohne Zytokincocktail
behandelt wurden auf (p > 0,05). Im Vergleich zu den Kontrollkulturen (33° C + 10%
FCS) zeigen die Zellkulturen bei 39° C ohne und mit Zytokincocktail eine signifikant
hohere TH-Expression (p* < 0,001).

GFAP:

Parallel zu den neuronalen Markern wurde auch die Expression des astroglialen
Markers GFAP untersucht. In Western Blots wird GFAP bei 50 kDa detektiert. In
keinem der untersuchten Zelllysate von CSM14.1-Zellen, die unter verschiedenen
Kulturbedingungen mit und ohne Zytokin-Gabe kultiviert wurden, konnte in den
Western Blots eine GFAP-Expression nachgewiesen werden. Das entspricht den

fritheren Ergebnissen unserer Arbeitsgruppe (Haas und Wree 2002).
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ohne Zytokincocktail mit Zytokincocktail
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ohne Zytokincocktail mit Zytockincocktail
M Sn K 3d 7d 10d 14d 3d 7d 10d 14d

Abb. 22: Western Blots von Nurrl (A) und TH (B) von Lysaten von CSM14.1-Zellen
unterschiedlicher Kulturbedingungen und Kulturdauer (K = 3 Tage, 33° C + 10% FCS;
3d, 7d, 10d, 14d: 3 - 14 Tage, 39° C + 1% FCS, ohne oder mit Zytokincocktail). Jede
Probentasche wurde mit 20 pl Lysepuffer (entsprechend 20 pg Gesamtprotein) der
jeweiligen Probe gefiillt. (A): Nurrl (~72 kDa): die zytokinbehandelten Zellen weisen
an Tag 14 eine signifikant niedrige Nurrl-Expression auf (B) TH (~68 kDa): die TH-
Expression nimmt am Tag 3 in den Kulturen mit und ohne Zytokincocktail zu. K =
undifferenzierte CSM14.1-Zellen, Sn = Lysat aus Substantia nigra der Ratte, M =
nachgetragene Banden des Proteinmarkers.
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5. Diskussion

In der vorliegenden Studie wurden die in vitro Differenzierung der temperatursensitiv
immortalisierten neuronalen CSM14.1-Zellen untersucht. Die Zellen wurden bei
unterschiedlichen Kulturbedingungen kultiviert. Nach einer Kulturdauer bis zu 14
Tagen wurden sie mittels histologischer Farbungen, Immunzytochemie und Western
Blots bearbeitet.

Zunichst wurde die Differenzierung der CSM14.1-Zellen bei permissiver Temperatur
(33° C) und Serumreduktion (1% FCS) erfasst und die Ergebnisse mit denen von
Zellen verglichen, die bei 33° C + 10% FCS kultiviert wurden. Alleinige
Serumreduktion bei 33° C fiihrte nur zu geringen morphologischen Verdnderungen
und, mit Ausnahme einer Reduktion der Large-T-Antigen-Expression und einer
Steigerung der TH-Expression, zu relativ geringen Verdnderungen in der Expression
neuronaler Marker.

Im zweiten Schritt wurde das neuronale, insbesondere dopaminerge Differenzierugs-
potential der CSM14.1-Zellen unter den Einfluss von Zytokinen bei nicht permissiver
Temperatur (39° C) und Serumreduktion (1% FCS) untersucht. Dazu wurde ein
Zytokincocktail aus IL1, IL11, LIF und GDNF verwendet. Die Kulturen an Tag 14 bei
39° C + 1% FCS mit Zytokincocktail zeigten deutliche morphologische Unterschiede
im Vergleich zu den Priparaten, die ohne Zytokincocktail kultiviert wurden. Die
Zellen, die mit Zytokinen behandelt wurden, wiesen kleinere Perikarya auf und zeigten
mehr und lingere Fortsdtze. Die Expression neuronaler Marker (NeuN, NSE, Nurrl,
TH) wurde im Vergleich zu den Kontrollkulturen bei 33° C + 10% FCS in
unterschiedlichem AusmalBl hochreguliert. Die durch eine zusétzliche Zytokin-
Behandlung erzielten Verdnderungen waren beziiglich der Expression neuronaler
Marker eher gering. Zwischen den Kulturen ohne und mit Zytokincocktail ergaben
sich signifikante Unterschiede nur beziiglich der Nurrl-Expression. Bei den
zytokinbehandelten Zellkulturen war am Tag 14 die Nurrl-Expression signifikant

niedriger (p < 0,05).

5.1 Stammzellen und Transplantation
Bisherige Versuche zur Zelltherapie des Morbus Parkinson verwendeten hauptsichlich
fetale, mesenzephale Zellen (Freed et al. 2001). Ein fiir solche Verfahren limitierendes
Problem stellt u.a. der Mangel an embryonalem Gewebe dar. Da nach heutigen

Transplantationsprotokollen nur ca. 1 bis maximal 20% der transplantierten,
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embryonalen Zellen langfristig tiberleben (Dunnett und Bjorklund 1999), wird Gewebe
von mindestens vier bis acht Foten pro Striatum fiir eine signifikante
Symptomreduktion benétigt (Brundin et al. 2000). Diese Methode mit stindigem
Bedarf an humanen Foten ist fiir eine breite klinische Anwendung jedoch aus ethischen
Griinden nicht vertretbar und kann zur Zeit nur als experimentelles Therapieverfahren
eingesetzt werden (Boer 1994). Als Alternativen fiir humanes Gewebe wird zur Zeit
vor allem der Einsatz von Xenotransplantaten oder Stammzellen untersucht.
Gleichzeitig werden Wege zur Verbesserung des Uberlebens des Transplantats
gesucht, wie z.B. der Schutz durch neurotrophe Faktoren.

