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Abstract 

The Baltic Sea is considered to be one of the most polluted seas in the world. The rivers 

transport very of large amounts of herbicides which enter the marine environment. The 

majority of research and monitoring programs on pesticide pollution in the Baltic Sea and 

its estuaries focuses on persistent organic pollutants (POPs) such as organochlorine 

pesticides. On the other hand, very little attention has been paid to the occurrence of other 

classes of pesticides such as mid and highly polar pesticides. For a proper risk assessment 

of polar pesticides, detailed information is required about their transport to the Baltic Sea.  

Monitoring trace polar contaminants in water samples require sensitive analytical 

methods. Mass spectrometric (MS)n techniques have become an increasingly valuable tool 

in environmental analysis. In this work, a comparison between two analytical techniques, 

gas chromatography mass spectrometry (GC-MS) and high performance liquid 

chromatography tandem mass spectrometry (HPLC-MS/MS), for analysis of nine polar 

compounds in water samples was conducted. The target compounds were six polar 

herbicides glyphosate, MCPA, mecoprop, isoproturon, bentazon and chloridazon and three 

of their metabolites aminomethylphosphonic acid (AMPA), chloridazon-desphenyl (CD) 

and chloridazon-methyl-desphenyl (CDM).  

HPLC-MS/MS was preferred over GC-MS for their analysis. The differences in the physico-

chemical properties of the target analytes such as polarity and water solubility required 

two HPLC-MS/MS analytical methods for obtaining good analytical results. The first 

method is a direct HPLC-MS/MS analysis of the compounds MCPA, mecoprop, isoproturon, 

bentazon, chloridazon and CDM. The second method is an HPLC-MS/MS analysis of the 

compounds glyphosate and AMPA after their derivatization with 9H-Fluoren-9-ylmethyl 

chloroformate (FMOC-Cl). In both methods the separation of the target analytes was 

achieved on reversed phase columns.  

The analytical methods were developed and validated. Their development was based on 

HPLC and MS/MS parameters. The validation parameters included linearity, limit of 

detection and quantification, precision, accuracy, analytes and system stability. 

Quantitative analysis of the target compounds was carried out using selected reaction 

monitoring (SRM) via a heated electrospray ionization (HESI) interface in order to obtain 

best detector sensitivity. The standard addition method was used for the quantitative 

analysis in order to avoid matrix effect problems.  
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The analytical methods were applied in order to study the potential transport of the target 

compounds into the Baltic Sea based on their occurrence in some German Baltic estuaries. 

Water samples were collected from ten German Baltic estuaries in Mecklenburg-

Vorpommern in the period between May and September 2012. The collection of samples 

was carried out under both wet and dry weather conditions. The samples were analyzed 

with the HPLC-MS/MS methods described above.  

Of all the target compounds, the most frequently detected compounds in the investigated 

stations were the metabolite AMPA and its parent herbicide glyphosate. All investigated 

estuarine sampling sites were found to be contaminated with AMPA and nine of them with 

glyphosate. Moreover, glyphosate and AMPA have the highest concentrations which 

reached up to the microgram per liter range in some samples. Based on these results, data 

are needed to evaluate the effects of glyphosate and AMPA on non-target estuarine and 

marine organisms.  

In this work, the effect of the herbicide Roundup®, the commercial formulation of 

glyphosate, and the metabolite AMPA on the growth of Nodularia spumigena was studied. 

Nodularia spumigena is a blue-green algae commonly observed in brackish water. It is one 

of the dominant cyanobacteria observed during the summer bloom in the Baltic Sea. In the 

experiments, the growth measurements were based on chlorophyll-a, cell density and 

particulate organic carbon. Nodularia spumigena showed tolerance to both toxicants when 

exposed to concentrations between 1-500 µg/L.  Nodularia spumigena was found to be 

unable to degrade AMPA under to the experimental conditions used. 
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Zusammenfassung 

Die Meeresumwelt der Ostsee als Binnenmeer ist stark durch Einträge von Schadstoffen 

und Nährstoffen aus Flusseinträgen und der Atmosphäre belastet. Herbizide und Pestizide 

aus der Landwirtschaft werden durch das sehr große Einzugsgebiet der Ostsee in 

bedeutenden Mengen und teilweise hohen Konzentrationen ins Ökosystem der Ostsee 

eingetragen. Die persistenten organischen Schadstoffe, wie PCB, PAH und DDT sind in den 

laufenden HELCOM-Monitoring Programmen gut untersucht. Dies gilt nicht für die polaren, 

besser wasserlöslichen „neuen“ Schadstoffe. Für diese Spurenstoffe müssen erst Methoden 

zur Anreicherung und Messung im Meerwasser getestet und etabliert werden sowie 

Bestimmungen in der Meeresumwelt durchgeführt werden, bevor diese Substanzen in die 

Monitoring Programme aufgenommen werden können. 

Als erste Zielsetzung der Promotionsarbeit wurden die analytischen Techniken zur 

Messung von sechs polaren Herbiziden (Glyphosat, Mecoprop, 2-Methly-4-Chlorphenoxy-

essigsäure, Isoproturon, Bentzon, Chloridazon) sowie von 3 Metaboliten (Aminomethyl-

phosphonsäure (AMPA), Desphenyl-Chloridazon und Methyl-Desphenyl-Chloridazon) in 

Meerwasser weiter entwickelt. Die gaschromatographische Bestimmungs-methode mit 

Massenspektrometrie zur Detektion wurde mit einem Verfahren basierend auf der 

Hochdruckflüssigskeitschromatographie als Trennmethode und ebenfalls massens-

pektrometrischer Detektion verglichen. Hierbei wurde eine Derivatisierungsmethode mit 

9-Fluorenyl-Methyl-Chloroform eingesetzt. Beide Methoden wurden erfolgreich getestet, 

die Messungen mit der HPLC stellten bei der Reproduzierbarkeit, der Linearität und der 

erreichbaren Bestimmungsgrenze als geeigneter heraus. Zur Quantifizierung wurde eine 

Standardaddition durchgeführt, um die Matrix-Effekte zu kompensieren. 

Die entwickelte Methode zur Anreicherung und Bestimmung von polaren Pestiziden 

ermöglichte es die Konzentration der Schadstoffe in Ästuaren entlang der Küste 

Mecklenburg-Vorpommerns zu bestimmen. Es konnten wichtige Eintragsquellen 

identifiziert werden. Die höchsten Konzentrationen mit bis zu 1690 ng/L und 4156 ng/L 

wurden für das Pestizid Glyphosat und sein Abbauprodukt AMPA gefunden.  

Im letzten Kapitel der Arbeit werden die Ergebnisse der experimentellen Untersuchungen 

zu Effekten des technischen Produkts Roundup mit Glyphosat als Wirkstoff und seines 

Metaboliten AMPA auf die Cyanobakterie Nodularia spumigena beschrieben. Diese 

stickstofffixierende Blaualge führt im Sommer in der zentralen Ostsee zu extremen 

Algenblüten. In den Experimenten wurde gezeigt, dass Nodularia spumigena durch 

Konzentrationen im Bereich von 1–500 µg/L Glyphosat nicht negativ beeinträchtigt wird, 

aber auch keine Aufnahme/ Abbaureaktion von Glyphosat zu messen ist. 
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Preface 

This thesis has three main objectives. The first objective is a comparison of two analytical 

techniques including gas and liquid chromatography tandem mass spectrometry for the 

analysis of polar herbicides and their metabolites in water samples. The second aim of this 

thesis is to study the occurrence of selected herbicides and metabolites in German Baltic 

estuaries as an indicator for their transport into the Baltic Sea. The third goal of this thesis 

is to study the effect of the compounds most observed in the Baltic estuaries on Nodularia 

spumigena, the dominant cyanobacterium observed in summer blooms in the Baltic Sea. 

The thesis is subdivided into four chapters 

Chapter 1 is an introduction into key aspects relevant for the importance and better 

understanding of the present work. The introduction includes basic information about the 

Baltic Sea region and its pollution problem by pesticides, herbicide pathways to the surface 

water and their effects on the aquatic ecosystem. In addition, it includes information on 

pesticides classification and the German pesticide market. Furthermore, the motivation for 

the selection of polar herbicides for this study as well as literature information about their 

physico-chemical properties, chemical structures, uses, modes of action, environmental 

fate and toxic effects on aquatic organisms are described. Lastly, it involves a brief 

description of the most common techniques used for polar herbicides analysis in 

environmental samples. 

Chapter 2 describes the methodology part of the thesis which includes: chemicals and 

materials, the final gas chromatography mass spectrometry (GC-MS) and high performance 

liquid chromatography tandem mass spectrometry (HPLC-MS/MS) methods applied in this 

thesis, sampling sites, sample collection, treatment and the experimental part of the toxic 

effect study as well as a brief overview of the methods applied for the determination of 

chlorophyll-a, particulate organic carbon and cell numbers. 

Chapter 3 outlines “Results and Discussion” and it is subdivided into three main sections.  

The first section describes a comparison between the two techniques GC-MS and HPLC-

MS/MS for the analysis of the herbicides glyphosate, mecoprop, MCPA, isoproturon, 

bentazon and chloridazon and the three metabolites aminomethylphosphonic acid (AMPA), 

chloridazon-desphenyl (CD), and chloridazon-methyl-desphenyl (CDM) in water samples. 

Furthermore, it represents development and validation of two HPLC-MS/MS analytical 

methods in order to study the occurrence of the selected compounds in estuarine water 

samples. The first method is a direct HPLC-MS/MS analysis of the compounds mecoprop, 

MCPA, isoproturon, bentazon, chloridazon and CMD in water samples. The second method 

is an HPLC-MS/MS method for the analysis of glyphosate and AMPA in water samples after 



Preface 

V 
 

pre-derivatization with fluorenylmethyloxycarbonyl chloride (FMOC-Cl). The second 

section is an application of the analytical method for the determination of the selected 

herbicides and metabolites in ten of the German Baltic estuaries and their transport into 

the Baltic Sea. In the third section, results obtained from testing the response of the 

cyanobacterium Nodularia spumigena when exposed to different concentrations of the 

herbicide glyphosate (Roundup®) and the metabolite AMPA were shown. 

The general conclusion and a future perspective are given in Chapter 4.
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1   Introduction 

1.1    The Baltic Sea  

The Baltic Sea is a semi-closed sea located in Northern Europe. It is considered a small sea 

with a catchment area of approximately 1 720 000 km2 and an average depth of 52 m. On 

the other hand, it is one of the largest isolated bodies of brackish water in the world 

(Andersen et al. 2010, Schiewer et al. 2004). The Baltic Sea is shared by 14 countries. 

Almost 95% of the catchment area of the Baltic Sea belongs to nine countries; Germany, 

Sweden, Russia, Poland, Latvia, Finland, Estonia, Lithuania and Denmark. The remaining 

5% relates to five countries; Norway, Belarus, Ukraine, the Czech and Slovak Republics 

(Figure 1.1) (Burkhardt et al. 2005). Germany makes up almost 4% (28600 km²) of the 

catchment area of the Baltic Sea (HELCOM 2004). The salinity is much lower than ocean 

salinity (35) and it varies throughout geological epochs. 

 

Figure 1.1: The Baltic Sea region [modified from stepmap.de]. 
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The inflow of freshwater and water exchange between the Baltic Sea and the North Sea are 

considered to be the reason of salinity variation (Carlsson M. 1997). 

The Baltic Sea is connected to the North Sea via the Danish straits which includes three 

straits, the Great Belt, the Little Belt and the Sound (She et al. 2007). River runoff to the 

Baltic Sea is considered to be a main factor effecting the ecosystem of the Baltic Sea 

(Bergström et al. 2000). The seven largest rivers flowing to the Baltic Sea are the Neva, 

Vistula, Neman, Daugava, Oder, Göta älv, and Kemijoki which form almost half of the 

riverine fluxes into the Baltic Sea. The long term average riverine fluxes into the Baltic Sea 

are estimated to be approximately 479 km2 per year at rate of 15 190 m3/s (Burkhardt et 

al. 2005).  

Four German federal states share the catchment area with the Baltic Sea with 16 720 km2 

in Mecklenburg-Vorpommern, 5 940 km2 in Brandenburg, 5 250 km2 in Schleswig-Holstein 

and 880 km2 in Sachsen (BUND Mecklenburg-Vorpommern 2012). The Baltic drainage 

basin is generally characterized by agriculture in the south (Bergström et al. 2000). 72% of 

the German Baltic catchment area consists of agricultural areas and only 15% is woodland, 

therefore Germany has the highest agricultural activities compared to other Baltic 

countries (BUND Mecklenburg-Vorpommern 2012). The German riverine flow into the 

Baltic Sea forms a small portion of the total flow and is limited to a large number of small 

rivers (BUND Mecklenburg-Vorpommern 2012, Burkhardt et al. 2005). Table 1.1 shows the 

average flow, discharge per unit area, basin area and length of some German rivers flowing 

into the Baltic Sea through the federal states of Mecklenburg-Vorpommern and Schleswig-

Holstein. 

Table 1.1: The average flow, discharge per unit area, basin area and length of ten German rivers draining into 

the Baltic Sea through the federal states of Mecklenburg-Vorpommern (M-V) and Schleswig-

Holstein (S-H) (Bachor et al. 2002, BERNET CATCH 2006). 

River 
Average flow 

(m3/s) 
Discharge per unit area 

(L/s.km2) 
Basin area 

(km2) 
Length 
(km) 

Federal 
state 

Peene 23.4 4.7 5127 124.3 M-V 
Warnow 13.4 4.4 3304 155.2 M-V 

Ucker 7.61 3.1 2439 44.5 M-V 
Trave 7.58 10.44 1807 113 S-H 

Stepenitz 5.71 8.21 762.76 55.8 M-V 
Recknitz 4.43 6.71 668.73 76.8 M-V 

Schwentine 4.38 9.58 726 70 S-H 
Barthe 2.23 6.9 342.76 34.2 M-V 

Wallensteingraben 1.18 17.8 158.17 17.8 M-V 
Ryck  0.77 5.5 239.99 26.5 M-V 
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1.2   Pesticides, classification and the German herbicides 

market 

Pesticides are substances used directly to control pest populations or to prevent or reduce 

pest damage. Pesticides can be classified into groups according to their purpose:  

 The group of pests controlled (e.g. herbicides, insecticides, fungicides) 

 Their chemical composition (organic, inorganic, biological pesticides) 

 The target pest (e.g. gypsy moth insecticide) 

 Use patterns (e.g. foliar vs. soil fungicides) 

Mostly, pesticides are classified according to the pests controlled (Waxman 1998).   

Germany is the second largest consumer of pesticides in Europe after France (Zhang et al. 

2011). The total amount of pesticides used in 2012 in Germany was 46 326 tons. In 2012, 

herbicides made up 43% of totally used pesticides in Germany (Figure 1.2) (BVL. 2012). 

Sales of herbicides on the German market have increased from 2003 to 2012 by 

approximately 23% (Figure 1.3) (BVL. 2012). 

 

The intensive application of pesticides causes growing in two areas. First, Pesticides may 

contaminate foods which have been handled with pesticides (Van der Hoff et al. 1999). 

Second, the aquatic environment will be contaminated with pesticides with potential toxic 

effects to non-target aquatic organisms (Palma et al. 2009). 

 

     

Figure1.2: Application of pesticides in 2012 in                Figure 1.3: The annual German sales of the herbicides 
                      Germany (BVL 2012) .                                                                 from 2003 to 2012 (BVL 2012). 
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1.3   Pesticide contamination of the Baltic Sea and its estuaries  

A large population of about 80 million people lives in the catchment areas of the Baltic Sea. 

Renewal of the water of the Baltic Sea through water exchange with the North Sea takes 

about 30 years. Due to these characteristics, the Baltic Sea is considered to be one of the 

worst polluted sea in the world (HELCOM, 2003).  

The Baltic Sea is exposed to various problems such as pollution, eutrophication, 

overfishing, construction (e.g. dumping of dredged material) and the introduction of alien 

species. Pollution by pesticides is considered to be one of the main problems in the Baltic 

Sea which has a major impact on its biological diversity (Rheinheimer, 1998; Walday and 

Kroglund, 2002).  

The majority of research and monitoring programs on the pollution of the Baltic Sea are 

focusing on persistent organic pollutants (POPs) such as dioxins, polychlorinated biphenyls 

(PCBs), polychlorinated naphthalenes (PCNs) and organochlorine pesticides (OCPs) such as 

dichlorodiphenyl-trichloroethane (DDT), hexachlorobenzene (HCB), hexachlorocyclo-

hexanes (HCHs), dieldrin, chlordanes, toxaphene, heptachlor and heptachlor epoxide 

(Allsopp et al., 2001; Falandysz et al., 2004; Pikkarainen, 2007; Strandberg et al., 1998). 

However, very little attention has been paid to the occurrence of other classes of pesticides 

(e.g. mid and highly polar) and their metabolites in the Baltic estuaries and their transport 

to the Baltic coast. There is the general assumption that most polar pesticides degrade fast 

and do not reach the marine environment (Barceló and Hennionb, 1997). Thus, many 

investigations have been pursued on the occurrence of these pesticides and their 

transformation products in fresh surface water, drinking and ground water (Brouwer et al., 

1995; Loos et al., 2007; Loos et al., 2010). 

1.4   Pathways of herbicides to the surface water 

Upon herbicides application they become distributed among for major compartments: soil, 

water, air and biota (living organisms) (Linde, 1994). Herbicides can enter the surface 

water by point and nonpoint source. The point source contamination is derived from 

farmyard activities including filling containers, cleaning pesticide application equipment, 

leaks from storage containers, pesticide spills and unsuitable discarded herbicides and 

their containers. The nonpoint source or diffusion is the contamination that arises from 

surface and subsurface runoff, soil erosion from treated areas, application drift, deposition 

and precipitation after volatilization (Tiryaki and Temur, 2010; Wenneker et al., 2010).  

The mobility of herbicides into the surface water is strongly affected by their physico-

chemical properties such as water solubility and partition coefficients (Gramatica and 
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Guardo, 2000), the nature and properties of the soil components such as organic matter 

content, pH, surface area, clay content, cation exchange capacity and moisture content 

(Heatwole et al., 1992), herbicides management, type of plants as well as other 

environmental factors including weather and topography (Kreuger and Tomqvis, 1998).  

Runoff induced by precipitation or irritation, is considered to be the most important non-

point source of surface water contamination through herbicides (Dabrowski et al., 2002; 

Neumann et al., 2002). In runoff water, both the dissolved and the particle-bound 

pesticides can be transferred to the surface water (Wu et al., 2004). In general, medium and 

highly polar herbicides with high water solubilities are more likely to be in the dissolved 

phase (Steen, 2002). Once herbicides reach the river streams, they are transported via 

estuaries to the coastal areas. Rivers transport the largest amount of herbicides entering 

estuaries and the marine environment (Olsson et al., 2012).  

When herbicides enter the marine environment, they distribute between the dissolved and 

particulate phases. The distribution process depends on the sorption and desorption 

equilibrium with the suspended particulate matter present in the water. The pesticides 

may sorb to particles and organisms such as phytoplankton and subsequently they are 

transferred from the surface waters to the depth by sinking particles and by zooplankton 

vertical migration (Quante et al., 2011). 

1.5   The effect of herbicides on the aquatic ecosystem 

Toxic effects of herbicides do not exert only in the applied areas, but also in places distant 

from their application as they are transported to aquatic ecosystems and cause negative 

effects on marine organisms. Most studies of herbicide effects in aquatic ecosystems have 

been focused on the herbicide atrazine.  

However, when herbicides enter aquatic ecosystems, they may affect the ecosystem both 

directly and indirectly (Nielsen and Dahllof, 2007). Direct impacts of herbicides include the 

structural or functional level (Fairchild et al., 1998). The structural level involves static 

measures of different parameters such as biomass, cell numbers, community diversity or 

species composition (Pérez et al., 2011). The functional level is the assessment of changes 

of rates of processes occurring in living organisms such as oxygen evolution, carbon 

uptake, nutrient cycling, enzyme activity, population growth rates or changes in system 

metabolism (Pérez et al., 2011). The indirect effects of herbicides are the impacts on 

consumer populations such as fish and invertebrates due to negative impacts on primary 

producers such as macrophytes and algae (Pérez et al., 2011). 

As herbicides are synthesized to inhibit weeds growth, aquatic plants and algae are 

potential non-target organisms sensitive to herbicides. Aquatic plants and algae are the 
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essential components of the aquatic systems (Scheffer et al., 1993). Several ecotoxicological 

surveys have shown that fresh and marine plants and algae are sensitive to herbicides and 

are affected by the exposure to herbicides. Magnusson et al. (2010) showed that the 

herbicides diuron, tebuthiuron, atrazine, simazine, and hexazinone and the herbicide 

breakdown products (desethyl-atrazine (DEA) and 3,4-dichloroaniline (3,4-DCA)) caused 

photosystem II-inhibition to the tropical benthic microalgae Navicula sp., Cylindrotheca 

closterium, Nephroselmis pyriformis and Phaeodactylum tricornutum. The green algae 

Nephroselmis pyriformis showed higher sensitivity to the selected herbicides than diatoms. 

Lewis et al. (2009) reported that the herbicide levels in riverine flood plumes flowing to the 

Great Barrier Reef lagoon can cause negative effects on some marine organisms. 

Subsequently, this may lead to a change in the community structure of seagrass, mangrove 

and coral reef ecosystems. Bester et al. (1995) studied the effects of the herbicide atrazine 

on marine phytoplankton from the German Bight (North Sea). The results showed that 

atrazine reduced photosynthesis accompanied by lower chlorophyll concentrations and 

reduced primary production.  

Aquatic bacteria also play an important role in the aquatic food web. They are essential 

players in the decomposition process of dead material and in recycling carbon and 

nutrients as well as in the mineralization processes and chemical transformation of 

elements between reduced and oxidized forms (Bertoni, 2011; Tang et al., 2012). 

Herbicides can affect aquatic bacteria. Anand et el. (2012) demonstrated that the activity of 

50 strains of 250 tested marine bacteria strains were affected by exposure to herbicides, 

whereas eight strains of them showed 90% inhibition at very low concentration of 5 µg/L 

of the herbicides. 

Invertebrates include a large group of aquatic species such as zooplankton, insects, worms 

and snails with a high variety in shape and size, which play a necessary role in the aquatic 

ecosystem (Pérez et al., 2011). Studies on acute toxicity tests LC50/EC50 of the herbicides 

atrazine to estuarine/marine invertebrates (e.g. mysid shrimp and eastern oyster) 

categorized atrazine as “highly toxic on an acute exposure basis” (EPA, 2006).  Contardo-

Jara et al. (2009) demonstrated a considerable increase in enzyme activities of the worm 

Lumbriculus variegatus upon exposure to the herbicide glyphosate.  

