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Abstract 
 

Glasses of toluene, ethylbenzene, ethylcyclohexane and tetrachloromethane with high kinetic 

stability have been produced by physical vapor deposition and characterized by in situ AC 

chip nanocalorimetry. The highest kinetic stability of the as-deposited glasses is achieved 

with deposition at substrate temperatures around 0.85 Tg and with lower deposition rates. The 

isothermal transformation of the as-deposited glasses into the supercooled liquid state gave 

further evidence to the stable glass formation with high kinetic stability. The successful 

formation of vapor-deposited glasses with high kinetic stability of ethylcyclohexane, a strong 

glass former of m ≈ 60, and tetrachloromethane, with a pseudo isotropic molecular structure, 

indicates that fragility and molecular asymmetry are not prerequisites for stable glass 

formation. In order to investigate these glass formers, AC chip nanocalorimetry was 

developed utilizing a closed-cycle helium cryostat to reach temperatures down to 10 K. On 

the other hand, the AC chip nanocalorimetry was improved with laser modulation, in order to 

reach frequency up to 1 MHz. This allows for the determination of the dynamic glass 

transition in a frequency range of up to 11 orders of magnitude with measurements from 

laser-modulated AC chip nanocalorimetry and four different temperature modulated 

differential scanning calorimeters (TMDSC). 
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Zusammenfassung 
 

Ultrastabile Glaszustände von Toluol, Ethylbenzol, Ethylcyclohexan und Tetrachlormethan 

konnten durch physikalische Gasphasenabscheidung realisiert werden. Die hohe kinetische 

Stabilität der Gläser wurde durch in situ AC Chip-Nanokalorimetrie nachgewiesen. Die 

höchste kinetische Stabilität der abgeschiedenen Gläser konnte bei Substrattemperaturen um 

0.85 Tg und niedrigen Abscheidungsraten erzielt werden. Die isotherme Transformation der 

abgeschiedenen Gläser in den Zustand der unterkühlten Flüssigkeit bestätigte die Bildung von 

ultrastabilen Gläsern mit hoher kinetischer Stabilität aus Ethylcyclohexan, einem Glasbildner 

mit einer Fragilität von m ≈ 60, und Tetrachlormethan, einem pseudo isotropen Molekül. 

Diese Beispiele zeigen, dass Fragilität und molekulare Asymmetrie keine Voraussetzungen 

für die Bildung ultrastabiler Gläser sind. Im zweiten Teil der Arbeit wird die für die 

Untersuchungen notwendige Weiterentwicklung der AC Chip-Nanokalorimetrie beschrieben. 

Mit einem geschlossenen Helium-Kryostaten wurde der Temperaturbereich nach unten auf 

10 K erweitert. Eine Erweiterung des Frequenzbereichs bis 1 MHz wurde durch den Aufbau 

eines AC Chip-Nanokalorimeters mit Laser-Modulation erreicht. Dies ermöglicht die 

Bestimmung des dynamischen Glasübergangs in einem Frequenzbereich von 11 

Größenordnungen. Dazu werden Messungen mit dem lasermodulierten AC Chip-

Nanokalorimeter mit denen von vier verschiedenen temperatur-modulierten Differential-

Scanning-Calorimetern (TMDSC) kombiniert. 
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1.1 Introduction 

In recent years, the number and variety of glass-forming materials have increased 

tremendously. By understanding the physics of a glass-forming material, its properties can be 

manipulated to fit various specific uses. Glasses have been produced and utilized in many 

current and developing technologies, e.g. amorphous organic electronics,
1, 2

 amorphous 

pharmaceuticals,
3
 though it was and still is a continuous challenge to understand the main 

principles behind glass formation and its structure. Glasses can be produced from variety of 

glass-forming materials, such as organic, inorganic, polymeric, colloidal and metallic 

components.
4, 5

 

A glass is commonly formed by cooling a supercooled liquid from liquid below glass 

transition without crystallization, shown in Figure 1. In order to reach equilibrium state, the 

liquid (solid green line) tends to crystallize (solid red line) with a sharp first order phase 

transition below the melting temperature, Tm. However if crystallization is avoided upon 

cooling, the liquid transforms into a supercooled liquid (SCL) and on further cooling, the 

molecular motions in the SCL slow down until metastability is lost at the glass transition 

temperature, Tg.
6
 At this point, the SCL “freezes-in” into a non-equilibrium glass, as the 

molecules do not have enough mobility to move and to rearrange freely in a given time, 

which is dependent on the experimental conditions such as the cooling rate. This process of 

cooling down yields increasing viscosity and slowing down of dynamics, but no obvious 

structural changes occur. The molecules do not have possibility to move and rearrange, which 

is necessary to reach the equilibrium volume. 