Erste Versuche mit Mittelhirn-Gewebe des Schweins als Xenotransplantat zeigten im
Rattenmodel vielversprechende Ergebnisse (Galpern et al. 1996), ebenso wie erste
Anwendungen bei Parkinson-Patienten (Deacon et al. 1997). Trotz der mdglichen
Erfolge ist die Methode der Xenotransplantation dennoch nicht unumstritten. Ein
Grund ist das mogliche Auftreten von komplementvermittelten
TransplantatabstoBungen (Weiss et al. 1996). Ein weiteres Risiko der
Xenotransplantation ist der mogliche Transfer unbekannter, endogener Retroviren des
Schweins auf den Menschen und als Folge das Auftreten von HIV-dhnlichen
Epidemien (Butler 1998 a, b; Weiss et al. 1996).

Mit dem zelltherapeutischen Einsatz von embryonalen Stamm- und Vorlduferzellen
bietet sich die Moglichkeit, Spendergewebe in ausreichendem Malle zu generieren.
Stammzellen sind Zellen, aus denen sich verschiedene Arten von Zelltypen
entwickeln. Die sogenannten embryonalen Stammzellen sind durch ihr Potenzial, sich
durch Zellteilung unlimmitiert selbst zu erneuern und Zellen aller drei Keimblétter zu
bilden, gekennzeichnet. Die embryonalen Stammzellen sind im Stadium der
Totipotenz noch vollig undifferenziert und in der Lage, und zwar jede Zelle fiir sich
allein, zu einem kompletten menschlichen Organismus heranzureifen. Untersuchungen
haben ergeben, dass diese Féhigkeit im Vierzellstadium teilweise und im
Achtzellstadium komplett verlorengegangen ist. In der weiteren Entwicklung des
Embryos sind dann diese Stammzellen ,,nur noch pluripotent. Das bedeutet aber
immer noch, dass sie sich in verschiedenste Organe und Korperteile zu entwickeln
vermogen.

Die Nabelschnurstammzellen werden aus dem Nabelschnurblut neugeborener Kinder
gewonnen und befinden sich naturgeméd in einem spéteren, reiferen bzw.

differenzierteren Entwicklungsstadium, in dem aus ihnen als sogenannte
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gewebespezifische Vorlduferzellen nur noch bestimmte Zellarten entstehen konnen,
z.B. aus Blutstammzellen die verschiedenen Blutkorperchen, aus Leber-, Herzmuskel-
und Nervenstammzellen die entsprechenden Gewebearten. Bei dieser Entwicklung
verlieren die Stammzellen dann allerdings ihre Pluripotenz und haben dann nur noch
die Fihigkeit, sich in eine spezialisierte, voll ausdifferenzierte Korperzelle mit einer
ganz bestimmten Aufgabe weiter zu entwickeln. Sie sind dann meist keine echten
Stammzellen mehr. Die ZNS-Vorlduferzellen als Abkdmmlinge embryonaler
Stammzellen sind nur zu einer begrenzten Selbsterneuerung fahig, bevor sie zu
Neuroblasten oder Glioblasten differenzieren (Gage 1998).

Obwohl die Pluripotenz der Stammzellen bei der Differenzierung verlorengeht, gibt es
auch im Organismus des Erwachsenen noch ruhende Stammzellen, z.B. im Blut, im
Knochenmark und im Gehirn. Diese sind zwar in ihren Entwicklungsmdglichkeiten
gegeniiber den Stammzellen in fritheren menschlichen Lebensformen (Embryo,
Neugeborenes) stark eingeschrinkt; man hofft aber, Wege zu finden, adulte
Stammzellen wieder in das Stadium der pluripotenten Aktivitdt zuriick zu versetzen.
Das wiirde weitere Perspektiven fiir einen zelltherapeutischen Einsatz von
Stammzellen bieten (Gage 2000; Temple 2001).

Fiir eine Therapie mit Stamm- oder Vorlduferzellen spielt aber, neben der Generierung
ausreichender Zellmengen, die Moglichkeit zur gezielten Differenzierung und
Pradifferenzierung der Zellen eine wichtige Rolle.

Als alternative Quelle dopaminerger Neurone fiir eine Zellersatztherapie beim M.
Parkinson wird deren Generierung aus neuronalen Stammzellen oder Vorlduferzellen
angesehen. Die neuronalen Stammzellen haben nur ein beschrianktes Potenzial, sich in
vitro weiter zu teilen. Die Immortalisierung von Vorlduferzellen des
Zentralnervensystems bietet eine Mdglichkeit, dieses Problem zu 16sen. Durch die
Immortalisierung bleiben die Zellen in einem kontinuierlichen Zellzyklus und
gewinnen das Potenzial, einen Phenotyp ausdifferenzierter Neurone zu generieren.
Durch diese ununterbrochene Zellteilung aber droht die Gefahr, dass die
transplantierten Zellen einen Tumor bilden. Die Teilungsrate ist gering. Die
Immortalisierung erfolgt mit viralem oder nicht viralem Gentransfer. Die am
hdufigsten transfizierten Gene sind Isoformen von myc, neu, p3, adenoviralem EI1A
und SV40 Large-T-Antigen. Diese Gene werden von der DNA der transfizierten
Zellen aufgenommen und aktivieren die Gentranskription von Onkoproteinen. Diese

Onkoproteine verleihen den Zellen dann ihr Potenzial, sich uneingeschrénkt zu teilen
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(Bartlett et al. 1988; Frederiksen et al. 1988). Bisher wurden verschiedene Zelllinien
immortalisiert und untersucht: neuronale Prekursorzelllinien aus dem Hippocampus
(HiB5), dem Cerebellum (C17.2), dem Hirnstamm (RN33B) oder dem Striatum und
Mesenzephalon (ST14A, CSM14.1) (Renfranz et al. 1991; Whittemore und Onifer
2000; Durand et al. 1990; Shihabuddin et al. 2000; Lundberg et al. 1996; Cattaneo und
Conti 1998). Ein Vorteil dieser Zelllinien besteht in der Moglichkeit weiterer
Gentransfektionen. Durch diese konnen die Zellen bestimmte Eigenschaften gewinnen,
z.B. die Expression von protektiven neurotrophen Faktoren, wie BDNF, NGF, GDNF,
CNTF, NT3, NT4, bFGF (Martinez-Serrano et al. 1995, 1996; Eaton und Whittemore
1996; Cattaneo und Conti 1998) oder Enzymen wie TH (Anton et al. 1994), um die

Differenzierung in Richtung des gewiinschten Phenotyps zu leiten.