Fish have an important value in human nutrition and medicine. They are used for the 

treatment of vector-borne diseases like malaria and schistosomiasis. They have an 

important function in the aquatic ecosystem in nutrient cycling, control of algae and 

macrophytes, reduction of waste and regulation of food web dynamics (Holmlund and 

Hammer, 1999). A study conducted on the toxicity of the three herbicides alachlor, atrazine 

and diuron on turbot flatfish revealed that the herbicide alachlor is highly toxic to Psetta 

maxima. The larvae were more sensitive than turbot embryos to the three herbicides. 

Toxicity symptoms were observed through malformations (embryos), clear decrement in 
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hatching success, pericardial oedema and skeletal deformation (larvae) (Lazhar et al., 

2012). Another study showed that the exposure of zebrafish to the herbicide atrazine at a 

concentration lower than 5 µg/L affected the swimming behavior of the fish (Steinberg et 

al., 1995). 

1.6   Studied herbicides and their physicochemical properties   

For this study six polar herbicides and three of their metabolites have been chosen. The 

herbicides are the organophosphuros herbicide glyphosate and its metabolite 

aminomethyl-phosphonic acid (AMPA), the phenoxyacetic acid herbicides MCPA and 

Mecoprop, the phenylurea herbicide isoproturon, the tiodiazine herbicide bentazon and the 

pyridazinone herbicide chloridazon and its metabolites chloridazon-desphenyl (CD) and 

chloridazon-methyl-desphenyl (CDM). The physico-chemical properties of the six selected 

herbicides are shown in Table 1.2.  

The compounds were chosen based on their presence in watercourses of Mecklenburg-

Vorpommern, Germany according to the special report of the Agency for the Environment, 

Nature Conservation and Geology Mecklenburg-Vorpommern, in 2008 (Bachor et al., 2008) 

and on sales on the German market. The used amount of the selected six herbicides in 

Germany in 2012 is shown in Table 1.3. Less is known about their occurrence in the 

estuaries and their transport to the marine environment such as the Baltic Sea. However, 

for including these compounds in the Baltic monitoring programs and for proper risk 

assessment, detailed information is required about their occurrence in the Baltic estuaries 

and their transport to the Baltic Sea. 
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Table 1.2: The physicochemical properties of the six studied herbicides glyphosate, MCPA, mecoprop, 
bentazon, isoproturon and chloridazon (IUPAC, 2013). 

 

Property Glyphosate MCPA Mecoprop Bentazon Isoproturon Chloridazon 
 

CAS No. 
 

1071-83-6 
 

94-74-6 
 

7085-19-0 
 

25057-89-0 
 

34123-59-6 
 

1698-60-8 
 

Chemical formula 
 

C3H7NO5P 
 

C9H9ClO3 
 

C10H11ClO3 
 

C10H12N2O3S 
 

C12H18N2O 
 

C10H8ClN3O 
 

Molecular mass 
(g moL-1) 

 
168.07 

 
200.62 

 
214.65 

 
240.3 

 
206.28 

 
221.6 

 
Water Solubility 

(20 °C mg/L) 

 
10500 

 
29390 

 
250000 

 
570 

 
70.2 

 
422 

 
Dissociation constant 

(pKa) at 25 oC 

 
2.34 

 
3.73 

 
3.11 

 
3.28 

 
- 

 
3.38 

 
Vapor pressure   
 at 25 oC (mPa) 

 
0.0131 

 
0.4 

 
1.6 

 
0.17 

 
5.50 x 10-03 

 
1.0 x 10-06 

 
Henry’s Law Constant   

 (Pa.m3/mol at  
25 °C) 

 
2.10 x 10-07 

 
5.50 x 10-

05 

 
2.20 x 10-

04 

 
7.20 X 10-05 

 
1.46 x 10-05 

 
5.30 X 10-10 

 
Octanol/Water 

Partition                                     
Coefficient 

(Log KOW) at pH  7, 
 20 °C 

 
-3.2 

 
-0.81 

 
-0.19 

 
-0.46 

 
2.5 

 
1.19 

 
Sorption Partition   

Coefficient, KOC 

 
1435 

 
- 

 
47 

 
55.3 

 
- 

 
120 

 
Soil degradation 
(days) aerobic 

 
12 

 
24 

 
8.2 

 
13 

 
12 

 
31 

 

Table 1.3: The used amount of selected herbicides in Germany in 2012 (BVL, 2012). 

Herbicides Amount (tons) 

Mecoprop 100-250 

Chloridazon 100-250 

MCPA 250-1000 
Isoproturon 1000-2500 

Bentazon 1000-2500 

Glyphosate 2500-10000 
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1.6.1   Glyphosate 

Glyphosate [N-(phosphonomethyl)-glycine] (Figure 1.4), is the active ingredient in the 

commercial product Roundup®. It is a broad spectrum, non-selective and post-emergent 

herbicide, developed in 1971 by the Monsanto company (Cox, 2004). Glyphosate uses are 

not limited only to the agricultural area but it is also used to control aquatic weeds (Carlisle 

and Trevors, 1987). It is extensively used in parks, gardens, yards, forest, lawns, roadsides, 

railway tracks, industrial areas and other non-agriculture areas (Cox, 2004; Miller et al., 

2010). Glyphosate controls weeds by inhibiting the activity of the enzyme 5-enolpyruvyl-

shikimic acid-3-phosphate synthase (EPSP) which is necessary for the formation of the 

aromatic amino acids tyrosine, tryptophan, and phenylalanine. For animals those aromatic 

amino acids are essential (Carlisle and Trevors, 1987; Miller et al., 2010; Steinrticken and 

Amrhein, 1980).  

                          

P
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Figure 1.4: The chemical structures of glyphosate and its metabolite aminomethylphosphonic acid (AMPA). 

Glyphosate can be degraded in soil, water and plant (Battaglin et al., 2005). Two different 

pathways have been demonstrated for the metabolism of glyphosate: the 

aminomethyphosphonic acid (AMPA) pathway and the sarcosine pathway (Malik et al., 

1989). Glyphosate degrades primarily by microbial metabolism forming the product AMPA 

(Rueppel et al., 1977). AMPA (Figure 1.4) is the most frequently detected metabolite of 

glyphosate in soil, water and plants (Carlisle and Trevors, 1987; Dick and Quinn, 1995; Van 

der Hoff and Van Zoonen, 1999). Strong adsorption to soil particles decreases the 

degradation rate of glyphosate (Mandy et al., 2011). The half-life of glyphosate in soil varies 

from a few days to several years depending on the adsorption process and the level of 

microbial activity (Carlisle and Trevors, 1987). AMPA has a lower water solubility (5.8 g/L 

at 25°C) than the parent glyphosate and it is more persistent, more mobile and has a longer 

half-life in soil; between 76 to 240 days (Coupe et al., 2012) 

Glyphosate binds to the soil particles rapidly during the first hour following application and 

slowly after that (Sprankle et al., 1975). Sorption, leaching and degradation of glyphosate 

can be very different from soil to soil depending on soil composition and properties 

(Borggaard and Gimsing, 2008). Glyphosate unlike most water soluble herbicides has an 
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extremely high ability to adsorb onto soil particles (Mandy et al., 2011). The adsorption of 

glyphosate increases with increasing clay content like humic substances (Piccolo et al., 

1996), cation exchange capacity (Glass, 1987) and decreasing phosphor content 

(Vereecken, 2005) and soil pH (Gimsing et al., 2004). The competition of glyphosate with 

phosphate and a decreasing soil pH restrict the adsorption of glyphosate on soil particles 

and leads to a large mobility of glyphosate into drains, ground and surface water 

(Vereecken, 2005).  

Generally, those commercial formulations of glyphosate (e.g. Roundup®) including 

surfactants showed a higher toxicity to aquatic organisms than technical glyphosate 

(Cedergreen and Streibig, 2005; Sobrero et al., 2007; Tsui and Chu, 2003). Aquatic plants 

and microalgae showed a higher sensitivity to the herbicide glyphosate than other 

organisms such as bacteria, protozoa, invertebrates, fish and amphibians due to the mode 

of action of glyphosate interfering with plant metabolisms (Pérez et al., 2011). 

1.6.2   Mecoprop and MCPA 

Mecoprop and MCPA are Chlorophenoxy herbicides (Figure 1.5). They are selective 

herbicides for post emergence control of a wide variety of broad-leaved weeds (RED, 2004; 

RED, 2007). Mecoprop and MCPA can cause auxin-like responses in broadleaf plants and 

kill them by disrupting nutrient transport and growth (Brent et al., 2004).  

Cl

O

H

OHO

Mecoprop                        

Cl

O

O

OH

MCPA  

Figure 1.5: The chemical structures of the herbicides mecoprop and MCPA. 

Due to the polar nature of MCPA and mecoprop and their high water solubility, they can be 

easily transferred to the surface and ground-water (Cserhati and Forgacs, 1998). MCPA is 

used in different commercial formulations such as MCPA acid, MCPA DMAS and MCPA 2-

EHE. Acute aquatic toxicity studies have considered MCPA 2-EHE to be the highest toxic 

formulation of them, moderately to highly toxic, to the tested estuarine/marine non-

vascular plants (Skeletonema costatum), invertebrates, and fish (RED, 2004). Mecoprop is 

also used in several traded formulations such as technical grade mecoprop (MCPP), 

mecoprop-p (MCPP-p), dimethyl-amine salts of mecoprop (MCPP DMA) and mecoprop-p 

(MCPP-p DMA) (Johnson et al., 2007). However, Mecoprop is toxic to non-target aquatic 
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organisms such as bacteria, diatom and plankton (Cox, 2004). Macrophytes and algae are 

more sensitive to the herbicide mecoprop than other taxa (Johnson et al., 2007). 

1.6.3   Isoproturon 

Isoproturon, also known by trade names such as Arelon®, Alon®, Graminon ®and  

Hytane®, is a selective, systemic herbicide (Figure 1.6) used for pre- and post-emergence 

control of  germinating broadleaf weeds and grasses in crops, such as vegetables, beans, 

corn, alfalfa, fruits, cotton, cereals and nuts (Mallat et al., 2001; Paris-Palacios et al., 2010). 

Isoproturon inhibits photosynthesis in plants by blocking electron transport in 

photosystem II (Fobbe et al., 2006). 

CH3

CH3

N N

CH3

CH3

O

H

Isoproturon
 

Figure 1.6: The chemical structure of the herbicide isoproturon. 

The intensive use of isoproturon and its properties such as water solubility, low chemical 

and biochemical degradation rates and low adsorption to soils causes it to be easily 

released into the aqueous environment. It is often detected in ground and surface water 

(Bachor et al., 2008; Irace-Guigand et al., 2004; Reddy et al., 2012; Spliid and Koppen, 

1998). Many toxicity studies of the herbicide isoproturon on algae showed that isoproturon 

can cause adverse effects on the growth of algae such as Scenedesmus subspicatus, Lemna 

minor, Scenedesmus obliquus, Scenedesmus vacuolatus, isochrysis galbana and Chaeloceros 

calcilrans (Dewez et al., 2008; His and Seaman, 1993;  Nitschke et al., 1999; Vallotton et al., 

2009). A study on the toxic effects of isoproturon on periphyton communities 

demonstrated that the biomass production of the algal community was reduced in 

response to a higher concentration of isoproturon (Schmitt-Jansen and Altenburger, 2005). 

Isoproturon was observed to have a strong effect on the growth of Crassostrea gigas larvae 

and less an effect on larvae of oysters during nine days of exposure of these organisms to 

the herbicide isoproturon (His and Seaman, 1993). Isoproturon can accumulate in worm 

tissues and it has a moderate effect on tubifex worm (Paris-Palacios et al., 2010). 
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1.6.4   Bentazon 

Bentazon is a selective, contact herbicide (Figure 1.7) manufactured by BASF Corporation. 

It is marketed under several trade names such as Basagran® and Basamais® (FAO, 1999; 

Hourmant et al., 2009; RED, 1994). It is absorbed by plant leaves and acts as a 

photosynthetic electron transfer inhibitor for the plants. It is used for the control of broad-

leaved weeds and sedges in rice, pepper, corn, mint, beans, peanuts, and others (FAO, 1999; 

RED, 1994). Bentazon has a high water solubility and a low octanol/water partitioning 

coefficient (Kow), therefore it is found to be quit mobile in soil (Bach et al., 2010; Boesten 

and Van der Pas, 2000). It enters the surface water (e.g. rivers and streams) and is 

subsequently transported through estuaries to the marine environment.  

N
S
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CH3
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Figure 1.7: The chemical structure of the herbicide bentazon. 

Studies on the effect of bentazon and its formulation Basamais on the growth and 

physiological responses in the marine diatom Chaetoceros gracilis showed that the toxicity 

of Basamais is higher than bentazon itself. The study concluded that after exposure of the 

herbicide bentazon to C. gracilis for three days a decrease in the cell density was observed 

(Hourmant et al., 2009). Another performed work on the effect of bentazon on growth and 

maximum quantum yield of photosystem II (Fv/Fm) in cells of the marine diatom 

Skeletonema costatum demonstrated that bentazon rapidly leads to Fv/Fm decrease, while 

effects on algal growth were detected after 24 h of exposure (Macedo et al., 2008). 

Bentazon is considered a slight toxin to aquatic invertebrate and nontoxic to both 

coldwater and warmwater fish (Kamrin, 1997). 

1.6.5   Chloridazon 

Chloridazon is the active ingredient of the herbicide pyramine®. It is a selective systemic 

herbicide (Figure 1.8) which can be used pre- and post-emergence to control broad-leaved 

weeds in fodder beet, sugar beet, and beetroot (Buttiglieri et al., 2009; Kucharski et al., 

2012). It works by blocking electron transport in photosystem II in green plants, thereby 
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inhibiting photosynthesis (Bisewska et al., 2012). Chloridazon-desphenyl (CD) and 

chloridazon-methyl-desphenyl (CMD) (Figure 1.8) are two degradation products of 

chloridazon observed in the environment (Buttiglieri et al., 2009). Chloridazon was found 

to be mobile and persistent in different types of soil, subsequently it can be transported to 

ground and surface water causing contamination of the water resources of certain areas 

with the tendency to persist (RED, 2005). Thus, many studies have verified the occurrence 

of chloridazon and its metabolites CD and CMD in surface water in Germany (Bachor et al., 

2008; Buttiglieri et al., 2009).  
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Figure 1.8: The chemical structures of the herbicide chloridazon and its metabolites Chloridazon-desphenyl 

(CD) and chloridazon-methyl-desphenyl (CMD). 

Chloridazon and its metabolites were detected in surface water samples in Mecklenburg- 

Vorpommern, Germany. The metabolite CD was most frequently detected with highest 

concentrations among them (Bachor et al., 2008). There is a lack of available data on acute 

and chronic effects of the herbicide chloridazon and its metabolites on aquatic organisms.  

1.7   Analytical techniques for polar herbicide analysis   

In recent decades many analytical techniques have been developed to identify organic 

contaminations such as pesticides in environmental matrices, which are often present at 

trace levels (Ferrer and Barceló, 1998). Due to the satisfactory separation capacity and 

versatility of chromatographic techniques such as gas chromatography (GC) and high 

performance liquid chromatography (HPLC) their application is growing for the 

identification and quantification of pesticide residues in different organic and inorganic 

matrices (Cserhati et al., 2004). High polarity, low volatility and thermal liability are the 

three main reasons for the failure of direct GC/MS analysis of medium and highly polar 

herbicides and make HPLC the preferred analytical separation technique (Ferrer and 

Barceló, 1998; Queiroz et al., 2004).  
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Many detectors have been used in the HPLC analysis of polar herbicides, including common 

ultraviolet (UV) (Tran et al., 2007), diode-array (Mills, 1998), single mass spectrometry 

(MS) (Volmer and Levsen, 1994; Wu et al. 2002) and tandem mass spectrometry (MS/MS) 

(Fillatre et al., 2011b). Selected ion monitoring (SIM) in single-stage quadrupole and 

selected reaction monitoring (SRM) in triple-stage quadrupole are the most common 

modes used for quantitative analysis of pesticide residues (Fillatre et al, 2011a; Tadeo et 

al., 2000). Mass spectrometry can couple to HPLC using different interfaces as 

thermospray, particle beam, electrospray ionization (ESI) and atmospheric pressure 

chemical ionization (Kollroser and Schober, 2002). Reversed phase chromatography is the 

most popular separation technique used for herbicide analysis (Tadeo et al., 2000).  

High performance liquid chromatography tandem to mass spectrometry (HPLC-MS/MS) 

with triple quadrupole (QqQ) analyzers operating in the selected reaction monitoring 

(SRM) via electrospray ionization (ESI) interface has proven to have a high sensitivity and 

selectivity for the determination of polar pesticides in aqueous samples (Bossi et al., 2002; 

Giordano et al., 2009; Postigo et al., 2010; Steen et al., 1999).  

1.8   Objectives of the thesis 

Monitoring of Baltic Sea pollution and risk assessment programs is focusing on persistent 

organic pollutants (POPs). On the other hand, very little attention has been paid to the 

monitoring of other classes of pollutants such as polar organic pesticides. To include polar 

organic pesticides in the monitoring programs of the Baltic Sea, information is required 

about their potential transport into the Baltic Sea. These substances should be measured 

with appropriate analytical methods. In this study, six polar herbicides and three of their 

metabolites were selected. The compounds are glyphosate and its metabolite 

aminomethyl-phosphonic acid (AMPA), the herbicides MCPA and Mecoprop, the 

phenylurea herbicide isoproturon, the tiodiazine herbicide bentazon and the pyridazinone 

herbicide chloridazon and its metabolites chloridazon-desphenyl (CD) and chloridazon-

methyl-desphenyl (CDM). The main objectives of this study were as following: 

(a) A comparison between two analytical techniques GC-MS and HPLC-MS/MS for the 

analysis of selected polar compounds. Subsequently, development and validation of 

analytical methods using this suitable technique for their determination in water 

samples at trace levels. 

(b) The application of these analytical methods in order to investigate the potential 

transport of the target compounds into the Baltic Sea through their occurrence in 

some of the German Baltic estuaries. 

(c) Study the effect of two of the target compounds (i.e. Roundup® and AMPA) on the 

growth of the cyanobacterium Nodularia spumigena, the dominant cyanobacteria 

species observed in cyanobacteria Baltic Sea eutrophication. 
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2   Materials and Methods  

In this chapter:  

Materials, preparation of the solutions and the HPLC-MS/MS eluents, the derivatization 

reactions, the final GC-MS and HPLC-MS/MS methods, sampling time and locations, sample 

collection and preparation as well as a brief overview of the experimental part of the toxic 

effect experiment which includes algae and culture conditions and determination of each of 

chlorophyll-a, cell number, particulate organic carbon and toxicants concentrations in the 

treated cultures is given.       

2.1   Chemicals and reagents 

The following chemicals were obtained from Dr. Ehrenstorfer GmbH (Ausburg, Germany) 

at concentrations of 100 ng/µL:  

Pure standards of glyphosate (N-(Phosphonomethyl) glycine), Aminomethylphosphonic 

acid (AMPA), mecoprop (methyl chlorophenoxypropionic acid), MCPA ((4-chloro-2-

methyl-phenoxy) acetic acid), isoproturon (3-(4-isopropyl- pheneyl)-1,1-dimethylurea), 

bentazon (3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one2,2-dioxide), chloridazon (5-

amino-4-chloro-2-phenyl-3(2H)-pyridazinone), chloridazon-desphenyl (5-amino-4-chloro-

3(2H)-pyridazione), and chloridazon-methyl-desphenyl (5-amino-4-chloro-2methyl-3(2H)-

pyridazinone) in addition to the internal standards which involve isotope-labeled 

glyphosate 1,2-C13 N15 and AMPA-C13 N15 and deuterium labeled MCPA-D6, mecoprop-D6, 

isoproturon-D6, bentazon-D6 and chloridazon-D5 (in water for glyphosate, AMPA and their 

labeled compounds and in acetonitrile for the other compounds). All standard solutions 

were stored in capillary bottles (Certan®, LGC Promochem) at 5 °C in the dark. The 

herbicide Roundup® 66935 Speed which includes 7.2 g/L glyphosate as isopropylamine 

salt 9.7 g/L and 9.55 g/L pelargonic acid was purchased from a commercial source 

(Baumarket, Germany). HPLC water and the chemicals used in f/2 medium NaNO3, 

Na2HPO4, Na2SiO3x9H2O, ZnSO4xH2O, CuSO4xH2O, CoSO4x7H2O, MnSO4xH2O, FeCl3x6H2O, 

Na2EDTAx2H2O, vitamins B12 and Biotin were obtained from VWR (Germany). The 

derivatization reagents trifluoroacetic anhydride (TFAA), trifluoroethanol (TFE) and 9H-

Fluoren-9-ylmethyl chloroformate (FOMC-Cl ≥ 99.0%) and sodium tetraborate 

decahydratec which was used in preparation of borate buffer as well as acetic acid and 

formic acid used in the HPLC mobile phase were purchased from Sigma-Aldrich (Germany). 

The solvent ethyl acetate (SupraSolv®) was obtained from Merck KGaA (Germany). 
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Ethanol 96%, HPLC-optigrade acetonitrile and methanol were purchased from Walter-CMP 

GmbH (Germany). The sea salt was obtained from Tropic Marin®.  

 

2.2   Preparation of working solutions, buffer solutions and 

eluents 

Stock solutions (100 ng/µL) of the all target analytes were purchased and kept in a fridge 

at 5 °C in the dark. Working solutions were prepared by accurate dilution of the stock 

solutions. Polypropylene vessels were used during glyphosate and AMPA preparations due 

to their high polarity and their possible adsorption onto glassware. On the other hand, 

glassware was used for the analytes MCPA, mecoprop, bentazon, isoproturon, chloridazon, 

CD and CMD because of their lower polarity.  

Borate buffer pH 9 was prepared by dissolving 1g of sodium tetraborate decahydratec in 

50 mL Milli-Q water.  

The eluent of 2 mM NH4HCO3 pH 9 was prepared by dissolving 158 mg of ammonium 

bicarbonate in 1 liter of water. Then, a volume of 100 µL of ammonium solution was added 

in order to adjust to pH 9. The eluents of 0.1% acetic acid in water and 0.1% formic acid in 

methanol were prepared by adding 1 ml of acetic acid and 1 ml of formic acid to 1 L water 

and 1 L methanol, respectively. 