A characteristic behavior of volume V, or enthalpy H, or entropy S is observed at the glass 

transition. At a constant cooling rate and constant pressure, the temperature coefficient of the 

enthalpy, denoted as heat capacity Cp, shows a smooth step-like change at the glass transition, 

with 

p

p

H
C

T

 
  

 
      (1) 

The non-equilibrium glass represents a thermodynamically unstable state and seeks 

continuously to relax or rearrange via physical aging to reach equilibrium. Physical aging 

happens naturally under undesirable conditions, while crystallization occurs when the 

molecules have sufficient mobility to arrive at a thermodynamic equilibrium state. For glasses 
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at constant T and P, the free energy is not at a local minimum. This continuous relaxation 

changes the properties of the glasses, and subsequently affects the lifetime of devices. When 

the cooling rate is decreased, the molecules of the liquid have more time to find an 

arrangement closer to equilibrium, hence lower glass transition temperature, Tg’. 

Unfortunately, there is a limit to decreasing the cooling rate, thus limiting the partly 

equilibrated state that the glasses can reach. The same equilibrated state can be achieved by 

annealing the glass. However even when annealing at a few Kelvin below Tg, this process is 

so slow that low energy states in the energy landscape will never be reached on the 

experimental time-scale. 

These limitations lead to the question whether it is possible to produce glasses closer to 

equilibrium in deeper minima on the potential energy landscape. When the glasses relax 

closer to equilibrium, the relaxation slows down considerably until it is almost insignificant, 

thus can increase the lifetime of the device.  
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Figure 1: Schematic of (a) heat capacity and (b) enthalpy versus temperature. Formation of liquid 

(solid green line) to supercooled liquid (solid black line) to amorphous glass (solid blue 

line). For the glass transition region, the enthalpy curve shows a smooth change in slope, 

while heat capacity shows a step. Annealing the amorphous glass yields a lower glass 

transition temperature, Tg’ and an overshoot in heat capacity upon reheating. Physical 

vapor deposition at substrate temperature close to Tg produces glass with high kinetic 

stability (solid cyan line), while conventional deposition at very low substrate temperature 

produces unstable glass (red dot). 
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It has recently been established that highly stable glasses can be prepared by physical vapor 

deposition. Enhanced mobility at the surface of these glasses allows molecules to efficiently 

explore configuration space and find a lower position on the energy landscape. 

Even though there are several active researches on stable glasses from vapor deposition, the 

principle behind the formation of stable glasses is still not completely understood or well 

established. In this work, the characteristics of the stable glasses and correlation to the ability 

to stable glass formation are investigated. This is important in attempt to better understand 

glasses and to determine the prerequisite for the formation of stable glasses, as not all glass 

formers can form stable glasses or form partially stable glasses (e.g. butyronitrile,
7, 8

 1-

pentene,
9
 ethanol,

10
 n-propanol

10
). 

Therefore, the aim of the present thesis is to provide answers to the following two main 

questions: 

(i) can strong liquids or least fragile liquids form stable glasses, and 

(ii) is molecular anisotropy a prerequisite for stable glass formation? 

In order to investigate the vapor deposited glasses, calorimetry is used as the main 

experimental measuring method, as it has proven its ability to provide useful information 

regarding stability of glasses from the determination of the heat capacity of materials. 
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Figure 2: Total specific heat capacity cp,total, read cp’ and imaginary part cp” of the complex specific 

heat capacity of polystyrene determined from temperature modulated DSC (TMDSC). 

Figure taken from 
11

 and modified. 
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The glass transition temperature Tg describes an equilibrium-to-non-equilibrium transition, 

while dynamic glass transition temperature Tg,dyn occurs in the thermodynamic equilibrium. 

The molecules of a sample remain immobile on the timescale of the oscillation for 

temperatures around the glass transition temperature Tg, as determined by adiabatic 

calorimetry or DSC. At temperatures above Tg, the molecular rearrangement can follow the 

oscillation and is measured as a step in the real part of the susceptibility c’ and a peak in the 

imaginary part c”, shown in Figure 2. The dynamic glass transition temperature Tg,dyn is 

dependent on the  frequency used for the dynamic experiment, where the Tg,dyn is shifted to 

higher temperatures in comparison to Tg with increasing frequencies  

The AC chip nanocalorimetry is a very useful technique to determine the complex heat 

capacity at the dynamic glass transition of thin films down to a few nm. With the possibility 

to measured very small samples, the frequency range of measurement is increased to kHz 

region. By using the AC chip nanocalorimetry in an ultra-high vacuum (UHV) and cooled 

with liquid nitrogen, the samples can be cooled to cryogenic temperatures under high vacuum 

condition. This system allows measurements of highly volatile small molecular glass formers, 

which will vaporize at room temperature. In order to measure to much lower temperatures, the 

cryostat is replaced with a closed cycle helium cryostat. For further development on the AC 

chip nanocalorimetry, laser light heating is implemented as the source for the modulated 

power instead of the resistive heating from the built-in heaters embedded in the sensor 

membrane, in order to reach even higher frequencies range up to 1 MHz. This means reaching 

relaxation times down to almost 100 ns. 