5.2 Differenzierungspotential der CSM14.1-Zellen nach Serumreduktion

Die von uns verwendeten Progenitorzellen der Zelllinie CSM14.1 (Durand et al. 1990)
sind aus dem ventralen Mesenzephalon von E14-Ratten gewonnen und immortalisiert
worden. Fiir die Immortalisierung wurden sie mit einem retroviralen Vector
transfiziert. Er enthdlt das Gen flir das temperatursensitive Large-T-Antigen des
Simian-Virus-40 (SV 40). Die immortalisierten Zellen wurden unserer Arbeitsgruppe
freundlicherweise von DE Bredesen (University of California, San Diego, CA, USA)
zur Verfligung gestellt. Die optimale Temperatur fiir die Aktivierung des transfizierten
Gens, dass das Large-T-Antigen kodiert, ist 33° C. Die andere Bedingung ist, dass das
Medium (DMEM) 10% FCS erhélt. So gewinnen wir fiir die Zellen eine Umgebung,
die reich an Néhrstoffen und Faktoren ist, die sie fiir ihre Vermehrung bendtigen. Das
Ziel dabei ist, eine moglichst grole Menge der Stammzellen zu erhalten, die dabei
keinesfalls die Eigenschaften von Stammzellen verlieren. Die Proliferation kann jeder
Zeit durch die Erhohung der Temperatur auf 39° C unterbrochen werden. Um eine
Differenzierung der Zellen zu stimmulieren, ist neben der Temperaturerh6hung auch
eine Serumreduktion (1% FCS) im Ndhrmedium notwendig.

In den frilheren Experimenten unserer Arbeitsgruppe wurde nachgewiesen, dass
CSM14.1-Zellen in vitro ein neurogenes Potenzial besitzen (Haas und Wree 2002). Sie
exprimieren Nurrl, ein Protein, das direkt die Transkription des TH-Gen-Promotors
reguliert. Damit wird die Entwicklung der dopaminergen Zellen reguliert und das
Uberleben der ventralen mesenzephalen Neurone und ihre Differenzierung zu

dopaminergen Neuronen gefordert (Saucedo-Cardenas et al. 1998; Iwawaki et al.
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2000).

Um die in zahlreichen Transplantationsexperimenten verwendeten CSM14.1-Zellen
(Petrov et al., 2004) noch besser in vitro zu charakterisieren, untersuchten wir ihre
weiteren Eigenschaften bei modifizierten Kulturbedingungen (33° C) und
Serumreduktion (1% FCS). Obwohl mit der Serumreduktion im Medium nur eine
Bedingung fiir die Zelldifferenzierung vorhanden war, konnten wir zahlreiche
Verdnderungen in den so behandelten Zellen nachweisen. Die Expression des
immortalisierenden Genprodukts Large-T-Antigen nimmt am Kulturtag 10 stark ab
und ist am Tag 14 in noch geringerer Menge nachweisbar (p < 0,05). Diese Ergebnisse
korrelieren mit der zunehmenden Zellzahl bis zum 10. Tag. Wéhrend dieser Zeit
konnten auch Mitosen beobachtet werden. Diese Befunde sind unterschiedlich im
Vergleich mit den Ergebnissen von Haas und Wree (2002), die in CSM14.1-Kulturen
(39° C + 1% FCS) das Large-T-Antigen schon am Kulturtag 3 nicht mehr nachweisen
konnten. Es kann daraus geschlossen werden, dass die Regulation des Large-T-
Antigens primdr durch den Temperaturwechsel auf die nicht permissive Temperatur
erfolgt.

Die Morphologie der CSM14.1-Zellen unter modifizierten Bedingungen (33° C + 1%
FCS) war gegeniiber Zellen, die bei 33° C + 10% FCS kultiviert wurden, kaum
verdndert. Die flachen, epithelialen Zellen bildeten nur wenige kurze Ausldufer aus.
Die Untersuchung von neuronalen und glialen Markern zeigte, dass die Zellen in
einem pradifferenzierten Zustand bleiben. Die immunzytochemische Anfarbung fiir
Marker unreifer Neurone (Nestin und MAPS) blieb unverindert. Der neuronale Marker
NeuN nahm im Western Blot am Tag 3 leicht zu und blieb dann unveréndert. Auch
eine geringe Zunahme von NSE liess sich im Western Blot ab Tag 3 nachweisen. Eine
sehr geringe (statistisch nicht signifikante) Zunahme der Nurrl-Expression und eine
statistisch signifikante Zunahme der TH-Expression wurden nach Serumreduktion auf
1% FCS in den Western Blots beobachtet. Fir TH zeigte sich eine statistisch
signifikante (p < 0,05) Zunahme der TH-Expression am 7. und 10. Kulturtag.

Die Untersuchungen der CSM14.1-Zellen, kultiviert bei 33° C + 1% FCS, zeigten
gegeniiber Zellen, die bei 33° C + 10% FCS kultiviert wurden, nur relativ geringe
Verdanderungen in der Expression neuronaler Marker. Im Gegensatz zu diesen
Ergebnissen berichten Haas und Wree (2002), dass es bei CSM14.1-Zellen unter nicht
permissiven Bedingungen (39° C + 1% FCS) zu einer starken neuronalen und

dopaminergen Differenzierung kommt. Es kann daraus geschlossen werden, dass die
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alleinige Serumreduktion auf 1% FCS bei permissiver Temperatur nur einen geringen
Stimulus fiir eine neuronale, insbesondere dopaminerge Differenzierung darstellt.
Damit die CSM14.1-Zellen sich weiter zu dopaminergen Neuronen differenzieren
konnen, brauchen sie offensichtlich neben der Serumreduktion (1% FCS) eine
Temperaturerh6hung auf 39° C.

Zu keinem Zeitpunkt wurde eine GFAP-Expression nachgewiesen. Auch Haas und

Wree (2002) konnten in ihren Experimenten keine GFAP-Expression beobachten.