2.3   TFAA and TFE derivatization for GC-MS analysis  

A 10 µL volume of each stock standard solutions of glyphosate, AMPA, mecoprop, MCPA, 

isoproturon, bentazon, chloridazon, CD and CMD as well as their labeled compounds 

glyphosate 1,2-C13 N15, AMPA-C13 N15, mecoprop-D6, MCPA-D6, isoproturon-D6, bentazon-

D6, and chloridazon-D5 were placed in 0.9 mL clear crimp vials. The solvent was evaporated 

under a stream of clean air at 20 °C for 30 minutes using a TurboVap LV Evaporator 

(Caliper Life Sciences, USA). 150 µL trifluoroacetic anhydride (TFAA) and 150 µL 

trifluoroethanol (TFE) were added to the residues. The vials were closed with ultraclean 

aluminum crimp caps. The vials were shaken and heated at 90 °C for 1 hour. The samples 

were allowed to cool at room temperature for about 30 min. The derivatized solution was 

evaporated to dryness. The vials were rinsed with 100 µL ethyl acetate to minimize loss of 

the derivatives and subsequently the solvent was evaporated to dryness for 15 min. The 

residues were redissolved in 100 µL ethyl acetate and the solutions were analyzed by GC-

MS.  
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2.4   FMOC-Cl derivatization for HPLC-MS/MS analysis of 

glyphosate and AMPA 

The derivatization process of glyphosate and AMPA was achieved by placing 800 µL of 

mixed standard solutions of glyphosate and AMPA in water into 2 mL Safe-Lock-tubes 

(Eppendorf, Germany). 100 µL of 0.07 M borate buffer of pH 9 was added to the solution 

and vigorously shaken. 100 µL of 1 mM FMOC-Cl in acetonitrile was added to each tube 

containing the solutions. The tubes were closed, shaken well and kept at room temperature 

for 4 hours for the derivatization reaction to occur. After 4 hours the samples were 

subjected to a filtration step by passing through a 0.45 µm Phenex-Rc 15 mm syringe filter 

(Phenomenex, Germany). Finally, the samples were analyzed by HPLC-MS/MS.  

2.5   GC-MS instrument and operating conditions for analysis of 

all the target analytes  

Derivatized standards with TFAA and TFE were analyzed by a Hewlett Packard 6890 Gas 

Chromatograph coupled with a Hewlett Packard 5973 Mass Spectrometer Detector (MSD) 

and an Agilent 6890 autosampler. The gas chromatographic system was equipped with a 

programmed temperature vaporizer injector (PTV) containing a glass liner (Gerstel, 

Germany). A DB-5ms non-polar capillary column (30 m length, 250 µm inner diameter and 

0.25 µm film thickness 5%-phenyl- 95% dimetheylpolysiloxane (J & W Agilent, USA)) was 

used for the gas chromatographic separation. Instrument operating and data processing 

was managed with MS ChemStation software (Agilent, USA). A 2 µL volume of the sample 

were injected into the PTV. The injector temperature was 60 °C before injection and 

increased directly after the injection to 280 °C at a rate of 12 °C per second and held at this 

temperature for 3 minutes. Helium was used as carrier gas. The carrier gas flow in the 

column was at a constant flow at 1.2 mL per minute, the pressure was 0.703 bar and the 

average velocity was 40 cm per second. The injector was operating in splitless mode. After 

2 minutes the split valve was opened in order to avoid solvent tailing and to sweep any 

vapors remaining in the liner. The split flow was adjusted to 11.8 mL/min during the 

sample transfer and increased to 15.5 mL/min during injector cleaning. The oven 

temperature program for the effective separation of the herbicides and metabolites is 

shown in Figure 2.1.  
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Figure 2.1: Temperature program of GC-MS injector and oven for the separation of the herbicides 

compounds. 

For detection, the transfer line temperature was set at 280 °C. Ionization was achieved by 

electron impact at 70 eV at an ion source temperature of 230 °C and the temperature of the 

MS quadropule was 150 °C. Autotune was usually achieved before measurements were 

taken in order to apply voltages on the source elements. The calibration substance used in 

the tune process was perfluorotributylamine (PFTBA) on the masses 69, 219 and 502. The 

electron multiplier voltage (EM) was between 1642-1800 eV. Full scan mode was used in 

order to determine the fragmentations and the retention times of the analytes. The 

obtained mass spectra of the target analytes and their labeled compounds were in the mass 

range from 15 to 550 u with a scan rate of 2.73 scans per second.  

2.6   HPLC-MS/MS instrument and operating conditions for 

direct analysis of MCPA, mecoprop, isoproturon, bentazon, 

chloridazon and its metabolites CD and CMD 

The analysis was achieved using an LC-MS-MS (Thermo Fisher Scientific). The HPLC system 

consisted of an Accela autosampler (Series: 750477), Accela pump (Series: 700862) and 

Maylab Mistra Switch model 886 (Series: 100027). A TSQ vantage triple quadrupole mass 

analyzer (Thermo Fisher Scientific Series-Nr.: TQU 02725) equipped with a heated 

electrospray ionization source (HESI) interface was used for detection of the analytes. For 

initial method setup, the MS system was calibrated and tuned using polytyrosine 1, 3, 6 

standard solution. The ionization was achieved in both negative and positive mode. 
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The chromatographic reversed phase separation was performed on a Kinetex 2.6 µm C18 

column (50 x 2.1) mm from Phenomenex (Germany) at 20 °C. The used mobile phase A was 

Milli-Q water with 0.1% acetic acid and the mobile phase B was a methanol with 0.1% 

formic acid. The gradient elution program was as follows: 0-14 min gradient from 90% A 

and 10% B to 10% A and 90% B until separation of all the target compounds was achieved, 

14-16 min isocratic 10% A and 90% B, 16-17 min gradient 10% A and 90% B to 90% A and 

10% B, 17-20 min isocratic 90% A and 10% B at a flow rate of 250 µL/min. A volume of 50 

µL samples were directly injected into the HPLC-MS/MS system.  

The optimal HESI-MS-MS conditions operating in negative and positive modes were set as 

follows: capillary temperature 300 °C, vaporizer temperature 300 °C, spray voltages in 

positive and negative polarity were ±3500 V, sheath gas pressure 20 psi; auxiliary gas flow 

rate 10 arbitrary units (a.u.); sweep gas pressure 0 psi. The collision gas used was argon 

and the collision gas pressure was set to 32 psi. The instrument was controlled by Xcalibur 

software (Version 2.1). 

2. 7   HPLC-MS/MS operating conditions for glyphosate and 

AMPA analysis after derivatization with FMOC-Cl 

The analysis was performed through the HPLC-MS/MS system described in section 2.6. 

Reversed phase separation was achieved using a (150 x 2.0) mm, 3 µm particle size, 

Gemini-NX C18 with a Gemini-NX Security Guard cartridge (4 x 2.0) mm, both supplied by 

Phenomenex, Germany. The oven temperature was set to 20 °C. Chromatography 

separation was achieved through gradient elution with a 2 mM ammonium bicarbonate 

buffer at pH 9 (mobile phase A) and pure acetonitrile (mobile phase B) at a flow rate of 100 

µl/min. The elution steps were as follow 0-2 min isocratic at 99% A and 1% B, 2-15 min 

gradient from 99% A and 1% B to 37% A and 63% B, 15-17 min isocratic at 37% A and 

63%, 17-19 min gradient from 37% A and 63% B to 5% A and 95% B, 19-27 min isocratic 

at 5% A and 95% B, 27-30 min gradient from 5% A and 95% B to 99% A and 1% B. The 

volume of sample injections into HPLC-MS/MS was 50 µL.  

The analytes were detected with the previously described TSQ vantage triple quadrupole 

mass analyzer equipped with the heated electrospray ionization source (HESI) interface 

using the optimized MS parameters. For the initial method setup, the MS system was 

calibrated and tuned using polytyrosine 1, 3, 6 standard solution. The ionization was done 

in negative mode. The optimal HESI-MS/MS conditions operating in negative mode were 

set as follows: capillary temperature 300 °C, vaporizer temperature 200 °C, spray voltage -

3500 V, sheath gas pressure 20 psi; auxiliary gas flow rate10 arbitrary units (a.u.); sweep 

gas pressure 0 psi; S-lens offset 62 V and 43 V for glyphosate and AMPA, respectively. The 
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used collision gas was argon and the collision gas pressure was set to 32 psi. The collision 

energy was 21 and 20 eV for glyphosate and AMPA, respectively. Data processing was 

managed using Xcalibur (Version 2.1).  

2.8   Sampling sites and period 

Water samples were taken from ten different estuarine stations (1-10) and one from the 

Baltic Sea station (11). The sampling stations are distributed along the Baltic Sea coastline 

of Mecklenburg-Vorpommern, Germany (Figure 2.2).  
 

 

Figure 2.2 Location of the sampling stations in Mecklenburg-Vorpommern, Germany. 

Two parameters including salinity and temperature were monitored during sample 

collection. The names of sampling stations, sampling areas, sampling numbers, coordinates, 

and the minimum and maximum values of the measured salinities and temperatures are 

presented in Table 2.1.  

The samples were collected in 2012 during the period of pesticide application between 

May and September. The samples were taken once a month in May, June, August and 

September from the estuarine sites (1-6, 8-10) and at rate of one sample in May, three in 

June, two in July, two in August from May to September from the stations (7) and (11). 
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Table 2.1: Numbers, names, coordinates, and the minimum and maximum measured salinity and 
temperature in the collected samples. 

 

Station 
Sampling 
number Coordinates Salinity 

Temperature 
(°C) 

Number Name N Latitude Longitude Min Max Min Max 
1 Uecker river 4 53° 43' 55.54'' N 14° 02' 52.31'' E 0.1 0.4 12.3 20.9 

2 Peene river 4 53° 51' 56.91'' N 13° 49' 40.11'' E 0.9 1.3 12.8 22.6 

3 Ryck river 4 54° 05' 36.54'' N 13° 26' 54.90'' E 1.3 6.1 13.7 21.4 

4 Barthe river 4 54° 21' 58.78'' N 12° 41' 14.97'' E 1,2 4.1 13.0 21.0 

5 Recknitz river 4 54° 14' 50.68'' N 12° 28' 01.82'' E 0.3 2.6 11.8 20.9 

6 Warnow river 4 54° 03' 50.96'' N 12° 10' 16.72'' E 0.1 0.3 12.9 20.6 

7 Mühlenfließ  9 54° 08' 50.20'' N 11° 52' 08.70'' E 0.1 0.8 11.7 20.2 

8 Hellbach  4 54° 03' 39.03'' N 11° 37' 15.18'' E 0.2 0.3 11.2 17.1 

9 Wallensteingraben canal 4 53° 54' 05.84'' N 11° 28' 18.84'' E 0.0 0.3 13.2 21.5 

10 Stepenitz river 4 53° 54' 25.24'' N 10° 58' 01.10'' E 0.9 3.1 12.0 20.0 

11 Baltic Sea coast in 

Heiligendamm 

9 54° 08' 46.55'' N 11° 50' 36.07'' E 9.0 15.7 10.4 17.1 

Min: Minimum, Max: Maximum, Mühlenfließ: Muehlen stream, Hellbach: Hell stream 

2.9   Sample collection, treatment and data analysis  

1 L water samples were collected from the selected stations in amber glass bottles in order 

to analyze the compounds MCPA, mecoprop, isoproturon, bentazon and chloridazon and its 

metabolite CMD, while they were collected in polypropylene bottles for glyphosate and 

AMPA analysis due to their high polarity and possible adsorption onto the glass bottle wall. 

The bottles were cleaned prior to sampling by rinsing with the water to be sampled. The 

bottles were filled to the top with as little air as possible remaining and sealed tightly. The 

samples were transported to the laboratory and stored at 5 °C in the dark within 3 days for 

glyphosate and AMPA analysis and a week for other herbicides analysis.  

Matrix effects through other unwanted components in samples are a major problem in the 

quantitative analysis of environmental samples using high performance liquid 

chromatography electrospray ionization mass spectrometry (HPLC-ESI-MS). This may lead 

to suppression or enhancement of the analyte signals (Patel, 2011). Standard addition is a 

powerful method to correct for sample matrix effects (Kalivas, 1987). Therefore, the 

samples were prepared according to the standard addition method for quantitative 

analysis of all target compounds.  

In order to analyze glyphosate and AMPA, 40 mL of each sample were distributed into four 

10 mL polypropylene volumetric flasks. Increasing concentrations of the mixed standard 

solutions of glyphosate and AMPA were added to three of the flasks while the last was 

without addition. A volume of 800 µL of each sample was inserted into an Eppendorf tube 

together with 100 µL of 0.07 M borate buffer at pH 9, and 100 µL 1 mM FMOC-Cl were 

added and vigorously shaken. The samples were kept for 4 hours at room temperature to 
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allow the derivatization reaction to proceed to completion. The samples were filtered using 

0.45 µm Phenex-Rc 10 mm syringe filters (Phenomenex, Germany) to remove particulate 

matter. The samples were analyzed according to the developed HPLC-MS/MS method 

(section 2.7). 

For analysis of the compounds MCPA, mecoprop, isoproturon, bentazon, chloridazon and 

CMD a 40 mL of each sample were filtrated using 0.45 µm Phenex-Rc 10 mm syringe filters. 

The filtered 40 mL sample was split into 4 fractions of 10 mL into four 10 mL glass 

volumetric flasks. Three increasing concentrations of the mixed stock solution of all 

analytes were added to three of them. A 1 mL volume from each volumetric flask was 

inserted into 1.5 mL glass vial and measured according to the developed HPLC-MS/MS 

method mentioned earlier (section 2.6). 

The dilution process of the natural samples was achieved when the estimated 

concentrations of the samples were out of the concentration range of the calibration 

curves. The data were transferred to an Excel worksheet and plotted with the added 

standard concentration on the x-axis and the peak areas on the y-axis, and the unknown 

concentrations were determined as minus the estimated x-intercept.  

2.10   Algae and culture conditions 

The cyanobacterium N. spumigena was provided by Dr. Monika Nausch and maintained at 

the Leibniz Institute for Baltic Sea Research in 2 L batch cultures in f/2 medium. The used 

equipment, glassware and medium were sterilized using an autoclave. N. spumigena was 

cultured at 15 °C with a cycle of 16:8 h light/dark (cool, white fluorescent light, 100 µmol 

photons m−2 s−1). 200 mL medium containing N. spumigena cells were distributed in 

polycarbonate bottles containing 800 mL liquid f/2 medium. The initial algal density based 

on chlorophyll-a was set to be about 10 µg/L. Many treated plants with glyphosate have 

not shown symptoms for treatment for 7-10 days until the depletion of aromatic amino 

acid which subsequently reduce rates of protein synthesis (Cobb and Reade, 2010). 

Therefore, the toxicity experiment period was designed to be a relatively long period of 26 

days exposure to Roundup® and AMPA. The test started by adding Roundup® and AMPA at 

different concentrations 1, 10, 50, 100 and 500 µg/L. The added volumes of Roundup® and 

AMPA were sterilized using 0.2 µm filter. Triplicates of control and treated cultures were 

grown under the same conditions of temperature and photoperiod. Samples were 

measured at different intervals during 26 days of Roundup® and AMPA exposure.  
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2.11   Chlorophyll-a, cell count, particulate organic carbon and 

AMPA analysis 

Samples of 30 mL volume were taken from each culture during the experiment at different 

intervals and immediately filtered through Whatman GF/F filters for chlorophyll-a (Chl-a) 

analysis. The filters were stored at -80 °C. Then, the samples were extracted with 10 mL of 

96% ethanol. Chl-a fluorescence was measured with a Turner fluorometer (10-AU-005) at 

an excitation wavelength of 450 nm and an emission of 670 nm. The concentrations of Chl-

a and Phaeopigments were calculated according to JGOFS protocol (Knap et al., 1996). 

In order to measure the cell density of N. spumigena, samples of 50 mL were taken at 

different intervals and preserved by adding 250 µL of acetic Lugol’s (KCl) solution. The 

analysis was achieved by the Utermöhl’s method using an inverted microscope (Utermöhl, 

1958).   

Particulate organic carbon (POC) was measured on Whatman GF/F filters by filtering 50 

mL of the samples. The filters were kept at -20 °C. Samples were analyzed for POC using CE 

Instruments Elemental Analyzer EA 1110 in the laboratory of the Leibniz Institute for 

Baltic Sea Research Warnemuende (IOW) according to a standard method. 

AMPA concentrations in the cultures were measured by the HPLC-MS/MS analytical 

method after derivatization using FMOC-Cl described earlier (section 2.7).                           
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3   Results and Discussion 

3.1   GC-MS and HPLC-MS/MS for analysis of the selected polar 

herbicides and metabolites 

The contamination of the aqueous environment by anthropogenic trace pollutants has 

clearly changed in the past ten to fifteen years from persistent, not easily degradable 

contaminants to more polar, thermo-labile and less volatile compounds (Fobbe et al., 

2006). Nowadays, many analytical techniques have been developed for determining 

pesticide residues in environmental samples (Ferrer and Barceló, 1998). However, gas 

chromatography (GC) and high performance liquid chromatography (HPLC) are the 

predominant analytically sufficient techniques used for identification and quantification of 

pesticide residues in environmental matrices (Cserhati et al., 2004). 

The six polar herbicides glyphosate, isoproturon, mecoprop, MCPA, bentazon, chloridazon 

and three of their metabolites AMPA, CD and CMD were chosen for this study. The selected 

compounds have different functional groups such as carboxyl, hydroxyl, carbonyl, amine 

and amide giving rise to diverse chemical properties (see figures 1.4, 1.5, 1.6, 1.7 and 1.8). 

Generally, organic compounds containing functional groups with "active" hydrogen atoms 

(e.g. -COOH,-OH,-NH,-SH) are hardly measurable by gas chromatography due to their 

polarity, low volatility and thermal decomposition (Liska and Slobdnik, 1996). On other 

hand, the development of derivatization techniques has rendered various polar compounds 

accessible to gas chromatography (Fobbe et al., 2006). Derivatization reactions for GC 

analysis comprise acylation, alkylation, esterification, and silylation reactions (Drozd, 

1981). Numerous reagents have been used for the derivatization of the selected herbicides. 

Available data are summarized in Table 3.1.  

 

Diazomethane is the most used derivatization reagent for the selected compounds with a 

yield of up to 100% for the acidic herbicides such as MCPA and mecoprop. On other hand, 

diazomethane is toxic, carcinogenic, mutagenic, irritant and explosive above 90°C.  

 

Glyphosate and its metabolite AMPA have the highest polarity of the selected herbicides 

and metabolites. Trifluoroacetic anhydride (TFAA) and trifluoroethanol (TFE) are the 

common derivatization reagents of glyphosate and AMPA for GC analysis (Deyrup et al., 

1985; Roy et al., 1989; Stalikas et al., 2000).  
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Table 3.1: Some used reagents in the derivatization reactions of the selected herbicides and metabolites for 

their GC analysis. 

Reagents 
Glyphosate 

AMPA 
MCPA 

Mecoprop 
Bentazon Isoproturon 

 
1 

 
Diazomethane and 

chloroformate 
(Kataoka et al., 1996) 

  

 
Diazomethane  

(Ngan and Ikesaki, 
1991) 

 
Diazomethane 
(Cessna, 1985) 

 
Diazomethane  

(Morais et al., 2011) 

2 Trifluoroacetic 
anhydride and 

trifluoroethanol 
(Deyrup et al., 1985) 

Dimethyl sulfate 
(Catalina et al., 2000) 

Trimethylsilyldiazo 
methane (Moy and 

Brumely, 2003) 

Heptafluorobutyric 
anhydride 

(Brinkman et al., 
1984) 

 
3 

 
N-methyl-N-(tert-

butyldimethylsilyl) 
trifluoroacetamide 
(Hori et al., 2003) 

 
Pentafluorobenzyl 
bromide (Vink and 
Vander Poll, 1996) 

 
Pentafluorobenzyl 

bromide (Vassilakis 
et al., 1998) 

 
Pentafluorobenzyl 

bromide (Scheyer et 
al., 2005) 

 
4 

  
Benzyl bromide 

(Nilsson et al., 1998) 

 
Trimethylanilinium 

hydroxide 
(Ogierman, 1990) 

 
Iodomethane (Scott,  

1993) 

 
5 

  
Butylchloroformate 

(Henriksen et al., 2001) 

  

 
6 

  
Sodium hydride 

/dimethyl sulphoxide 
/methyl iodide 

(Crespo-Corral et al., 
2008) 

  

 

The application of liquid chromatography in order to analyze polar compounds is 

increasing due to their high efficiency and sensitivity when it is tandem to mass 

spectrometry with atmospheric pressure ionization (Fobbe et al., 2006). Furthermore, the 

possibility of direct injection of a large volume of aqueous samples into the HPLC system 

has been confirmed to be an adequate technique for sensitive, selective and rapid 

determination of polar herbicides in aqueous samples (Sancho et al., 1996). Most of HPLC 

separations of herbicides were achieved utilizing reversed phase (RP) chromatography 

(Tadeo et al., 2000). The direct HPLC analysis of glyphosate and its metabolite AMPA are 

difficult, whereas a satisfied determination was successful only after derivatization 

processes (Bauer et al., 1999; Stalikas and Konidari, 2001). 9-Fluorenylmethyl 

chloroformate (FMOC-Cl) is the most used reagent for pre-column derivatization of 

glyphosate and AMPA in combination with HPLC-MS/MS because it has a high reactivity 

towards the amino groups in both glyphosate and AMPA, it is highly non-polar, fluorescent, 

has the possibility of performing derivatization reaction in aqueous media, is commercially 

and available in pure form (Hanke et al., 2008; Stalikas and Konidari, 2001).  
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The objectives of this section are: 

  
(1) to compare between the two analytical techniques GC-MS and HPLC-MS/MS for analysis 

of six polar herbicides and three of their metabolites in water samples.  

(2) to further develop and validate analytical methods for identification and quantification 

of the selected nine compounds in water samples using the appropriate technique (i.e. 

GC-MS and/or HPLC- MS/MS) for their analysis.  

3.1.1   GC-MS and HPLC-MS/MS for direct analysis of the selected 

compounds 

The objective of this experiment was the investigation of the possibility of direct analysis of 

the six polar herbicides glyphosate, MCPA, mecoprop, isoproturon, bentazon, and 

chloridazon as well as their three metabolites AMPA, CD, and CMD by both analytical 

techniques: GC-MS and HPLC-MS/MS. 

Mixture standards of all the target compounds in addition to their labeled compounds were 

prepared at a concentration of 10 ng/µL in ethyl acetate solvent and directly analyzed by 

GC-MS. The labeled compounds were used as internal standards for GC-MS analysis. The 

full scan mode was used for recording source mass spectra of interest in which all or most 

of produced ions are present. A chromatogram obtained from direct GC-MS analysis of 10 

ng/µL standard solution of the target analytes using full scan mode is shown in Figure 3.1.  

 
Figure 3.1: Chromatogram obtained from direct GC-MS analysis of 10 ng/µL mixture standard solutions of 

the nine target analytes using full scan mode. 
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According to mass spectral analysis, four compounds isoproturon, bentazon, chloridazon 

and CMD were found in the chromatogram obtained from direct GC-MS analysis. The mass 

spectra of the components isoprouron, bentazon, chloridazon and CMD are shown in Figure 

3.2 and these of their labeled compounds are shown in Appendix 1-3. 
   

 
(A) 

 
 (B) 
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 (C) 

 
  (D) 

Figure 3.2: The mass spectra obtained from direct GC-MS analysis of the compounds (A) isoproturon, (B)          

bentazon, (C) chloridazon and (D) CMD. 