This thesis is structured as follows: (i) investigation of vapor-deposited glasses with AC chip 

nanocalorimetry and (ii) development of AC chip nanocalorimetry. In the first part of the 

thesis, the kinetic stability of vapor-deposited glasses and correlation to form stable glasses 

are discussed (Paper 2.1, Paper 2.2 and Paper 2.5). The AC chip nanocalorimetry was 

developed with different cooling systems and modified with laser modulation, and 

subsequently the frequency range was extended up to MHz, which is presented in the second 

part of the thesis (Paper 2.3 and Paper 2.4). Through the development and improvement, the 

AC chip nanocalorimetry allows measurements in a wide temperature and frequency range 

with sufficient sensitivity for investigation of nm thin films. This will provide information 

regarding the two main questions of this thesis. 
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1.2 Part I: Investigation of vapor-deposited glasses 

The glasses produced by physical vapor deposition with substrate temperatures near 0.85 Tg 

exhibit extraordinary properties, including higher kinetic stability,
12-15

 lower enthalpy,
12, 13, 16-

18
 lower heat capacity

19, 20
 and higher density.

15, 21
 The ability to create stable vapor-deposited 

glasses is attributed to a surface layer with enhanced mobility, where the molecules can 

efficiently find a lower energy configuration before being buried by next layer of molecules.
13

 

 

1.2.1 Influence of deposition conditions on stable glasses 

Prior to 2007, the literature reported that vapor deposition prepared unstable materials with 

high enthalpy and low density.
7, 9, 22-24

 This is due to vapor deposition of samples at very cold 

substrates, where the molecules stick to the substrate and are immobile for configurational 

sampling. At substrate temperatures not too far below the glass transition temperature, 

molecules arriving at the sample surface may have sufficient mobility to sample different 

configurations in the time for which they are part of a mobile surface layer. On the other 

hand, if the sample is deposited at substrate temperatures very near or above glass transition 

temperature, the molecules are deposited in the supercooled liquid and on cooling will form 

an ordinary liquid-cooled glass. Following this line of argument, the deposition conditions 

(e.g. substrate temperature and deposition rate) influence the kinetic stability of the as-

deposited glasses. 

Stability of as-deposited glasses is indicated by the characteristics of the heat capacity curves: 

the heat capacity of the as-deposited glass and the onset temperature for the transformation of 

the as-deposited glass into the supercooled liquid.
12

  

The onset temperature, Tonset is defined as the intersection of the extrapolated glassy line and 

the tangent of the transformation from glassy state to supercooled liquid state. At Tonset, the 

molecules have sufficient energy to surmount the barriers imposed by stable glass packing. 

This allows transformation into supercooled liquid, and an increase in heat capacity is 

observed as a consequence of configurational sampling. On the contrary, the molecules 

remained immobile below Tonset. Therefore Tonset for the transformation into the supercooled 

liquid is an important measure of the kinetic stability of the as-deposited glasses. The higher 

the temperature is required to dislodge the molecules from the glass, the greater is the kinetic 

stability of the as-deposited material. 
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The fractional Cp decrease is utilized to characterize the difference in heat capacity between 

as-deposited (AD) and ordinary glasses (OG)
19, 20

 

(AD)
Fractional  decrease 1

(OG)

p

p

p

C
C

C
      (2) 

The lower heat capacity of the as-deposited glasses can be linked to the vibrational degrees of 

freedom which may be associated to the packing of the glasses.
25

 

The increased stability of a glass due to the enhanced surface mobility was also observed 

directly by other experiments (not involving vapor deposition) that molecular glasses have 

highly mobile surfaces at temperatures just below Tg, and theoretical models support this 

idea.
26-30

 For the glass formers that do form stable glasses, it has been established that 

deposition conditions affect the kinetic stability of the glass. Thus far, influence of the 

deposition conditions has been investigated in a wide substrate temperatures but limited 

deposition rates.
14, 18, 20, 25-34

 

When a molecule is deposited onto the surface of a growing glass film, it becomes part of a 

mobile surface layer, only if the temperature of the substrate is not too low. The molecules 

near the surface have the mobility to rearrange to reach more efficient packing configuration, 

before being buried and becoming part of the bulk glass by further deposition. The substrate 

temperature yielding maximal stability, often around 0.85 Tg, can be viewed as a compromise 

between molecular mobility at the free surface (which decreases with decreasing temperature) 

and the driving force towards deep states within the energy landscape (which increase with 

decreasing temperature).
12

 If a sample is deposited at temperature far below Tg, unstable 

glasses are formed, as investigated by Suga et al., presumably because the surface is 

essentially immobile on the time scale of deposition. The molecules hit the substrate and have 

little opportunity to optimize packing before they are trapped.
22

 

When the molecules are deposited at lower deposition rates, the molecules would have more 

time to equilibrate on the surface, resulting in packing arrangements with lower energies and 

higher barriers to rearrangement.
25, 32, 33

 Furthermore, at a given temperature, lowering the 

deposition rate beyond some values should have no further impact on glass properties because 

the surface should reach a structure corresponding to a metastable state different from the 

crystal. Published data are consistent with these ideas but do not fully test them in a large 

enough range of substrate temperatures and deposition rates for a complete understanding. 
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Figure 3 shows the heat capacity curves of as-deposited ethylcyclohexane and 

tetrachloromethane, deposited at different substrate temperatures Tsubstrate. The film thickness 

is kept constant at 400 nm, while the deposition rate is 2 nm s
-1

 for ethylcyclohexane and 

1 nm s
-1

 for tetrachloromethane. The onset temperature and fractional Cp decrease of 

ethylcyclohexane and tetrachloromethane are collected in Figure 4. The trends of the Tonset 