5.3 CSM14.1-Zellen und neurotrophe Faktoren

Die in unserer Arbeitsgruppe durchgefiihrt Transplantationen mit CSM14.1-Zellen in
die Substantia nigra von unilateral mit 6-Hydroxydopamin ldsionierten
Hemiparkinsonratten zeigten, dass CSM14.1-Zellen sich dort erfolgreich integrieren
und tiiberleben (drei Monate nach der Transplantation) und sich zu Neuronen oder
Gliazellen differenzieren. Transplantierte CSM14.1-Zellen bilden keine Tumore im
Wirtsgewebe (Petrov et al., 2004). Zusitzlich konnte nachgewiesen werden, dass die
CSM-14.1 Zellen in vitro den neurotrophen Faktor GDNF produzieren (Petrov et al.
2004; Haas et al. 2005).

GDNF st ein neurotropher Faktor, der in zahlreichen Studien in Tiermodellen des
Morbus Parkinson untersucht wurde. Die Ergebnisse zeigten, dass GDNF
neuroprotektive (verabreicht vor der Lasion) und neuroregenerative (verabreicht nach
der Lision) Eigenschaften besitzt. Diese Ergebnisse legen die Vermutung nahe, dass
beim Morbus Parkinson infolge von GDNF Einwirkung der Prozess des dopaminergen
Zellverlustes verlangsamt, verhindert oder gar riickgingig gemacht werden konnte. Die
Transplantation von neuronalen Stammzellen und gleichzeitige Behandlung mit GDNF
wurde (im Vergleich zu fehlender GDNF-Gabe) als potenter und erfolgreicher bei
diesen Patienten angesehen (Kearns et al. 1997; Aebischer und Ridet 2001; Tuszynski
et al. 2002; Gill et al. 2003; Kirik et al. 2004).

GDNF steigert die Menge der iiberlebenden Zellen nach einer neuronalen
Transplantation in verschiedenen Regionen des ZNS (Rosenblad et al. 1999; Trok et
al. 1996; Granholm et al. 1997; Sautter et al. 1998). Im Striatum steigert GDNF auch
die Funktionalitit der nigralen DA-Transplantate (Rosenblad et al. 1999; Granholm et
al. 1997; Sautter et al. 1998). Es wurde nachgewiesen, dass GDNF einen spezifischen
trophischen Effekt auf DA-Neurone besitzt (Lin et al. 1993; Beck et al. 1995; Nakao et
al. 2000). GDNF fiihrte zu einem verbesserten Uberleben der dopaminergen Neurone,
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einem Auswachsen dopaminerger Fasern und einer Verbesserung von
Verhaltensdefiziten nach intrastriatalen Injektionen des Proteins (Tomac et al. 1995;
Aoi et al. 2000 und 2001; Kirik et al. 2001) oder nach intranigraler (Hoffer et al. 1994;
Kearns und Gash 1995; Lapchak et al. 1997) bzw. intrazerebroventrikuldrer GDNF-
Gabe (Bowenkamp et al. 1995; Kirik et al. 2001). Eine Vorbehandlung mit GDNF hat
einen neuroprotektiven Effekt gegen 6-OHDA- (Kearns und Gash 1995; Sauer et al.
1995; Shults et al. 1996) und 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-
Lisionen (Tomac et al. 1995) und gegen die Transektion des Tractus nigrostriatalis
(Beck et al. 1995).

Als Alternative zu der direkten Infusionen des Proteins wurden GDNF-produzierende
Zellen (Fibroblasten, P19 Karzinomazellen, Astrozyten oder Nierenzellen) in das
Striatum oder die Substantia nigra bei Parkinsonmodellen der Ratte implantiert und
gezeigt, dass dies einen nigralen dopaminergen Neuronentod nach Lision verhindert
(Linder et al. 1995; Akerud et al. 2001; Nakao et al. 2000; Cunningham und Su 2002).
Eine andere Moglichkeit ist die Transplantation von GDNF-transfizierten neuronalen
Stammzellen oder Knochenmarkzellen in Rattenmodelle des Morbus Parkinson. Hier
wurde auch eine Verhaltensbesserung und eine Blockierung der ldsionsbedingten
dopaminergen Degeneration nachgewiesen (Akerud et al. 2001; Park et al. 2001;
Goubhier et al. 2002).

Die GDNF-exprimierende CSM14.1-Progenitorzelllinie ist ein gutes Beispiel fiir eine
Zelllinie, die sowohl in einer Zellersatztherapie eingesetzt werden konnte als auch als
Quelle eines neurotrophen Faktors, von dessen neuroprotektiver Wirkung die
transplantierten Zellen selber sowie die gehirneigenen Zellen profitieren konnen und
mit deren Hilfe neue therapeutische Strategien, die die Neuroprotektion und die
Neuroregeneration als Ziel haben, entwickelt werden kdnnen.

Andere neurotrophe Faktoren wurden auch als Zusatz zu Kulturmedien verwendet. Auf
diese Weise wirkten sie als Stimulanz auf die neuronale Differenzierung und als
Unterstiitzung des Uberlebens von Neuronen. Es wurde der Einfluss unterschiedlicher
Neutrotrophine untersucht. EGF und bFGF wirken zusammen in vitro stimulierend auf
die Proliferation der embyonalen Stammzellen und der aus Hippokampus und Bulbus
olfactorius stammenden Zelllinien (Vescovi et al. 1993; Weiss et al. 1996; Svendsen et
al. 1997). BFGF allein wirkt als Mitogen fiir unipotente und multipotente neuronale
und gliale Progenitoren (Murphy et al. 1990; Vescovi et al. 1993; Ray und Gage 1994;
Kilpatrick und Bartlett 1995; Palmer et al. 1995), und EGF fordert die Generierung
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von Gliazellen nach der Transplantation im Rattengehirn (Winkler et al. 1998). Die
Kombination von EGE, bFGE und LIF wurde von Fricker et al. (1999) fiir die
Stimulation von humanen Progenitorzelllinien benutzt. Barberi et al. (2003) benutzten
ein BDNF-angereichertes Medium, um die dopaminerge Differenzierung der
untersuchten Zelllinie (MS5) anzuregen.