 

Despite the observation of the compounds isoproturon, bentazon, chloridazon and CMD in 

the chromatogram obtained from direct GC-MS analysis, their analysis has failed because of 

unstable and unrepeatable measurements with low precision (Appendix 4). The 
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unrepeatability of their measurements can be explained by thermal instability of these four 

compounds due to their polar nature resulting from polar groups such as amide and amine 

groups. Very poor peaks of the metabolite CD were found only in some chromatograms 

obtained from direct GC-MS analysis after several measurements. This fluctuation and 

instability of CD detection due to thermal instability and low volatility can be explained by 

the fact that CD is a relatively small molecule and has amide and amine polar groups which 

create strong intermolecular attractions between the polar groups, and/or by polar 

interactions by hydrogen bonds which subsequently lead to the low volatility and thermal 

instability of CD (Drozd, 1981). The components glyphosate, MCPA, mecoprop and AMPA 

were undetectable by direct GC-MS analysis. Glyphosate and its metabolite AMPA were 

expected to be undetectable by direct GC-MS analysis due to their very high polarity. These 

four compounds contain carboxylic and/or hydroxyl groups which lower their volatility 

due to intermolecular forces such as ionic interactions or hydrogen bonds. According to 

these results, all the selected compounds are unsuitable for the direct GC-MS analysis. 

Therefore, derivatization is a necessary technique for making them suitable for GC-MS 

analysis.  

In order to test the direct HPLC-MS/MS analysis of the selected analytes, dissolved 

standards of each compound were prepared at a concentration of 500 µg/L. The standard 

solutions were directly infused to tune the instrument in both positive and negative 

electrospray ionization (ESI) in order to determine the parent and the product ions of 

interest. Reversed phase chromatography is the most popular separation technique used 

for herbicide analysis due to its versatility and ability to resolve a number of different types 

of compounds (Tadeo et al., 2000). Therefore, reversed phase was aimed to be tested for 

the separation of the target analytes. A Kinetex 2.6 µm C18 column (50 x 2.1) mm was used 

for this purpose. Standards at concentrations of 1 µg/L of the target analytes in water were 

measured by HPLC-RP-MS/MS.  

As shown in Figure 3.3 seven compounds could be separated on the C18 reversed phase 

column and were detected using MS/MS detector. These compounds are MCPA, mecoprop, 

isoproturon, bentazon, chloridazon and its metabolites CD and CMD. 
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Figure 3.3:  Peaks of seven compounds CD, CMD, chloridazon, bentazon, isoproturon, MCPA and mecoprop   

resulting from their direct analysis using HPLC-RP-HESI-MS/MS. 

The detected seven compounds have lower polar properties compared to glyphosate and 

AMPA. The herbicide glyphosate and its metabolite AMPA were unsuitable for reversed 

phase separation on a C18 silica column because of their ionic characteristic, high polarity, 

high water solubility and low organic solvent solubility. These results are in agreement 

with references which have confirmed the requirement of the derivatization technique for 

performing HPLC-RP-MS/MS analysis of glyphosate and AMPA due to their difficult 

physicochemical properties (Martins-Júnior et al., 2011; Vreeken et al., 1998). A 

comparison of GC-MS and HPLC-RP-MS/MS for direct analysis of the nine target 

compounds indicates that HPLC-RP-MS/MS is a suitable technique for direct analysis of the 

mid-polar analytes but not suitable for reversed phase separation of very high polar 

compounds such as glyphosate and AMPA, while GC-MS is unsuitable for direct analysis of 

all the selected compounds. 

A direct HPLC-RP-MS/MS analytical method was developed and validated in order to 

identify and quantify the herbicides MCPA, mecoprop, isoproturon, bentazon, chloridazon 

and its metabolites CD and CMD in water samples. Method development was based on the 

optimization of HPLC and MS/MS parameters in combination with direct injection of 50 µL 

water samples without pre-concentration processes such as the solid phase extraction and 

clean-up steps. 
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3.1.2   HPLC-MS/MS method optimization for direct analysis of MCPA, 

mecoprop, isoproturon, bentazon, chloridazon CD and CMD 

3.1.2.1   Mobile phase composition  

Methanol and acetonitrile were tested as organic eluents in the analytical method. 

Methanol was preferred over acetonitrile because it showed better peak shapes and 

separation performance for all target compounds. Methanol was chosen as eluent B. 

Generally, addition of acid as acetic and formic acids to the HPLC mobile phase gave some 

advantages such as improving the chromatographic separation when running on a non-

polar stationary phase (Xu, 2013). Three mobile phases involving three different 

compositions of acetic and formic acid were tested (Table 3.2). The obtained 

chromatograms from direct HPLC-MS/MS analysis of 5 µg/L mixed standard with regards 

to the three tested mobile phases are shown in Figure 3.4. 

Table 3.2: The three tested mobile phase compositions. 

Mobile phase Eluent A Eluent B 
A Water with 0.1% formic acid Methanol with 0.1% formic acid 
B Water with 0.1% acetic acid Methanol with 0.1% formic acid 
C Water with 0.1% acetic acid Methanol with 0.1% acetic acid 

 

The mobile phase (B) offered best HPLC-MS-MS performance including better peak shapes, 

shorter retention times and higher mass spectrometry sensitivity for all the target analytes 

than any other mobile phases tested. Therefore, water with 0.1% acetic acid and methanol 

with 0.1% formic acid were chosen as the mobile phase in the final analytical method. The 

metabolite CD was found in the range of dead time in both tested eluent methanol and 

acetonitrile. This result reflects poor interaction of CD with the reversed phase C18 column 

and may be due to its polarity resulting from the amide group and its high solubility in 

water. Many efforts were spent in order to achieve the analysis of CD. The attempts 

included different sample solvents, different mobile phase pH solutions, different mobile 

phase gradients and flow rates. No improvement was observed in the interaction of CD 

with the stationary phase. CD was unsuitable according for this analytical method. 

Therefore, it was excluded from the analytical method. 
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                                         (A)                                                                (B)                                                                (C) 

Figure 3.4: Chromatograms obtained from direct HPLC-MS/MS analysis of 5 µg/L mixed standard by the 
three tested mobile phases (A), (B) and (C) which are shown in Table 3.2. 

 
 
                          

3.1.2.2   Comparison of three sample solvents 

Standards of the analytes were prepared at a concentration of 1 µg/L in three different 

solvents: 

1- water 

2- water/methanol (50/50) 

3- methanol 

The chromatograms obtained from direct HPLC-MS/MS analysis of the three tested sample 

solvents are shown in (Figure 3.5). A comparison of the obtained chromatograms regarding 

retention times, sensitivities and peak shapes of the target analytes was made.  Retention 

times of all the compounds were almost stable when the sample solvents were used. 

Methanol is an inadequate solvent for all the target analytes because of peak tailing. The 

water/methanol (50/50) solvent offered the highest sensitivities for most of the target 
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analytes but a poor peak shape for the metabolite CMD. Water as sample solvents showed 

good sensitivities and peak shapes for all the target analytes. Therefore, water was used as 

a sample solvent in the final methods. 

 

(A)                                                                  (B)                                                                  (C) 

Figure 3.5:  Chromatograms obtained from direct HPLC-MS/MS analysis of 1µg/L mixed standard in (A) 

water, (B) water/methanol (50/50) and (C) methanol. 

   

3.1.2.3   MS/MS optimization 

Optimization of MS/MS parameters were achieved by the infusion of each compound at a 

concentration of 500 µg/L into the mass spectrometer in positive and negative ionization 

mode at a flow rate of 5 µL/min. Full scan mass spectra were recorded in order to select the 

most abundant mass-to-charge ratio (m/z). The relative intensity for the most abundant 

m/z was used to evaluate the performance of each ionization mode. The most intense 

product ion for each target analyte was chosen for quantification, and a secondary product 
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ion was used as a qualifier ion for confirmation. The parent ions, product ions, SRM 

collision energies, start times, stop time, S-lenses and polarities for each analyte are shown 

in Table 3.3. Additionally, the MS/MS parameters such as capillary and vaporizer 

temperatures, spray voltages, sheath and auxiliary gas pressures were also optimized. For 

the final analysis, optimal parameters have been applied as described in section 2.6.  

Table 3.3:  The parent ions, product ions, SRM collision energy, start time, stop time, S-lens and polarity for 
the analytes. 

Analyte Parent product Collision energy start stop S-lens polarity 
CMD 160 88 31 1.00 3.00 76 + 

 160 117 23 1.00 3.00 76 + 
Chloridazon 222 77 33 5.00 6.50 79 + 

 222 92 24 5.00 6.50 79 + 
Bentazon 239 132 28 7.00 8.50 98 - 

 239 197 22 7.00 8.50 98 - 
Isoproturon 207 64 16 9.00 10.10 77 + 

 207 72 17 9.00 10.10 77 + 
MCPA 199 105 29 9.00 10.20 60 - 

 199 141 17 9.00 10.20 60 - 
Mecoprop 213 105 32 10.10 12.00 53 - 

 213 141 18 10.10 12.00 53 - 

3.1.3    HPLC-MS/MS Method validation for direct analysis of MCPA,  

mecoprop, isoproturon, bentazon, chloridazon and CMD 

In the validation of the analytical method and in the quantitative analysis, the HPLC-MS/MS 

system was operated in selected reaction monitoring (SRM) mode in which a limited 

number of parent and product ions can be monitored and subsequently the sensitivity for 

detection of each target analyte can be increased. The parameters involved in validation of 

the analytical method were linearity, accuracy, precision (repeatability), limit of detection 

(LOD) and quantification (LOQ), analytes and system stability.  

3.1.3.1   Linearity 

The performance verification of the mass spectrometry detector was conducted by 

determining the linearity of the detector response. A volume of 50 µL of mixed standards of 

the analytes at ten different concentrations (i.e. at a concentration range between 10 ng/L 

and 2000 ng/L) were injected to the HPLC-MS/MS and analyzed using the optimized 

method. The calibration curves obtained for all analytes (n = 3) are shown in Figure 3.6. 

Linear relationships (R2 > 0.99) were established in the concentration ranges of 10-2000 

ng/L for bentazon, isoproturon and CMD, of 50-2000 ng/L for MCPA and mecoprop and of 

100-2000 ng/L for chloridazon (Table 3.4). The obtained good linearity reflects a strong 

relationship between the concentrations of the analytes and detector response.  
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Figure 3.6: The obtained calibration curves of the compounds MCPA, mecoprop, bentazon, isoproturon,                      

chloridazon and CMD after their direct analysis using HPLC-RP-MS/MS.                   
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3.1.3.2   Accuracy  

The accuracy of a method is a measurement of the systematic error or bias and is defined 

as the deviation between the measured values and the true values. Accuracy is best 

reported as percentage bias (relative error RE %) that is calculated from the following 

expression (Pinto et al. 1999):  

 

Some of the possible error sources causing biased measurements are: errors in sample 

preparation or errors in sample analysis. The accuracies were calculated for all 

concentrations which were used in the calibration curves in triplicate. The range of 

calculated accuracy for each analyte is shown in Table 3.4. The results indicate an 

acceptable accuracy of the analytical method with a maximum error below 12% for all six 

analytes (Table 3.4). The highest error of 11.4% and 11.1% were calculated for bentazon 

and CMD, respectively, at concentration levels close to their LOQs. Better accuracy values 

with errors below 7% were obtained at concentration levels over 100 ng/L for all the 

target analytes. 

3.1.3.3   Precision (Repeatability)  

The precision of a method is a measurement of random errors and is defined as the 

difference between replicate measurements of the same sample. It is expressed as the 

relative standard deviation (RSD%) of replicate measurements and it is calculated from the 

following expression (Pinto et al. 1999):  

 

The instrument precision was evaluated in terms of the RSD% by performing 3 injections 

of a standard solution containing the analytes in the calibration curves. The range of 

evaluated precision of each analyte is shown in Table 3.4. Data obtained from precision 

experiments showed values ranged from 0.1% to 10% which assure satisfactory HPLC-

MS/MS precision for the tested analytes.   
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3.1.3.4   Limit of detection and limit of quantification  

The limit of detection (LOD) of an analytical method is the lowest amount of the target 

compound in the sample that can be detected, but not necessarily quantified as an accurate 

value using the experimental conditions. The limit of quantification (LOQ) is the lowest 

amount of the target analytes in the sample that can be quantified in the experimental 

conditions. LODs and LOQs of this analytical method were experimentally estimated 

according to the signal to noise ratios (S/N) of 3 and 10, respectively. According to the 

analytical method, LODs and LOQs of the target analytes were at concentration ranges of 

0.5-10 ng/L and of 4-90 ng/L, respectively (Table 3.4). The herbicide isoproturon has the 

lowest LOD and LOQ values of 0.5 ng/L and 4 ng/l, respectively.  

Table 3.4:  Quality control parameters of the analytical method (n=3) including: linearity (R2), accuracy (RE 

%), precision (RSD %), LODs (ng/L) and LOQs (ng/L). 

Compound Linearity (R2) 
 

RE% 
 

 
RSD% 

 
LOD (ng/L) LOQ (ng/L) 

CMD 0.9996 0.1-11.1      0.5-10.0  10 25 
Chloridazon 0.9993      0.4-1.6      0.6- 9.0  10 90 

Bentazon 0.9996 0.2-11.4      0.4-3.2  3.0 6.0 
Isoproturon 0.9996      0.3-9.4       0.1-5.0  0.5 4.0 

MCPA 0.9984      0.4-5.4      0.7-4.9  10 50 
Mecoprop 0.9958      0.6-6.6      0.7-8.2  10 50 

3.1.3.5   Analytes and system stability 

In order to study the analytes stability, two standard solutions of all the analytes were 

prepared at concentrations of 1µg/L. One of them was kept at ambient laboratory 

temperature of 21 °C and the other stored in a fridge at 5°C. Samples of the two solutions 

were analyzed daily for one week by HPLC-MS-MS in order to test the stability of the 

analytes. The results showed that the analytes are stable during the tested period. No 

additional peaks were observed and the changes in peak areas of the all analytes were less 

than 5%.  

System suitability is defined as checking the system used before or during analysis of 

unknowns, to ensure system performance. Mixed standard solutions at concentration of 1 

µg/L were injected into the HPLC-MS/MS system in order to check its stability. Cleaning of 

the mass spectrometry system was a necessary step, when a remarkable decrease in the 

sensitivities was observed, especially because the samples were analyzed without pre-

concentration (e.g. extraction and clean-up).    
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3.1.4   TFAA and TFE derivatization for GC-MS analysis of polar 

herbicides   and metabolites 

The goal of this experiment was to study the possibility of GC-MS analysis of the six polar 

herbicides and their three metabolites in a single run after their derivatization with TFAA 

and TFE. Glyphosate and its metabolite AMPA are the most difficult compounds for GC-MS 

analysis compared to the other selected compounds due to their physicochemical 

characteristics such as their high polarity, no volatility and low molecular weight (Martins-

Júnior et al., 2011). TFAA and TFE were chosen as derivatization reagents in this study. 

Their selection was based on their predominant use in glyphosate and AMPA derivatization 

reactions for GC-MS analysis due to their satisfactory efficiencies (Deyrup et al., 1985; Roy 

and Konar, 1989; Stalikas et al., 2000).  Samples of mixed standard solutions of the target 

analytes and their labeled compounds were prepared at concentrations of 10 ng/µL. The 

samples were derivatized as described in section 2.3 and then analyzed by GC-MS. The 

chromatogram obtained from GC-MS analysis of 10 ng/µL of the derivatized standard 

mixture using the full scan mode is shown in Figure 3.7. Seven compounds were 

derivatized with TFAA and TFE and separated on DB-5ms columns. These compounds are 

glyphosate, AMPA, MCPA, mecoprop, chloridazon, CD and CMD. These components were 

identified by their mass spectra and their fragmentation patterns. The mass spectra of the 

analytes glyphosate, AMPA, MCPA and mecoprop are shown in figure 3.8 and the mass 

spectra of their labeled compounds are shown in Appendix 5-8. 

 

 

Figure 3.7: Chromatogram obtained from GC-MS analysis of the nine target analytes at concentrations of 10  
ng/µL after derivatization by TFAA and TFE using full scan mode. 
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(A) 

 

 
(B) 
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(C)  

 

(D) 

Figure 3.8: The obtained mass spectra of the derivatized compounds (A) glyphosate, (B) AMPA, (C) MCPA 

and (D) mecoprop by GC-MS analysis. 

 

Derivatization reactions of TFAA and TFE with glyphosate, AMPA, MCPA and mecoprop are 

shown in Figure 3.9. The derivatization reactions with their labeled compounds are shown 

in Appendix 9 and 10. 
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                                                                                               (A) 

 
 

                                                                                              (B) 

 
 

                                                                                             (C) 

 
                                                                                             (D) 

Figure 3.9:  The derivatization reactions of (A) glyphosate, (B) AMPA, (C) MCPA and (D) mecoprop with 
TFAA and TFE (Deyrup et al., 1985). 
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Glyphosate, AMPA, MCPA and mecoprop produced molecular ions of m/z 511, 371, 282 and 

296, respectively. According to the analysis of their mass spectra, derivatization of these 

compounds occurred through acylation and/or esterification reactions. Derivatization of 

glyphosate and AMPA occurred through the esterification of phosphonic and carboxylic 

groups and the acylation of amino groups. Derivatization reactions of MCPA and mecoprop 

took place only with the reagent TFE through the esterification of their carboxylic groups. 

The derivatization reactions of MCPA and mecoprop with TFE did not take place in the 

absence of TFAA. Therefore, the reagent TFAA plays a catalytic role in these derivatization 

reactions. These results indicate that derivatization of the compounds glyphosate, AMPA, 

MCPA and mecoprop with TFAA and TFE decreased their polarity and increased their 

volatility which subsequently made them suitable for GC-MS analysis. 

Five peaks were found in the chromatogram obtained from GC-MS analysis after 

derivatization of the herbicide chloridazon and its metabolites CD and CMD with TFAA and 

TFE (Figure 3.7). Three peaks of them related to derivatized chloridazon, CD and CMD, 

respectively, and the other two peaks resulted from underivatized chloridazon and CMD. 

Mass spectra of derivatized chloridazon, CD and CMD are shown in Figure 3.10. 

Derivatization of chloridazon, CD and CMD took place through acylation of their functional 

amino groups. The observation of underivatized chloridazon and CMD peaks can be 

explained by the fact that derivatization reactions of these two compounds are 

uncompleted and/or by the instability of these derivatives. A poor peak of the CD 

derivative was found in the chromatograms. A significant decrease in peak sensitivities of 

CD was observed with increasing the number of injections. Furthermore, the peaks of the 

CD derivative were missing in many chromatograms. The unrepeatability of these results 

displays instability and degradation of the CD derivative.  
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(A) 

 

                                                                                                 (B) 
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                                                                                                  (C) 

Figure 3.10:  Mass spectra of GC-MS analysis of derivatized (A) chloridazon, (B) CD and (C) CMD. 

Different temperatures, reaction times and amounts of the reagents TFAA and TFE were 

examined in order to solve this analytical problem and to find the best conditions for 

derivatization of chloridazon, CD and CMD. The derivatization parameters of volumes of 

150 µL of TFAA and 150 µL of TFE and a temperature of 90 °C showed best derivatization 

conditions but the intial problem in their analysis still existed. Therefore, TFAA and TFET 

were considered to be inadequate reagents for use in derivatization of chloridazon, CD and 

CMD for GC-MS analysis. 

Peaks of isoproturon and bentazon derivatives not observed in the chromatograms 

indicate that these two compounds did not react with TFAA and TFE which may be due to 

the large size of their molecules (i.e. steric effects) which made the reaction of TFAA and 

TFE with the amino groups difficult. The results of GC-MS analysis for all the target 

compounds, having different polar functional groups showed that TFAA and TFE were 

unsuitable derivatization reagents for the five compounds isoproturon, bentazon, 

chloridazon, CD and CMD. Consequently, it is impossible to analyze all the selected 

compounds in a single run after their derivatization with TFAA and TFE by GC-MS. 

However, two or more derivatization processes maybe required to make them suitable for 

GC-MS analysis. Moreover, many solid phase extraction processes were expected to be 

required for extracting them from water samples due to the difference of their properties, 

especially the ionic characteristic of glyphosate and its metabolite AMPA which made their 

extraction from saltwater samples very difficult (Corbera et al., 2006, Fritzsche, 2013). For 

the mentioned reasons, analysis of the nine selected compounds by GC-MS was difficult, 

tedious and both time and chemicals consuming.             
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3.1.5   Derivatization of glyphosate and AMPA with FMOC-Cl for HPLC-

MS/MS analysis 

As seen in section 3.1.1, glyphosate and its metabolite AMPA were inadequate for direct 

HPLC-RP-MS/MS analysis. Therefore, derivatization of glyphosate and AMPA was a 

necessary technique for making them suitable for HPLC-MS/MS analysis. Fluorenylmethyl-

chloroformate (FMOC-Cl) was chosen as the derivatization reagent in this study. The 

selection of FMOC-Cl was based on the following factors: its high reactivity towards the 

amino groups in both glyphosate and AMPA, it is a high non-polar molecule, it has the 

possibility of performing the derivatization reaction in aqueous medium, it is available 

commercially in pure form and (Hanke et al., 2008; Stalikas and Konidari, 2001).  

Derivatization of glyphosate and AMPA with FMOC-Cl was previously optimized regarding 

the amount of FMOC-Cl, organic solvent content and reaction time by Hanke et al. (2008). 

Therefore, the optimization of this analytical method was based on HPLC and MS/MS 

conditions in order to optimize the resolution, peak shapes and sensitivity of the detector. 

Derivatization of glyphosate and AMPA with FMOC-Cl was carried out as described in the 

experimental section 2.4. The derivatization reactions of glyphosate and AMPA with FMOC-

Cl are shown in Figure 3.11. 

 
                                                                                                    (A) 

 
                                                                                                    (B) 

Figure 3.11: Derivatization reactions of (A) glyphosate and (B) AMPA with FMOC-Cl (Bernal et al., 2012). 
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3.1.6   HPLC-MS/MS method optimization for analysis of glyphosate and 

AMPA after their derivatization with FMOC-Cl  

The extraction of the herbicide glyphosate and its metabolite AMPA from saltwater 

samples is still a drawback in analytical chemistry. As reported by some researches salt 

concentrations in the analyzed sample caused a significant decrease of glyphosate and 

AMPA recoveries extracted using solid phase extraction techniques (Corbera et al., 2006; 

Fritzsche, 2013). Therefore, analysis of glyphosate and AMPA was conducted without pre-

concentration steps and their derivatization process with FMOC-Cl was carried out in the 

aqueous medium. The development of the analytical method was focused on the 

optimization of HPLC and MS/MS parameters for direct injection of water samples into 

HPLC-MS/MS system. Detection of glyphosate and AMPA derivatives was performed by 

selected reaction monitoring mode (SRM). The SRM method was optimized using two SRM 

transitions for each analyte. For quantification, the transitions 390->168 and 332->110 

were utilized for glyphosate-FMOC and AMPA-FMOC, respectively. The selected transitions 

390->150 and 332->136 were used for the qualification of glyphosate-FMOC and AMPA-

FMOC, respectively.  

