Titel: |
Representation theory and polytopes |
|
Beteiligte Personen: |
|
Beteiligte Körperschaften: |
Universität Rostock[Grad verleihende Institution] |
|
38329-6 |
Universität Rostock, Mathematisch-Naturwissenschaftliche Fakultät[Grad verleihende Institution] |
|
2147083-2 |
|
|
Zusammenfassung: |
This cumulative habilitation thesis contains several papers concerning applications
of the representation theory of finite groups to polytopes and their symmetries, and
in particular, orbit polytopes (also known as vertex-transitive polytopes). The topics
treated include affine symmetry groups of orbit polytopes, lattice-free orbit polytopes,
the combinatorial symmetry group of the Birkhoff polytope and realizations of abstract
regular polytopes.
[Englisch] |
Diese kumulative Habilitationsschrift enthält verschiedene Arbeiten über Anwendungen
der Darstellungstheorie endlicher Gruppen auf Polytope und ihre Symmetrien, insbesondere
Orbit-Polytope (auch eckentransitive Polytope genannt). Behandelt werden unter anderem
affine Symmetriegruppen von Orbit-Polytopen, gitterfreie Orbit-Polytope, die kombinatorische
Symmetriegruppe des Birkhoff-Polytops und Realisierungen abstrakt-regulärer Polytope.
[Deutsch] |
|
Dokumenttyp: |
|
Einrichtung: |
Mathematisch-Naturwissenschaftliche Fakultät |
|
Sprache: |
|
Sachgruppe der DNB: |
|
|
Veröffentlichung / Entstehung: |
Rostock
Rostock: Universität Rostock
|
2017
|
|
Verantwortlichkeitsangabe: |
vorgelegt von Frieder Ladisch aus Rostock |
|
Anmerkungen: |
"This is a cumulative thesis, and so the main part of this thesis consists of papers
(listed on page 23) which are already published, or submitted for publication. All
papers are also available from the preprint server arXiv." - Vorwort |
|
|
Identifikatoren: |
|
|
Zugang: |
frei zugänglich (Open Access)
|
|
Lizenz/Rechtehinweis: |
alle Rechte vorbehalten Das Werk darf ausschließlich nach den vom deutschen Urheberrechtsgesetz festgelegten Bedingungen genutzt werden. |
|
|
RosDok-ID: |
rosdok_disshab_0000001854 |
erstellt / geändert am: |
21.03.2018 / 08.08.2023
|
Metadaten-Lizenz: |
Die Metadaten zu diesem Dokument sind gemeinfrei (CC0 1.0 Universal Public Domain Dedication). |