Burnstein et al. (2004) und Le Belle et al. (2004) arbeiteten mit menschlischen
neuronalen Progenitorzellen (HNPCs), gewonnen aus embyonalem Kortex. Das
Medium, das sie verwendeten, enthielt NT4. Die Behandlung mit diesem Medium
erfolgte kurz vor der Transplantation, damit die Zellen einen prédifferenzierten
Zustand erreichten. Die prédifferenzierten oder undifferenzierten HNPCs- Zellen
wurden in die Substantia nigra des Rattenmodells des Morbus Parkinsons
transplantiert. 12 Wochen nach der Transplantation wurden die histologischen und
funktionellen Ergebnisse verglichen. Die Proben mit pradifferenzierten Zellen
enthielten eindeutig mehr Neurone und Gliazellen. Auch zeigten die Tiere, die mit
pradifferenzierten Zellen transplantiert wurden, eine verstarkte funktionelle Besserung

1im Rotationsverhalten.

5.4 CSM14.1-Zellen und Zytokincocktail
Andere Arbeitsgruppen untersuchten den Einfluss von Zytokinen auf neuronale und
dopaminerge Differenzierung in vitro. Es werden zwei Zytokin-Superfamilien
unterschieden: die TGF B (transforming growth factor B)-Familie und die Familie der
Hamopoetine. Die letzteren werden auch himolymphopoetische Zytokine genannt. Zu
thnen gehoren die Interleukine, die in erste Linie von Lymphozyten produziert werden.
Die Zytokine haben zusammen mit den Neurotrophinen einen bedeutenden Einfluss
auf die Entwicklung des ZNS (Mehler et al. 1993). Ling et al. (1998) untersuchten in
vitro 19 Interleukine und deren FEinfluss auf Progenitorzellen, die aus der
Germinalzone des embryonalen Mesenzephalons der Ratte isoliert wurden. Hier
formieren sich die dopaminergen Neurone wihrend der normalen Entwicklung (Specht
et al. 1981; Ptak et al. 1995; Santa-Olalla und Covarrubias 1995). Bei gewohnlichen
Kulturbedingungen in vitro ohne Interleukinzusatz differenzieren sich diese Zellen
selten zu dopaminergen Neuronen. Wurden die Interleukine als einzelne Substanzen
dem Medium zugefiigt, war nur IL1 in der Lage, in den Progenitorzellen eine erhdhte
TH-Expression zu induzieren. Von den verschiedenen getesteten Cocktails aus den 19

Zytokinen zeigte nur der Cocktail aus IL1, IL11, LIF und GDNF eine noch stérkere
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Erhohung der Anzahl TH-positiver Zellen in den mesenzephalen Kulturen. Die mit
dem Cocktail aus IL1, IL11, LIF und GDNF behandelten Zellen besallen (verglichen
mit Kulturen ohne Zytokin-Behandlung) ldngere Fortsitze und &hnelten
morphologisch multipolaren dopaminergen Neuronen.

Der in der Studie von Ling et al. (1998) beschriebene Einfluss von IL1 auf die
neuronale Differenzierung ist nachvollziebar, weil viele hdmatopoetische Zytokine,
auch die Interleukine, im fetalen Gehirn wihrend der Entwicklung nachweisbar sind
(Hynes und Rosenthal 1999, 2000; Jessell und Dodd 1990; Kilpatrick und Bartlett,
1995; McKay 1999; Temple 2001). Der trophische Effekt von IL1 auf dopaminerge
und katecholaminerge Neurone wurde bereits in in vitro und in vivo Experimenten
nachgewiesen (Nakao et al. 2000).

IL1 stimuliert die Expression des gpl30-Rezeptors, liber den dann IL11 und LIF
wirken konnen (Watanabe et al. 1996). Deshalb ist auch erkldrbar, dass bei einem
Mangel an IL1 eine Wirkung von IL11 und LIF nicht nachweisbar ist (Ling et al.
1998; Potter et al. 1999)

Wie oben beschrieben, ist GDNF ein trophischer Faktor dopaminerger Neurone.
GDNF induziert auch die Aktivitdit von Tyrosinkinase {iber die Aktivierung des ret-
Rezeptors (Durbec et al. 1996; Jing et al. 1996; Trupp et al. 1997). Der Cocktail von
IL1, IL11, LIF und GDNF und seine Wirkung auf die neuronale und dopaminerge
Differenzierung der Progenitorzelllinien wurde bisher nur bei mesenzephalen
subependymalen Progenitorzellen untersucht (Ling et al. 1998; Potter et al. 1999;
Carvey et al. 2001; Storch et al. 2001). Die zytokinbehandelten Kulturen dieser
Autoren wurden immunreaktiv fiir TH, DA, Dopadecarboxylase und DA-Transporter,
und die Morphologie von > 75% der Zellen zeigte multipolare Somata und lange
Fortsétze: morphologisch dhnelten sie TH-Neuronen. Bei der Klonlinie MPC-C9
wurde die gesteigerte TH-Expression durch eine gesteigerte Nurrl-Expression
unterstiitzt (Carvey et al. 2001). Zusétzliche in vivo Experimente wurden von Carvey
et al. (2001) durchgefiihrt. Sie transplantierten pradifferenzierte Progenitorzellen der
Klonlinie MPC-C9, die mit dem Zytokincocktail fiir 5 Stunden oder 3 Tage behandelt
und dann transplantiert wurden. Die Rotationsergebnisse nach der Transplantation
zeigten eine deutliche Reduktion der Rotationsasymmetrie, die Ergebnisse der beiden

Zytokinexpositionszeiten (5 Stunden oder 3 Tage) differierten dabei nicht.

Die bisherigen Experimente unserer Arbeitsgruppe mit den CSM14.1-Zellen zeigten
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bereits  vielversprechende  Ergebnisse: eine neuronale und dopaminerge
Differenzierung in vitro und in vivo, die Expression des neurotrophen Faktors GDNF
und einen therapeutischen Effekt nach Transplantation (Haas und Wree 2002; Petrov et
al. 2004).