3.1.6.1 Comparison of the two different solvents methanol and acetonitrile  

The mobile phase was optimized in order to reach good detection sensitivities, resolution 

and peak shapes. Most commonly used organic solvents as mobile phases in reversed 

chromatography are acetonitrile and methanol. A 2 mM ammonium bicarbonate buffer at 

pH 9 was used as eluent A and acetonitrile and methanol were tested as eluent B.  

Chromatograms obtained from analyzing 500 ng/L of glyphoase-FMOC and AMPA-FMOC 

are shown in Figure 3.12. Shorter retention times, symmetrical peaks and highest 

sensitivities were observed for both compounds when acetonitrile was used as eluent. This 

result was expected due to the advantages of acetonitrile over methanol such as lower 

polarity, better kinetics, higher elution strength and lower back pressure resulting from 

mixing of acetonitrile with water  (Kromidas, 2000). 
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        (A) 

 
                                                             (B) 

Figure 3.12:  Chromatograms obtained from measuring 500 ng/L of glyphosate-FMOC (A) and AMPA-FMOC  

                          (B) with acetonitrile and methanol as eluent B. 

 

The high peak area of glyphosate-FMOC was obtained due to peak tailing and integration 

error when methanol was used. The peak tailing of glyphosate and AMPA may be due to 

hydrogen bonding interaction between methanol and the underivatized polar groups in the 

analytes as hydroxyl groups. According to these results, a 2 mM ammonium bicarbonate 

buffer pH 9 as eluent A and acetonitrile as eluent B were chosen for the next optimization 

process.  
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3.1.6.2    Comparison of two buffer concentrations 

Two different concentrations of 2 mM and 10 mM of ammonium bicarbonate buffer in 

water were tested as eluent A. Chromatograms obtained from measuring 500 ng/L of 

mixed glyphosate-FMOC and AMPA-FMOC are shown in Figure 3.13. The result showed 

that 2 mM of ammonium bicarbonate offered better chromatographic performance such as 

shorter retention times on the reversed phase column, less noise, better peak shapes and 

higher sensitivities than the eluent with a concentration of 10 mM for both target analytes. 

Therefore, 2 mM ammonium bicarbonate concentration at pH 9 was used as eluent A in the 

mobile phase in the final method. 

  

      
 (A)                                                                                            (B) 

Figure 3.13: Chromatograms of 500 ng/L of glyphosate left (A) and AMPA-FMOC right (B) with 2 mM and 10   

mM buffer concentrations. 

3.1.6.3   Comparison of pure acetonitrile and acetonitrile with buffer salts 

For this optimization step, 2 mM ammonium bicarbonate at pH 9 was used as eluent A and 

the two different solvents pure acetonitrile and acetonitrile with 2 mM ammonium 

bicarbonate salt at pH 9 were tested as eluent B, respectively. As seen in Figure 3.14, the 
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use of a buffer in the organic eluent did not significantly affect retention times and 

sensitivities for both analytes. However, pure acetonitrile showed better chromatographic 

performance than acetonitrile with buffer. Therefore, pure acetonitrile was used as eluent 

B in the final method.  

 

    

(A)                                                                                           (B) 

Figure 3.14: Chromatograms of 500 ng/L of (A) glyphosate-FMOC and (B) AMPA-FMOC with pure   

acetonitrile and acetonitrile with 2 mM buffer salt. 

3.1.6.4   Optimization of the mobile phase flow rate 

In this optimization step the effect of the  mobile phase flow rate on HPLC performance was 

studied. Samples containing 2 µg/L of glyphosate-FMOC and AMPA-FMOC were measured 

using different flow rates of 100, 150, 200, 250 and 300 µL/min. 2 mM ammonium 

bicarbonate buffer at pH 9 as eluent A and acetonitrile as eluent B were used as the mobile 

phase. As shown in Figure 3.15, the applied mobile phase flow rates showed minor effects 

on the resolution of both compounds in the reversed phase because desorption from the 

hydrophobic surface is not affected by the flow rate. On the other hand, the mobile phase 

flow rate showed a significant effect on the retention times of both analytes. Increasing the 
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flow rate shorted their retention times because the organic eluent acetonitrile carried them 

through the column faster after desorption. Moreover, the tested flow rates displayed a 

notable impact on the detection sensitivity. Peak areas of both components were decreased 

with increasing flow rate (Figure 3.16). Peaks were not found for either target compound 

due to high back pressure when a flow rate of 300 µL/min was applied. According to these 

results, a mobile phase flow rate of 100 µg/L was applied in the final method. 

                    
                                     (A)                                                                                                (B) 

      
                                           (C)                                                                                             (D) 

Figure 3.15: Chromatograms of HPLC-MS/MS analysis of 2 µg/L of glyphosate-FMOC and AMPA-FMOC  

obtained from different mobile phase flow rates (A) 100 mL/min, (B) 150 mL/min, (C) 200 

mL/min   and (D) 250 mL/min. 
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Figure 3.16: Obtained peak areas of analysis 2 µg/L of glyphosate-FOMC and AMPA-FMOC with mobile phase  

flow rates of 100, 150, 200, 250 µL/min. 

3.1.6.5   Optimization of gradient elution 

Glyphosate-FMOC and AMPA-FMOC at concentrations of 2 µg/L were measured with four 

gradient protocols in order to achieve the best resolution for glyphosate–FMOC and AMPA-

FOMC. The four tested gradient tables are shown in Appendix 11. The resolution factors of 

glyphosate-FMOC peaks and AMPA-FMOC peaks were calculated from the four obtained 

chromatograms (Figure 3.17). The resolution factors were 0.71, 1.48, 0.81 and 1.62 

according to gradient elution 1, 2, 3 and 4, respectively. Thus, gradient protocol 4 showed 

the best resolution with a resolution factor of 1.62 and therefore the gradient elution 

protocol 4 was applied in the final method. 
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Figure 3.17: Chromatograms of HPLC-MS/MS analysis of 2 µg/L of glyphosate-FMOC and AMPA-FMOC 
obtained from different gradient elution protocols.    

 

3.1.6.6   Optimization of MS/MS conditions 

The optimization of HESI-MS/MS parameters and the selection of the appropriate ions 

were conducted by analysis of glyphosate and AMPA derivatives in order to monitor the MS 

conditions which would give the highest sensitivities for both compounds. Optimization of 

the MS/MS conditions was achieved by a variety of parameters such as vaporizer 

temperature, capillary temperature, sheath gas pressure, auxiliary gas flow rate and spray 

voltage. MS/MS parameters were adjusted to maximize the intensity of the product ions 

m/z 168 and 110 for glyphosate-FMOC and AMPA-FMOC, respectively. The mobile phase 

was 2 mM ammonium bicarbonate at pH 9 as eluent A and acetonitrile as eluent B. The flow 

rate was set to 100 µL/min of gradient 4. Separation was achieved on a Gemini 3 µm NX-C18 

110 A° HPLC column (150 x 2.0 mm) at 20 °C.  
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Four vaporizer temperatures 200, 250, 300 and 350 °C were tested. As shown in Figure 

3.18(A), highest sensitivities were obtained at a vaporizer temperature of 200°C.  

 

The second optimization step was to compare the effect of different capillary temperatures 

of 200, 250, 300 and 350 °C on the sensitivities. Highest sensitivities were obtained at a 

capillary temperature of 300 °C for glyphosate-FMOC, while two capillary temperatures of 

250 °C and 300 °C offered the highest sensitivity for AMPA-FMOC 3.18(B). Therefore, a 

capillary temperature of 300 °C was chosen in the method.  

 

Optimization of sheath gas pressure and auxiliary gas flow rate was achieved. Three 

sheaths gas pressures of 15, 20 and 25 psi and three auxiliary gas flow rate of 10, 15 and 20 

arbitrary units were tested. As shown in Figure 3.18(C) and (D), highest sensitivities were 

achieved by a sheath gas pressure of 20 psi and an auxiliary gas flow rate of 15 arbitrary 

units for both the target compounds glyphosate-FMOC and AMPA-FMOC. A clear effect of 

the auxiliary gas flow on the sensitivities appeared especially for glyphosate-FMOC, 

whereas a double peak area was obtained by applying an auxiliary gas flow rate of 15 

arbitrary units compared to pressures of 10 and 20 arbitrary units.  

 

Lastly, the spray voltage was optimized in order to increase glyphosate-FMOC and AMPA-

FMOC sensitivities. Four spray voltages of 2500, 3000, 3500 and 4000 volt were examined. 

As shown in Figure 3.18(E), spray voltages of 3000, 3500 and 4000 volt showed almost the 

same sensitivities for AMPA-FMOC. The highest sensitivity for glyphosate-FMOC was 

achieved by spray a voltage of 4000 volt. As a result, a spray voltage of 4000 volt was 

chosen in the final method. 
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                                            (A)                                                                                            (B) 

 
                                                                                    (C)       

    
                                    (D)                                                                              (E) 
Figure 3.18: Effect of some developed parameters in the analytical method: (A) vaporizer temperature, (B) 

capillary temperature, (C) sheath gas pressure, (D) auxiliary gas pressure and (E) spray voltage 

on the MS/MS signal resulting from analysis of 2 µg/L concentrations of glyphosate-FMOC and 

AMPA-FMOC.     
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3.1.7   HPLC-MS/MS method validation for analysis of glyphosate and AMPA after  

their derivatization with FMOC-Cl 

The developed method for glyphosate and AMPA analysis was validated. Method validation 

of the procedure was performed including the following parameters: linearity, limit of 

detection and quantification, precision, accuracy, matrix effect, analytes and system 

stability. HPLC-MS/MS system in the selected reaction monitoring mode was used for 

quantitative analysis and validation of the analytical method. 

3.1.7.1   Calibration curves and linearity 

The calibration curves of glyphosate-FMOC and AMPA-FMOC were created using 14 

concentration levels ranging from 30 to 3000 ng/L (Figure 3.19). Linearity of the method 

was investigated by calculating of the regression line of the method and expressed by the 

correlation coefficient (R2). Calibration curves showed high linearity over the measured 

concentration ranges with correlation coefficients 0.9993 and 0.9994 for glyphosate-FMOC 

and AMPA-FMOC, respectively. Obtained calibration curves for glyphosate-FMOC and 

AMPA-FMOC indicate a strong relationship between concentrations and peak areas. 

     
                                               (A)                                                                                              (B) 

Figure 3.19: Calibration curves of (A) glyphosate-FMOC and (B) AMPA-FMOC at concentration ranges 
from10 ng/L to 3000 ng/L. 

3.1.7.2   Limit of detection and quantification 

Limit of detection (LOD) and quantification (LOQ) were estimated from the calibration 

curves according to DIN 32 645 using SQS 2000 (version 2.01). LOD and LOQ of glyphosate-
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FMOC were determined to be at 9 ng/L and 27 ng/L, respectively and for AMPA-FMOC at11 

ng/L and 32 ng/L, respectively.  

3.1.7.3   Precision 

Precision (repeatability) was expressed as the ability of re-analysis of interest with low 

standard deviation. The precision was conducted by HPLC-MS/MS measurements of 

standard solutions from the calibration curves in triplicates. The calculated RSDs % ranged 

from 0.2% to 11.6% for glyphosate-FOMC and from 1.0% to 11.1% for AMPA-FMOC (Table 

3.5). The highest RSD% values of both glyphosate-FOMC and AMPA-FMOC were found at 

the low concentration levels. The repeatability of the method was confirmed by a good 

precision at concentration levels over 100 ng/L with RSDs lower 7% for both target 

analytes.  

3.1.7.4   Accuracy  

Accuracy (relative error RE %) is the difference between true values and the measured 

values. This deviation between the true value and the measured values were calculated for 

six concentrations in low, middle and high concentration ranges. The calculated accuracy of 

glyphosate-FMOC was in the range of -0.4% to -11.1% and in the range of 0.1% to 11.2% 

for AMPA-FMOC (Table 3.5). The method provided satisfactory accuracy for both 

glyphosate and AMPA especially at concentration levels over 100 ng/L.  
 

Table 3.5: The calculated precision (RSD%) and accuracy (RE%) resulting of HPLC-MS/MS analysis of 

glyphosate-FMOC and AMPA-FMOC (n = 3) at concentrations lie between 25 ng/L and 3000 

ng/L. 

Concentration (ng/L) glyphosate-FMOC AMPA-FMOC 
 RSD% RE% RSD% RE% 

25 
55 
70 

2.3 
6.4 
8.4 

4.0 
-11.1 

2.1 

3.0 
10.9 
11.1 

11.2 
-8.9 
5.7 

85 11.6 3.6 10.7 5.7 
100 1.3 -1.1 3.4 -4.1 
250 2.3 3.4 3.6 -1.6 
500 3.0 1.4 6.7 2.4 
750 1.8 -4.7 3.7 0.4 

1000 0.2 4.9 3.3 3.2 
1500 
2000 
2500 
3000 

1.9 
0.8 
0.8 
6.0 

-2.9 
-1.1 
1.7 
-0.4 

1.4 
2.0 
2.5 
1.0 

-3.3 
-2.1 
1.5 
0.1 

 RSD%: Relative standard deviation 
 RE%: Relative error 
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3.1.7.5   Analytes stability 

Two standard solutions of glyphosate and AMPA at a concentration of 1µg/L were 

prepared for the stability test. One of the solutions was kept at 5 °C while the other was 

kept at an ambient laboratory temperature of 21 °C. Samples were withdrawn from the 

solutions and analyzed at intervals of zero to 300 hours in order to monitor degradation of 

the target analytes. Changes in glyphosate-FMOC and AMPA-FMOC peak areas at the two 

selected temperatures are shown in Figure 3.20(A) and (B).  

                 
(A)                                                                                             (B)                                                                                                                                                               

Figure 3.20: Stability testing of 1 µg/L glyphosate-FMOC and AMPA-FMOC at (A) 21 °C laboratory 

temperature and (B) 5 °C within 300 hours.  

 

Changes in peak areas of both analytes were less than 6% during the tested period. 

Moreover, no additional peaks were observed in the obtained chromatograms. This result 

reflects satisfied stability of glyphosate-FMOC and AMPA-FMOC during the tested period of 

300 hours.  

3.1.7.6   System stability and blank samples 

System stability is defined as the checking of a system before and during analysis of 

unknowns, to ensure system performance. For this aim, samples of standard solutions of 

glyphosate-FMOC and AMPA-FMOC in Milli-Q water at concentration of 1 µg/L were 

measured before and during measurements for controlling the HPLC-MS/MS system. 

System stability was a critical indicator to check the HPLC-MS/MS system for problems 

which occurred from precipitation of the excessive FMOC-Cl onto the column and the 
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contamination of TSQ vantage, especially in the case of natural samples which were 

measured without clean-up and extraction processes. However, cleaning the TSQ vantage, 

washing the column and changing the used security guard cartridge system were 

important steps in solving these problems and maintaining a the good efficiency of the 

HPLC-MS/MS system. Furthermore, blank samples were measured during each analysis in 

order to identify errors or contaminations which may have occurred through sample 

preparation and analysis. 

 

Gas chromatography (GC) and high performance liquid chromatography (HPLC) tandem 

mass spectrometry (MS)n were the predominant analytical techniques used for the analysis 

of contaminants in the environment. In this section, a comparison of these two techniques 

was carried out for the analysis of six polar herbicides with different functional groups and 

three of their metabolites in water samples. The nine selected compounds were the 

herbicides glyphosate, MCPA, mecoprop, isoproturon, bentazon and chloridazon and the 

metabolites AMPA, CD and CMD. All the target compounds were found to be unsuitable for 

direct GC-MS analysis. Furthermore, GC-MS was incapable of analyzing all the target 

analytes in one single run after derivatization with TFAA and TFE. More than one 

derivatization process was found to be required in order to achieve their analysis by GC-MS 

which subsequently increasing numbers of sample preparation steps such as numbers of 

collected samples, filtration, solid phase extraction and derivatization. GC-MS analysis was 

found to be difficult, tedious and both time and chemical consuming.  

Six compounds MCPA, mecoprop, isoproturon, bentazon, chloridazon and CMD were found 

to be able for direct HPLC-RP-MS/MS analysis. Glyphosate and its metabolite AMPA were 

found to be suitable for HPLC-RP-MS/MS analysis after derivatization with FMOC-Cl. The 

metabolite CD was excluded from the analytical method due to a peak tailing problem and 

very poor interaction with the C18 reversed phase column. The HPLC-RP-MS/MS technique 

was preferred to GC-MS and it was found to be a good approach for the analysis of the 

target compounds in water samples. Two rapid analytical methods have been developed 

and validated in order to achieve the analysis of the selected compounds in water samples 

using HPLC-RP-MS/MS. Table 3.6 shows a summary of GC-MS and HPLC-MS/MS analysis of 

the target compounds. 

 

 

 

 

 

 



Chapter 3: Results and Discussion 

59 
 

Table 3.6:  Comparison between GC-MS and HPLC-MS/MS for the analysis of the nine target compounds. 

Compound 
Direct  
GC-MS 

GC-MS after 
TFFA + TFE 

derivatization 

 
Direct  

HPLC-MS/MS 
 

HPLC-MS/MS 
after FMOC-Cl 
derivatization 

Glyphosate No Yes No Yes 
AMPA No Yes No Yes 
MCPA No Yes Yes - 

Mecoprop No Yes Yes - 
Isoproturon No No Yes - 

Bentazon No No Yes - 
Chloridazon No No Yes - 

CD No No No - 
CMD No No Yes - 

 

The first method is direct HPLC-RP-MS/MS analysis of the five herbicides MCPA, mecoprop, 

isoproturon, bentazon and chloridazon and the metabolites and CMD in water samples. The 

second method is HPLC-MS/MS analysis of the herbicide glyphosate and AMPA after pre-

derivatization with FMOC-Cl in water samples. Optimization of the two analytical methods 

was conducted according to several HPLC and MS/MS parameters without pre-

concentration steps. Satisfactory validation parameters of these analytical methods 

including linearity, accuracy, precision, system and analytes stability were obtained as 

shown in Table 3.7.   

Table 3.7: Correlation coefficients (R2), linearity, limits of detection (LODs) and of quantification (LOQs), 

precisions (RSDs %) and accuracies (RE %) of the developed HPLC-MS/MS methods for the 

analysis of the target compounds in water samples.   

Compound R2 Linearity (ng/L) 
 

LODs (ng/L) 
 

LOQs (ng/L) RSDs (%) RE (%) 

Glyphosate 0.9993 25-3000 9 27 0.2-11.6 0.4-11.1 
AMPA 0.9994 25-3000 11 32 1.0-11.1 0.1-11.2 
MCPA 0.9984 50-2000 10 50 0.7-4.9 0.4-5.4 

Mecoprop 0.9958 50-2000 10 50 0.2-8.2 0.6-6.6 
Isoproturon 0.9996 10-2000 0.5 4 0.1-5.0 0.3-9.4 

Bentazon 0.9996 10-2000 3 6 0.4-3.2 0.2-11.4 
Chloridazon 0.9996 100-2000 10 90 0.6-9.0 0.4-1.6 

CMD 0.9993 10-2000 10 25 0.5-10 0.1-11.1 
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3.2   Occurrence of polar herbicides and some of their           

metabolites in the German Baltic estuaries   

The contamination of the marine environment by anthropogenic trace pollutants has 

changed in the past ten to fifteen years from persistent and not easily degraded 

contaminants to more polar, thermo-labile and less volatile compounds (Fobbe et al., 

2006). The Baltic Sea is one of the worst polluted seas in the world (HELCOM, 2003). 

Generally, rivers play an essential role in transporting pesticides into the marine 

environment (Olsson et al., 2012). The German riverine flow into the Baltic Sea forms a 

small portion of the total flow and constitutes a large number of small rivers (BUND, 2012; 

Burkhardt et al., 2005). On the other hand, Germany has the highest agricultural activities 

compared to other Baltic countries (BUND, 2012). 

Polar herbicides such as glyphosate, MCPA, mecoprop, isoproturon, beantazon, and 

chloridazon are utilized in large amounts in Germany (BVL, 2012). Many studies have 

proven the contamination of European fresh surface waters by the polar herbicides 

mentioned here. In Switzerland, glyphosate and its metabolite AMPA were observed in the 

Rhine river with concentrations ranging from 25 ng/L to 55 ng/L of glyphosate and from 

55 ng/L to 65 ng/L of AMPA. Additionally, these two compounds were detected in two 

Swiss lakes, where glyphosate concentrations were around 15 ng/L in Murtensee lake and 

around 35 ng/L in Greifensee lake and AMPA concentrations were around 60 ng/L in both 

lakes (Hanke et al., 2008). Glyphosate and AMPA were found in two rivers (Boele and Orge) 

examined studies in France under both dry and wet weather conditions. The 

concentrations of glyphosate were between <100 and 1.08 ng/L in the Boele river and 

between <100 and 0.2 ng/L in the Orge river. AMPA was detected at concentrations higher 

than glyphosate in both rivers and ranged from 0.34 to 1.93 ng/L in the Boele river and 

from 0.23 to 0.79 ng/L in the Orge river (Botta et al., 2009). The German Agency for the 

Environment, Nature Conservation and Geology Mecklenburg-Vorpommern reported that 

glyphosate and AMPA were detected in 58% and 82% respectively of the collected fresh 

surface water samples. Their frequency of detections with concentration higher than 100 

ng/L were 22% and 46% of glyphosate and AMPA, respectively (Bachor et al., 2008). 

Mecoprop and MCPA were detected in water samples collected from Greifen lake and a 

wastewater treatment plant (WWTP) in Switzerland. Mecoprop concentrations were in the 

range 30-50 ng/L in Greifen lake and 20-400 ng/L in WWTP, while MCPA concentrations 

ranged from 10 ng/L to 25 ng/L in Greifen lake and from undetectable to 100 ng/L in 

WWTP (Ollers et al., 2001). MCPA and mecoprop were observed in surface water samples 

of Mecklenburg-Vorpommern in Germany with maximum concentrations exceeding 1 µg/L 

(Bachor et al., 2008).  
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In France, isoproturon was detected in the Garonne river water at a concentration of 36 

ng/L and at concentrations ranging from 53 ng/L to 58 ng/L in its Dropt tributary (Dupas 

et al., 1995). Isoproturon was detected at high concentration levels in Germany reaching 42 

µg/L in effluents of rural wastewater treatment plants after biological treatment (Nitschke 

and Schussler, 1998). 

