title: |
Improved imbalanced classification through convex space learning |
|
contributing persons: |
Saptarshi Bej[VerfasserIn] |
|
1252250940 |
Olaf Wolkenhauer[AkademischeR BetreuerIn] |
|
0000-0001-6105-2937 |
|
133515931 |
|
Universität Rostock |
Jan Baumbach[AkademischeR BetreuerIn] |
|
Universität Hamburg |
Carsten Ullrich[AkademischeR BetreuerIn] |
|
Steinbeis Hochschule, CENTOGENE GmbH |
|
contributing corporate bodies: |
Universität Rostock[Grad-verleihende Institution] |
|
38329-6 |
Universität Rostock, Fakultät für Informatik und Elektrotechnik[Grad-verleihende Institution] |
|
10085032-7 |
|
|
abstract: |
Imbalanced datasets for classification problems, characterised by unequal distribution
of samples, are abundant in practical scenarios. Oversampling algorithms generate
synthetic data to enrich classification performance for such datasets. In this thesis,
I discuss two algorithms LoRAS & ProWRAS, improving on the state-of-the-art as shown
through rigorous benchmarking on publicly available datasets. A biological application
for detection of rare cell-types from single-cell transcriptomics data is also discussed.
The thesis also provides a better theoretical understanding behind oversampling.
[English] |
|
document type: |
|
institution: |
Faculty of Computer Science and Electrical Engineering |
|
language: |
|
subject class (DDC): |
000 Generalities, Science |
004 Data processing Computer sciences |
|
|
publication / production: |
Rostock
Rostock: Universität Rostock
|
2021
|
|
statement of responsibility: |
vorgelegt von Saptarshi Bej |
|
notes: |
|
|
identifiers: |
|
|
access condition: |
|
license/rights statement: |
|
|
RosDok id: |
rosdok_disshab_0000002699 |
created / modified: |
21.02.2022 / 08.08.2023
|
metadata license: |
The metadata of this document was dedicated to the public domain (CC0 1.0 Universal Public Domain Dedication). |