Insbesondere um den therapeutischen Effekt nach der Transplantation zu verbessern,
ist eine Pradifferenzierung der zu transplantierenden Zellen von groflem Interesse
(Studer et al. 1998; Kawasaki et al. 2000; Sanchez-Pernaute et al. 2001; Sawamoto et
al. 2001a, b; Storch et al. 2001, Barberi et al. 2003). Deshalb schien es sinnvoll, mit
dem Einsatz eines Zytokincocktails zu versuchen, den gewiinschten TH-Phinotyp vor
der Transplantation verstirkt zu induzieren. Funktionelle Verbesserungen im
Nagetiermodell des M. Parkinson konnten insbesondere in Studien nachgewiesen
werden, die Zytokincocktails und angereicherte Populationen von aus neuronalen oder
embryonalen Stammzellen pradifferenzierten dopaminergen Vorldufer zur
Transplantation verwendeten (Studer et al. 1998; Kawasaki et al. 2000; Sanchez-

Pernaute et al. 2001; Sawamoto et al. 2001a, b; Storch et al. 2001, Barberi et al. 2003).

In der vorliegenden Studie wurde deshalb untersucht, ob der Zytokincocktail aus IL1,
IL11, LIF und GDNF eine stirkere und/oder schnellere dopaminerge Differenzierung
der immortalisierten Progenitorzelllinie CSM14.1 in vitro hervorruft.

Der von uns verwendete Zytokincocktail enthielt: IL1-100 pg/ml, IL11-1 ng/ml, LIF
Ing/ml, GDNF-10ng/ml. Die CSM14.1-Progenitorzelllinie wurde in vitro hinsichtlich
ihrer neuronalen, insbesondere dopaminergen Differenzierung untersucht. Es wurden
zwei Zellkultur-Gruppen, solche ohne Zytokin-Gabe und solche mit Zytokin-Gabe bei
39° C + 1% FCS mittels histologischer und immunzytochemischer Férbungen und
Western Blot qualitativ und quantitativ untersucht.

Die Morphologie der Zellen, die unter Zytokineinfluss gezilichtet wurden, zeigte
deutliche Unterschiede im Vergleich zu den Zellen, die ohne Zytokinmedium kultiviert
wurden. Die Somata der Zellen beider Kulturen dhnelten multipolaren Neuronen. Die
deutlichsten morphologischen Unterschiede wurden am Tag 14 beobachtet. Die
Zellfliche, die Zelldichte und die Zellfortsatzlinge wurden bestimmt. In den
Zellkulturen ohne Zytokin-Gabe kamen signifikant mehr Zellen pro mm? vor als in den
Zellkulturen, die Zytokine erhielten (p = 0,001). Die GroBBe der Perikarya (Zellfldche)
beider Versuchsansidtze war nicht signifikant unterschiedlich. Die Kulturen, die mit

Zytokincocktail behandelt wurden, wiesen jedoch eine signifikant grofere
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Zellfortsatzldnge auf (p = 0,02).

Die Zytokine fithren somit zu einem stidrkeren Fortsatzwachstum und zu einer
typischen Neuronenmorphologie. Diese Ergebnisse stimmen mit denen von vorherigen
Studien iiberein (Ling et al. 1998; Potter et al. 1999; Carvey et al. 2001; Storch et al.
2001), durchgefiihrt an mesenzephalen subependymalen Progenitorzellen. In diesen
Studien wurde gezeigt, dass der auch von uns verwendete Zytokincocktail die
Zellreifung stimulierte, die Fortsatzbildung positiv beeinflusste und dariiber hinaus zu
Zellveranderungen fiihrte, die typisch fiir dopaminerge Neurone waren. Es kann
gefolgert werden, dass die CSMIl14.1-Zellen auf die Behandlung mit dem
Zytokincocktail in &dhnlicher Weise wie die mesenzephalen subependymalen
Progenitorzellen (Ling et al. 1998; Potter et al. 1999; Carvey et al. 2001; Storch et al.
2001) reagieren.

Die Expressionsverdnderungen neuronaler Marker wurden in den Zellkulturen bei 39°
C + 1% FCS (ohne und mit Zytokincocktail) beobachtet. Schon bei fehlender Zytokin-
Behandlung wurde NeuN am Tag 3 vermehrt gebildet und blieb konstant bei 39° C +
1% FCS wihrend der Kulturdauer von 14 Tagen. In den zytokinbehandelten Kulturen
wurde die NeuN-Expression ebenfalls ab dem Tag 3 hochreguliert. Die
zytokinbehandelten Kulturen zeigten am Tag 3 eine leicht verstiarkte NSE-Expression
im Vergleich zu den Zellkulturen, die ohne Zytokine kultiviert wurden. Ein deutlicher
Unterschied zwischen den zytokinbehandelten und nicht behandelten Zellkulturen
konnte jedoch fiir NSE nicht nachgewiesen werden. Die Behandlung mit dem
Zytokincocktail hatte somit keinen wesentlichen Einfluss auf die NeuN- und NSE-
Expression. CSM14.1-Zellen differenzieren sich bei 39° C + 1% FCS weitgehend
unabhingig von der Zytokin-Gabe in Neurone.