and fractional Cp decrease are consistent with other reports on stable glasses, where Cp 

reaches its maximum decrease and the Tonset reaches its maximum at substrate temperatures 

from 0.7 Tg to 0.85 Tg. 
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Figure 3: Heat capacity for glasses of (a) ethylcyclohexane and (b) tetrachloromethane, deposited at 

different substrate temperatures. A heating curve corresponding to an ordinary liquid-

cooled glass (OG, solid red line) is shown for comparison. The determination of the Cp 

decrease and Tonset are also shown. Quasi-isothermal transformation measurements are 

done at transformation temperatures between Tg – 1 K and Tg – 5 K. The results are 

measured with frequency of 20 Hz. 
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Figure 4: Onset temperature and fractional Cp decrease of substrate temperature dependency 

measurement of (a) ethylcyclohexane and (b) tetrachloromethane. 

 

On the other hand, Figure 5 shows the influence of deposition rate on the kinetic stability of 

as-deposited glasses of ethylcyclohexane, across the deposition rate by more than four orders 

of magnitude from 0.002 nm s
-1

 to 60 nm s
-1

 and at seven substrate temperatures from 95 K to 

60 K. For each deposition rate at different substrate temperatures, the transformation is 

collected and presented in Figure 6. At each substrate temperature, lower deposition rates 

result in higher kinetic stability, presumably because the time available for a molecule to 

sample different configuration increases. In Figure 6, the deposition rate (top x-axis) is 

recalculated to free surface residence (bottom axis) by dividing the thickness of one 
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monolayer of ethylcyclohexane (~0.6 nm) with deposition rate in units of nm s
-1

. The free 

surface residence time defines the time needed to deposit one monolayer, before being buried 

by further deposition. 

 

Figure 5: Quasi-isothermal transformation kinetics at transformation temperature 103 K of as-

deposited glasses of ethylcyclohexane into supercooled liquid, for different deposition 

rates. The samples were deposited at substrate temperatures (a) 65 K and (b) 85 K. 
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Figure 6: Quasi-isothermal transformation time as a function of free surface residence time, which is 

the time needed to deposit one monolayer of ethylcyclohexane. The free surface residence 

time is calculated from the deposited rate which is given on the top axis. 

 

1.2.2 Quasi-isothermal transformation experiments 

Quasi-isothermal transformation experiments with AC chip nanocalorimetry provide a precise 

analysis of the kinetic stability of the as-deposited glasses, in addition to temperature scanning 

measurements. The kinetic stability of the as-deposited glasses is quantified by the time 

needed for transformation from an as-deposited glass to the supercooled liquid. 

Figure 7 shows isothermal transformation of as-deposited glasses of ethylcyclohexane and 

tetrachloromethane at different transformation temperatures Ttransform. The as-deposited glasses 

transformed to supercooled liquid with the increase in heat capacity and the time needed to 

complete the transformation is denoted as ttransform. 
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Figure 7: The increase in heat capacity during isothermal transformation of (a) ethylcyclohexane 

and (b) tetrachloromethane, from the as-deposited glass to the supercooled liquid at the 

indicated transformation temperature, Ttransform. 

 

1.2.3 Role of fragility in stable glass formation 

There have been long discussions as to why some glass formers form stable glasses, while 

others do not. For most investigated stable glass formers, the common feature is that they 

have relatively large values of fragility.
35, 36

 Some authors have concluded that glasses of high 

kinetic stability can only be formed from very fragile liquids via vapor deposition,
35, 36

 instead 

of strong liquids.
8, 37
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Glass formers are distinguished with regards to their steepness index or fragility, m. The 

fragility, m is defined as the derivative of the logarithm of the structural relaxation time, 

log(τα) over Tg / T as the temperature approaches Tg 

log( )

( / )
g

g T T

d
m

d T T





        (3) 

where log(τα) is determined from the Vogel-Fulcher-Tammann (VFT) equation of glass 

forming materials. The fragility characterizes how rapidly the dynamics of a material slows 

down as it is cooled towards the glass transition, shown in Figure 8 as Angell plot and in 

Table 1 for a wide range of fragility. 
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Figure 8: Angell plot depicts the fragility of glass formation from strong to fragile glass formers. 

The solid black line indicates Arrhenius behavior of a very strong glass former. 

 

Table 1:  Stable glass formers produced by vapor deposition over a wide range of fragility and 

molecular structures. 