The long-term Swedish national water quality monitoring program considered the 

herbicide bentazon to be the most commonly found substance in watercourses with 

detection frequencies of over 30% of all samples (period 1985-2005) (Törnquist et al., 

2007). In water samples collected from the Main river in Germany, the 3-day average 

concentration maximum of bentazon at Würzburg station was 0.29 µg/L and the maximal 

weekly average at Schweinfurt station was 0.22 µg/L both exceeding the European 

drinking water standard of 0.1 µg/L for each pesticide. Bentazon was found in 67% of 

sewage treatment plant samples in concentrations above 0.1 µg/L with a maximum 

concentration of approximately 12 µg/L in one station (Bach et al., 2010).  

According to the monitoring program which was conducted following the environmental 

detection of the herbicide chloridazon in groundwater, surface water and waste water 

treatment plants (WWTP) in the Hesse region (Germany) during the year 2007, 

chloridazon was detected in surface water at concentrations below 1µg/L with a seasonal 

peak of 0.89 µg/L after its application in spring (Buttiglieri et al., 2009). Chloridazon and its 

metabolite CMD were also detected in freshwater samples in Mecklenburg-Vorpommern, 

Germany. (Bachor et al., 2008).  

Estuaries receive great attention in studies on terrestrial regions as pollution contributors 

to the marine environment. Most studies and monitoring programs on the pollution of the 

Baltic Sea and its estuaries focused on persistent and non- and low polar pesticides (Bester 

and Hühnerfuss,  1993; Falandysz et al., 2004; Pikkarainen, 2007; Schulz-Bull et al., 1995; 

Schulz-Bull et al., 2013; Strandberg et al., 1998). However, very little attention has been 

drawn to the occurrence of other classes of pesticides (e.g. mid and highly polar pesticides) 

in the Baltic estuaries and their potential transport to the Baltic coast. Further data on the 

occurrence of the polar herbicides and metabolites listed above in Baltic estuaries and their 

transport to the Baltic Sea is important for the evaluation of their environmental fate (i.e. 

stability on their way to the sea) and for a comprehensive eco-toxicological risk 

assessment.  

The objective of this section is to study the potential transport of the selected herbicides 

and metabolites into the Baltic Sea by studying their occurrence in some of the German 

Baltic estuaries. 

In order to study the potential transport of the six selected polar herbicides glyphosate, 

MCPA, mecoprop, isoproturon, bentazon, chloridazon and two of their metabolites AMPA 

and CMD into the Baltic Sea, water samples were taken from ten Baltic estuarine locations 
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and from the Baltic coast between May and September 2012. The sampling sites were 

located along the coast of the German federal state of Mecklenburg-Vorpommern. The 

samples were collected under different weather conditions (i.e. dry, wet and after rainfall 

events). All the collected samples were analyzed using the HPLC-MS/MS methods 

described in sections 2.6 and 2.7. The identification of target analytes in unknown samples 

was according to three parameters: quantifier ions, qualifier ions and the comparison of 

retention times of unknown peaks to peaks in the standard samples. The quantitative 

analysis was carried out in reference to the qualifier ions.  Chromatograms from the 

analysis of glyphosate and AMPA standards and estuarine water samples are shown in 

Figure 3.21 and of the compounds CMD, chloridazon, bentazon, isoproturon, MCPA and 

mecoprop are shown in Figure 3.22. 

        

                                      (A)                  (B)   
Figure 3.21:  Chromatograms obtained from the analysis of (A) 250 ng/L of glyphosate and AMPA standards  

and (B) natural samples collected from the estuary of Mühlenfließ.  
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                                      (A)                  (B)  
Figure 3.22:  Chromatograms from the analysis of (A) 100 ng/L of the analytes CMD, chloridazon, bentazon, 

isoproturon, MCPA and mecoprop and (B) natural sample collected from the estuary of 

Mühlenfließ.  

 

The measured concentrations, salinities, temperature, sampling date and weather 

conditions are shown in Appendix 12.  

3.2.1   Occurrence of glyphosate and AMPA  

Glyphosate and its metabolite AMPA were found at the estuarine stations during the study 

period. As seen in Figure 3.23, all selected estuarine sampling sites were contaminated by 

the metabolite AMPA and nine of them by the parent herbicide glyphosate. The 

concentrations of AMPA ranged from 45 to 4156 ng/L, while glyphosate concentrations 

ranged from 28 to 1690 ng/L. The highest concentrations were observed at sampling sites 

(7 and 8) for glyphosate and at sampling site (7) for AMPA. Glyphosate and AMPA were 

observed at the estuarine stations under different weather conditions. Therefore, their 

transport to the Baltic Sea is not restricted by their runoff from agricultural areas after 

rainfall events. 
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    (A)                    (B) 

Figure 3.23:  Concentration ranges of (A) glyphosate and (B) AMPA in the ten investigated estuarine stations  

during the study period in 2012. 

 

The Mühlenfließ estuary (sampling site 7) was observed to be the site highest 

contaminated by glyphosate and AMPA but it does not necessarily have the highest input of 

them into the Baltic Sea due to its low water flow rate (0.77 m3/s) compared to bigger 

rivers (StALUMM). A waste water-treatment plant was found as a potential significant 

source of glyphosate and AMPA for surface water. They can be released from suspended 

particles during waste water processing (Botta et al., 2009; Popp et al., 2008). The constant 

high concentration levels of glyphosate and AMPA observed in the estuary of Mühlenfließ 

may be due to the discharge of sewage water from the treatment plant in the area of Bad 

Doberan into the surface water of Mühlenfließ or/and due to high agricultural and non-

agricultural use of glyphosate in the Mühlenfließ basin.  

Frequencies of detection for the metabolite AMPA were higher than its parent herbicide 

glyphosate. Furthermore, the concentrations of AMPA were found to be higher than 

glyphosate concentrations in eight estuarine stations. This result can be explained by 

additional sources of the metabolite AMPA. As AMPA is not only the main metabolite of 

glyphosate, it is also the key metabolite formed through degradation of some phosphonates 

such as ATMP (aminotri-methylenephosphonic acid), EDTMP ((ethylenediaminetetra 

(methylene-phosphonicacid)), HDTMP (Hexamethylenediaminetetra-(methylenephos-

phonate) and DTPMP (diethylenetri-aminepentamethylenephosphonic acid) used in 

laundry, detergents and industrial boilers and cooling media (Fürhacker et al., 2005; 

Jaworska et al., 2002). 

Variations of glyphosate concentrations between different stations may result from 

different amounts of glyphosate applied and from different soil properties. Glyphosate 
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mobility is different from soil to soil and depends on soil properties (e.g. structure, clay 

content, iron dioxide, organic matter) and time of application (Vereecken, 2005). AMPA 

was detected in a frequency higher than glyphosate, indicating a higher mobility of AMPA 

compared to glyphosate. This result is in accordance with previous studies showing that 

the metabolite AMPA is more mobile than its parent herbicide glyphosate (Coupe et al., 

2012). The reason for the observed high contamination by glyphosate and AMPA of the 

estuarine stations may not only be due to their surface runoff from agricultural areas, but 

also from urban regions (road and railway applications), where the use of glyphosate in 

urban areas has an essential impact on surface water contamination (Botta et al., 2009). 

Accordingly, the herbicide glyphosate and its metabolite AMPA were observed to have the 

highest detection frequency and highest concentrations. Unfortunately, no data were 

available with respect to the fate and transport of glyphosate and AMPA to the marine 

environment. 

3.2.2   Occurrence of isoproturon and bentazon  

The herbicides isoproturon and bentazon were detected in the collected water samples 

between May and September under different weather conditions (Appendix 12). 

Isoproturon and bentazon were frequently detected at the estuarine sampling stations. 

From ten investigated estuarine stations, eight of them (1, 2, 4-8, 10) were contaminated 

with isoproturon and seven of them (1, 4-8, 10) with bentazon. The measured 

concentrations ranged from 3 to 34 ng/L of isoproturon and 5 to 19 ng/L of bentazon 

(Figure 3.24). Isoproturon is relatively persistent in the soil environment, being broken 

down by up to 40% three months after its application (El-Sebai et al., 2005). Bentazon is 

low in persistence in soil with a half-life in filed soil ranging from 3 to 21 days and with an 

average of less than two weeks (Huber and Otto, 1994). Accordingly, the observed low 

concentrations of isoproturon and bentazon can be explained due to small amounts applied 

in Mecklenburg-Vorpommern and/or fast degradation in the soils of Mecklenburg-

Vorpommern. These results obtained in this study illuminate that isoproturon and 

bentazon can be transported via most Mecklenburg-Vorpommern rivers and streams into 

the Baltic Sea but their transport was observed to be relatively low compared to glyphosate 

and AMPA. 
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    (A)                                                                                                     (B) 

Figure 3.24:  Concentration ranges of (A) bentazon and (B) isoproturon in the ten investigated estuarine    

stations during the study period in 2012. 

Comparing these results to those of other areas such as Mediterranean deltas, German 

Baltic estuaries were highly contaminated with the herbicide isoproturon. Its 

concentrations in the Mediterranean deltas were below 10 ng/L in Ebro and Nile and it was 

undetectable in Rhone. On the other hand, the Mediterranean Ebro delta and the lagoons of 

the Rhone river (France) were highly contaminated with the herbicide bentazon in 

comparison to the studied German Baltic estuaries with a maximum concentration of 

bentazon of 1 µg/L in the Ebro delta and even higher than 1 µg/L in the lagoons of the 

Rhone river (Comoretto et al., 2007; Readman et al., 1995).       

3.2.3   Occurrence of MCPA and mecoprop 

The herbicides MCPA and mecoprop were detected in the water samples collected between 

May and August 2012. MCPA was detected in 4 sampling sites (1, 4, 7, 9). Obtained results 

for sampling site 1 are below the LOQ of the analytical method of 50 ng/L. Therefore, data 

are presented only for stations 4, 7 and 9 (Figure 3.26). Mecoprop was detected in 

sampling sites 1, 7 and 8, but below the LOQ of the analytical method of 50 ng/L. MCPA was 

measured under different weather conditions. Its maximum concentration of 747 ng/L was 

detected in a sample collected from Mühlenfließ estuary after a heavy rain event (Figure 

3.25). These results indicate that MCPA and mecoprop are used only in some regions of 

Mecklenburg-Vorpommern and their low frequencies of detection may be explained due to 

small amounts applied or due to their high degradation rate. The detected concentrations 

of the herbicide mecoprop in the investigated German Baltic estuaries were in the same 
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range as those detected in the Ebro river delta. On the other hand, the German Baltic 

estuaries were less contaminated with the herbicides MCPA compared to the Ebro delta. 

The highest measured concentration of MCPA in the Ebro delta was 13.90 µg/L (Kuster et 

al., 2008).   

  

Figure 3.25:  MCPA concentration ranges in the ten investigated estuarine stations during the study period in  

2012. 

However, high concentration of MCPA measured in the Mühlenfließ estuary may be due to 

rainfall that occurred after applying large amounts of MCPA in this area and the sewage 

treatment plant effluent which flows into the Mühlenfließ increases those concentrations. 

Many groups of organic contaminants (e.g. pesticides) can pass through sewage treatment 

plants, with entry to the system via storm water run-off and domestic or industrial sources 

(Kock-Schulmeyer et al., 2013). According to these results, transport of the herbicides 

MCPA and mecoprop into the Baltic Sea exists but their discharge amount is considered to 

be low compared to glyphosate and AMPA.  

3.2.4   Occurrence of chloridazon and CMD  

The herbicide chloridazon was not detected in any of the collected water samples. On the 

other hand, its metabolite CMD was detected in some of the estuarine sampling stations in 

May and June (Appendix 12). As seen in Figure 3.26, the metabolite CMD was quantified 

only in five water samples collected from two of the sampling sites (2 and 7). This result 

can be explained either by a low usage of chloridazon in the region of Mecklenburg-

Vorpommern and consequently its transport into the Baltic Sea is in concentration levels 

lower than the limit of detection of the analytical method or there is no transport of 

chloridazon into the Baltic Sea due to its rapid degradation in soil, where the persistence of 

chloridazon in soil has been estimated to range from 13 days to 8 weeks (half-life) 
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depending on soil type (Buttiglieri et al., 2009). The measured concentrations of CMD 

ranged from 28 to 112 ng/L. The highest concentration of CMD of 112 ng/L was measured 

in the estuary of the Mühlenfließ after a rainfall event. According to these results, there is 

no important discharge of the herbicide chloridazon and its metabolite CMD into the Baltic 

Sea through the investigated rivers and streams. In different areas of Europe (Carafa et al., 

2007) chloridazon was a frequently detected herbicide in Sacca di Goro lagoon and Adriatic 

Sea water samples with maximum concentrations of 102 ng/L and 50 ng/L, respectively. 

 

Figure 3.26: Concentration ranges of the metabolite CMD in the ten investigated stations during the study  

period in 2012. 

A comparison of these results to those reported by the Agency for the Environment, Nature 

Conservation and Geology Mecklenburg-Vorpommern (LUNG) on the occurrence of 

pesticides in fresh waters of Mecklenburg-Vorpommern (Bachor et al., 2008) is shown in 

Appendix 13. However, the highest concentrations of the target compounds were found at 

areas not investigated by LUNG such as Mühlenfließ and Hellbach.  

3.2.5   Detection frequencies of the selected compounds in the German 

Baltic estuaries 

All estuarine stations were contaminated with at least one of the target compounds and 

maximally 7 of them. Figure 3.27 shows frequencies of detection of the target compounds 

in the collected estuarine water samples. The metabolite AMPA was the most detected 

compound in the estuarine water samples with 93% followed by bentazon, glyphosate and 

isoproturon with more than 70%. Low frequencies of detection of less than 23% were 

observed for the compounds MCPA, mecoprop and CMD. The herbicide chloridazon was 

not detected in any of the collected samples. 
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Figure 3.27: Detection frequencies of the herbicides glyphosate, isoproturon, bentazon, MCPA, mecoprop and 

chloridazon and their two metabolites AMPA and CMD in the collected estuarine water samples 

during the study period in 2012.   

As seen in Figure 3.28, concentrations of the herbicides glyphosate and MCPA and the two 

metabolites AMPA and CMD exceeded the European quality standard for pesticides of 100 

ng/L (Loos et al., 2010). The herbicide glyphosate and its metabolite AMPA were detected 

in the estuarine water samples at concentration levels exceeding this threshold value by 

41% and 65%, respectively. Glyphosate and AMPA concentrations above 100 ng/L were 

observed in the sampling sites (1, 3, 4, 7, 8) and (1, 4-10), respectively. 

 

Figure 3.28: Detection Frequencies of the studied compounds with concentrations > 100 ng/L. 

Glyphosate was always detected at concentration levels above 100 ng/L in sampling sites 

(7 and 8) and often in sampling site (4). AMPA exceeded the threshold value of 100 ng/L in 

all water samples collected from sites (1, 7, 8, 10) and in most samples collected from sites 
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(6 and 9). Glyphosate was found at high concentration levels in the µg/L range in sites (7 

and 8) while AMPA was found in this range in sampling site (7). The herbicide MCPA and 

the metabolite CMD were detected over the threshold value of 100 ng/L only twice and 

once, respectively. These concentrations of MCPA and CMD were observed in sampling site 

(7) after a rainfall event. According to these results, some rivers and streams in the federal 

state of Mecklenburg-Vorpommern are highly contaminated with the herbicide glyphosate 

and its metabolite AMPA, whereas they are less contaminated with other selected 

compounds. The sampling site of Mühlenfließ is the station highest contaminated with a 

high frequency of detection and high concentrations of the compounds glyphosate, AMPA, 

MCPA and CMD. The high contamination in the Mühlenfließ can be explained by high 

agricultural activities in this area or by the contribution of sewage treatment plants 

increasing the overall contamination level. 

3.2.6   Spatial and time variations in transport of compounds with high 

detection frequencies to the Baltic Sea 

As mentioned above, the metabolite AMPA and the three herbicides glyphosate, bentazon 

and isoproturon were detected over 70% in the estuarine water samples. In this study, a 

great spatial variation of glyphosate concentrations was registered during the survey 

period specially when the concentrations measured in the stream estuarine stations was 

compared with those measured in the estuaries of riverine stations (Figure 3.29(A)). 

Glyphosate concentrations were measured at microgram per liter levels in a few collected 

samples from the stream estuaries but its concentration did not exceed the nanogram per 

liter range in the river estuaries. The mean concentration of glyphosate at the estuaries of 

Mühlenfließ and Hellbach was 665 ng/L and 561 ng/L, respectively. On the other hand, 

their concentration in the river estuaries ranged between 10 and 82 ng/L. At most stations 

(3, 5, 7-10) the highest concentrations of glyphosate were observed in the end of summer 

(August) and in the first of autumn (September) because glyphosate is generally used at the 

agricultural areas as a post-emergent herbicide (Cox, 2004). At stations 1 and 10, 

glyphosate was found in the four studied months with very low monthly variations. 

Detection of glyphosate in May and June could be resulting from its use for non-agricultural 

purposes such as roadsides, railway tracks, industrial areas (Cox, 2004; Miller et al., 2010). 

As shown in Figure 3.29(B), clear spatial variations of AMPA concentrations were 

observed, especially between station (7) and other stations. The mean measured 

concentration of AMPA was 1445 ng/L at station (7) and ranged from 360 ng/L to 650 

ng/L in stations (1, 8, 10) and between 145 ng/L and 17 ng/L in stations (2-6, 9). The half-

life of glyphosate in soil is varies from a few days to several years depending on the 

adsorption process and the level of microbial activity (Carlisle and Trevors, 1987). As in the 

case of glyphosate, the highest concentration of AMPA was observed in August and/or 
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September at most investigated stations (3-10) which reflect fast degradation of glyphosate 

in the soil of Mecklenburg-Vorpommern. The lowest concentrations of AMPA were found in 

May showing lower glyphosate activities in spring.  

    

(A)                                                                                         (B) 

Figure 3.29:  Spatial and time variation of glyphosate (A) and AMPA (B) transport to the Baltic Sea through 

the ten investigated estuarine stations in May, June, August and September 2012. 

 

However, it is difficult to assess the factors which cause these variations among different 

stations because many factors can lead to these observed variations. For example, 

application methods of glyphosate, dosage (agricultural or non-agricultural source), soil 

characteristics, weather conditions, behavior of glyphosate and AMPA during the transport 

process in rivers and estuaries, geological conditions and the mixing ratio of the 

contaminated freshwater with less contaminated seawater  strongly influence the 

transport process. 

In order to study the time variations in transport glyphosate and AMPA into the Baltic Sea 

through one station, nine water samples were collected between May and September from 

the estuary of Mühlenfließ (station 7). The variations in AMPA concentration were higher 

than that observed for glyphosate (Figure 3.30). In eight of the measured samples AMPA 

concentrations were higher than those of glyphosate could be due a higher mobility of 

AMPA than glyphosate as well as the additional source of AMPA such as the phosphonates. 

The highest concentration for both compounds was measured after rainfall events. Many 

factors can led to this variation such as weather conditions, the applied amount of 

glyphosate, an urban source of glyphosate and AMPA, the flow rate of rivers and stream 

and the dilution with the Baltic Sea. The observed variation reflects fluctuations of 

transport of glyphosate and AMPA through the German rivers and streams into the Baltic 

Sea.  
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Figure 3.30: Time variation of glyphosate and AMPA transport to the Baltic Sea through the estuary of   

Mühlenfließ between May and September in 2012. 

As shown in Figure 3.31, small differences in the measured concentrations were observed 

among the stations for the herbicides bentazon and isoproturon. The mean concentration 

of bentazon in the investigated estuarine stations ranged from 1 ng/L to 16 ng/L and for 

isoproturon from 2 ng/L to 23 ng/L. The highest concentrations of isoproturon were 

observed in September in stations (1,5,6,8,10) and in May in stations (2,3) because of its 

application as a pre- and post-emergence herbicide (Mallat et al., 2001; Paris-Palacios et al., 

2010). 

   

(A) (B) 

Figure 3.31: Spatial and time variation of (A) bentazon and (B) isoproturon transport to the Baltic Sea 

through the ten investigated estuarine stations in May, June, August and September 2012. 
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Bentazon is commonly used as an early post-emergence herbicide, therefore its highest 

concentration was found in May in stations (1,4,5,7,10) and its lowest concentration was 

observed in September in stations (1,4,5,10). According to these data, the spatial and 

monthly variation of the herbicides bentazon and isoproturon were minor compared to 

those of glyphosate and AMPA. 

3.2.7   Fate of glyphosate and AMPA 

In order to study the fate of the herbicide glyphosate and its metabolite AMPA, i.e. establish 

the relationship between their concentrations and salinity, water samples were collected 

from four different points with four different salinity values. The sampling stations were 

distributed along Mühlenfließ starting from a fresh water point (i.e. salinity 0.4) and ending 

in the Baltic Sea (salinity 12). As shown in Figure 3.32, glyphosate and AMPA 

concentrations decreased with increasing salinity. The measured concentrations of 

glyphosate and AMPA at a salinity value of 0.4 (3.5 km away from the mouth) were 2436 

ng/L and 4434 ng/L, respectively. A significant decrease in the measured concentration of 

both compounds (over 50%) was found with an increasing salinity up to 1.7 (60 m away 

from the mouth) and over 62% with increasing salinity up to 1.9 in the mouth of 

Mühlenfließ. Glyphosate and AMPA were not detected in the Baltic Sea water sample which 

was collected 4 meters away from the mouth in a salinity of 12 due to the mixing of fresh 

water of Mühlenfließ and the less contaminated Baltic Sea water and consequently their 

concentrations are lower than the limits of detection of the method. 

  

 

Figure 3.32: Mixing plot of glyphosate and AMPA in Mühlenfließ. 
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Compared to results from another study conducted on the fate of other pesticides such as 

diuron, atrazine and monuron, this result supports the previous study by also showing a 

decrease in pesticide concentration with an increasing salinity value (Steen et al., 2000). On 

the other hand, and according to our study, a decrease in glyphosate and AMPA 

concentrations was observed to be very high with a small increase in salinity. In addition to 

the dilution with sea water, the adsorption of compounds onto particles and subsequent 

sedimentation could be a reason for this significant decrease of concentration values.      

3.2.8   Occurrence of the selected compounds in the German Baltic coast 

Water samples were collected from the German Baltic coast in Heiligendamm (salinities > 

9) between May and September, at a rate of two samples monthly, in order to study the 

potential occurrence of the selected herbicides and metabolites at the Baltic coast. None of 

the target analytes were detected in the collected water samples.  

According to the transport data of the selected herbicides and metabolites, no detection of 

the herbicides chloridazon, MCPA and mecoprop and the metabolite CMD was expected 

because of the low and/or non-discharge into the Baltic Sea through German rivers. The 

herbicides isoproturon and bentazon were detected at high frequencies in the studied 

estuarine stations but their concentrations were lower than the low-ng/L level. Therefore, 

their occurrence at the Baltic Sea coast is expected to be at a concentration level lower than 

their limits of detection for the method used due to the dilution with the Baltic Sea. 