Die Nurrl-Expression nahm wihrend des untersuchten Zeitraums (14 Tage) in den
Kulturen ohne Zytokincocktail zu und war gegeniiber den Kontrollen (33° C + 10%
FCS) signifikant erhoht. Dieses Phdnomen war auch in den zytokinbehandelten
Zellkulturen nachweisbar; nur am Tag 14 zeigten die zytokinbehandelten Kulturen
eine deutliche Abnahme der Nurrl-Expression. Im Vergleich mit den Kulturen, die
ohne Zytokine geziichtet wurden, wiesen die Kulturen mit dem Zytokinencocktail am
Tag 14 eine geringere Nurrl-Expression (OD: p = 0,006, OF: p = 0,01) auf. Eine
zunehmende Expression von Nurrl unter dem Einfluss von Zytokinen wurde bisher
nur fiir die Klonlinie MPC-C9 (mesenzephale subependymale Progenitorzellen)

nachgewiesen (Carvey et al. 2001). Die Befunde von Carvey et al. (2001) wurden
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jedoch mit immunzytochemischen Methoden erhoben und beziehen sich lediglich auf
eine Kulturdauer von 3 Tagen, so dass sie mit den Western Blot-Ergebnissen unserer
Langzeitkulturen nicht direkt verglichen werden konnen. Insgesamt kann jedoch
festgestellt werden, dass die Behandlung mit dem Zytokincocktail bei 39° C + 1% FCS
keinen stirksten Einfluss auf die Expression von Nurrl in den immortalisierten
CSM14.1-Progenitorzellen hat. Dem gegeniiber hat die Erhohung der
Kulturtemperatur von 33° C auf 39° C bei gleichzeitiger Serumreduktion einen
hochsignifikanten Einfluss auf die Expression von Nurrl: eine Kultur bei nicht
permissiver Temperatur (39° C) erhoht die Nurrl-Expression (p < 0,001) (Abb. 21).
Dieser durch Quantifizierung validierte Befund bestitigt und erginzt bisherige
Aussagen von Haas und Wree (2002). Fiir eine Hochregulation von Nurrl ist somit
primér die Temperaturerhdhung und nicht die Serumreduktion verantwortlich, da eine
Serumreduktion auf 1% FCS ohne Temperaturerh6hung die Nurrl-Expression nicht

verdndert (Abb. 10).

Die TH-Expression nahm wéhrend der untersuchten Periode (14 Tage) in den Kulturen
ohne Zytokincocktail bei 39° C + 1% FCS gegeniiber den Kontrollen (33° C + 10%
FCS) signifikant zu (p < 0,001) (Abb. 21). Dieses Phdnomen war auch in den
zytokinbehandelten Zellkulturen nachweisbar (p < 0,001). Der Vergleich der Kulturen,
die bei 39° C + 1% FCS ohne oder mit Zytokinen geziichtet wurden, zeigte jedoch
keinen signifikanten Unterschied hinsichtlich der TH-Expression. Untersuchungen zur
TH-Expression mesenzephaler subependymaler Progenitorzellen unter einer Zytokin-
Behandlung ergaben dagegen eine deutliche Zunahme der TH-Immunreaktivitdt unter
dem Einfluss des auch von uns verwendeten Zytokincocktails (Ling et al. 1998; Potter
et al. 1999; Carvey et al. 2001; Storch et al. 2001). Diese Befunde beziehen sich auf
eine Kulturdauer unter Zytokin-Einfluss von 5 Stunden bis zu 3 Tagen.

Es muss festgestellt werden, dass in den immortalisierten CSM14.1-Progenitorzellen
die Behandlung mit dem Zytokincocktail bei 39° C + 1% FCS keinen zusitzlichen
Einfluss auf die Expression von TH hat. Die Erhohung der Kulturtemperatur von 33° C
auf 39° C bei gleichzeitiger Serumreduktion steigert die Expression von TH jedoch
signifikant (p < 0,001) (Abb. 21). Mit den vorliegenden Ergebnissen konnen
entsprechende Befunde von Haas und Wree (2002) bestétigt und durch Quantifizierung
statistisch gesichert werden. Dass neben einer Temperaturerh6hung auch eine alleinige

Serumreduktion bei permissiver Temperatur eine Hochregulation von TH verursacht,
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kann aus den Ergebnissen der vorliegenden Arbeit geschlossen werden:
Serumreduktion auf 1% FCS ohne Temperaturerhohung steigert die TH-Expression
(Abb. 12). Die durch eine Temperaturerh6hung oder eine alleinige Serumreduktion bei
permissiver Temperatur verursachten Steigerungen der TH-Konzentration sind

vergleichbar.

Zusammenfassend kann festgestellt werden, dass eine Zytokin-Behandlung der
Kulturen die Morphologie der CSM14.1-Zellen deutlich im Sinne einer stirkeren
neuronalen Differenzierung beeinflusst, die Expression der untersuchten neuronalen
Marker dagegen nur gering.

Fiir diese scheinbare Diskrepanz konnen verschiedene Erkldrungen diskutiert werden.
Es muss betont werden, dass in der Literatur bisher keine temperatursensitiv
immortalisierten Zellen bei nicht permissiver Temperatur auf den Einfluss von
Zytokinen hin untersucht wurden. Insofern ist der in der vorliegenden Arbeit verfolgte
Versuchsansatz neu und nicht in Literaturbefunde direkt einzuordnen. Die
Literaturangaben zu Zytokineffekten beziehen sich auf Zellsysteme, die zwar
immortalisiert waren, aber permanent bei 37° C geziichtet wurden. In diesen
normothermen Systemen ist der Einfluss einer Zytokin-Behandlung deutlich im Sinne
einer verstirkt induzierbaren neuronalen und dopaminergen Differenzierung erkennbar
(Ling et al. 1998; Potter et al. 1999; Carvey et al. 2001; Storch et al. 2001).

In unserem System, in dem die Zytokin-Behandlung zusammen mit der
Temperaturerh6hung vorgenommen wurde, um zusdtzlich zum teilweise bekannten
Effekt einer Temperaturerh6hung einen eventuellen additiven Effekt durch Zytokine
zu erreichen, scheint die durch die alleinige Temperaturerh6hung auf 39° C (ohne
Zytokine) induzierbare verstirkte Expression der untersuchten neuronalen Marker so
umfangreich zu sein, dass sie durch die zusitzliche Gabe von Zytokinen nicht weiter
gesteigert werden kann.