Glass formers Tg in K m Molecular structure References 

cis/trans-decalin  135 145 

 

38
 



Chapter 1: Summary  14 

 

Tetrachloromethane CCl4 78 118 

 

 

Toluene TOL 117 105 
 

20, 39, 40
 

Ethylbenzene EBZ 115 97 
 

18, 20, 21, 37
 

1,3-bis-(1-naphthyl)-5-(2-

naphthyl)-benzene 
TNB 348 86 

 

13
 

Indomethacin IMC 315 83 

 

13, 41
 

o-terphenyl OTP 242 81 

 

42, 43
 

Isopropylbenzene IPB 129.4 78 

 

15
 

Propylbenzene PB 125.7 75 

 

15
 

Methyl-m-toluate MMT 169 60 

 

44, 45
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Ethylcyclohexane ECH 100 56 

 

37, 46
 

 

Recent investigation of methyl-m-toluate and ethylcyclohexane, which are among the least 

fragile organic glass formers with m ≈ 60, shows that these systems also exhibit stable glass 

formation.
44, 46

 

 

1.2.4 Role of molecular structure in stable glass formation 

Another common molecular characteristic among the stable glass formers is that they have 

anisotropic molecular structure. To date, only a few organic substances have been studied by 

vapor deposition to investigate the ability to form stable glasses, shown in Table 1. These 

stable glass formers have molecules with ring structure that allows anisotropic orientation on 

the surface during deposition. Stable glasses with anisotropic molecular orientation have been 

demonstrated by ellipsometry measurements of their optical properties.
47-49

 and determination 

of their structure by x-ray scattering experiments.
50

 This leads to the question whether an 

asymmetric structure is a prerequisite for the ability to form stable glasses. This hypothesis is 

put forward by the observation that some stable glasses show optical anisotropy.
47-49, 51, 52

 In 

order to clarify this hypothesis, the nearly isotropic glass former, tetrachloromethane, is 

investigated.  

 

1.3 Part II: Development of AC chip nanocalorimetry 

The basic physical background of AC calorimetry is described in details by Kraftmakher,
53

 

where a small periodic heat flow is provided and the resulting complex temperature amplitude 

is measured. The AC calorimetry is a useful measuring technique, as it can be straight 

forwardly linked to the dynamics of the molecular processes under investigation (e.g. 

dynamic glass transition, structural relaxation). Temperature oscillation caused by a 

periodically applied power to the sample is linked to its heat capacity. The fundamental 

formula of AC calorimetry in the complex plane is 
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where C(ω) is the apparent complex heat capacity, p the power amplitude, ω the 

corresponding angular modulation frequency and θ0 the modulated temperature amplitude. 

The complex modulated temperature amplitude is inversely proportional to the total heat 

capacity, which is the sum of sample and addenda heat capacities. 

By applying semiconductor chip sensors in calorimetry, a new level of sensitivity and an 

extended frequency range of up to a few kilohertz are achieved,
54-56

 due to decrease in size of 

the measured sample (sub-microgram). The addenda heat capacity of the chip sensor is often 

smaller than the sample heat capacity, thus reducing the errors of the sample heat capacity 

determination. 

In order to investigate the vapor-deposited glassy samples, an in situ differential AC chip 

nanocalorimetry was used in a vapor deposition chamber.
54, 55, 57

 The differential setup of the 

AC chip nanocalorimetry further increases the sensitivity as the influence of the apparent 

addenda heat capacity is minimized, in order to allow measurement of very small differences 

in glassy heat capacity. In the first setup by Ahrenberg,
57

 the vapor deposition chamber was 

cooled by liquid nitrogen in a vacuum system that can reach a base pressure of about 10
-6

 Pa. 

The cooling system allows measurements down to about 100 K. 

The limitation is overcome by a closed cycle helium cryostat, Model CH-204SN, Cold Edge 

Technologies, USA, which allows measurements in a wider temperature range down to 10 K. 

The second setup, shown in Figure 9, also has two pairs of sensors located in the calorimeter 

cell, which allows simultaneous measurements for fast-scanning and AC calorimetry. Fast 

scanning calorimetry measurements are still in progress for future works. The sensors 

XI39390 (Figure 10) used for the vapor deposition measurements are chip nanocalorimeters 

fabricated by Xensor Integrations, NL.
58

 The sensors are coated with SiO2, which is the 

substrate material. 
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Figure 9: Schematic of (a) vapor deposition chamber and (b) calorimeter cell. The sensor shutter is 

shown as the dashed rectangle, which can be slid over and fully cover the sample 

sensors.
46

 This shows the second setup, which is slightly different from the first setup by 

Ahrenberg.
57

 

 

 

Figure 10: Images of the chip-nanocalorimeters, XI39390, at three different magnifications. (Left) 

Chip mounted on TO-5 housing; (middle) the chip, (right) the central part, including the 

active area with the inner and outer heaters, the six hot junctions of the thermopile and 

the conducting stripes.
57

 

 

As AC chip nanocalorimetry can be used to measure very small sample and addenda heat 

capacity, as well as a small heated area,
59, 60

 measurements to higher frequencies (higher 

cooling rates) can be achieved. But the frequency range of AC chip nanocalorimetry is limited 

to less than 10
4
 Hz. This limitation is due to the small distance (µm) between the thermopile 

and the heaters on the sensor, which causes an electrical crosstalk at high frequencies. This 

limits the frequency range as the thermopile signal at the second harmonic of the voltage 

frequency is undetectable at higher frequencies because of the dominating base frequency 
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signal. A solution to this would be a decoupling of temperature measurement and heating, by 

introducing a modulated laser as the external heating source. 