In spite of the high detection frequency and comparatively high concentrations of the 

herbicides glyphosate and its metabolite AMPA in the estuarine stations, these compounds 

were not detected in water samples taken from the coast of the Baltic Sea. Several reasons 

may attribute to this result: glyphosate and AMPA could be present in the Baltic Sea in 

concentrations lower than the limit of detection of the analytical method, fast degradation, 

sedimentation, uptake by Baltic Sea plants or utilization by some microorganisms as the 

sole source of carbon, phosphorus or nitrogen.  

 

In this section, the occurrence of six polar herbicides, glyphosate, isoproturon, bentazon, 

MCPA, mecoprop and chloridazon and two of their metabolites AMPA and CMD in the Baltic 

estuaries was examined by the analysis of water samples collected from ten German Baltic 

estuarine stations between May and September in 2012. The presence of the selected 

compounds in the Baltic estuaries was used as confirmation for their transport into the 

Baltic Sea.  

All the target compounds were detected at the estuarine stations except for the herbicide 

chloridazon. The metabolite AMPA was the compound most detected at the estuarine 

stations followed by the herbicides isoproturon, glyphosate and bentazon. The metabolite 
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AMPA and its parent herbicide glyphosate were observed to have the highest detection 

frequency and concentrations ranged from a few nanograms per liter to a few micrograms 

per liter in some stations. Therefore, they can be considered to be the most important 

compounds transported through the German Baltic Estuaries into the Baltic Sea compared 

to other selected compounds in this study. 

Even though isoproturon and bentazon were detected in many estuarine water samples, 

their highest measured concentrations were 52 ng/L and 19 ng/L, respectively, and 

consequently their transport into the Baltic Sea was considered to be less compared to 

glyphosate and AMPA. The compounds MCPA, mecoprop and CMD were detected at small 

values (< 23%) in the collected water samples. MCPA and CMD were quantified in some 

water samples, whereas the measured concentrations of mecoprop were below the LOQ of 

the analytical method of 50 ng/L. The highest concentrations of MCPA and CMD of 747 

ng/L and 121 ng/L, respectively, were observed after a rainfall event. No or low transport 

(i.e. below the LOD of the analytical method of 10 ng/L) of the herbicide chloridazon into 

the Baltic Sea through the investigated stations was observed.  

Clear local and temporal variations in transport of the herbicide glyphosate and its 

metabolite AMPA were observed between different stations and also in the same station 

over time. On the other hand, these variations were observed to be low for the herbicide 

isoproturon and bentazon. The compounds glyphosate, AMPA, isoproturon, bentazon, 

MCPA, mecoprop and CMD were found to be transported into the Baltic Sea under different 

weather conditions. AMPA was observed to be more mobile with higher transport rates 

after rainfall events as compared to glyphosate, whereas the difference in transport of 

bentazon and isoproturon in both wet and dry weather was negligible.  

The two herbicides glyphosate and MCPA and the two metabolites AMPA and CMD were 

detected at high concentration levels exceeding the European ground water quality 

standard for pesticides of 0.1 µg/L. The frequencies of detection of AMPA and glyphosate at 

concentrations over 0.1 µg/L were 65% and 41%, respectively, followed by MCPA and CMD 

of 9% and 2%, respectively. The concentrations of the herbicides isoproturon, bentazon 

and mecoprop did not exceed this threshold. Regarding this threshold, the surface water in 

Mecklenburg-Vorpommern is highly contaminated with AMPA and glyphosate.   

A significant decrease in glyphosate and AMPA concentrations were observed from the 

fresh water toward the Baltic Sea. None of the studied herbicides and metabolites was 

detected in the coast of the Baltic Sea in Mecklenburg-Vorpommern. 
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3.3   Response of Nodularia spumigena to the herbicide 

glyphosate (Roundup®) and its metabolite AMPA 

A potential adverse impact of chemical pressure on coastal and estuarine marine 

microalgae is of major concern. Glyphosate and its metabolite AMPA were first detected in 

the German Baltic estuaries (this thesis, section 3.2.1). For a long period, Glyphosate was 

believed to be an “environmentally friendly” herbicide (Williams et al., 2000). However, 

many recent studies have given evidence that glyphosate and its formulations can have 

negative effects on aquatic organisms such as algae (Tsui and Chu, 2003), plants (Sobrero 

et al., 2007), invertebrates (El-Shenawy et al., 2009), and vertebrates (Glusczak et al., 2007; 

Salbego et al., 2010). 

Glyphosate is usually used in different trade formulations with glyphosate being the basic 

ingredient in products such as Roundup®, Rodeo®, Vision®, Glyphos®, Duramax®, 

Durango®, etc. Roundup®, which includes surfactants, is the most common commercial 

name (Pérez et al., 2011). Due to the hydrophilic characteristic of glyphosate, its diffusion 

across the hydrophobic bilayers is limited. The addition of surfactants is to improve 

glyphosate transport into the plant tissue (Riechers et al., 1994). In general, the commercial 

formulations of glyphosate (e.g. Roundup®) have shown a higher toxicity to aquatic 

organisms than the technical glyphosate alone (Cedergreen and Streibig, 2005; Sobrero et 

al., 2007; Tsui and Chu, 2003). For example, Roundup® was approximately 4 times more 

toxic to the aquatic plant Lemna minor L. and the green alga Pseudokirchneriella subcapitata 

than the technical glyphosate (Cedergreen and Streibig, 2005). Another study conducted on 

the comparison of the sensitivities of different organisms to the herbicide glyphosate and 

some of its formulations has shown that Roundup® is approximately 4 times more toxic to 

Selenastrum capricornutum, 20 times to Acartia tonsa, 22 times to Tetrahymena pyriformis 

and 27 times to Ceriodaphnia dubia  than technical glyphosate (Tsui and Chu, 2003).  

Aquatic plants and microalgae are usually more sensitive to the herbicide glyphosate than 

other organisms such as bacteria, protozoa, invertebrates, fish and amphibians due to the 

mode of action with which glyphosate interferes with plant metabolisms (Pérez et al., 

2011). Glyphosate controls plants by inhibiting the activity of the enzyme 5-enolpyruvyl-

shikimic acid-3-phosphate synthase (EPSP) which is involved in the biosynthesis of 

aromatic amino acids such as phenylalanine, tryptophan, and tyrosine, (Carlisle and 

Trevors, 1987; Miller et al., 2010; Steinrticken and Amrhein, 1980). Cyanobacteria are a 

group of prokaryotes which have the same photosynthetic mechanism as eukaryotic algae 
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and higher plants (Lipok et al., 2010). In a microcosms study on the influence of Roundup® 

on natural marine microbial communities it was demonstrated that Roundup® can disturb 

this ecosystem even at concentration of 1 µg/L (Stachowski-Haberkorn et al., 2008). 

However, still only little is known about the toxicity of the herbicide glyphosate and its 

metabolite AMPA to the marine algae especially blue-green algae. 

It was shown that there are considerable differences in sensitivity in cyanobacteria to the 

herbicide glyphosate. For instance, growth of the cyanobacteria aphanocapsa 6308, 

anabaena variabilis, nostoc strain mac was completely inhibited when they were exposed to 

a glyphosate concentration of 10 mg/L, while the glyphosate concentration required for the 

inhibition of growth of  aphanocapsa 6714  was more than 100 mg/L (Hutber et al., 1979). 

Lipok et al. (2010) reported that the cyanobacteria Anabaena catenula, Synechocistis 

aquatilis, Microcystis aeruginosa and Leptolynbya boryana showed sensitivity to the 

herbicide glyphosate when they were exposed to a concentration of 0.07 mM, while S. 

(Arthrospira) platensi, Arthrospira fusiformis and Nostoc punctiforme were tolerant to the 

exposure to the same concentration of glyphosate. 

Nodularia spumigena (N. spumigena) is a filamentous and heterocystous cyanobacterium 

commonly observed in brackish water (Voss et al., 2013). N. spumigena is one of the 

dominant cyanbacteria observed during the summer bloom in the Baltic Sea (Stal and 

Walsby, 2000; Wasmund, 1997). Mass occurrence of N. spumigena has a negative effect on 

human (e.g. tourism, recreation and fisheries) and on the aquatic ecosystem because it 

produces nodularin, a potent cyclic pentapeptide hepatotoxin, which can cause death in 

some organisms when it is present in high dosages (Grondahl, 2009; Mazur-Marzec et al., 

2007; Stolte et al., 2002). However, N. spumigena as a nitrogen-fixing cyanobacterium plays 

an important role as primary producers by introducing both new carbon and nitrogen into 

the ecological system (Vintila et al., 2010).  

The effect of both glyphosate in its formulation Roundup® and the metabolite AMPA on the 

growth of the non-target cyanobacterium N. spumigena was tested in this study. Three 

parameters Chl-a, total cell number and POC were measured to determine N. spumigena 

growth rates in the presence of various concentrations of Roundup® and AMPA (1, 10, 50, 

100, 500 µg/L). Maximum tested concentrations of both toxicants in this study were 500 

µg/L because higher than these concentration levels are not expected to occur in estuaries 

and in the marine environment due to the dilution process. Figure 3.33 presents the time 

changes in Chl-a content of N. spumigena cultures when exposed to different 

concentrations of Roundup® and AMPA. 
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                            (A)                                                                                 (B) 

Figure 3.33:   The Chl-a concentrations of control (C0) and treated cultures under different concentrations  

(C = 1, 10, 50, 100 and 500 µg/L) of (A) Roundup® and (B) AMPA during the toxicity 

experiment.  

 

The results show that N. spumigena cultures treated with concentrations of Roundup® and 

AMPA between 1-500 µg/L produced a similar amount of Chl-a content as their controls. 

Increases in Chl-a content were observed in the cultures exposed to Roundup® and AMPA 

during the toxicity test period. At the highest exposure concentration of 500 µg/L, the Chl-a 

content in the culture exposed to Roundup® increased almost eightfold from 8.8 ± 1.9 µg/L 

(mean ± SD) on day 0 to 79.2 ± 35.4 µg/L on day 26 and increased almost fourteen-fold 

from 1.0 ± 0.8 µg/L on day 0 to 134.7 ± 7.7 µg/L on day 26 in case of AMPA. Slight increases 

in Chl-a content was observed during the first week in cultures exposed to Roundup® and 

AMPA. In the case of AMPA, low growth of N. spumigena was observed at cultures treated 

with the low tested concentration levels of 1 and 10 µg/l compared to their controls. This 

may be due to variations of light intensities and other inexplicable reasons. However, based 

on the highest exposure concentrations of 500 µg/L Roundup® and AMPA, no effect on the 

Chl-a synthesis was observed in regards to the tested concentrations of both compounds. 

This result does not mean that Roundup® and AMPA can’t impact Chl-a synthesis of N. 

spumigena because the toxicity of chemicals depends on the dosage generally. Qiu el al. 

(2013) showed that growth of Microcystis aeruginosa based on Chl-a content was not 

affected when it was exposed to Roundup® concentrations below 1 mg P L-1 but it was 

significantly inhibited at exposure concentration of 5 mg P L-1 of Roundup®, for instance.  

Based on the cell densities data, total cell numbers had increased in cultures treated with 

different concentrations of Roundup® and AMPA during the toxicity test of 26 days (Figure 

3.34). In the case of 500 µg/L Roundup® exposure, the total cell number rose from 0.8 x 
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10+6 ± 0.3 x 10+6 cell L-1 on day 0 up to 5.4 x 10+6 ± 1.7 x 10+6 cell L-1 on day 26, showing 

almost a sevenfold increase. In the control culture on day 26, the total cell number 

increased up to 4.6 x 10+6 ± 1.3 x 10+6 cell L-1.   

    

                                                   (A)                                                                                           (B) 

Figure 3.34:  The total cell number of control (C0) and treated cultures under different concentrations (C = 1, 

10, 50, 100 and 500 µg/L) of (A) Roundup® and (B) AMPA during the toxicity experiment. 

    

 (A)                                                                                            (B) 

Figure 3.35:  Time-related changes in POC of control (C0) and treated cultures with different concentrations 

(C = 1, 10, 50, 100 and 500 µg/L) of (A) Roundup® and (B) AMPA during the toxicity 

experiment.                                                            
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In the case of 500 µg/L AMPA treatments, the total cell number increased from 0.4 x 10+6 ± 

0.1 x 10+6 cell L-1 on day 0 up to 5.5 x 10+6 ± 1.1 x10+6 cell L-1 on day 26, showing almost a 

twelvefold increase. In the control culture on day 26, the total cell number increased up to 

6.42 x 10+6 ± 0.88 x 10+6 cell L-1. At the end of the experiment on day 26, there were no 

significant differences between cultures treated with 500 µg/L Roundup® and its control 

and also between cultures treated with 500 µg/L AMPA and its control, therefore statistical 

tests were not performed. The increase in the total cell number during the toxicity test was 

verified by POC data (Figure 3.35). No effect on cell densities was observed with increasing 

the toxicants concentrations to up to 500 µg/L level. Based on the results obtained in the 

present study, N. spumigena showed a high degree of tolerance to the herbicide Roundup® 

and the metabolite AMPA in regards to the tested concentrations in the range of 1-500 

µg/L. Even though there are many studies on the contamination of AMPA in the 

environment (Coupe et al., 2012; Scribner et al., 2007), there is still a scarcity of literature 

on its toxicity on microorganisms, especially blue-green algae. Therefore, the general effect 

of AMPA on N. spumigena was difficult to be predicted. Cyanobacteria have shown 

remarkable adaptation to different kind of chemicals (Powell et al., 1991). Growth of the 

cyanobacteria Spirulina platensis, Arthrospira fusiformis, Nostoc punctiforme, Leptolynbya 

boryana and Synechocystis aquatilis was unaffected when they were exposed to Roundup® 

at concentration levels in the microgram per liter range (Lipok et al., 2010). Qiu el al. 

(2013) reported that Roundup® did not affect growth of Microcystis aeruginosa based on 

Chl-a content and cell density at concentration levels below 1mg P L-1. Due to the ability of 

many cyanobacteria to adapt to the herbicide Roundup® stress and due to the relatively 

low tested concentrations of Roundup® (maximum 500 µg/L), these results were relatively 

anticipated.  

Measurement of Glyphosate concentrations in the Roundup® formulation failed using 

HPLC-MS/MS because of an analytical problem. The reason of the analytical problem was a 

presence of high concentrations of isopropylamine salt in the Roundup® formulation which 

required high concentrations of FMOC-Cl for achieving glyphosate derivatization which 

subsequently caused a precipitation on the reversed phase column. Furthermore, presence 

of high concentrations of surfactants (pelargonic acid) in the Roundup® formulation could 

be an additional reason for this problem. However, numerous cyanobacteria as Spirulina 

platensis, Anabaena sp., Leptolyng bya boryana, Microcystis aeruginosa and Nostoc 

punctiforme are found to be able to degrade glyphosate in aqueous mediums and use it as 

source of phosphorus for their growth (Forlani et al., 2008; Lipok et al., 2007). Tolerance of 

some cyanobacteria to the ingredient glyphosate can be related to different mechanisms 

such as the production of a glyphosate-tolerant enzyme, overproduction of EPSP synthase 

and the ability of a cyanobacterium to degrade glyphosate and use it as a phosphorus 

source (Forlani et al., 2008; Powell et al., 1991). 
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Based on the measurement of AMPA concentrations in all the treated cultures (Figure 

3.36), no significant changes in the concentrations were observed during 19 days of the 

toxicity test. This was probably due to the existence of PO4
-3 in the f/2 media which have 

prevented the cleavage of the C-P bond. The presence of PO4
-3 inhibits degradation and the 

use of AMPA as a source of phosphorus (Balthazor and Hallas, 1986).  

 

 

Figure 3.36: Change in AMPA concentrations (n=3) in the culture during 19 days of the toxicity experiment. 

The concentrations are C = 1, 10, 50, 100, 500 µg/L. 

In order to study the ability of N. spumigena to degrade AMPA (i.e. estimation of the half 

time of AMPA) and to use it as source of phosphorus we suggest conducting the experiment 

in conditions of phosphorus limitation. Resistance of N. spumigena to the metabolite AMPA 

could be related to non-herbicidal activity of AMPA and/or to one of the resistance 

mechanisms of glyphosate. The results presented in this study provide new evidence on the 

tolerance of cyanobacteria to contaminants such as Roundup® and AMPA with respect to 

their tested dosages. 

Nowadays there is limited information on the toxicity of the herbicide glyphosate 

(Roundup®) and its metabolite AMPA to marine algae. The 26 days growth of the marine 

blue-green algae N. spumigena based on Chl-a, cell densities and POC were unaffected when 

they exposed to concentrations levels 1-500 µg/L of Roundup® and AMPA. N. spumigena 

was unable to degrade AMPA in the f/2 medium during 19 days measurement. N. 

spumigena is added to the list of other cyanobacteria which showed tolerance to the 

herbicide Roundup® according to the treated concentrations such as Chlorella vulgaris, 

Microcystis aeruginosa, Anabaena catenula, Spirulina platensis, Arthrospira fusiformis, 

Nostoc punctiforme, Leptolynbya boryana and Synechocystis aquatilis. However, other types 
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of phytoplankton such as diatoms and dinoflagellates could be more sensitive to the 

herbicide Roundup® and maybe to its metabolite AMPA. Therefore, there is a need for 

further research in this field. 
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4.  Conclusion and Outlook 

The present thesis compared two analytical techniques GC-MS and HPLC-MS/MS for the 

analysis of six polar herbicides and three of their metabolites in water samples. The polar 

compounds are the six herbicides glyphosate, MCPA, mecoprop, isoproturon, bentazon and 

chloridazon and three of their metabolites aminomethylphosphonic acid (AMPA), 

chloridazon-desphenyl (CD) and chloridazon-methyl-desphenyl (CDM). As a result, HPLC-

MS/MS was preferred over GC-MS for their analysis. GC-MS was found to be an unsuitable 

technique for their direct analysis. Moreover, it was found to be unable to achieve their 

analysis in one single run after their derivatization with the reagents TFAA and TFE. The 

technique HPLC-MS/MS was found to be suitable for the direct analysis of six of the 

substances. These compounds are MCPA, mecoprop, isoproturon, bentazon, chloridazon 

and CMD. Therefore, an analytical method was developed and validated for their direct 

analysis using HPLC-MS/MS. Due to the high polarity and water solubility of glyphosate 

and AMPA, they were unsuitable for the direct HPLC-MS/MS analysis but suitable after 

their derivatization with the reagent FMOC-Cl. Accordingly, another analytical method was 

developed and validated for the analysis of glyphosate and AMPA in water samples after 

their derivatization with FMOC-Cl. The metabolite CD was difficult to analyze by both 

techniques.  

Both analytical methods were developed according to HPLC and MS/MS parameters in 

order to achieve the best chromatographic performance and detector sensitivity. 

Separation of both methods was achieved on a reversed phase column. The validation 

parameters included linearity, LODs and LOQs, precision, accuracy, matrix effect, analytes 

and system stability. Satisfied validation parameters were obtained as linearity, precision, 

accuracy. LODs and LOQs were at the low concentration level of nanograms per liter. A 

matrix effect problem was solved using the standard addition method.  

The HPLC-MS/MS analytical methods were applied in order to study the occurrence of the 

selected compounds as evidence for their transport into the Baltic Sea. Water samples were 

collected from ten German Baltic Estuaries in 2012 between May and September and 

analyzed by HPLC-MS/MS. AMPA was often detected in the collected water samples (93%) 

followed by the herbicides isoproturon, glyphosate and bentazon over 70%. Frequency of 

detection of MCPA, mecoprop and CMD was less than 23%. The herbicide chloridazon was 

not detected in all estuarine water samples. The metabolite AMPA and its parent herbicide 

glyphosate had the highest frequencies of detection and concentration (up to µg/L in some 
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samples), therefore, they are considered to be the most important compounds transported 

through the German Baltic Estuaries into the Baltic Sea compared to other selected 

compounds in this study. All investigated sampling sites were observed to be contaminated 

with AMPA and nine of them with glyphosate.  

The measured concentrations of isoproturon and bentazon lied in the range of 3-34 ng/L 

and 5-19 ng/L, respectively. MCPA was found in 4 sampling sites but in one of them at 

concentration levels below the LOQ of the analytical method of 50 ng/L. The maximum 

MCPA concentration measured was 747 ng/L. Mecoprop was detected in some sampling 

sites, but always below the LOQ of the analytical method of 50 ng/L. Detection frequencies 

of AMPA and glyphosate at concentration levels over 0.1 µg/L (the European ground water 

quality standard for individual pesticide) were 65% and 41%, respectively, following by 

MCPA and CMD of 9% and 2%, respectively. Mühlenfließ estuary was found to be the most 

contaminated sampling site compared to other investigated stations in this study. Urban 

origin such as wastewater treatment plants could be the main reason for the contamination 

of Mühlenfließ estuaries.  

The compounds glyphosate, AMPA, isoproturon and bentazon were observed to be 

transported in wet and dry weather conditions. Clear local and temporal variations in 

transport of the herbicide glyphosate and its metabolite AMPA were observed. On the other 

hand, the variation was low for isoproturon and bentazon compared to glyphosate and 

AMPA. A significant decrease in glyphosate and AMPA concentrations were observed from 

the fresh water toward the Baltic Sea. The studied herbicides and metabolites were not 

analyzed in the coast of the Baltic Sea in Heiligendamm. However, further researches are 

required in order to study the fate of the detected contaminants in the Baltic Sea. 

The effect of the herbicide Roundup® (the commercial formulation of glyphosate) and the 

metabolite AMPA on the growth of the marine cyanobacterium Nodularia spumigena was 

studied based on Chl-a, total cell number and POC. The algal cultures were grown in the 

presence of various concentrations of Roundup® and AMPA (1-500 µg/L). The incubation 

period was 26 days. As a result, no effect of both compounds on growth of N. spumigena 

regard to Chl-a, total cell number and POC was observed. N. spumigena showed a high 

degree of tolerance to the herbicide Roundup® and AMPA. N. spumigena was incapable to 

degrade AMPA according to the experimental conditions such as the presence of PO4
-3 

which may inhibit its uptake and degradation.    

For future investigations, the following suggestions could be of interest. 

Study the role of the atmospheric precipitation in transport of glyphosate and AMPA into 

the Baltic Sea which was found to have a high adsorption capacity on the air particles. 



Chapter 4: Conclusion and Outlook 
 

85 
 

Development of an extraction method for polar compounds from salt water (i.e. Baltic Sea 

samples). 

Study fat and behavior of glyphosate and AMPA in the Baltic Sea as their degradation (i.e. 

half time), sedimentation and their utilization as a source of phosphorus and nitrogen for 

marine phytoplankton.  

Study the toxicity of the detected compounds to different marine organism such as marine 

algae (e.g. diatoms and dinoflagellates) and plants, zooplankton and fish.  