Das morphologisch sichtbare Differenzierungspotenzial der CSM14.1-Zellen scheint
von der Expression neuronaler Marker unabhdngig reguliert zu werden. Alleinige
Temperaturerhohung auf 39° C (ohne Zytokine) fithrt schon zu einer ausgeprigten
Fortsatzbildung der CSMI14.1-Zellen. Eine zusétzliche Zytokin-Behandlung hat
beziiglich dieses Parameters einen signifikanten additiven Effekt. Zukiinftigen

Untersuchungen muss es vorbehalten bleiben, die Signaltransduktionskaskade, die fiir
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diesen Zytokin-Effekt verantwortlich sein konnte, zu kléren.
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7. Thesen

1. Morbus Parkinson ist eine neurodegenerative Krankheit, die mit dem Verlust von
dopaminergen Neuronen in der Substantia nigra verbunden ist. Die Vorstellung, einen
Verlust von Neuronen durch gezielte Transplantation von Nervenzellen ausgleichen zu
konnen, ist konzeptionell unmittelbar einsichtig und kommt Idealen einer kausalen

Therapie sehr nahe.

2. Die Transplantation immortalisierter Progenitorzellen ist eine vielversprechende
Moglichkeit fiir die Zellersatztherapie bei M. Parkinson. Diese Zellen sind leicht zu
generieren, haben ein Proliferationspotential, das man leicht steuern kann, und kénnen
durch gezielten Gentransfer zur Produktion verschiedener Wachstumsfaktoren oder

Enzyme angeregt werden.

3. Die von uns verwendete immortalisierte Progenitorzelllinie CSM14.1 ist aus dem
ventralen Mesenzephalon von El14-Ratten gewonnen. Diese Zelllinie besitzt in vitro

ein neurogenes und dopaminerges Differenzierungspotenzial.

4. Zytokine sind Glykoproteine, die liberwiegend von Zellen des Immunsystems
sezerniert wurden. Sie regulieren die Himatopoese, die Aktivierung und Reifung von
Immunzellen und ihr Zusammenspiel wiahrend der Immunantwort und die Entwicklung
des Nervensystems. Zu den neuroregulatorischen Zytokinen gehoéren IL1, IL11, LIF

und GDNF.

5. Ziel dieser Arbeit ist es, aufgrund der potentiellen Bedeutung der CSM14.1-Zellen
fir Transplantationen in experimentellen Tiermodellen, eine weiterfithrende
Charakterisierung der CSM14.1-Zellen unter unterschiedlichen
Differenzierungsbedingungen in vitro zu erarbeiten. Die Fragen, die beantwortet
werden sollen sind: 1) Wie verdndert sich das Expressionsmuster verschiedener
neuronaler Proteine bei permissiver Temperatur (33° C) und Serumreduktion (1%
FCS), und 2) welchen EinfluB3 haben Zytokine auf die Expression neuronaler Proteine
und die Morphologie der Zellen. Zellkulturen mit einer Kulturdauer bis zu 14 Tagen

wurden bei permissiver (33° C) und nicht permissiver (39° C) Temperatur untersucht.
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6. Eine geringe neuronale Differenzierung von CSMI14.1-Zellen wurde bei
Serumreduktion (1% FCS) und permissiver Temperatur (33° C) gefunden. Die
Expression von Nestin, MAPS und NSE blieb unveridndert wihrend der Kulturdauer.
Das immortalisierende Genprodukt Large-T-Antigen war am Kulturtag 10 und 14
signifikant (p < 0,05) reduziert. Die NeuN-Expression wurde am Tag 3 hochreguliert
und blieb konstant wahrend der Kulturdauer. Ein Anstieg der Nurrl-Expression wurde
wihrend der Kulturdauer von 14 Tage nachgewiesen. TH-Expression wurde ebenfalls

hochreguliert (p < 0,05).

7. CSM14.1-Zellen wurden in vitro bei 39° C + 1% FCS mit einem Cocktail aus IL1,
IL11, LIF und GDNF behandelt. Diese Zellen wurden mit Zellen, die ohne Zytokin-

Gabe kultiviert wurden, verglichen.

8. Die Morphologie der Zellen, die unter Zytokineinfluss geziichtet wurden, zeigte
deutliche Unterschiede im Vergleich mit den Zellen, die ohne Zytokinmedium
kultiviert wurden. Die Somata der Zellen beider Kulturen @hnelten multipolarer
Neuronen. Die Zellen, die mit Zytokinen behandelt wurden, zeigten signifikant lingere
Fortsdtze (p = 0,02). Eine Zytokin-Behandlung hat hinsichtlich der Fortsatzbildung

einen signifikanten additiven Effekt zur Temperaturerh6hung.

9. Die neuronalen Marker NeuN und NSE wurden in beiden Zellkulturen im
Vergleich zu Kontrollen (33° C + 10% FCS) hochreguliert, ohne einen signifikanten
Unterschied zwischen Kulturen mit und ohne Zytokincocktail zu zeigen. Bei den
Zellkulturen ohne Zytokin-Gabe nahm die Nurrl-Expression am Tag 3 zu und
erreichte ihr Maximum am Tag 14. Zytokinbehandelte Zellkulturen zeigten eine starke
Zunahme am Tag 3 und 7, danach folgte eine deutliche Herunterregulation. Die TH-
Expression in den Zellkulturen mit und ohne Zytokin-Gabe wurde ab Tag 3
hochreguliert und blieb konstant bis Tag 14. Eine Zytokin-Behandlung bei 39° C + 1%
FCS hatte auf die Expression der unterschiedlichen neuronalen Marker keinen

zusitzlichen Effekt zur Temperaturerhohung.
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10. Das morphologisch sichtbare Differenzierungspotenzial der CSM14.1-Zellen
scheint von der Expression neuronaler Marker unabhingig reguliert zu werden.
Alleinige Temperaturerhdhung auf 39° C (ohne Zytokine) fiihrt schon zu einer
ausgeprigten  Fortsatzbildung der  CSMI14.1-Zellen. Eine zusitzliche
Zytokinbehandlung hat beziiglich dieses Parameters einen signifikanten additiven
Effekt. Zukiinftigen Untersuchungen muss es vorbehalten bleiben, die
Signaltransduktionskaskade, die fiir diesen Zytokin-Effekt verantwortlich sein konnte,

zu kléren.
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