For the laser heated AC chip nanocalorimeter shown in Figure 11, a heating power on the 

order of 10 µW is adequate. A light beam is generated by a laser diode, and was directed and 

shaped by a glass fiber onto the thermocouple hot junction, as shown in Figure 13. The fiber 

must be placed very close (≈ 10 µm) to the calorimeter chip to avoid the enlargement of the 

spot size. The modulation depth is adjustable and can reach close to 100 %. It is controlled by 

the oscillator output of the digital lock-in amplifier. The device can work as a single sensor 

AC calorimeter.
61

 

The chip sensors with only one thermopile used are XI274 with XEN014 ceramic flat 

housing, shown in Figure 12, similar to the sensors in AC chip nanocalorimetry. The central 

heated region of dimension 10 × 8 µm
2
 for XI274 sensor is much smaller than the membrane 

and can be considered as point source of heat into the surrounding gas. This smaller working 

area decreases the thermal lag, and increases accuracy and frequency range up to 10
6
 rad s

-1
 at 

still detectable temperature amplitudes of about 1 mK as shown in reference 
62

. 

 

 

Figure 11: Schematic of (a) the laser-modulated AC chip nanocalorimeter and (b) the calorimetric 

cell. 
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Figure 12: (a) Calorimetric sensor XI274 on ceramic housing XEN-40014. (b) Enlarged view of the 

chip with the free-standing SiNx membrane (green square) and the bond pads (small 

white squares). (c) The working area with the heater and the thermocouple hot junction. 

 

 

Figure 13: The position of the modulated laser beam that shines directly only on the sample and on 

the hot junction of the thermocouple. The two heaters and the aluminum electric 

connections are shown in blue. The doped poly-Si stripes of the thermocouple are in red 

and the hot junction of the thermocouple, made by an aluminum connection, in gray. 

 

The dynamic glass transition is shown as a step in the real part and a peak in the imaginary 

part of the laser modulated AC chip nanocalorimetry. The empirical Vogel-Fulcher-Tammann 

(VFT) equation describes well the typical nonlinear behavior of the dynamic glass transition 

in a relaxation map, log (τα) with τα = 1/ω versus reciprocal temperature 

0

log( )
B

A
T T


 

   
 

      (5) 

with τα the primary structural relaxation time, T temperature and T0 the Vogel temperature. 

The laser modulated AC chip calorimetry measurements in a broad frequency range add 

valuable knowledge about the glass transition, as only segmental relaxation (dynamic glass 
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transition) process appears which is linked to entropy fluctuation. The nonlinear behavior of 

log(τα) as function of the reciprocal temperature in the relaxation map describes a slowing 

down of the dynamics, angular frequency, ω of the molecular fluctuation, in a supercooled 

liquid at decreasing temperature. 

Laser modulated AC chip nanocalorimetry is used to characterize the dynamic glass transition 

of polystyrene (PS) and poly(methyl methacrylate) (PMMA) over a wide range of 

frequencies, shown in Figure 14. PS and PMMA both do not crystallize and are chemically 

stable after being heated to high temperature of about 250 °C for a short times (<100 s). 
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Figure 14: The heat capacity of (a) PS and (b) PMMA was normalized at the dynamic glass 

transition for frequencies ranging from 1 Hz to 900 kHz.
62, 63
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1.4 General Conclusions 

In first part of this thesis, glasses produced by physical vapor deposition have been 

extensively investigated. In order to understand the stable glasses, vapor-deposited glasses of 

toluene, ethylbenzene, ethylcyclohexane and tetrachloromethane are characterized with an in 

situ differential AC chip nanocalorimetry. With the AC chip nanocalorimetry, the transition of 

the as-deposited glass into the supercooled liquid by temperature scanning measurements and 

isothermal transformation measurements can be followed and consequently the kinetic 

stability of the as-deposited glasses can be quantified. This will provide information regarding 

the properties of the stable glass formers and verify the possible correlations on the ability of 

stable glass formation. 

The results have shown the dependency of the deposition conditions, such as deposition rate 

and substrate temperature, on the stability of the as-deposited glasses (Paper 2.1, Paper 2.2 

and Paper 2.5).  
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Figure 15: Comparison of kinetic stability of vapor-deposited ethylcychlohexane (ECH; blue 

triangles),
46, 64

 and tetrachloromethane (CCl4, cyan diamonds), with other stable glass 

formers: toluene (TOL; black squares),
20, 40

 ethylbenzene (EBZ; red circles),
20, 37

 

indomethacin (IMC; green left triangles)
41, 48

 and methyl-m-toluate (MMT; magenta 

hexagonals),
44, 45, 65

 by comparing the α-relaxation time at the beginning of the 

transformation, τα(Tonset). For the y-axis, the Tonset is converted to τα(Tonset) to develop a 

scale that is independent of the glass transition temperature and fragility. Lower values of 