Study the potential transport of other polar contaminants classes into the Baltic Sea such as 

polar pharmaceutical. 
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Abbreviations 

 

AA Area 
AMPA    Aminomethylphosphonic acid 

AMPA-FMOC Aminomethylphosphonic acid-9-fluorenylmethoxycarbonyl 

ATMP Aminotris (methylenephosphonate) 

CD Chloridazon-desphenyl 

CMD   Chloridazon-methyl-desphenyl 

DTPMP Diethylenetriaminepenta (methylenephosphonate) 

EDTMP Ethylenediaminetetra (methylenephosphonate) 

FMOC-Cl 9-fluorenylmethoxycarbonyl chloride 

GC Gas chromatography 

Glyphosate-FMOC Glyphosate-9-fluorenylmethoxycarbonyl 

HDTMP Hexamethylenediaminetetra (methylenephosphonate) 

HESI Heated Electrospray ionization 

HPLC High performance liquid chromatography 

LC50 

LD50 

LOD 

Lethal concentration 

Median lethal dose 

Limit of detection 

LOQ Limit of quantification                              

MS Mass spectrometry 

M-W 

M/Z 

N. spumigena 

Mecklenburg-Vorpommern 

mass-to-charge ratio 

Nodularia spumigena 

PTV 

QqQ 

RE% 

RP 

Programmed temperature vaporizer  

Triple quadrupole 

Relative error 

Reversed phase 

RT Retention time 
RSD% Relative standard deviation 

S-H 

SRM 

Schleswig-Holstein 

Selected reaction monitoring 

TFAA Trifluoroacetic anhydride 

TFE Trifluoroethanol 

WWTP Wastewater treatment plants 
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Appendices 

Appendix 1: Mass spectrum obtained from direct GC-MS analysis of isoproturon-D6. 

 

Appendix 2: Mass spectrum obtained from direct GC-MS analysis of bentazon-D7. 
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Appendix 3: Mass spectrum obtained of direct GC-MS analysis of chloridazon-D5. 
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Appendix 4:     Data of GC-MS analysis of four compounds CMD, isoproturon, bentazon, and 

chloridazon at masses range from 0.02 ng to 10 ng. The masses used of the 

labeled compounds chloridazon-D5, isoproturon-D6 and bentazon-D7 are 10 

ng. 

 CMD Isoproturon Bentazon Chloridazon 
Mass (ng) 0.02 0.02 0.02 0.02 

Average area C / average area D 0.002131294 0.001629093 0.229608049 0.00383936 
SD 0.001657671 0.000725439 0.14487879 0.001660902 

%RSD 77.8 44.5 63.1 43.3 
Mass (ng) 0.05 0.05 0.05 0.05 

Average area C / average area D 0.002097398 0.005485502 0.037409322 0.003395247 
SD 0.000524886 0.001090912 0.010375655 0.001108621 

%RSD 25.0 19.9 27.7 32.7 
Mass (ng) 0.1 0.1 0.1 0.1 

Average area C / average area D 0.003571168 0.012385331 0.026137975 0.008570284 
SD 0.000636108 0.002290783 0.003885801 0.001321868 

%RSD 17.8 18.5 14.9 15.4 
Mass (ng) 0.15 0.15 0.15 0.15 

Average area C / average area D 0.005336568 0.016667014 0.032755344 0.011833652 
SD 0.000709758 0.002103576 0.003098320 0.002348390 

%RSD 13.3 12.6 9.5 19.8 
Average area C / average area D 0.007673289 0.021813658 0.040583672 0.012957742 

SD 0.001347165 0.003691938 0.003216992 0.001913427 
%RSD 17.6 16.9 7.9 14.8 

Mass (ng) 0.3 0.3 0.3 0.3 
Average area C / average area D 0.016573372 0.031425186 0.052958821 0.021845987 

SD 0.004485557 0.005787536 0.004834195 0.001711777 
%RSD 27.1 18.4 9.1 7.8 

Mass (ng) 0.5 0.5 0.5 0.5 
Average area C / average area D 0.021331183 0.053756893 0.080268427 0.040289006 

SD 0.002286112 0.005134251 0.012548278 0.003635503 
%RSD 10.7 9.6 15.6 9.0 

Mass (ng) 1.0 1.0 1.0 1.0 
Average area C / average area D 0.037308077 0.132704793 0.153531377 0.074269236 

SD 0.003042505 0.025669549 0.018252516 0.005869875 
%RSD 8.2 19.3 11.9 7.9 

Mass (ng) 2.0 2.0 2.0 2.0 
Average area C / average area D 0.120715284 0.258820003 0.295520205 0.168995324 

SD 0.028497594 0.046267851 0.063554395 0.023761609 
%RSD 23.6 17.9 21.5 14.1 

Mass (ng) 5.0 5.0 5.0 5.0 
Average area C / average area D 0.281543827 0.495262219 0.754366947 0.445343239 

SD 0.035919884 0.066046001 0.145558728 0.075487132 
%RSD 12.8 13.3 19.3 17.0 

Mass (ng) 7.0 7.0 7.0 7.0 
Average area C / average area D 0.390304267 0.804196826 1.214180242 0.539774559 

SD 0.034280946 0.04488371 0.112772843 0.065093015 
%RSD 8.8 5.6 9.3 12.1 

Mass (ng) 10.0 10.0 10.0 10.0 
Average area C / average area D 0.524472651 1.22058545 1.820897949 0.858888373 

SD 0.073979232 0.133268845 0.181331715 0.070703903 
%RSD 14.1 10.9 10.0 8.2 

SD:                                          absolute standard deviation 
%RSD:                                                       relative standard deviation 
Average area C / average area D:   ratio of average of three measurements of the target compounds to 

three measurements of its labeled deuterium compound 
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Appendix 5: Mass spectrum obtained of derivatized glyphosate 1, 2 C13 N15 with TFAA and 

TFE.               

 

 

Appendix 6: Mass spectrum obtained of derivatized AMPA-C13 N15 with TFAA and TFE.                            

                             

 

 

 



Appendices 

109 
 

Appendix 7: Mass spectrum obtained of derivatized mecoprop-D6 with TFAA and TFE. 

 

 

Appendix 8: Mass spectrum obtained of derivatized MCPA-D6 with TFAA and TFE. 
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Appendix 9: Chemical reactions of labeled glyphosate 1, 2-C13 N15 and AMPA-C13 N15 with 

the reagents TFAA and TFE. 
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Appendix 10: Chemical reactions of labeled mecoprop-D6 and MCPA-D6 with the reagents  

TFAA and TFE. 
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Appendix 11: Four gradient protocols used for optimization of gradient elution in HPLC-

RP- MS/MS analytical method for analysis glyphosate-FMOC and AMPA-

FMOC. 

                              

                             Gradient elution 1 

Time (min) Eluent A (%) Eluent B (%) Flow rate (μL/min) 
0.00 99.00 1.00 100.00 
4.00 99.00 1.00 100.00 

10.00 37.00 63.00 100.00 
11.00 5.00 95.00 100.00 
24.00 5.00 95.00 100.00 
26.00 99.00 1.00 100.00 
30.00 98.00 1.00 100.00 

 100.00 0.00 100.00 
   

                                Gradient elution 2 

Time (min) Eluent A (%) Eluent B (%) Flow rate (μL/min) 
0.00 99.00 1.00 100.00 
2.00 99.00 1.00 100.00 

15.00 5.00 95.00 100.00 
24.00 5.00 95.00 100.00 
26.00 99.00 1.00 100.00 
30.00 98.00 1.00 100.00 
0.00 100.00 0.00 100.00 

 99.00 1.00 100.00 
                              

                                 Gradient elution 3 

Time (min) Eluent A (%) Eluent B (%) Flow rate (μL/min) 
0.00 99.00 1.00 100 
2.00 99.00 1.00 100 

10.00 5.00 95.00 100 
24.00 5.00 95.00 100 
26.00 99.00 1.00 100 
30.00 98.00 1.00 100 
0.00 100.00 0.00 100 

 99.00 1.00 100 

 

                  Gradient elution 4 
Time (min) Eluent A (%) Eluent B (%) Flow rate (μL/min) 

0 99.00 1.00 100 
2 99.00 1.00 100 

15 37.00 63.00 100 
17 37.00 63.00 100 
19 5.00 95.00 100 
27 5.00 95.00 100 
30 99.00 1.00 100 

 100.00 0.00 100 
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Appendix 12: Data of the measured concentrations (ng/L) of the target compounds at the 

11 sampling stations, salinities, temperature, sampling date and weather 

conditions. Source of the weather conditions (wettertopia.de) 

Sta. Gly. 
 

AMPA 
 

CMD 
 

Chlo. 
 

Bent. 
 

Isop. 
 

MCPA 
 

Meco. 
 

S T (°C) Date      Weather 
     

1 101 273 nd nd 14 nd nd nd 0.5 19.2 22.05.2012 dry 
1 66 870 nd nd d d d d 0.1 19.5 21.06.2012 dry 
1 100 643 nd nd 6 d d nd 0.3 20.9 22.08.2012 dry after rainfall 
1 62 815 nd nd nd 5 nd nd 0.1 12.3 25.09.2012 wet 
2 nd d 28 nd nd 17 nd nd 1.3 17.8 22.05.2012 dry 
2 nd 79 25 nd d 11 nd nd 1.1 18.9 21.06.2012 dry 
2 nd 50 nd nd d 6 nd nd 0.9 22.6 22.08.2012 dry after rainfall 
2 nd d nd nd d 8 nd nd 1.1 12.8 25.09.2012 wet 
3 d nd d nd nd d nd nd 5.8 17.8 22.05.2012 dry 
3 nd nd nd nd nd nd nd nd 1.3 19.0 21.06.2012 dry 
3 252 69 nd nd nd d nd nd 5.7 21.4 22.08.2012 dry after rainfall 
3 d nd nd nd nd d nd nd 6.1 13.7 25.09.2012 wet 
4 94 45 nd nd 12 25 55 nd 1.2 18.2 22.05.2012 dry 
4 120 d nd nd 6 6 nd nd 1.2 19.1 21.06.2012 dry 
4 95 101 nd nd 11 nd nd nd 3.0 21.0 22.08.2012 dry after rainfall 
4 nd 51 nd nd d nd nd nd 4.1 13.0 25.09.2012 wet 
5 nd 45 nd nd 14 nd nd nd 0.5 17.2 22.05.2012 dry 
5 nd 64 nd nd 11 nd nd nd 0.5 20.3 21.06.2012 dry 
5 28 171 nd nd 12 nd nd nd 0.3 20.9 22.08.2012 dry after rainfall 
5 nd d nd nd 6 5 nd nd 2.6 11.8 25.09.2012 wet 
6 29 99 nd nd nd 7 nd nd 0.3 16.6 22.05.2012 dry 
6 nd 132 nd nd 10 8 nd nd 0.1 18.6 21.06.2012 dry 
6 d 150 nd nd 6 4 nd nd 0.1 20.6 22.08.2012 dry after rainfall 
6 nd 128 nd nd 10 12 nd nd 0.1 12.9 25.09.2012 wet 
nd:       Not detected 
d:         Detected but not quantified 
St:        Station 
Gly:     Glyphosate 
Chlo:   Chloridazon 
Bent:    Bentazon 
Isop:    Isoproturon 
Meco: Mecoprop 
S:         Salinity 
T:        Temperature 
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Sta. Gly. 
 

AMPA 
 

CMD 
 

Chlo. 
 

Bent. 
 

Isop. 
 

MCPA 
 

Meco. 
 

S T (°C) Date Weather  
 

7 160 497 d nd 19 6 nd nd 0.7 17.7 23.05.2012 dry 
7 445 1502 112 nd nd 11 147 d 0.5 18.5 19.06.2012 dry after rainfall 
7 480 609 nd nd d 11 d nd 0.8 20.2 22.06.2012            dry 
7 300 656 nd nd 13 41 155 d 0.1 14.1 26.06.2012 dry after rainfall 
7 1690 940 nd nd 8 52 747 d 0.3 17.6 10.07.2012 wet after rainfall 
7 322 738 46 nd 6 31 121 d 0.3 17.5 17.07.2012 dry after rainfall 
7 750 1808 nd nd nd 15 nd d 0.3 18.0 07.08.2012 wet 
7 960 4156 nd nd 8 12 d d 0.2 18.2 23.08.2012 dry after rainfall 
7 874 2098 nd nd 11 27 nd nd 0.8 11.7 26.09.2012 wet 
8 150 301 25 nd 10 8 nd nd 0.4 17.1 23.05.2012 dry 
8 225 296 nd nd 18 5 nd d 0.2 16.4 22.06.2012 dry 
8 206 393 nd nd 16 d nd d 0.2 16.9 23.08.2012 dry after rainfall 
8 1664 912 nd nd 12 34 nd nd 0.1 11.2 26.09.2012 wet 
9 nd 55 nd nd nd nd nd nd 0.3 20.1 23.05.2012 dry 
9 d 184 nd nd d nd nd nd 0 20.1 22.06.2012 dry 
9 32 195 nd nd nd nd nd nd 0 21.5 23.08.2012 dry after rainfall 
9 70 146 nd nd nd nd 66 nd 0 13.2 26.09.2012 wet 

10 55 391 d nd 19 6 nd nd 1.91 19.16 23.05.2012 dry 
10 50 340 nd nd 19 d nd nd 2.8 18.5 22.06.2012 dry 
10 69 467 nd nd 17 d nd nd 0.9 20.0 23.08.2012 dry after rainfall 
10 45 243 nd nd 10 12 nd nd 3.1 12.0 26.09.2012 wet 
11 nd nd nd nd nd nd nd nd 11.7 10.4 23.05.2012 dry 
11 nd nd nd nd nd nd nd nd 11.8 14.9 19.06.2012 dry after rainfall 
11 nd nd nd nd nd nd nd nd 11.9 15.4 22.06.2012            dry 
11 nd nd nd nd nd nd nd nd 11.3 15.0 26.06.2012 dry after rainfall 
11 nd nd nd nd nd nd nd nd 9.4 14.8 10.07.2012 wet after rainfall 
11 nd nd nd nd nd nd nd nd 10.0 16.7 17.07.2012 dry after rainfall 
11 nd nd nd nd nd nd nd nd 9.0 16.6 07.08.2012 wet 
11 nd nd nd nd nd nd nd nd 9.1 17.1 23.08.2012 dry after rainfall 
11 nd nd nd nd nd nd nd nd 11.9 13.9 26.09.2012 wet 

nd:       Not detected 
d:         Detected but not quantified 
St:        Station 
Gly:     Glyphosate 
Chlo:   Chloridazon 
Bent:    Bentazon 
Isop:    Isoproturon 
Meco: Mecoprop 
S:         Salinity 
T:        Temperature 
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Appendix 13: Comparison between the observed concentrations (ng/L) in the present 

study (PS) and to those found by (LUNG) in 2008 in freshwater samples 

(Bachor et al. 2008) regarding to the sampling  stations (1, 2, 3, 5, 6). 
 

Study 
Sta. 
Nu. 

Gly. 
May 

Gly. 
June 

AMPA 
May 

AMPA 
June 

MCPA Meco. Isop. Bent. Chlo. CMD 

PS 1 101 66 273 870 < 50 < 50 < 5 < 14 < 10 < 10 

LUNG 1 
100-
1000 

< 20 
100-
1000 

< 10 < 20 < 20 < 10 < 10 
< 10 

< 50 

PS 2 < 9 < 9 11-32 79 < 10 < 10 < 17 < 6 < 10 < 28 

LUNG 2 
100-
1000 

< 20 < 10 
100-
1000 

< 20 < 20 < 10 < 10 
< 10 

< 50 

PS 3 11-32 < 9 < 11 < 11 < 10 < 10 < 4 < 3 < 10 10-25 
LUNG 3 < 20 < 20 >1000 < 10 < 20 < 20 < 10 < 10 < 10 < 50 

PS 5 < 9 < 9 45 64 < 10 < 10 < 5 6-14 < 10 < 10 
LUNG 5 < 20 < 20 < 10 < 10 < 20 < 20 < 10 < 10 < 10 < 50 

PS 6 29 < 9 99 132 < 10 < 10 4-12 < 10 < 10 < 10 

LUNG 6 < 20 < 20 
100-
1000 

< 10 < 20 < 20 < 10 < 10 
< 10 

< 50 

Sta. Nu: Station Number 
Gly:     Glyphosate 
Meco: Mecoprop 
Isop:    Isoproturon 
Bent: Bentazon 
Chlo:    Chloridazon 
 

 



Acknowledgements 

116 
 

 

Acknowledgements 

This work was conducted in the department of Marine Chemistry, Leibniz Institute for 

Baltic Sea Research Warnemünde, Germany. 

My greatest thanks are devoted to my supervisor Prof. Dr. Detlef Schulz-Bull, head of the 

Marine Chemistry Department, without him this thesis would not have been possible. I am 

very much appreciated his support and giving me opportunity, freedom and motivations to 

do this Ph.D. thesis. 

I thank Dr. Monika Nausch for her help and providing the cyanobacterium N. Spumigena. 

Especial thanks go to Dr. Christine Neumann for her support in the analytical methods, Dr. 

Marion Abraham for her assistance in the toxic effect experiment and Dr. Anna Orlikowska 

for her advices.  

I wish to thank Wiebke Reimann for the support in English language. 

I thank Dr. Rolf Schneider, Dr. David Meyer, Lars Kreuzer, Marcus Manecki, Birgit 

Sadkowiak and Erika Trost for their help in sampling. 

I thank Susanne Lage, Christian Burmeister, Susanne Busch and Regina Kolzenburg for 

their help in different ways. 

I would like to thank all members of the marine chemistry department especially Dr. habil. 

Joanna Waniek, Dr. Ralf Prien, Dirk Wodarg, Astrid Lerz, Ines Hand, Andrea Tschakste, Irina 

Goldschmidt and Jenny Jeschek. 

Thanks for my office colleagues and friends for the nice time together: Karoline Hammer, 

Kathrin Fisch, Constantin Recknagel, Dr. Chibo Chikwililwa, Dr. Zhenang Cui, Marcus 

Manecki, Robert Schmidt, Michael Glockzin and Dr. Enrique Fernández Otero.  

My final thanks goes to my family (Mum, Samer, Hadi, Lima, Rain, Evan and Ibrahim) and 

all my friends for their support and giving me hope and love during the past years. 



Eidesstattliche Erklärung 

117 
 

 

 

Eidesstattliche Erklärung 

 

Ich versichere hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig 

angefertigt und ohne fremde Hilfe verfasst habe, keine außer den von mir angegebenen 

Hilfsmitteln und Quellen dazu verwendet habe und die den benutzten Werken inhaltlich 

und wörtlich entnommenen Stellen als solche kenntlich gemacht habe. 

 

 

 

Rostock, den 05.05.2015    

 

 

 

Wael Skeff   

 

 

 

 


	Abstract
	Zusammenfassung
	Preface
	1   Introduction
	1.1    The Baltic Sea
	1.2   Pesticides, classification and the German herbicides market
	1.3   Pesticide contamination of the Baltic Sea and its estuaries
	1.4   Pathways of herbicides to the surface water
	1.5   The effect of herbicides on the aquatic ecosystem
	1.6   Studied herbicides and their physicochemical properties
	1.6.1   Glyphosate
	1.6.2   Mecoprop and MCPA
	1.6.3   Isoproturon
	1.6.4   Bentazon
	1.6.5   Chloridazon

	1.7   Analytical techniques for polar herbicide analysis
	1.8   Objectives of the thesis

	2   Materials and Methods
	2.1   Chemicals and reagents
	2.2   Preparation of working solutions, buffer solutions and eluents
	2.3   TFAA and TFE derivatization for GC-MS analysis
	2.4   FMOC-Cl derivatization for HPLC-MS/MS analysis of glyphosate and AMPA
	2.5   GC-MS instrument and operating conditions for analysis of all the target analytes
	2.6   HPLC-MS/MS instrument and operating conditions for direct analysis of MCPA, mecoprop, isoproturon, bentazon, chloridazon and its metabolites CD and CMD
	2. 7   HPLC-MS/MS operating conditions for glyphosate and AMPA analysis after derivatization with FMOC-Cl
	2.8   Sampling sites and period
	2.9   Sample collection, treatment and data analysis
	2.10   Algae and culture conditions
	2.11   Chlorophyll-a, cell count, particulate organic carbon and AMPA analysis

	3   Results and Discussion
	3.1   GC-MS and HPLC-MS/MS for analysis of the selected polar herbicides and metabolites
	3.1.1   GC-MS and HPLC-MS/MS for direct analysis of the selected compounds
	3.1.2   HPLC-MS/MS method optimization for direct analysis of MCPA, mecoprop, isoproturon, bentazon, chloridazon CD and CMD
	3.1.2.1   Mobile phase composition
	3.1.2.2   Comparison of three sample solvents
	3.1.2.3   MS/MS optimization

	3.1.3    HPLC-MS/MS Method validation for direct analysis of MCPA,  mecoprop, isoproturon, bentazon, chloridazon and CMD
	3.1.3.1   Linearity
	3.1.3.2   Accuracy
	3.1.3.3   Precision (Repeatability)
	3.1.3.4   Limit of detection and limit of quantification
	3.1.3.5   Analytes and system stability

	3.1.4   TFAA and TFE derivatization for GC-MS analysis of polar herbicides   and metabolites
	3.1.5   Derivatization of glyphosate and AMPA with FMOC-Cl for HPLC-MS/MS analysis
	3.1.6   HPLC-MS/MS method optimization for analysis of glyphosate and AMPA after their derivatization with FMOC-Cl
	3.1.6.1 Comparison of the two different solvents methanol and acetonitrile
	3.1.6.2    Comparison of two buffer concentrations
	3.1.6.3   Comparison of pure acetonitrile and acetonitrile with buffer salts
	3.1.6.4   Optimization of the mobile phase flow rate
	3.1.6.5   Optimization of gradient elution
	3.1.6.6   Optimization of MS/MS conditions

	3.1.7   HPLC-MS/MS method validation for analysis of glyphosate and AMPA after  their derivatization with FMOC-Cl
	3.1.7.1   Calibration curves and linearity
	3.1.7.2   Limit of detection and quantification
	3.1.7.3   Precision
	3.1.7.4   Accuracy
	3.1.7.5   Analytes stability
	3.1.7.6   System stability and blank samples


	3.2   Occurrence of polar herbicides and some of their           metabolites in the German Baltic estuaries
	3.2.1   Occurrence of glyphosate and AMPA
	3.2.2   Occurrence of isoproturon and bentazon
	3.2.3   Occurrence of MCPA and mecoprop
	3.2.4   Occurrence of chloridazon and CMD
	3.2.5   Detection frequencies of the selected compounds in the German Baltic estuaries
	3.2.6   Spatial and time variations in transport of compounds with high detection frequencies to the Baltic Sea
	3.2.7   Fate of glyphosate and AMPA
	3.2.8   Occurrence of the selected compounds in the German Baltic coast

	3.3   Response of Nodularia spumigena to the herbicide glyphosate (Roundup®) and its metabolite AMPA

	4.  Conclusion and Outlook
	References
	List of Tables
	List of Figures
	List of Appendices
	Abbreviations
	Appendices
	Acknowledgements
	Eidesstattliche Erklärung