τα(Tonset) indicate greater kinetic stability for the as-deposited glass. 
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The most kinetically stable glasses with lower heat capacities and high onset temperatures of 

ethylcyclohexane and tetrachloromethane are formed with substrate temperature during 

deposition between 0.7 Tg to 0.85 Tg, which is consistent with results for other stable glass 

formers shown in Figure 15. In Figure 15, the Tonset of the as-deposited glasses was 

recalculated into the corresponding structural relaxation time at Tonset, τα(Tonset), to remove any 

dependence on the glass transition temperature and only the mobility of the supercooled 

liquids at the transformation temperature was compared. As shown in Figure 15, the similar 

curves for the different substances highlight the importance of mobility in the supercooled 

liquid for the transformation from the stable glass into the supercooled liquid. For all 

substances, the most stable glass transforms when τα(Tonset) ≈ 0.1 s. That is about three orders 

of magnitude faster than τα(Tg) ≈ 100 s at the glass transition temperature, Tg, where ordinary 

glasses transform into the supercooled liquid. This means that the as-deposited glasses require 

significantly higher mobility in the liquid to allow transformation into the supercooled liquid 

state, in comparison to liquid-cooled glasses. 
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Figure 16: Normalized isothermal transformation time, ttransform by structural relaxation time, τα as a 

function of τα at the transformation temperature, Ttransform for ethylcyclohexane (ECH, blue 

triangles) and tetrachloromethane (CCl4, cyan diamonds). The substrate temperature and 

deposition rate of ethylcyclohexane (85 K, 8 nm s
-1

)
46, 64

 and tetrachloromethane (58 K, 

1 nm s
-1

) glasses were kept constant. Also included are results for other stable glass formers 

deposited at comparable substrate temperatures ca. 0.85 Tg and at the given rates for 

comparison are: toluene at 2 nm s
-1

 (TOL; black squares),
20

 
40

ethylbenzene at 2 nm s
-1

 (EBZ; 

red circles),
20, 37

 indomethacin at 0.2 nm s
-1

 (IMC, green left triangles),
41, 66

 and methyl-m-

toluate at 0.2 nm s
-1

 (MMT, magenta hexagonals).
44, 45, 65

 The transformation times of these 

stable glass formers are recalculated for thickness of ca. 400 nm. 
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Figure 16 shows a comparison between the isothermal transformation times for stable glasses 

of ethylcyclohexane and tetrachloromethane with other stable glass formers.
20, 44, 46, 65, 66

 The 

isothermal transformation time, ttransform, was normalized by the structural relaxation time, τα, 

with logarithm of the ratio ttransform/τα at the respectively Ttransform, while the Ttransform was 

replaced by its respective τα in x-axis, in order to allow comparison to other substances. From 

the normalization as shown in the y-axis of Figure 16, it is seen that the ttransform are much 

longer in comparison to τα. When annealing above Tg, the ratio of isothermal transformation 

time to structural relaxation time reaches nearly four orders of magnitude, which is similar to 

the ratio obtained from onset temperatures in Figure 15. The as-deposited glasses require 

almost four orders of magnitude longer time to transform into supercooled liquid, indicating 

much greater kinetic stability in comparison to traditional liquid-cooled glasses, which 

transform on a timescale roughly equal to τα. Similar trends for ethylcyclohexane, 

tetrachloromethane and other substances were observed, which again signified glasses with 

comparable kinetic stability. The strong connection of ttransform on τα indicates that the mobility 

of the supercooled liquid controls the rate at which a growth front can move into the stable 

glass. 

In Paper 2.1, kinetic stability of as-deposited glasses of ethylcyclohexane at deposition rates 

by more than four orders of magnitude from 0.002 nm s
-1

 to 60 nm s
-1

 is also investigated. 

These measurements are performed at seven substrate temperatures from 95 K to 60 K, which 

covers the range from 0.95 Tg to 0.6 Tg. The experiments provide the first opportunity to 

investigate how the kinetic stability of the as-deposited glasses depends upon the deposition 

rate across a wide range for different substrate temperatures. 

The investigations of several glass formers so far have shown that some glass formers form 

stable glasses by vapor deposition while others do not. There have been some suggestions as 

to the controlling factors (e.g. fragility, molecular structure) to the ability to form stable 

glasses. However no conclusive results have been presented, which leads to our work. 

In Paper 2.1, ethylcyclohexane was chosen to study if a less fragile liquid can form stable 

glasses because ethylcyclohexane has kinetic fragility m of 56, which is near the strong limit 

of organic glass formers. The results in Paper 2.1 show that ethylcyclohexane can form highly 

kinetically stable glasses, which disproves that kinetically stable glasses can only be made 

from highly fragile liquid as suggested by some authors.
35, 36

 This concludes that fragility is 

not a controlling factor in the ability to form kinetically stable glasses by vapor deposition and 

extends the range of m values currently between 56 and 147.
38
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On the other hand in Paper 2.5, tetrachloromethane was investigated as it has pseudo spherical 

structure with no polarity. Given its nearly spherical structure, it is not surprising that 

tetrachloromethane is not a good glass former. On the contrary, its structure and lack of 

polarity increase surface mobility that could improve the packing during vapor deposition. 

Therefore, it is of interest to determine whether near isotropic structure of tetrachloromethane 

will increase the possibility of stable glass formation. 

The results in Paper 2.5 present not only the first stable glass formation of tetrachloromethane 

by vapor deposition, but also shows that highly stable glasses can be formed from nearly 

isotropic molecules, indicating that anisotropy is not an essential feature of stable glass 

formation. This also indicates that enhanced surface mobility plays a more important role for 

stable glass formation regardless of the molecular structure. 

The results on stable glass formation presented were only possible due to further 

developments of the AC chip nanocalorimetry. In the second part of this thesis, these 

developments of the AC chip nanocalorimetry are presented, particularly the extension of the 

temperature range down to 10 K and the frequency range towards 1 MHz.  

With the combination of chip technology and micro-electro mechanical systems (MEMS), it 

is possible to fabricate calorimeter sensors that are able to measure samples with nanogram 

masses and energies in pJ, hence increasing the sensitivity to characterize vapor-deposited 

glasses. In order to measure low temperatures, liquid nitrogen cryostat is incorporated with 

AC chip nanocalorimetry and later replaced with closed-cycle helium cryostat for even lower 

temperatures down to 10 K. However there is still limitation to the measurable frequency 

range due to the electrical crosstalk between heaters and thermocouple at high frequencies. 

Therefore in order to further extend the frequency range, the AC chip nanocalorimetry is 

improved with modulated laser heating. This allows for the measurement of the dynamic glass 

transition for 11 orders of magnitude in frequency, which was verified with polystyrene and 

poly(methylmethacrylate). (Paper 2.3 and Paper 2.4) These data provide an overlap in time 

scales with quasielastic neutron scattering (QENS), leading to a new interesting field of 

application of AC chip nanocalorimetry in glass transition investigations. 
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Figure 17: Relaxation map of (a) polystyrene (PS) and (b) poly(methylmethacrylate) (PMMA) over 

11 orders of magnitude in frequency range. 

 

In Paper 2.3 and Paper 2.4, dynamic glass transition of polystyrene (PS) and poly(methyl 

methacrylate) (PMMA) are presented in a wide frequency range up to almost 1 MHz. The 

results from laser modulated AC chip nanocalorimetry provide overlaps and in good 

agreement with data from other devices, e.g. TMDSC and dielectric spectroscopy.  
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1.5 General Summary 

In summary, there are several achievements in this thesis listed as follows: 

(i) The as-deposited glasses of toluene, ethylbenzene, ethylcyclohexane and 

tetrachloromethane show apparent lower heat capacity and higher onset temperature. 

These indicate that glasses with high kinetic stability can be produced by physical 

vapor deposition. (Paper 2.1, Paper 2.2 and Paper 2.5) 

(ii) The kinetic stability of the as-deposited glass formers has dependency on the 

deposition conditions, where highest kinetic stability is achieved with deposition at 

substrate temperatures around 0.85 Tg and lower deposition rate increases the kinetic 

stability at lower deposition temperatures. (Paper 2.1) 

(iii) Ethylcyclohexane, which is a strong glass former of m ≈ 60, exhibits stable glass 

formation, disproven the correlation between fragility and the ability to form stable 

glasses. The fragility range is extended down to m ≈ 60. (Paper 2.1) 

(iv) Tetrachloromethane, which has a pseudo isotropic molecular structure, also exhibits 

stable glass formation, indicating that anisotropy is not an essential feature of stable 

glass formation, while enhanced surface mobility plays a more important role for 

stable glass formation regardless of the molecular structure. (Paper 2.5) 

(v) Frequency range of up to 11 orders of magnitude is achieved by combining 

measurements from laser-modulated AC chip nanocalorimeter and four different 

temperatures modulated differential scanning calorimeters (TMDSC). (Paper 2.3 and 

Paper 2.4) 

With these achievements, it is shown that fragility and molecular symmetry are not the 

controlling factors for the formation of stable glasses. 
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1.6 Outlook 

The as-deposited tetrachloromethane at substrate temperatures close to glass transition 

temperature exhibits extraordinary properties as other stable glasses. However due to the 

pseudo isotropic structure of tetrachloromethane, there is a chance of forming nanocrystalline 

structures at deposition, similar to the phases described in references 
67, 68

. Exact 

determination of the structure of the as-deposited tetrachloromethane might be possible with 

infrared spectroscopy and would be very interesting for better understanding of stable glasses. 

Glass formers like ethanol, n-propanol, benzyl alcohol, 2-ethyl-1-hexanol, propylene glycol 

and ethylene glycol will be investigated next. These glass formers have hydroxyl group but 

with different chain length or with other functional groups. This will provide a more 

comprehensive study on the influence of molecular structures (e.g. phenyl, hydroxyl 

functional groups) on formation of stable glasses. 

On the other hand, propylene glycol has been measured with laser-modulated AC chip 

nanocalorimetry and conventional calorimetry for relaxation times down to about 100 ns and 

its characteristic length is determined from the dynamic glass transition according to Donth.
67

 

Since quasielastic neutron scattering (QENS) can finally achieve time scales to about 1 µs, an 

overlap is achieved and the characteristic lengths from QENS and from calorimetry 

measurement are compared. Independent determinations of characteristic length from 

calorimetric measurements and QENS may provide some information on thermodynamics of 

considerably small systems, particularly whether temperature fluctuates and insight on 

whether there is a characteristic length associated to the glass transition.
68

 With this, the 

developed AC chip nanocalorimetric methods may contribute to a better understanding of 

glass transition, in addition to studies on stable glass formation. 
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